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Abstract

Floating base robots are a broad class of robotic systems. They consist of a floating base
and chains of manipulators mounted on the base. Examples of floating base robots are
space robots, where a robotic arm is mounted on a spaceship and legged robots, which
contain legs and arms mounted on a torso. Floating base robots are much more complex
to analyze and to control than fixed robots. In contrast to industrial robots tied to the floor,
any motion of the joints induces a motion of the base. In 3 dimensions the base has 6
degrees of freedom, rendering the configuration space a curved manifold SE(3)× Rn.

Legged robots are more that an order of magnitude less energy efficient than walking,
hopping and running of humans and animals [KAA+18

.

]. This prohibits the widespread
use of such systems, given the limited resources on board. The goal of this work was
to systematically find decompositions of the system dynamics into external and internal
components and to use those decompositions for efficient control strategies. The conjecture
is that such control strategies make legged motion more natural and energy efficient, by
injecting energy only when needed.

In this work, we first systematically analyze the conditions, under which the base dy-
namics decouples from the internal motion of the joints. In contrast to the Euler-Netwon
methodology usually employed in robotics, concepts from mathematical Physics are used.
The Hamel equations on the manifold SE(3)× Rn are derived in a coordinate free formu-
lation and the equivalence of the equations of motion to the ones derived from the Euler-
Netwon method is proven. The problem of decoupling of the equations of motion is turned
upside down. Starting with an unknown decoupling transformation, necessary conditions
for the properties of the transform are formulated, the equations of motion are transformed
and the resulting equations of motion are solved for transformations, which decouple the
system. It turns out that any transformation, which decouples the base wrench from the
joints torques and diagonalizes the mass matrix, decouples the dynamics. Employing a
transformation, which results in a constant of motion of the transformed system, leads to
an invariance structure. These results hold only for the Bolzmann-Hamel equations, which
have a non-passive Coriolis matrix. Therefore, a passive formulation is derived and the
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conditions for decoupling are stated. The system does not decouple under any transform
and only shows invariance, when the transformation leads to a constant of motion.

The results of decoupling and invariance are applied to the decomposition of the dy-
namics into external and internal velocity. For control, two different types of decompo-
sition are used. The first decomposition uses an inertially aligned center of mass frame,
which leads to a constant of motion for the dynamics of the external velocity. The second
decomposition assumes that the center of mass frame is aligned to the locked velocity. In
this frame the total momentum is not conserved and the angular velocity is not necessarily
integrable, which could lead to a path dependent orientation of the CoM frame. The prob-
lem of integrability of the CoM frame is addressed by deriving necessary and sufficient
conditions for intergrability.

The results of decoupling are applied to hopping robots. Monopods with one prismatic
or one revolute joint are considered. Impedance control is used to control the system. It
consists of virtual radial springs between the foot and the center of mass and polar springs
at the center of mass.

For the prismatic hopper, stable fully actuated hopping in place is demonstrated. Under-
actuated hopping in place is unstable by design. Fully actuated hopping forward was not
considered and is subject to future work.

For the revolute hopper, stable fully actuated hopping forward is demonstrated by us-
ing radial damping during flight. The gaits look natural with an almost linear horizontal
momentum. The occurrence of stable gaits is rather insensitive to initial conditions, all
measures are fully stationary and the control actions are confined to desirable values. It
turns out that the radial controller acts as the stabilizing element allowing the polar con-
troller to converge to stable gaits.

x
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1. Introduction

The thesis is structured in four parts: Introduction

.

Theory

.

, and Dynamics and Conserved
Quantities

.

, Application to Hopping Robots

.

and Conclusion

.

.
Chapter 1

.

gives a brief introduction to floating base robots and their control problem.
It further motivates the use of energy based methods for analyzing free floating systems
and defines decoupling transforms. The research tasks of this work are summarized as
problem statements and related to existing research.

Chapter 2

.

contains the theory needed for the subsequent modeling. A big part is de-
voted to Lee groups and Lee algebra. After introducing body frames, relations between
Lee group elements and Lee algebra elements and link twist Jacobians are formulated gen-
erally for SE(n). This allows direct translation to vector relations for SE(2) and SE(3).

Chapter 3

.

is about dynamics. The chapter first introduces the global formulation of
Hamel equations on manifolds using Hamiltonian’s variation principle. Then the equa-
tions of motion of a floating base robot on the manifold SE(3) × Rn are derived. It is
proven that the equations of motion are the same as the ones derived from the Euler-
Newton method. A section is devoted to constants of motion and the integrability of the
center of mass frame aligned with the locked velocity. Section Decoupling and Invariance
derives the decoupling transform and applies it to the equations of motion. Subsequently
a passive formulation is presented. It is shown that the dynamics decouple only, when the
momentum map is part of the transform. The Chapter concludes with an axiomatic ap-
proach to external/internal decomposition. The conditions necessary for decomposition
for an arbitrarily aligned center of mass frame are derived.

The chapter 4

.

applies the results of the previous chapters to hopping robots in the plane.
The first part develops the relations of the Lee algebra on SE(2), defines the link Jacobians
and the Lagrangian. It also explains models specific to hopping and presents the control
strategy employed. The subsequent sections show the results for a prismatic and a revolute
hopper in the plane.

Chapter 5

.

gives a discussion and conclusion.

1.1. Motivation

The topic of this thesis is to use so called Energy based methods from mathematical Physics
to systematically decouple the equations of motion of floating base robots for efficient con-
trol. Those methods include a Lagrangian formalism on manifolds to derive the equations
of motion and constants of motion (conserved quantities along the trajectory). They are

1



1. Introduction

subsequently applied to the decoupling transformations.
Floating base robots are a broad class of robotic systems, where chains of robotic actua-

tors are mounted on a movable base. Examples of floating base robots are space robots and
legged robots. In the case of space robots a robot arm is mounted on a spaceship, while
in the case of legged systems actuated legs are mounted on a torso. The mathematics of
floating base robots is much more involved than the one of fixed robots, due to the nature
of rigid body motion and due to Newton’s third law:

• The moving base has 3 linear and 3 angular coordinates which are non-Cartesian.

• The reaction force to a joint motor torque alters the movement of the base in the case
of a floating base robot, while it is absorbed by the ground in the case of a robotic
arm bolted to the ground.

The first observation implies that the usual Lagrange formalism cannot be applied, since
the base coordinates constitute the non-Cartesian manifold SE(3) × Rn. Therefore, the
Lagrange formulation has to be generalized to manifolds. We will derive the Hamel equa-
tions from variation calculus in a global (coordinate free) framework in Chapter 3.1.3

.

.
The second observation implies that the mass matrixM and the Coriolis matrixC couple

the motion of the joints and of the base. This behavior is not desirable for control applica-
tions. e.g. Given a space robot doing repair work, it is very hard to control the end effector,
if every movement of a joint changes the pose of the base. It would be much easier, if the
motion of the base and of the arm were decoupled. A similar problem occurs in legged
systems. The goal is to move the center of mass on a desired trajectory. However, this is
only possible indirectly through contact with the ground of the legs. If a transformation of
the equations of motion to an allocation space can be found, such that the resulting equa-
tions of motion are decoupled[Gio20

.

], a controller can be defined on the allocation space
and be applied to the equations of motion using the Jacobian transpose.

The decoupling transform is usually found by intuition. However in mathematical
Physics there is a strong link between decoupling and constants of motion, which can
be used to find the required transformation. A constant of motion is a conserved quantity
along the solution of the equations of motion. It can be found by exploiting Nöther’s the-
orem [Noe18

.

]: If the Lagrangian of the system is invariant under a continuous symmetry,
then there exists a constant of motion. Transforming the system variables to the constants
of motion decouples the equations of motion for the conserved quantities. We are not
only interested in transformations that fully decouple the base of the robot from the joints,
but also in the weaker case, where joint movements do not influence the base. To this
end, the question of finding suitable transformations is turned upside down in Chapter
3.3.2

.

Decoupling Transform

.

, by answering the question, which transforms give the desired
result.

Another important topic for control is the passive formulation of the Coriolis matrix.
While the equations of motion are uniquely defined by the Lagrangian, the shape of the
Coriolis matrix is arbitrary as long as the equations of motion are fulfilled. The Coriolis

2



1.2. Related Work

matrix is said to be passive, if the following condition is met:

Ṁ = C +CT (1.1)

A passive formulation of the floating base robot system derived from energy based meth-
ods is defined in Section 3.3.3

.

and the decoupling properties are analyzed. This topic is the
second item in Problem Statement

.

.
Legged robots can be viewed as hybrid systems with two sets of dynamics. During

flight, the robot is a free floating system, while at stance it is a fixed robot, which can
topple over. If the robot dynamics can be decoupled during flight, the arms and legs can
be separately controlled from movement of the center of mass. If the system dynamics
can also be decoupled during the stance phase, it should be possible to design impedance
controllers, which lead to an efficient movement of the center of mass.

1.2. Related Work

This work builds upon the thesis of Giordano [Gio20

.

], which used internal and external
decomposition for the control of space robots. In this work the question, when the dynam-
ics decouple is formulated generally and the conditions necessary are stated.

Lagrangian based methods are not commonly used in Robotics. Murray [MLS94

.

] de-
velops the dynamics for the Cartesian case. The Hamel equations for free floating robots
are used in [STNN17

.

]. A Lee-group formulation of the kinematics and dynamics of con-
strained multi body systems is developed in [MM03

.

]. This work develops the Hamel
equations in a global formulation based on the book of Lee et. al. [LLM17

.

]. Prominent
books on geometrical mechanics are [MR13

.

, BB04

.

].
There is a large body of literature on legged locomotion and hopping. A review of

hardware and control for single leg robot is presented in [SSS07

.

]. Many control strategies
for hopping use a form of Raibert’s controller of the spring loaded inverted pendulum
[Rai86

.

]. Those strategies do not use a free floating model during flight, but assume that
the angle of attack at touch down can be set arbitrarily.

1.3. Problem Statement

This section lists the problems that had to be addressed by the Thesis.

1.3.1. Energy-Based Decoupling for Free-Floating Robot Systems

Given a free floating system on SE(3)× Rndefined by the Lagrangian:

L =
1

2

[
νb
q̇

]T [
M bb M bq

MT
bq M qq

] [
νb
q̇

]
(1.2)

3



1. Introduction

With equations of motion:[
M bb M bq

MT
bq M qq

] [
ν̇b
q̈

]
+

[
Cb Cbq

Cqb Cq

] [
νb
q̇

]
=

[
F b

τ

]
(1.3)

Find all transforms T :[
vx
vy

]
= T

[
νb
q̇

]
T =

[
T x T xy
T yx T y

]
(1.4)

such that for the transformed equations of motion:[
Mx 0
0 My

] [
ν̇b
q̈

]
+

[
Cx Cxy

Cyx Cy

] [
νb
q̇

]
=

[
F b

τ

]
(1.5)

the blocks Cx and Cxy of the Coriolis matrix have the properties:

1. Cxνb +Cxyq̇ = 0 vanish (invariance structure).

2. Or only Cxyq̇ = 0 vanishes (decoupling).

1.3.2. Passive Formulation

Find a passive formulation of the Coriolis C matrix and find all transformations that de-
couple the system. The system is passive if the following relation holds

Ṁ = C +CT (1.6)

1.3.3. Application to Hopping Robots

Apply the decomposition of the system dynamics into internal and external velocity to
hopping legs in the plane. The fist system is a prismatic leg with a point mass for the base
and the foot, respectively. The task consists of calculating the system dynamics and the
Jacobians for control symbolically, writing a numeric simulation program and defining a
control strategy based on decoupled dynamics. Tune the system for hopping in place and
hopping forward, if applicable.

4



2. Theory

This Part contains the theory needed for solving problems for free floating robots. Math-
ematical concepts, such as Lee algebra, variation on manifolds and Hamel equations on
manifolds are very abstract. In contrast to many other fields in mathematics, it is difficult
for an engineer to understand the ideas behind those concepts. But it is even harder to ap-
ply them. One has to think hard how those concepts can be translated to the level, where
actual calculations can be performed.

While there are many books on geometry, such as [MR13

.

] or [BB04

.

], it requires a huge
amount of time to make practical use out of them, which an engineer in robotics normally
does not have.

To this end, the Theory Part in this work takes the known facts about these topics as a
starting point and translates them to practical frameworks in a handy notation optimized
to perform actual calculations. In the Modeling Part the frameworks are applied to free
floating robots.

To the best of our knowledge there is no reference in the literature that provides such a
practical approach for engineers in robots on those topics.

2.1. Lee Groups and Lee Algebras

All relevant manifolds in robotics, such as the Euclidean space Rn, the rotation groups
SO(2) and SO(3), the special Euclidean groups SE(2) and SE(3) and the product groups
SE(2)× Rn and SE(3)× Rn are Lee groups.

The theory of Lee groups and Lee algebras can be viewed from two perspectives. The
Lee group formalism can pragmatically be seen as a toolbox for deriving relations between
Lee group elements and Lee algebras elements. In our context the Lee group elements are
rigid body transformations, while the Lee algebra elements correspond to velocities. On
the other hand, the theory of Lee groups and Lee algebras has a geometric meaning. In
this work we concentrate on the pragmatic view in Chapter 2.1.2

.

.

2.1.1. Body Frames

This section defines rigid body transformations and body frames. The notation used is
aligned with [Gio20

.

, Chaper 2.1.1] and [MLS94

.

, Chapter 2].
The coordinate transformation from an orthonormal frame Y to an orthonormal frame

X is given by a rotation and a shift. The coordinates of a vector y expressed in frame Y are

5



2. Theory

translated to coordinates x expressed in frame X by:

x = Rxyy + oxy (2.1)

The vector oxy goes from the origin of frame X to the origin of frame Y . Is is expressed
in frame X and is a n× 1 vector. The rotation matrix Rxy transforms the from frame Y to
frame X . It is a n× n matrix with n(n− 1)/2 degrees of freedom. The rotation matrixRxy

has the following properties:

R−1xy = RT
xy (2.2a)

Ryx = RT
xy (2.2b)

Rxz = RxyRyz (2.2c)

Ṙ
T
xyRxy = −RT

xyṘxy (2.2d)

With regards to robotics, we are not so much interested in coordinate transformations,
but in transformations between frames. To this end, for each body y of a robot, a rotating
frame Y is defined, such that the mass of body y does not move in frame Y . This frame is
called body frame. The big advantage of introducing body frames is that the moment of
inertia of body y, Iy, is a constant matrix in frame Y . The pose of frame Y expressed in
frame X can be compactly written by introducing the homogeneous transformationHxy:

Hxy =

[
Rxy oxy
0 1

]
H−1xy =

[
RT
xy −RT

xyoxy
0 1

]
(2.3)

The matrix Hxy is called rigid body transformation. It is a (n + 1) × (n + 1) matrix with
n(n+ 1)/2 degrees of freedom.

The rigid body transformationHxy has the following properties:

Hyx = H−1xy (2.4a)

Hxz = HxyHyz (2.4b)

Ḣ
−1
xyHxy = −H−1xy Ḣxy (2.4c)

2.1.2. Lee Algebra for SE(n)

All the definitions and relations in this Chapter hold for rigid body transformations in
any dimension. The general approach is to first derive relations between group elements
Hxy ∈ SE(n) and Lee algebra elements ω̂xy ∈ se(n) and at the very end specify the
relations in terms of the Lee group and Lee algebra under consideration.

The linear body velocity vxy expressed in frame X and is defined as:

vxy = RT
xyȯxy (2.5)

6



2.1. Lee Groups and Lee Algebras

The angular body velocity matrix ω̂xy is also expressed in frame X and is defined as:

ω̂xy = RT
xyṘxy (2.6)

The rotation matrix is a Lee group element Rxy ∈ SO(n). The matrix ω̂xy is an element
of the Lee algebra ω̂xy ∈ so(n). It is skew symmetric: ω̂Txy = −ω̂xy. This can be easily seen
by using the identity (2.2d

.

):

ω̂Txy = (RT
xyṘxy)

T = Ṙ
T
xyRxy

= −RT
xyṘ

T
xy = −ω̂xy

Similar to the pure rotational case (2.6

.

), a body velocity matrix ν̂xy ∈ se(n) derived from
the group elementHxy ∈ SE(n) is defined as:

ν̂xy = H−1xy Ḣxy[
ω̂xy vxy
0 0

]
=

[
ω̂xy RT

xyȯxy
0 0

]
(2.7)

with the time derivative ofHxy ∈ SE(n) given by

Ḣxy =

[
Rxyω̂xy ȯxy

0 0

]
(2.8)

The matrix ν̂xy is an element of the Lee algebra se(n), ν̂xy ∈ se(n), and contains the
linear body velocity vector (2.5

.

) and the angular body velocity (2.6

.

) matrix. It is a (n+ 1)×
(n+ 1) matrix with n(n+ 1)/2 degrees of freedom.

The n(n − 1)/2 components of ω̂xy can be put into a n(n − 1)/2 × 1 vector ωxy. Apart
from being practical to define the components of the skew matrix ω̂xy as the vectorωxy, the
vector ωxy also has a physical interpretation: ωxy is the instantaneous direction of rotation
defined in the frame Y .

The n(n+ 1)/2 elements of the se(n) body velocity matrix ν̂xy can be put into the n(n+
1)/2× 1 vector, containing the linear and angular velocity:

νxy =

[
vxy
ωxy

]
(2.9)

It is important to note that although the vector νxy looks like a regular Cartesian vector,
it is not an element of the Cartesian vector space Rn(n+1)/2, since for νxy no inner product
can be defined [MLS94

.

, Appendix 3.2].
The following operations are defined for transforming between se(n) matrices and vec-

tors: The hat operator transforms a vector to a skew matrix: (x)̂ = x̂. The reverse operator,
the hatchek operator, transforms skew matrices to vectors (x̂)̌ = x.

Two important operations can be defined on the Lee algebra.

7



2. Theory

Definition 2.1. For any Lee algebra element ν̂1, ν̂3 ∈ se(n), any Lee group elementH2 ∈ SE(n),
with the corresponding rotation matrix R2 ∈ SO(n), the big adjoint transformation is defined as
[MLS94

.

]:

ν̂3 = Ad2ν̂1 = H2ν̂1H
−1
2[

ω̂3 v3
0 0

]
=

[
R2ω̂1R

T
2 R2v1 −R2ω̂1R

T
2 o2

0 0

]
(2.10)

Since Ad2 is a function ofH2, it is sometimes written as AdH2 .

Definition 2.2. For any Lee algebra element ν̂1, ν̂2, ν̂3 ∈ se(n) the little adjoint transformation
is defined as [MLS94

.

]:

ν̂3 = adν2 ν̂1 = [ν̂2, ν̂1] = ν̂2ν̂1 − ν̂1, ν̂2[
ω̂3 v3
0 0

]
=

[
ω̂2ω̂1 − ω̂1ω̂2 ω̂2v1 − ω̂1v2

0 0

]
(2.11)

It is a function of a Lee algebra element ν̂2. Therefore the algebra element ν̂2 appears
in the name of the little adjoint. It is important to note that both adjoint transformations
hold for any Lee group and Lee algebra elements, regardless whether they define a trans-
formation between frames and a body velocity or not. They can take an arbitrary Lee
algebra element as input and always provide a Lee algebra element as output. Therefore
it is ensured that any nested sequence of big and little adjoint operations yield an se(3)
element.

With the above transformations useful relations between body frames and body veloci-
ties can be derived.

Lemma 2.3. The big adjoint between 3 frames X , Y and Z is given by:

Adxz = AdxyAdyz (2.12)

Proof. LetHxz = HxyHyz .

AdxyAdyzν̂1 =Hxy(Hyzν̂1H
−1
yz )H−1xy

=Hxzν̂1H
−1
xz

=Adxz

Lemma 2.4. The body velocity ν̂xz between 3 frames X , Y and Z can be expressed as:

ν̂xz = Adzyν̂xy + ν̂yz (2.13)

8



2.1. Lee Groups and Lee Algebras

Proof. LetHxz = HxyHyz . The body velocity ν̂xz is given by:

ν̂xz = H−1xz Ḣxz

= H−1yzH
−1
xy (ḢxyHyz +HxyḢyz)

= Hzyν̂xyH
−1
zy + ν̂yz

= Adzyν̂xy + ν̂yz

where the identities (2.4a

.

) were used.

Lemma 2.5. The following relation holds for the time derivative ofAdxy:

Ȧdxy = Adxy adνxy (2.14)

Proof.

Ȧdxyν̂1 = Ḣxyν̂1H
−1
xy +Hxyν̂1Ḣ

−1
xy

= HxyH
−1
xy Ḣxyν̂1H

−1
xy −Hxyν̂1H

−1
xy ḢxyH

−1
xy

= Hxyν̂xyν̂1H
−1
xy −Hxyν̂1ν̂xyH

−1
xy

= Hxy[ν̂xy, ν̂1]H
−1
xy

Lemma 2.6. The inverse of Adxy is:

Ad−1xy = Adyx (2.15)

Proof.

Ad−1xy ν̂1 = H−1xy ν̂1Hxy

= Hyxν̂1H
−1
yx

= Adyx

Lemma 2.7. The little adjoint transformation is anti-symmetric:

adνxy = −adνyx (2.16)

Proof.

adνxy ν̂1 = adνxy ν̂1 − adν1 ν̂xy
= −[adν1 , ν̂xy]

= −adνyx

Lemma 2.8. The little adjoint transformation applied to the same algebra element is zero:

adνxyνxy = 0 (2.17)

9



2. Theory

Proof.

adνxy ν̂xy = ν̂xyν̂xy − ν̂xy, ν̂xy
= 0

A relation between little adjoint transformations between different frames is often used
in the modeling section.

Lemma 2.9. The little adjoint transformation between 3 frames X , Y and Z is given by:

adνxz = Adzy adνxy Ad
−1
zy + adνyz (2.18)

Proof. Using ν̂xz = Adzyν̂xy + ν̂yz (2.13

.

)

adνxz ν̂1 = [ν̂xy, ν̂1] = [Hzyν̂xyH
−1
zy , ν̂1] + [ν̂yz, ν̂1]

= Hzyν̂xyH
−1
zy ν̂1 − ν̂1Hzyν̂xyH

−1
zy + adνyz ν̂1

= Hzy(ν̂xyH
−1
zy ν̂1Hzy −H−1zy ν̂1Hzyν̂xy)H

−1
zy + adνyz ν̂1

= Hzy[ν̂xy,H
−1
zy ν̂1Hzy]H

−1
zy + adνyz ν̂1

= Adzy adνxy Ad
−1
zy + adνyz

To simplify notion only one subscript is used, if the quantities ω̂,ν̂ ,H ,A,A are relative
to the inertial frame I , e.g ν̂Ix = ν̂x.

2.1.3. Link Twist Jacobian for Free Floating Robots on SE(n)

In this section the results from section 2.1

.

are applied to free floating robots. It is a gener-
alization of [MLS94

.

, Chapter 3.4] to free floating robots and to SE(n) 1

.

.
The body velocity ν̂j of joint j is (2.13

.

) is:

ν̂j = Adjbν̂b + ν̂bj(q, q̇) (2.19)

ν̂bj(q, q̇) = H−1bj Ḣbj (2.20)

1Using the term Jacobi matrix or Jacobian for SE(n) can be misleading and is technically wrong, since a
Jacobi matrix is defined as the matrix of all partial derivatives of a function with respect to its arguments.
For Cartesian variables x,y ∈ Rn the position y with respect to x is y = F (x). The velocity of x and y is
ẋ and ẏ, respectively. The velocity ẏ with respect ẋ is given by the Jacobian: ẏ = J ẏ ẋ. For non-Cartesian
variables the velocity relation neither holds for the function argument x, nor for the function output y.
For SE(n) the corresponding relations areHxy = F (Hib, q) and νxy = Jνxyυb withHxy,Hib ∈ SE(n),
υb = [νib; q̇], νxy,νib ∈ se(n) and q̇ ∈ Rn. The functional form of the ”Jabobian” Jνxy is not a Jacobi
matrix.

10



2.1. Lee Groups and Lee Algebras

For a free floating robot the group element Hbj depends only on the joint variables q.
Therefore, term Ḣbj can be expanded with regards to q using the chain rule like in [MLS94

.

,
eq. 3.41]. Using Einstein notation for index i: 2

.

ν̂bj(q) = H−1bj (q)Ḣbj(q) (2.21)

= H−1bj (q)
∂Hbj(q)

∂qi
q̇i ∈ se(n) (2.22)

This can be more compactly written by defining the link twist Jacobian Ĵ jq, whose ith
element is: 3

.

Ĵ
i
jq = H−1bj (q)

∂

∂qi
Hbj(q)

=

[
RT
bj
∂Rbj
∂qi

RT
bj
∂obj
∂qi

0 0

]
∈ se(n) (2.23)

yielding

ν̂j = Adjbν̂b + Ĵ
i
jqq̇i (2.24)

The formulation on the Lee algebra has the big advantage that the Jacobian J jq is directly
derived from the Lee group element Hbj . This fact will be later used to derive complex
relations in Chapter 3.1.3

.

and in Chapter 3.3.3

.

.
The link twist Jacobian J jq can be simplified for robots with one degree of freedom per

joint. The transformation Hbj from the base frame to the frame of the joint j is given by
the product of the transformationsH i−1,i(qi) from i to joint i− 1:

Hbj = H01(q1)H12(q2), . . . ,Hj−1,j(qj) (2.25)

where the index 0 corresponds to b. The derivative ofHbj with respect to qi depends only
on the termH i−1,i

For a rotational joint the rotationRi−1,i is time dependent, while the distance oi−1,i from

2The se(n) element ν̂bj is a linear combination of the matrices H−1
bj

∂Hbj

∂qi
for arbitrary values of the scalars

q̇i. Therefore,H−1
bj

∂Hbj

∂qi
∈ se(n)

3RT
bj
∂Rbj

∂qi
is skew symmetric.

11
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frame i− 1to frame i is constant 4

.

:

Hrot
i−1,i(qi) =

[
Ri−1,i(qi) oi−1,i

0 1

]
∂

∂qi
Hrot

i−1,i(qi) =

[ ∂
∂qi
Ri−1,i(qi) 0

0 0

]
(H−1,roti−1,i (qi)

∂

∂qi
Hrot

i−1,i(qi)̌ =

[
03×1

(RT
i−1,i

∂
∂qi
Ri−1,i(qi))̌

]
(2.26)

For a prismatic joint the distance oi−1,i from frame i−1 to frame i is time dependent, while
the rotationRi−1,i is constant:

Hpris
i−1,i(qi) =

[
Ri−1,i oi−1,i(qi)

0 1

]
∂

∂qi
Hpris

i−1,i(qi) =

[
03×3

∂
∂qi
oi−1,i(qi)

0 0

]
(H−1,prismi−1,i (qi)

∂

∂qi
Hprism

i−1,i (qi))̌ =

[
RT
i−1,i

∂
∂qi
oi−1,i(qi)

03×1

]
(2.27)

Using the relations:

H−1bj (q) = H−1j−1,j , . . . ,H
−1
i,i+1H

−1
i−1,iH

−1
i−2,i−1, . . . ,H

−1
0,1

∂

∂qi
Hbj(q) = H01, . . . ,H i−2,i−1,

∂

∂qi
H i−1,i(qi)H i,i+1, . . . ,Hj−1,j

the ith column of the Jacobian (2.23

.

) is given by:

Ĵ
i
jq = Adji(H

−1
i−1,i

∂

∂qi
H i−1,i(qi))

J ijq = Aji(H
−1
i−1,i

∂

∂qi
H i−1,i(qi))̌ (2.28)

Finally, using the transformations for the rotational (2.26

.

) and the prismatic (2.27

.

) joints, re-
spectively, and (2.28

.

) the ith column of the Jacobian J ijq can be explicitly calculated SE(3).

4For SE(2) the term (RT
i−1,i

∂
∂qi
Ri−1,i(qi))̌ = 1, due to relation (4.4

.

)RT
xy

∂Rxy(θxy)

∂θxy
= S, where S is the basis

vector of se(2). For SE(3) the result depends on the parameterization of the rotation matrix.
If exponential coordinates are used,Hbj = e

∑j
i=1 ξ̂i(0)qiHbj(0), The ith column of the link twist Jacobian

is then: J ijq = Ajbξi(0)

12
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J i,rotjq =

[
ôjiRji(R

T
i−1,i

∂Ri−1,i(qi)
∂qi

)̌

Rji(R
T
i−1,i

∂Ri−1,i(qi)
∂qi

)̌

]
(2.29)

J i,prismjq =

[
RjiR

T
i−1,i(

∂
∂qi
oi−1,i(qi))

03×1

]
(2.30)

For SE(2) most of these relations have been implemented in the Symbolic Lee Algebra
Toolbox for SE(2) × Rn A.2

.

. For SE(3) it would be interesting to explore what benefits
a Lee algebra approach could bring for symbolic and numeric computations of system
matrices, Jacobians, momentum maps, etc. It would be beneficial to use exponential coor-
dinates4

.

.

2.1.4. The Exponential Map on SE(n)

The definition of the body velocity (2.7

.

) can be viewed as a differential equation for trajec-
tories on the group:

Ḣ(t) = H(t)ν̂(t)

A trajectory on the manifold SE(n) is the time evolution of the group element H(t). The
differential equation can be solved for constant body velocities ν̂, which is fulfilled for
trajectories starting at the unit element of the group and only considering infinitesimal
small values of t:

H(δt) = eδt ν̂ (2.31)

This relation is called exponential map [MLS94

.

].
All possible infinitesimal variations of a group element, can be generated by an algebra

element through a screw motion. This means that for any infinitesimal variation a group
element H an algebra element ν̂ can be found that generates the variation by the amount
ε:

Hε = Heε ν̂ (2.32)

2.2. Relations on SE(3)

2.2.1. Adjoint Transformations

In this section the relations derived for SE(n) are now specified for SE(3). The corre-
sponding relations for SE(2) are derived in section 4.1.1

.

.
The angular body velocity matrix is a 3× 3 skew matrix containing 3 different elements:

ω̂xy =

 0 −ω3
xy ω2

xy

ω3
xy 0 −ω1

xy

−ω2
xy ω1

xy 0

 (2.33)
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The body velocity matrix ν̂xy ∈ se(3) (2.7

.

) is:

ν̂xy =

[
ω̂xy vxy
0 0

]
with vxy = RT

xyȯxy. It has 6 different components.
The adjoint transformations in (2.10

.

) and in (2.11

.

) can be defined on twists.

Lemma 2.10. The transformation ν2 = Axyν1. transforms any twist ν1 corresponding to ν̂1 ∈
se(3) to a twist ν2 corresponding to ν̂2 ∈ se(3). The 6× 6 matrixAxy is given by:

Axy =

[
Rxy ôxyRxy

0 Rxy

]
(2.34)

The result of using Axyν1 is the same as applying the big adjoint transformation (2.10

.

) Adxyν̂1
and converting the result to a vector. i.eAxyν1 = (Adxyν̂1)̌.

Proof. Comparing (2.34

.

) and (2.10

.

), we need to prove that:

Rxyω1 = (Rxyω̂1R
T
xy )̌

Rxyv1 + ôxyRxyω1 =Rxyv1 −Rxyω̂1R
T
xyoxy

Using (A.6f

.

) Rxyω1 = (Rxyω̂1R
T
xy )̌ the first part is proven. The first terms in the sec-

ond equation are the same. The second term of the second equation −Rxyω̂1R
T
xyoxy =

−(Rxyω1)̂oxy = ôxyRxyω1 due to the properties of the cross product (A.6b

.

).

Lemma 2.11. The transformation ν2 = axyν1 transforms a twist ν1 corresponding to ν̂1 ∈ se(3)
to a twist ν2 corresponding to ν̂2 ∈ se(3). The 6× 6 matrix axy is given by:

axy =

[
ω̂xy v̂xy
0 ω̂xy

]
(2.35)

The result is the same as transforming ν̂1 with little adjoint transformation (2.11

.

) and converting
the result to a twist, i.e axyν1 = (adνxy ν̂1)̌.

Proof. Comparing (2.11

.

) with (2.35

.

) we need to prove:

ω̂xyω1 = (ω̂xyω̂1 − ω̂1ω̂xy )̌

ω̂xyv1 + v̂xyω1 = ω̂xyv1 − ω̂1vxy

The first part can be proven using the identity (A.6c

.

): (ω̂xyω̂1 − ω̂1ω̂xy )̌ = ωxy × ω1 and
ωxy × ω1 = ω̂xyω1. The second part is the same due to the cross product property (A.6b

.

):
v̂xyω1 = −ω̂1vxy.
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Using Lemma 2.10

.

and Lemma 2.11

.

all relation previously defined on the Lee algebra
can be formulated for twists

A−1xy = Ayx (2.36a)

Ȧxy = Axyaxy (2.36b)
axyνxy = 0 (2.36c)
axyνzw = −azwνxy (2.36d)

The little adjoint transformation for twists is often written as axy instead of aνxy .
The transformation rules between frame x, y and z and properties are:

Axz = AxyAyz (2.37a)
νxz = Azy νxy + νyz (2.37b)

axz = AzyaxyA
−1
zy + ayz (2.37c)

2.2.2. Link Twist Jacobian on SE(3)

The ith column of the link twist Jacobian for SE(3) is (2.23

.

):

J ijq =

[
RT
bj
∂obj
∂qi

(RT
bj
∂Rbj
∂qi

)̌

]
(2.38)

The body velocity νj in terms of the link twist Jacobian is then (2.19

.

):

νj = Ajbνb + J jqq̇ (2.39)

J jq = [J1
jq . . .J

n
jq] (2.40)

2.2.3. Lagrange Function

The Lagrangian of a floating robot system is given by the kinetic energy T (νb, q̇) minus
the potential energy Ug(oib,θib, q):

L(oib,θib, q,νb, q̇) = T (νb, q̇)− Ug(oib,θib, q) (2.41)

We derive an expression for the kinetic energy. The kinetic energy is the sum of all kinetic
energies indexed by jci around the centers of mass:

T =
1

2

n∑
j=0

nj∑
i=1

νTjci

[
mjciI3×3 03×3

03×3 Ijci

]
νjci (2.42)

It is assumed that in frame j there are nj bodies. A body numbered by jci has a body
velocity νjci , a mass mjci and an inertia Ijci , which is aligned with the principal axis of the
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body. The center of mass of body jci is located at oj,ci. Since oj,ci is constant in frame j, the
velocity of body jci transforms as: νjci = Ajci,jνj .

The mass matrix of frame j around the origin of frame j is given by 5

.

:

Λj =

nj∑
i=1

AT
j,jci

[
mjciI3×3 03×3

03×3 Ijci

]
Aj,jci (2.43)

For SE(3) the constant adjoint matrixAjci,j is:

Ajci,j =

[
Rj,jci ôj,jci

0 1

]
(2.44)

and the mass matrix of frame j is

Λj =

nj∑
i=1

[
mjciI3×3 −mjci ôj,jci
−mjci ôj,jci Ijci −mjci ôj,jci ôj,jci

]
(2.45)

It is the same as in [GOA13

.

, eq. 2.23]
The kinetic energy in terms of Λj is

T =
1

2

n∑
i=0

νTj Λjνj (2.46)

The body velocity of the jth frame νj (2.39

.

) can be rewritten by defining the Jacobian
J jb, which is a 6× (6 + n) matrix:

J0b =
[
I6×6 06×n

]
J jb =

[
Ajb J jq

]
(2.47)

νj = J jb

[
νb
q̇

]
(2.48)

The Lagrangian (2.41

.

) in terms of J jb is

L =
1

2

[
νb
q̇

]T
M b

[
νb
q̇

]
− Ug(oib,θib, q) (2.49)

with the mass matrixM b given by[
M bb M bq

MT
bq M qq

]
=

n∑
i=0

JTjb ΛjJ jb (2.50)

5Interestingly, this relation holds for SE(n) as long as the adjoint matrixAj,jci is specified for SE(n).
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2.2. Relations on SE(3)

The block matrix elements are given by

M bb =
n∑
j=0

AT
jbΛjAjb (2.51a)

M bq =
n∑
j=0

AT
jbΛjJ jq (2.51b)

M qq =
n∑
j=0

JTjqΛjJ jq (2.51c)

We assume that gravity points downwards on the y-axis. The gravity potential is given
by the sum of the contributions of all masses:

Ug(oib,θib, q) = mgoib + g rT2

n∑
j=0

nj∑
i=1

mjciob,jci(q) (2.52)

wherem is the total mass of the system and r2 is the second row ofRib. The gravity system
matrixG can be derived from the potential using (3.32a

.

):

G =

 RT
ib
∂Ug
∂oib∑3

i=1(ri ×
∂U
∂ri

)
∂Ug
∂q

 (2.53)

where the term ∂Ug
∂oib

=

[
0
mg

]
.
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3.1. Global Formulation of Hamel Equations on Manifolds

In this section the machinery to derive Hamel equations on manifolds is set up. We restrict
ourselves to the Lee groups relevant for robotics, which are the Euclidean space Rn, the ro-
tation group SO(3), the special Euclidean group SE(3) and the product group SE(3)×Rn.
In this work a global formulation for the elements of the manifold is used [LLM17

.

]. Global
formulation in this context means that the formulation does not require local maps and lo-
cal coordinates. This can be achieved under the assumption that the group elements can be
represented globally by matrices embedded in a higher dimensional space [LLM17

.

]. This
assumption is certainly fulfilled for all robotics application, since rotation matrices and
rigid body transforms can be embedded in the general linear group of invertible matrices
GLn(R).

This chapter is much aligned with Lee’s book [LLM17

.

]. However the notation used here
is more streamlined and optimized for doing pen and paper calculations. In the sequel the
Hamel equations are developed for the Lee groups specified above.

In this section there is an ambiguity in the notation for the variables q and q̇. The vari-
ables q and q̇ used in this section are a placeholder for configuration variables and veloc-
ities, receptively. They have nothing to do with the joint variables q and velocities q̇ used
outside this section.

In the case of mechanics, the Lagrange function is given by the kinetic energy T (q, q̇)
minus the potential energy U(q): L(q, q̇) = T (q, q̇) − U(q). The variables q represent
the configuration of the system, while q̇ are the velocities. The variables q are elements
of the configuration manifold, while the velocities q̇ are elements of the corresponding
tangent space. It is important to note that the velocities q̇ are not necessarily the time
derivatives of the configuration variables. This only holds for Cartesian variables. The
shape of the configuration variables and of the velocities depends on the manifold and its
tangent space, which is specific for the problem at hand.

The Hamel equations can be derived from Hamiltonian’s variation principle, which
states that the infinitesimal variation of the action integral:

Aε =

∫ t1

t0

L(qε, q̇ε)dt (3.1)

0
!

= δA =
d

dε
Aε
∣∣∣
ε=0

(3.2)
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vanishes for all possible variations qε and q̇ε with fixed boundaries [LLM17

.

, chapter-3.2]:

qε(t0) = q(t0) qε(t1) = q(t1)

q̇ε(t0) = q̇(t0) q̇ε(t1) = q̇(t1) (3.3)

The differentiation with respect to ε can be pulled under the integral:

0
!

=

∫ t1

t0

(
d

dε
L(qε, q̇ε)

∣∣∣
ε=0

) dt =

∫ t1

t0

(
∂L

q
δq +

∂L

q̇
δq̇) dt (3.4)

with the variation of the variables given by:

δq =
d

dε
qε
∣∣∣
ε=0

δq̇ =
d

dε
q̇ε
∣∣∣
ε=0

(3.5)

It is important to note that the variation of the action integral (3.4

.

) holds for any configu-
ration manifold and its tangent space. However, the variations of the variables (3.5

.

) vary
with the manifold.

3.1.1. Hamel Equations on Rn

The Lagrangian L(x, ẋ) depends on Cartesian variables denoted by x and ẋ. The config-
uration manifold and the tangent space are the Cartesian vector space Rn. All possible
variations are pure translations:

xε = x+ εδx

ẋε = ẋ+ εδẋ (3.6)

Therefore, the variation of the configuration variables and the velocities (3.5

.

) is simply δx
and δx. Plugging δx and δẋ into equation (3.4

.

) yields:

0
!

= δA =

∫ t1

t0

(
∂L

δx
δx+

∂L

δẋ
δẋ) dt (3.7)

Integration by parts of the second term gives:∫ t1

t0

(
∂L

δẋ
δẋ) dt =

∂L

δẋ
δx
∣∣∣t1
t0
−
∫ t1

t0

(
d

dt

∂L

δẋ
δx) dt (3.8)

Because of (3.3

.

), the variations of the configuration variables δx vanish at the boundaries,
i.e., δx(t0) = δx(t1) = 0. Therefore the term at the boundary in (3.8

.

) is zero. Plugging (3.8

.

)
into equation (3.7

.

) gives:

0
!

= δA =

∫ t1

t0

(
∂L

δx
− d

dt

∂L

δẋ
)δx dt
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Since the integral must be zero for all possible variations δx, the term in the bracket must
vanish. The result is the well known Euler-Lagrange equations:

d

dt

∂L

δẋ
− ∂L

δx
= 0 (3.9)

The conjugate momentum is defined as:

p =
∂L

δẋ

The Hamiltonian is a function of the configuration variables and the momentum. It yields
the total mechanical energy on the trajectory of the system. The trajectory (x, ẋ) is the
solution of the Lagrange equations (3.9

.

). The Hamiltonian is given by the Legendre Trans-
formation [LLM17

.

, eq. 3.10]:

H(x,p) = pT ẋ(p,x)− L(x, ẋ(p,x)) (3.10)

It is assumed that ẋ can be expressed in terms of p and x. This mathematically requires
that the mass matrix is invertible, which holds for any physical system. The Hamiltonian
H is a constant of motion along the trajectory of the system. Therefore the total mechanical
energy is conserved:

Ḣ =
d

dt
(
∂L

∂ẋ
ẋ− L(x, ẋ))

= (
d

dt

∂L

∂ẋ
)ẋ+

∂L

∂ẋ
ẍ− ∂L

∂x
ẋ− ∂L

∂ẋ
ẍ

= (
d

dt

∂L

∂ẋ
− ∂L

∂x
)ẋ

= 0

3.1.2. Hamel Equations on SO(3)

We want to derive the Euler equation for the rigid body with a potential U(R). In this
case the configuration variable is the rotation matrix R and its configuration manifold is
SO(3). The velocities ω̂ are elements the Lee algebra se(3). The matrix elements of the
skew matrix ω̂ can be collected in the vector ω. The Lagrangian is given by:

L(ω) = T (w)− U(R)

T (w) = ωT Iω (3.11)

where ω is the left trivialized body velocity ω = RT Ṙ and I is the inertia matrix. Hamil-
tonian’s principle (3.4

.

) is given by:

0
!

= δA =

∫ t1

t0

(
∂L

∂ω
δω +

∂L

∂R
δR)dt (3.12)
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3. Dynamics and Conserved Quantities

The variation of the body velocity δω has to be derived from the variation of the rotation
Rε, which is defined by an infinitesimal rotation generated by a twist δη̂(t) ∈ so(3).

Rε = Reεδη̂

δR =
d

dε
Rε
∣∣∣
ε=0

= Rδη̂ (3.13)

δṘ =
d

dt
δR = Ṙδη̂ +Rˆ̇η (3.14)

We define the column vector ri as the ith row vector of R transposed and the column
vector δri as the ith row vector of δR transposed. For the column vectors, it holds:

δri = −δη̂ ri = ri × δη i ∈ (1, 2, 3) (3.15)

The variation of the body velocity can be calculated as:

δω̂ = δ(RT Ṙ) = δRT Ṙ+RT δṘ

= −δη̂RT Ṙ+RT Ṙδη̂ + δˆ̇η

= −δη̂ ω̂ + ω̂ δη̂ + δˆ̇η

= (δη̇ + ω × δη)̂

δω = δη̇ + ω × δη (3.16)

where the identity (A.6c

.

) was used. The action integral (3.12

.

) contains the variation of the
Lagrangian with respect to the rotation matrix. It is defined through the components of
the matrix. Using (3.15

.

) and (A.6d

.

) gives:

∂L

∂R
δR =

3∑
i=1

3∑
j=1

∂L

∂Rij
δRij =

3∑
i=1

∂L

∂ri
δri

=

3∑
i=1

∂L

∂ri
(ri × δη) =

3∑
i=1

(
∂L

∂ri
× ri)δη (3.17)

Now the variations (3.16

.

), (3.15

.

) and (3.17

.

) can be plugged into the action integral (3.12

.

):

0
!

= δA =

∫ t1

t0

[
∂L

∂ω
δω +

3∑
i=1

∂L

∂ri
δri ] dt

=

∫ t1

t0

[
∂L

δω
δη̇ +

∂L

δω
ω × δη

3∑
i=1

(
∂L

∂ri
× ri)δη ] dt

The first term is integrated by parts:∫ t1

t0

(
∂L

δω
δη̇) dt =

∂L

δω
δη
∣∣∣t1
t0
−
∫ t1

t0

(
d

dt

∂L

δω
δη) dt

= −
∫ t1

t0

(
d

dt

∂L

δω
δη) dt (3.18)
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3.1. Global Formulation of Hamel Equations on Manifolds

The boundary term vanishes, since the variations at the boundaries are 0: δω(t0) = δω(t1) =
0. The action integral becomes:

0
!

= δA = −
∫ t1

t0

(
d

dt

∂L

∂ω
+ ω × ∂L

∂ω
+ ri ×

∂L

∂ri
)δη dt

According to Hamilton’s variation principle δA has to vanish for all variations δη. There-
fore, the terms in brackets have to sum up to zero. Using the Lagrangian (3.11

.

) of the rigid
body yields the Euler equations:

d

dt
(
∂L

∂ω
) + ω × ∂L

∂ω
+

3∑
i=1

(ri ×
∂L

∂ri
) =0

Iω̇ + ω × Iω +
3∑
i=1

(ri ×
∂L

∂ri
) =0 (3.19)

3.1.3. Hamel Equations on SE(3) x Rn

In the section 3.1.3

.

the Hamel equations for the Lee group manifold SE(3)×Rnare derived
from variation principles (3.4

.

). Subsequently the equations of motion are calculated in
section 3.1.3

.

.

Derivation of the Hamel Equations

With the machinery developed in 3.1

.

we can now derive the Hamel equations for the float-
ing base robot system. First, we develop the Hamel equations for a free floating system
using the Lagrangian (2.49

.

). The derivation with potentials is derived subsequently. The
configuration manifold is defined by the configuration variables (Rib,Oib, q). In the free
floating case, the Lagrangian depends only on the velocities (vb,ωb, q̇) and on q. Using the
Hamilton’s action principle (3.4

.

), we take the derivatives of the Langrangian with respect
to the velocities and with respect to q:

0
!

= δA =

∫ t1

t0

(
∂L

∂vb
δvb +

∂L

∂ωb
δωb +

∂L

∂q
δq +

∂L

∂q̇
δq̇)dt (3.20)

We need to derive the variations of the linear body velocity δvb, the angular body velocity
δωb, the joint position δq and the joint velocity δq̇. Given a point H ib on the manifold
SE(3), all possible infinitesimal variations (2.32

.

) are given by (3.5

.

):

δH ib =
∂Hε

ib

∂ε

∣∣∣
ε=0

= H ibδΓ̂ (3.21)

The variation of the group elementH ib is generated by the se(3) algebra element δΓ̂:

δΓ̂ =

[
δη̂ δχ
0 0

]
(3.22)
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3. Dynamics and Conserved Quantities

The components of δHib (3.21

.

) are:

δHib =

[
δRib δoib

0 1

]
=

[
Rib oib
oib 1

] [
δη̂ δχ
0 0

]
=

[
Ribδη̂ Ribδχ

0 0

]
From this we can read off the components of δHib and derive their derivatives:

δRib = Ribδη̂ (3.23a)
δoib = Ribδχ (3.23b)

δṘib = Ṙibδη̂ +Ribδ̇η̂ (3.23c)

δȯib = Ṙibδχ+Ribδχ̇ (3.23d)

The linear body velocity vb and the angular body velocity ωb are given by:

vb = RT
ibȯib

ω̂b = RT
ibṘib

Using these definitions, the variations of the angular body velocity

δω̂b = δ(RT
ibṘib)

= δRT
ibṘib +RT

ibδṘib

= −δη̂RT
ibṘib +RT

ibṘibδη̂ +Ribδ̇η̂

= −δη̂ω̂b + ω̂bδη̂ + δ̇η̂

= (δη̇ + ωb × δη)̂

δωb = δη̇ + ωb × δη (3.24)

and variations of the linear body velocity

δv̂b = δ(RT
ibȯib)

= δRT
ibȯib +RT

ibδȯib

= −δη̂RT
ibȯib +RT

ib(Ṙibδχ+Ribδχ̇)

= −δη̂vb + ω̂bδχ+ δχ̇

δvb = δχ̇+ ωb × δχ+ vb × δη (3.25)

can be computed. The variations of the Cartesian joint variables δq and the δq̇ are just
translations. The variations defined in Hamilton’s variation principle (3.20

.

) are:

0
!

= δA =

∫ t1

t0

[
∂L

∂vb
(δχ̇+ ωb × δχ+ vb × δη) +

∂L

∂ωb
(δη̇ + ωb × δη) +

∂L

∂q
δq +

∂L

∂q̇
δq̇]dt

(3.26)
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3.1. Global Formulation of Hamel Equations on Manifolds

The terms containing δχ̇, δη̇ and q̇ can be integrated by parts:∫ t1

t0

(
∂L

∂vb
δχ̇) dt =

∂L

∂vb
δχ
∣∣∣t1
t0
−
∫ t1

t0

(
d

dt

∂L

∂vb
δχ) dt = −

∫ t1

t0

(
d

dt

∂L

∂vb
δχ) dt∫ t1

t0

(
∂L

∂ωb
δη̇) dt =

∂L

∂ωb
δη
∣∣∣t1
t0
−
∫ t1

t0

(
d

dt

∂L

∂ωb
δη) dt = −

∫ t1

t0

(
d

dt

∂L

∂ωb
δη) dt∫ t1

t0

(
∂L

∂q̇
δq̇) dt =

∂L

∂q̇
δq
∣∣∣t1
t0
−
∫ t1

t0

(
d

dt

∂L

∂q̇
δq) dt = −

∫ t1

t0

(
d

dt

∂L

∂q̇
δq) dt (3.27)

The terms at the boundary vanish, since the variations at the boundaries are zero (3.3

.

).
Using (3.27

.

) and the cyclical property of the cross product with the scalar product (A.6d

.

)
and putting them in (3.26

.

) gives the final result:

0
!

= −
∫ t1

t0

[(
d

dt

∂L

∂vb
+ ωb ×

∂L

∂vb
)δχ+ (

d

dt

∂L

∂ωb
+ ωb ×

∂L

∂ωb
+ vb ×

∂L

∂vb
)δη + (

d

dt

∂L

∂q̇
− ∂L

∂q
)δq]dt

(3.28)

Since the action integral has to vanish for all variations, the terms in the bracket must be
zero. Therefore the Hamel equations for SE(3)× Rnare:

d

dt

[
∂L
∂vb
∂L
∂ωb

]
− aTib

[
∂L
∂vb
∂L
∂ωb

]
= Fb

∂L

∂q̇
− ∂L

∂q
= τ

where aib is the little adjoint matrix. The equations of motion can be compactly written in
terms of the body velocity νb:

d

dt

∂L

νb
− aTb

∂L

νb
= Fb (3.30a)

d

dt

∂L

q̇
− ∂L

q
= τ (3.30b)

If the Lagrangian contains in addition to velocities also configuration variables (Rib,Oib, q),
which is the case, if it contains a potential U(oib,Rib, q), the action integral (3.28

.

) contains
2 additional terms. These are the derivatives with respect to the configuration variables.
Using (3.23b

.

) for δoib and (3.17

.

) for δR, the additional variations are:

∂L

∂oib
δoib =

∂L

∂oib
Rib δχ = RT

ib

∂L

∂oib
δχ

∂L

∂Rib
δRib = −(ri ×

∂L

∂ri
) δη
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3. Dynamics and Conserved Quantities

The action integral (3.28

.

) becomes:

0
!

= −
∫ t1

t0

[(
d

dt

∂L

∂vb
+ ωb ×

∂L

∂vb
−RT

ib

∂L

∂oib
)δχ

+(
d

dt

∂L

∂ωb
+ ωb ×

∂L

∂ωb
+ vb ×

∂L

∂vb
+ ri ×

∂L

∂ri
)δη

+(
d

dt

∂L

∂q̇
− ∂L

∂q
]dt (3.31)

Therefore the Hamel equations are given by:

d

dt

[
∂L
∂vb
∂L
∂ωb

]
− aTib

[
∂L
∂vb
∂L
∂ωb

]
+

[
−RT

ib
∂L
∂oib∑3

i=1(ri ×
∂L
∂ri

)

]
= Fb (3.32a)

d

dt

∂L

∂q̇
− ∂L

∂q
= τ (3.32b)

The momenta hb and hq are given by:

hb =
∂L

∂νb
(3.33)

hq̇ =
∂L

∂q̇
(3.34)

The HamiltonianH(oib,Rib, q,hb,hq̇) is given by the Legendre transformation:

H(oib,Rib, q,hb,hq̇) =

hTb νb(hb,hq̇, q) + hTq̇ q̇(hb,hq̇, q)

−L(oib,Rib, q,νb(hb,hq̇, q), q̇(hb,hq̇, q), q) (3.35)

The derivatives ofH are:

∂

∂oib
H(oib,Rib, q,hb,hq̇) = − ∂L

∂oib
∂

∂Rib
H(oib,Rib, q,hb,hq̇) = − ∂L

∂Rib

∂

∂q
H(oib,Rib, q,hb,hq̇) = −∂L

∂q

∂

∂hb
H(oib,Rib, q,hb,hq̇) = νb

∂

∂hq̇
H(oib,Rib, q,hb,hq̇) = q̇

(3.36)
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3.1. Global Formulation of Hamel Equations on Manifolds

The Hamiltonian is the total mechanical energy of the system, which is conserved on the
trajectory on the cotangent bundle:

Ḣ =
∂H

∂oib
ȯib +

∂H

∂Rib
Ṙib +

∂H

∂q
q̇ +

∂H

∂hb
ḣb +

∂H

∂hq
ḣq

= −vTibRT
ib

∂L

∂oib
+ ωTib(ri ×

∂L

∂ri
)− q̇T ∂L

∂q
+ νTb (

d

dt

∂L

νb
) + q̇T (

d

dt

∂L

q̇
)

= νTb (
d

dt

∂L

νb
+

[
−RT

ib
∂L
∂oib∑3

i=1(ri ×
∂L
∂ri

)

]
) + q̇T (

d

dt

∂L

q̇
− ∂L

∂q
)

= 0

Equations on Motion

We can now derive the equations of motion from (3.30a

.

) and (3.30b

.

) using the Lagrangian
(2.49

.

):

∂L

νb
= M bb νb + M bqq̇

d

dt

∂L

νb
= M bb ν̇b + Ṁ bb νb + M bqq̈ + Ṁ bqq̇

∂L

∂q̇
= MT

bq νb + M qqq̇

d

dt

∂L

∂q̇
= MT

bq ν̇bb + Ṁ
T
bq νb + M qqq̈ + Ṁ qqq̇

aTb
∂L

∂ νb
= aTbM bb νb + aTb M bqq̇

∂L

∂q
=

1

2
∇q νTbM bb νb +∇q νTb M bqq̇ +

1

2
∇q q̇T M qqq̈

The operator ∇q is the n dimensional gradient operator. Introducing the following abbre-
viations:

M b,q =


∂
∂q1
νTbM bb

...
∂
∂qn

νTbM bb

 M bq,q =


∂
∂q1
νTb M bq

...
∂
∂qn

νTb M bq

 Mq,q =


∂
∂q1
q̇T M qq

...
∂
∂qn
q̇T M qq


(3.37)

The matrixM b,q has dimensions n×6, while the matricesM bq,q andM q,q have dimension
n× n. The equations of motion (3.30a

.

) and (3.30b

.

) can be written as:[
M bb M bq

MT
bq M qq

] [
ν̇b
q̈

]
+

[
Cb Cbq

Cqb Cq

] [
νb
q̇

]
=

[
Fb
τ

]
(3.38)
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3. Dynamics and Conserved Quantities

where the Coriolis-centrifugal terms have been parameterized by using the matrix:

C =

[
Ṁ bb − aTbM bb Ṁ bq − aTb M bq

Ṁ
T
bq − 1

2M b,q Ṁ qq −M bq,q − 1
2M q,q

]
(3.39)

The mass matrix is the same as in the Euler-Newton approach (3.40

.

).

Euler-Newton Equations

A compact formulation of the Euler-Newton equation is derived in [GOA13

.

] and in [Gio20

.

].
In this work we need the Euler-Newton equations only for comparing them with the re-
sults of the Hamel equations (3.38

.

).
The body velocity of the jth frame is given by νj = Ajb νb +J jqq̇ where J jq is the body

Jacobian which transforms the joint velocities to the velocity of the jth joint relative to the
base νbj = J jqq̇. The equation of motion are:[

M bb M bq

MT
bq M qq

] [
ν̇b
q̈

]
+

[
CE
b CE

bq

CE
qb CE

q

]
=

[
Fb
τ

] [
νb
q̇

]
(3.40)

The first matrix is the mass matrix M b expressed in the base frame. The second matrix is
the Coriolis matrix Cb expressed in the base frame. The variable νb is the 6 dimensional
body velocity of the base and q are the joint variables. The external wrench Fb acts on the
body, while τ are the actuator torques acting on the joint variables.

The block matrix elements for the mass matrix have been defined in (2.51a

.

), (2.51b

.

) and
(2.51c

.

). The Coriolis terms are given by

CE
b =

n∑
j=0

AT
jbΨjAjb + AT

jbΛjȦjb (3.41a)

CE
bq =

n∑
j=0

AT
jbΨjJ jq + AT

jbΛjJ̇ jq (3.41b)

CE
qb =

n∑
j=0

JTjqΨjAjb + JTjqΛjȦjb (3.41c)

CE
q =

n∑
j=0

JTjqΨjJ jq + JTjqΛjJ̇ jq (3.41d)

where Ψ = Λjaj − aTj Λj .

Equivalence of the Equations of Motion

The equations of motion from the Hamel equations (3.38

.

) and from the Euler-Newton
formulation (3.40

.

) must be the same. However, this is not easy spot.

28



3.1. Global Formulation of Hamel Equations on Manifolds

Proposition 3.1.1 (Equivalence Equations of Motion). The Hamel equations for SE(3) ×
Rnequation (3.38

.

) and the Euler Newton equations (3.40

.

) yield the same equations of motion:

[
M bb M bq

MT
bq M qq

] [
ν̇b
q̈

]
+

[
Ṁ bb − aTbM bb Ṁ bq − aTb M bq

Ṁ
T
bq − 1

2M b,q Ṁ qq −M bq,q − 1
2M q,q

][
νb
q̇

]
=

[
M bb M bq

MT
bq M qq

] [
νb
q̇

]
+

[
CE
b CE

bq

CE
qb CE

q

] [
νb
q̇

]
We need to prove that the Coriolis matrices yield the same equations of motion. To this
end, we need some intermediate results.

Lemma 3.1. The following relations hold for the little adjoint ajb and the big adjoint transforma-
tion Ajb, respectively:

Ȧjb = Ajb ajb Ȧ
T
jb = aTjbA

T
jb (3.42a)

Ȧ
−1
jb = −ajbA−1jb Ȧ

−T
jb = −A−Tjb a

T
jb (3.42b)

Ajb ajb = −abjAjb aTjbA
T
jb = −AT

jb a
T
bj (3.42c)

ajbA
−1
jb = −A−1jb abj A−Tjb a

T
jb = −aTbjA−Tjb (3.42d)

aj = Ajb(ab − ajb)A−1jb aTj = A−Tjb (aTb − aTjb)AT
jb (3.42e)

Proof. Equation (3.42a

.

) is taken from [Gio20

.

]. Equation (3.42c

.

) and equation (3.42d

.

) follow
directly from (2.37c

.

) by setting x = z = b and y = j then we get 0 = abb = AbjabjA
−1
bj +ajb.

Solving forAjbajb withAbj = A−1bj and gives the result.
Equation (3.42e

.

) also directly follows from (2.37c

.

) by setting x = i y = j and z = b. Then
we get ab = AbjajA

−1
bj + ajb. Solving for aj gives the result

Eq (3.42b

.

): Ȧ
−1
jb = Ȧbj = A−1jb abj = −ajbA−1jb .

Proof of Proposition 3.1.1

.

For the first row of the equations of motion we have to show:
CE
b νb + CE

bqq̇ = Cb νb + Cbqq̇. The superscript E stand for the Euler-Newton equations
(3.40

.

). By using (3.41a

.

), (3.41b

.

) and the first row of (3.40

.

), the Coriolis terms for Euler-
Newton without the passivity term are:

CE
b νb + CE

bqq̇ =
n∑
j=0

AT
jb Λj Ȧjb νb + AT

jb Λj J̇ jqq̇ − AT
jb a

T
j Λj νj (3.43)
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3. Dynamics and Conserved Quantities

where (2.39

.

) ha been used. Taking the Coriolis terms for the Hamel equations (3.39

.

) and
using identities (3.42a

.

) and (3.42e

.

) from Lemma 3.1

.

we get

Cb νb =(Ṁ bb − aTbM bb)νb

=(aTjbA
T
jb ΛjAjb + AT

jb Λj Ȧjb − aTb AT
jb ΛjAjb)νb

=((aTjb − aTb )AT
jb ΛjAjb + AT

jb Λj Ȧjb)νb

=AT
jb Λj Ȧjb νb − AT

jb a
T
j ΛjAjb νb (3.44)

Cbqq̇ =(Ṁ bq − aTb M bq)q̇

= (aTjbA
T
jb Λj J jb + AT

jb Λj J̇ jb − aTb AT
jb Λj J jb)q̇

= ((aTjb − aTb )AT
jb Λj J jb + AT

jb Λj J̇ jb)q̇

= AT
jb Λj J̇ jqq̇ − AT

jb a
T
j Λj J jqq̇ (3.45)

Cb νb + Cbqq̇ = AT
jb Λj Ȧjb νb + AT

jb Λj J̇ jqq̇ − AT
jb a

T
j Λj νj (3.46)

where relation (2.39

.

), as well as the expressions of the sub-blocks M bb (2.51a

.

), M bq (2.51b

.

)
and M qq (2.51c

.

) have been used. The r.h.s. of (3.46

.

) is the same as the r.h.s of (3.43

.

). This
proves the equivalence of the first row of the Hamel and Euler-Newton Coriolis-centrifugal
terms.
For the second row of the equations of motion we have to show:

CE
qb νb + CE

q q̇
!

= Cqb νb + Cqq̇.
The Coriolis terms for Euler-Newton are:

CE
qb νb + CE

q q̇ = −JTjq aTj Λj νj + JTjqΛjȦjb νb + JTjqΛjJ̇ jqq̇

We need some additional notation. First we define matrices similar to ones used for the
equations of motion (3.37

.

):

Ajb,q =


∂
∂q1
Ajb νb

...
∂
∂qn
Ajb νb

 J jq,q =


∂
∂q1
J jqq̇
...

∂
∂qn
J jqq̇

 (3.47)

The gradient matrices multiplied by the velocities can be expressed in terms of these quan-
tities:

M b,q νb = 2AT
jb,q ΛjAjb νb (3.48)

MT
bq,q νb = JTjq,q ΛjAjb νb +AT

jb,q Λj J jqq̇ (3.49)

M q,qq̇ = 2JTjq,q Λj J jqq̇ (3.50)
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3.1. Global Formulation of Hamel Equations on Manifolds

Relation (3.48

.

) follows from the definitions ofM b,q (3.37

.

) andAjb,q (3.47

.

):

M b,q νb =
∂
∂q1

(νTb A
T
jb ΛjAjb νb)

...
∂
∂qn

νTb A
T
jb ΛjAjb νb)

 = 2

 ( ∂
∂q1
Ajb νb)

T ΛjAjb νb
...

( ∂
∂qn
Ajb νb)

T ΛjAjb νb


= 2AT

jb,q ΛjAjb νb (3.51)

(3.52)

The relation (3.49

.

) follows from the definitions ofM bq,q (3.37

.

),Ajb,q and J jq,q (3.47

.

):

MT
bq,q νb =
∂
∂q1

(q̇TJTjq ΛjAjb νb)
...

∂
∂qn

νTb A
T
jb ΛjAjb νb)

 =

 ( ∂
∂q1
J jqq̇)T ΛjAjb νb

...
( ∂
∂qn
J jqq̇)T ΛjAjb νb

+

 q̇
TJTjq Λj(

∂
∂q1
Ajb νb)

...
q̇TJTjq Λj(

∂
∂q1
Ajb νb)


= JTjq,q ΛjAjb νb +AT

jb,q Λj J jqq̇

Relation (3.50

.

) follows from the definitions ofM q,q (3.37

.

) and J jq,q (3.47

.

):

M q,qq̇ =
∂
∂q1

(q̇T JTjq Λj J jqq̇)
...

∂
∂q1

(q̇T JTjq Λj J jqq̇)

 = 2

 ( ∂
∂q1
J jqq̇)T Λj J jqq̇

...
( ∂
∂q1
J jqq̇)T Λj J jqq̇


= 2JTjq,q Λj J jqq̇ (3.53)

(3.54)

Lemma 3.2. The following relation holds for J jq,q:

J jq,q − J̇ jq = aνbj J jq (3.55)

Proof. The ith column of the term J̇
i
jq in the Lee algebra is:

(J̇
i
jq )̂ =

d

dt
(H−1bj

∂Hbj

∂qi
)

= (
∂H−1bj
∂qk

∂Hbj

∂qi
+H−1bj

∂Hbj

∂qk∂qi
)q̇k
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3. Dynamics and Conserved Quantities

The ith column of the term J jq,q (3.47

.

) can be written as J ijq,q = ∂
∂qi
J ijq q̇k. In the Lee

algebra it is:

(J ijq,q )̂ =
∂

∂qi
(Jkjq )̂q̇k

= (
∂H−1bj
∂qi

∂Hbj

∂qk
+H−1bj

∂Hbj

∂qk∂qi
)q̇k

The term with the little adjoint is:

adνj Ĵ
i
j = ν̂jĴ

i
j − Ĵ

i
j ν̂j

= (H−1bj Ḣbj)H
−1
bj

∂Hbj

∂qi
−H−1bj

∂Hbj

∂qi
(H−1bj Ḣbj)

= −Ḣ−1bj
∂Hbj

∂qi
+
∂H−1bj
∂qi

Ḣbj

Subtracting the terms concludes the proof:

(J ijq,q )̂− (J̇
i
jq )̂ =

∂H−1bj
∂qi

Ḣbj − Ḣ
−1
bj

∂Hbj

∂qi

= adνj Ĵ
i
j

Lemma 3.3. The following relation holds forAjb,q:

Ajb,q = aAjbνb J jq (3.56)

Proof. The ith element of Ajb,q is ∂
∂qi
Ajbνb. Therefore:

Â
i
jb,q =

∂

∂qi
(HjbνbH

−1
jb )

= (
∂

∂qi
Hjb)νbH

−1
jb +Hjbνb(

∂

∂qi
H−1jb )

= (
∂

∂qi
H−1bj )νbH

−1
jb +HjbνbH

−1
jb H

−1
bj (

∂

∂qi
H−1jb )

= −H−1bj (
∂

∂qi
Hbj)HjbνbH

−1
jb +HjbνbH

−1
jb H

−1
bj (

∂

∂qi
Hbj)

= −J ijqHjbνbH
−1
jb +HjbνbH

−1
jb J

i
jq

= [HjbνbH
−1
jb ,J

i
jq]
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3.2. Conserved Quantities and the Center of Mass Frame

Using these relations, the identities from Lemma 3.1

.

and (3.48

.

), (3.49

.

), (3.50

.

) the Coriolis
terms for second row of the Hamel equations (3.38

.

) are given by:

Cqb νb = (Ṁ
T
bq −MT

bq,q −
1

2
M b,q)νb

= JTjq Λj Ȧjb νb + J̇
T
jq ΛjAjb νb − JTjq,q ΛjAjb νb −AT

jb,q Λj J jqq̇ −AT
jb,q ΛjAjb νb

= JTjq Λj Ȧjb νb − JTjq aTbj ΛjAjb νb − JTjq aTAjbνb ΛjAjb νb −AT
jb,q Λj J jqq̇

= JTjq Λj Ȧjb νb − JTjq aTj ΛjAjb νb − JTjq aTAjb νb Λj J jqq̇ (3.57)

Cqq̇ = (Ṁ qq −
1

2
M q,q)q̇

= JTjq Λj J̇ jqq̇ + J̇
T
jq Λj J jqq̇ − JTjq,q Λj J jqq̇

= JTjq Λj J̇ jqq̇ − JTjq aTbj Λj J jqq̇ (3.58)

Cqb νb + Cqq̇

= JTjq Λj Ȧjb νb + JTjq Λj J̇ jqq̇ − (JTjq a
T
j ΛjAjb νb + JTjq a

T
Ajb νb

Λj J jqq̇ + JTjq a
T
bj Λj J jqq̇)

= JTjqΛj Ȧjb νb + JTjqΛj J̇ jqq̇ − JTjq aTj Λj νj

(3.59)

For the last step, the last 2 terms in the bracket are added to JTjq aTj Λj J jqq̇. The result can
then be added to the first term in the bracket.

It is important to note that the sub-blocks Cbq (3.57

.

) and Cq (3.58

.

) of Coriolis-centrifugal
terms in the Hamel’s equations are different from the Newton Euler derivation (3.41c

.

)
and (3.41d

.

). The matrix Cqb in (3.57

.

) has an additional term −JTjq aTAjb νb Λj J jqq̇ com-
pared to the Newton Euler term CE

qb (3.41c

.

), which is another reason for non-passivity
of the Coriolis matrix. For the passive formulation of the Coriolis matrix, we will add
JTjq a

T
Ajb νb

Λj J jqq̇ to Cqb and subtract the same term from Cq.

3.2. Conserved Quantities and the Center of Mass Frame

3.2.1. Constants of Motion

Proposition 3.2.1 (Constants of Motion). Given a Lagrangian of the form (2.49

.

)

L =
1

2

[
νb
q̇

]T [
M bb M bq

MT
bq M qq

] [
νb
q̇

]
and a quantity hc = A−Tcb hb with hb = ∂L

∂vb
. The quantity hc is a constant of motion, if and only

if the relation aTcbhb = aTibhb is fulfilled. This implies that the value of hc can only change, due to
external forces:

ḣc = A−Tcb Fb ⇐⇒ aTcbhb = aTibhb (3.60)
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3. Dynamics and Conserved Quantities

Proof. First we show that hc is a constant of motion, if the relation aTcbhb = aTibhb is ful-

filled. Using (3.42b

.

) the relation implies Ȧ
−T
cb = −A−Tcb a

T
ib.

d

dt
hc =

d

dt
(A−Tcb hb)

= A−Tcb ḣb + Ȧ
−T
cb hb

= A−Tcb (ḣb − aTibhb)

= A−Tcb (
d

dt

∂L

∂ νb
− aTb

∂L

∂ νb
)

= A−Tcb Fb

Where the Hamel equations of motion (3.30a

.

) were used. For the second part of the proof
we show that if hc is a constant of motion, then relation aTcbhb = aTibhb is fulfilled.

d

dt
(hc) = A−Tcb Fb

= A−Tcb (
d

dt

∂L

∂ νb
− aTb

∂L

∂ νb
)

= A−Tcb (ḣb − aTibhb)

on the other hand,

d

dt
(hc) =

d

dt
(A−Tcb hb)

= A−Tcb (ḣb − aTcbhb)

Comparing the 2 expressions for ḣc implies the relation aTcbhb = aTibhb is fulfilled.
The proposition states that the total momentum expressed in an arbitrary frame c is a

constant of motion if and only if the condition is fulfilled. It gives the same constants of
motion as Noether’s theorem [Noe18

.

]. However, it is more approachable than Noether’s
theorem, since it requires no knowledge of differential geometry to check the condition and
the link between the equations of motion and the conserved quantity is apparent. Also,
the proposition allows to easily check the frames, where the total momentum is conserved.

The important point to notice is that the condition aTcbhb = aTibhb does not imply that acb
and aib are the same. To the contrary, the interesting cases are those, where the condition
is fulfilled, but acb and aib are not the same.

The proposition has two immediate consequences: First, the total momentum expressed
in the inertial frame, hi = A−Tib hb, is a constant of motion, since the condition is trivially
fulfilled by setting c = i.

ḣi = A−Tib Fb (3.61)

Second, the total momentum expressed in frame c is conserved if and only if:

ḣc = A−Tcb Fb ⇐⇒ aTcihi = 0 (3.62)
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3.2. Conserved Quantities and the Center of Mass Frame

Proof. The left hand side of the relation of Proposition 3.2.1

.

can be rewritten using (2.37c

.

):
aTcbhb = AT

iba
T
ciA
−T
ib hb + aTibhb = AT

iba
T
cihi + aTibhb Equating this to right hand side gives

the results.
The condition aTcihi = 0 can only be fulfilled, if frame c is aligned with the inertial

frame ωic = 0. To this end, ωic = 0 is a necessary condition for the total momentum being
conserved in frame c.

3.2.2. The Center of Mass

The center of mass oicfor n bodies is given by the weighted average of the positions of the
masses. Denoting mtot =

∑n
j=0mj , the center of mass is:

oic =
1

mtot

n∑
j=0

mjoij (3.63)

Using the relation oij = oib +Ribobj the center of mass can also be written as

oic = oib +Ribobc with obc =
1

mtot

n∑
j=0

mjobj (3.64)

3.2.3. Total Momentum and Centroidal Momentum

The total momentum and the locked velocity, both expressed in frame b are defined as
[STNN17

.

]:

hb = M bb νb + M bq q̇ (3.65)

νlocb = νb + M−1
bb M bq q̇ (3.66)

The total momentum and the locked velocity, both expressed in the inertial frame are
[STNN17

.

]:

hi = A−Tib hb (3.67)

νloci = Aibν
loc
b (3.68)

The total momentum expressed in the inertial frame contains the total linear and angular
momentum hi = [pi; li], where the linear momentum is pi = mtotȯic The total momentum
hi is a constant of motion (3.61

.

). The total momentum can also be expressed in a frame c
[Gio20

.

]:

hc = A−Tcb hb (3.69)

In the robotics literature the center of mass frame c is usually aligned with the inertial
frame with its origin at the center of mass oic. If the center of mass frame is aligned with

35



3. Dynamics and Conserved Quantities

the inertial frame, its pose H ic has no rotation relative to the inertial frame. The transfor-
mationsH ic andHcb are:

H ic =

[
I oic
0 1

]
Hcb =

[
Rib oib − oic
0 1

]
The total momentum expressed in frame c defined above is called centroidal momen-

tum [OGL13

.

]. The centroidal momentum is also a constant of motion, since the condition
aTcihi = 0 (3.62

.

) is fulfilled:

aTcihi =

[
0̂ 0

−ôic 0̂

] [
mtotȯic
lc

]
=

[
0
0

]

3.2.4. The Orientation of the CoM Frame

As discussed in the previous section, the CoM frame is usually aligned with the inertial
frame. To this end, the question arises, if it possible to find a natural orientation the CoM
frame. An obvious candidate for aligning the CoM frame with is the locked velocity νlocb .
The pose H ic = H ibHbc must fulfill the alignment condition that the spatial velocity of
H ic equals the spatial locked velocity νloci :

(Ḣ icH
−1
ic )̌ = νloci

While in any case the velocity νloci can be time integrated to give a pose, it is not guaran-
teed that the resulting poseH ic is independent of the path taken and only depends on the
configuration variables. Saccon et. al. [STNN17

.

] provide an algebraic condition to check,
whether the locked velocity defines a frame orientation that only depends on the config-
uration. This condition is translated to our notation: We want to find the unknown pose
Hbc and define T (q) = M−1

b M bq. The left hand side of the alignment conditions reads as:

Ḣ icH
−1
ic = H ibH

−1
ib Ḣ ibH

−1
ib +H ib(ḢbcH

−1
bc )H−1ib

(Ḣ icH
−1
ic )∨ = Aibνb + Aib(ḢbcH

−1
bc )∨

Comparing with the right hand side, νloci = Aibνb + AibT bq(q)q̇, results in an alignment
condition forHbc

1

.

:

(ḢbcH
−1
bc )∨ = T (q)q̇ (3.70)

1The velocity (ḢbcH
−1
bc )̌ can be written as (ḢbcH

−1
bc )̌ =

[
ȯbc −Rbcω̂bcR

T
bcobc

Rbcωbc

]
. Due to the frame align-

ment condition, (ḢbcH
−1
bc )̌ = M−1

b M bqq̇, the term M−1
b M bqq̇ also must be of the form M−1

b M bqq̇ =[
ȯbc −Rbcω̂bcR

T
bcobc

Rbcωbc

]
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3.2. Conserved Quantities and the Center of Mass Frame

which results in the partial derivative expressions:

(
∂Hbc

∂qi
H−1bc )∨ = T i(q)

∂Hbc

∂qi
= T̂

i
(q)Hbc (3.71)

Since ∂Hbc
∂qi

H−1bc ∈ se(n) and ∂Hbc
∂qi

H−1bc = T̂ i(q), the hat operator means to put the ele-
ments of T i(q) into a se(n) matrix. Integrability requires that the second derivatives of
Hbc commute:

∂

∂qj

∂Hbc

∂qi
=

∂

∂qi

∂Hbc

∂qj

Since the left hand side is:

∂

∂qj

∂Hbc

∂qi
=

∂

∂qj
(T̂

i
Hbc) = (

∂T̂
i

∂qj
+ T̂

i
T̂
j
)Hbc

The right hand side is obtained by swapping i and j. The integrability condition for Hbc

[STNN17

.

, eq. 20] is:

∂T̂
i

∂qj
− ∂T̂

j

∂qi
+ T̂

i
T̂
j − T̂ jT̂ i = 0̂ (3.72)

It is shown in [STNN17

.

] that the condition for the integrability of the CoM frame is neces-
sary and sufficient.

Integrability of the CoM Frame in SE(2)

Lemma 3.4. The integrability condition (3.72

.

) for SE(2) is given by:

∂T iω
∂qj

− ∂T jω
∂qi

= 0

∂T iv
∂qj

− ∂T jv
∂qi

+ T iω ST
j
v − T jω ST iv = 0 (3.73)

with T i = [T iv;T
i
ω].

Proof. The matrix T̂
i

for se(2) is: T̂
i

=

[
T iωS T iv

0 0

]
. The basis for se(2) is S = [0 − 1; 10].
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3. Dynamics and Conserved Quantities

Plugging T̂
i

into (3.72

.

) gives:

0̂
!

=
∂T̂

i

∂qj
− ∂T̂

j

∂qi
+ T̂

i
T̂
j − T̂ jT̂ i

=

[
∂T iω
∂qj

S − ∂T jω
∂qi
S − (T iωT

j
ω − T jωT iω)I2×2 ∂T iv

∂qj
− ∂T jv

∂qi
+ T iω ST

j
v − T jω ST iv

0 0

]

Since T iω is a scalar function, the term T iωT
j
ω − T jωT iω vanishes.

The condition is always fulfilled, if there is only one joint variable.
The angular velocity ωbc(q(t)) in terms of T ω follows directly from the alignment condi-

tion (3.70

.

): ωbc = T ωq̇. The angle θbc(t) can be obtained from ωbc(q(t)) by time integration,
regardless whether the integrability condition (3.73

.

) holds:

θbc(t)− θbc(t0) =

∫ t

t0

T iω(q(t′)) q̇i(t
′) dt′ (3.74)

Since dqi(t) = q̇i(t) dt, the integral can also be written as:

θbc(t)− θbc(t0) =

∫ t

t0

T iω(q(t′)) dqi(t
′) (3.75)

If the integrability condition (3.73

.

) does not hold, the value of the angle θbc(t) depends on
the whole trajectory of q and is therefore not a function of the endpoints q(t0) and q(t). If
the integrability condition (3.73

.

) does holds, the value of θbc(t) is independent of the path
taken and only a function of the endpoints i.e θbc(t) = θbc(q(t)). Therefore, one can choose
any path between q(t0) and q(t) to arrive at the same result for θbc(q(t)). In particular,
a linear path can be taken to solve the integral. In this case the trajectories q(t) have a
constant velocity v, i.e. qi(t) = vit, dqi(t) = vidt) and the integral becomes:

θbc(vi, t)− θbc(t0) =

∫ vi,t0

t0

T iω(vit)vidt (3.76)

The solution of the integral is a function of vi and t. The result can be turned into the
function θbc(q(t)), by substituting vi with qi/t 2

.

.

2The integral of a total derivative is the integral over a path. It is not the integrals over the variables
separately, since different paths would be taken for the different integrals. For example, the function
f(x, y) = x y has the total derivative df(x, y) = ydx + xdy. The integral of df must again give f(x, y).
However, taking the integral over the variables,

∫
ydx +

∫
xdy = 2x y, does not yield the correct result.

In contrast, choosing a linear path, x = vx t, y = vy t, dx = vxdt and dy = vydt the integral becomes:∫
df = vx vy

∫
2 t′dt′ = vx vy t

2 = x y.
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3.3. Decoupling and Invariance

3.3. Decoupling and Invariance

3.3.1. Transformation of Equations of Motion

The equations of motion in variables vx given the mass matrixMx and the Coriolis matrix
Cx are:

Mxv̇x +Cxvx = F x

The index x highlights that the equations of motion do no have to be expressed in the base
frame. The transformation relations hold for any system matricesM andC. Transforming
the variables to vy = Tvx using a transformation T , yields the equations of motion in
variables vy:

Myv̇y +Cyvy = T−TF x

where the system matrices transform as:

My = T−TMxT
−1 Cy = T−TCxT

−1 −MyṪ T
−1 (3.77)

Proof: Multiply the original equation with T−T from the left and replace vx with T−1vy
and v̇x with T−1v̇y + Ṫ

−1
vy.

3.3.2. Decoupling Transform

The goal of this section is to find all transformed representations of the equations of motion
(3.38

.

) where the transformed base is either decoupled from the transformed joints or there
is an invariance structure 1.3.1

.

. To this end, we take an unknown transformation T , trans-
form the equations of motion with T and solve for T , where the transformed equations of
motion decouple or have an invariance structure.

The transformations T must have certain properties that restrict the general form of the
transformation. First, the transformation T should define an allocation mapping, such
that the base wrench is fully decoupled i.e. a virtual force F y should not influence the base
wrench Fb: [

Fb
τ

]
=

[
T Tx T Tyx
T Txy T Ty

] [
F x

F y

]
(3.78)

Therefore, the block matrix element T yx must be zero. Second, any transformation T must
diagonalize the mass matrix to ensure that the equations of motion are not coupled by the
transformed mass matrix:

T−TMT−1
!

=

[
Mx 0
0 My

]
(3.79)

From this condition it follows that the off diagonal element must be of the form T xy =
T xM

−1
bb M bq which can be shown by direct calculation. To this end the most general form
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of the transformation T fulfilling the 2 requirements are:

T =

[
T x T xM

−1
bb M bq

0 T y

]
T T =

[
T Tx 0

MT
bqM

−1
bb T

T
x T Ty

]
T−1 =

[
T−1x −M−1

bb M bq T
−1
y

0 T−1y

]
T−T =

[
T−Tx 0

−T−Ty MT
bqM

−1
bb T−Ty

]
(3.80)

Now we have all ingredients in place. Taking the dynamic matricesM (2.50

.

) andC (3.39

.

)
and transforming them with the transformation (3.80

.

), by applying the transformation
rules for dynamic matrices (3.77

.

), yields the following result:

Proposition 3.3.1 (Decoupling). Given a free floating robotic system defined by the Lagrangian
in SE(3) × Rnbase frame coordinates (2.49

.

). Transforming the equations of motion with a trans-
formation of the form (3.80

.

), decouples the equations of motion:[
Mx 0
0 My

] [
vx
vy

] [
Cx 0
Cyx Cy

] [
vx
vy

]
= T−T

[
Fb
τ

]
(3.81)

with

Mx = T−Tx M bb T
−1
x

My = T−Ty (M qq − MT
bqM

−1
bb M bq)T

−1
y

Cx = T−Tx (Ṁ bb − aTb M bb − M bb T
−1
x Ṫ x)T−1x

Cyx = T−Ty Cqb − MT
bqM

−1
bb Cb)T

−1
x

Cy = T−Ty (Cq − CqbM
−1
bb M bq − MT

bqM
−1
bb Cbq + MT

bqM
−1
bb CbM

−1
bb M bq −MyṪ y)T

−1
y

It vx is a momentum map, also the term Cx vanishes and we have an invariance structure (vx is a
momentum map, if T x = A−Tcb M bb and Ȧcb = Acbaib (3.60

.

)).

Proof. : The first part is proven by taking the block matrices of the Coriolis matrix (3.38

.

)
and plugging them in transformation matrices from the Appendix A.1

.

using matrix identi-
ties (A.6g

.

). The second part is proven by plugging T x intoCx, noting that Ṫ x = A−Tcb (Ṁ bb−
aTb M bb) using (3.42b

.

).

Cx =T−Tx (Ṁ bb − aTb M bb − M bb T
−1
x Ṫ x)T−1x

=T−Tx (Ṁ bb − aTb M bb − M bb(M
−1
bb A

T
cb)(A

−T
cb (Ṁ bb − aTb M bb))T

−1
x

T−Tx (Ṁ bb − aTb M bb − (Ṁ bb − aTb M bb))T
−1
x = 0

3.3.3. Passive Formulation and Decoupling

The Coriolis Matrix (3.39

.

) is not passive, since the relation for passivity e.q. (1.6

.

) does
not hold. A Coriolis matrix is not unique. There are infinitely many Coriolis matrices.
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3.3. Decoupling and Invariance

The only condition a Coriolis matrix must fulfill is the equations of motion being valid.
To this end, one can add terms to the Coriolis matrix, which vanish when the Coriolis
matrix is multiplied by the system velocities, or shift elements of the same row from one
Coriolis matrix block element to another. The passive formulation of the Coriolis matrix
takes the expressions of the Coriolis matrix, derived for the proof of the equivalence of
the equations of motion, as a starting point (3.44

.

), (3.45

.

), (3.57

.

) and (3.58

.

). For the Coriolis
matrix entries Cqb and Cq, we subtract the third −JTjq aTAjb νb Λj J jqq̇ term in (3.57

.

), and
add it to (3.58

.

). This operation does makes the Hamel Coriolis matrix identical to the
Euler-Newton Coriolis matrix without the passivity term. The equations of motion remain
unchanged. The passive Coriolis matrix Cp is:

Cp =

[
Cp
b Cp

bq

Cp
qb Cp

q

]
(3.82)

with block matrix entires:

Cp
b = Ṁ bb − aTb M bb + AT

jb Λj ajAjb

= AT
jb Λj Ȧjb − AT

jb a
T
j ΛjAjb + AT

jb Λj ajAjb (3.83a)

Cp
bq = Ṁ bq − aTb M bq + AT

jb Λj aj J jq

= AT
jb Λj Ȧjb − AT

jb a
T
j ΛjAjb + AT

jb Λj ajAjb (3.83b)

Cp
qb = Ṁ

T
bq −

1

2
M b,q + JTjq a

T
Ajb νb

Λj J jqq̇ + JTjq Λj ajAjb

= JTjq Λj Ȧjb − JTjq aTj ΛjAjb + JTjq Λj ajAjb (3.83c)

Cp
q = Ṁ qq −M bq,q −

1

2
M q,q − JTjq aTAjb νb Λj J jqq̇ + JTjq Λj aj J jq

= JTjq Λj J̇ jq − JTjq aTj Λj J jq + JTjq Λj aj J jq (3.83d)

First we need to prove, that the passive formulation of the Coriolis matrix fulfills the equa-
tions of motion. Since we have already proven that the equations of motion are valid
without the added terms, we need to show that the added terms vanish, when multiplied
by the velocities:

0
!

=AT
jb Λj ajAjb νb + AT

jb Λj aj J jqq̇ + JTjq Λj ajAjb νb + JTjq Λj aj J jqq̇

= AT
jb Λj ajνj + JTjq Λj ajνj = 0

where relation axyνxy = 0 from equation (2.17

.

) was used.
The passive formulation of Coriolis matrix has the same form as in the Euler Newton

formulation (3.41a

.

), (3.41b

.

), (3.41c

.

) and (3.41d

.

). To this end, we do not need to prove
passivity, since this was done in [Gio20

.

, p.37]. We can now use the passive formulation of
the Coriolis matrix Cp and apply it to the decoupling transform (3.80

.

) in the same way as
we did in the previous chapter.
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3. Dynamics and Conserved Quantities

Proposition 3.3.2 (Passive Decoupling). Given a free floating robotic system defined by the mass
matrix (2.50

.

) and the passive Coriolis matrix (3.82

.

). Transforming the equations of motion with a
transformation of the form (3.80

.

), yield the equations of motion:[
Mx 0
0 My

] [
vx
vy

] [
Cp
x Cp

xy

Cp,T
xy Cp

y

] [
vx
vy

]
= T−T

[
Fb
τ

]
(3.84)

with

Mx = T−Tx M bb T
−1
x

My = T−Ty (M qq − MT
bqM

−1
bb M bq)T

−1
y

Cp
x = T−Tx (Ṁ bb − aTb M bb − M bb T

−1
x Ṫ x + AT

jb Λj ajAjb)T
−1
x

Cp
xy = T−Tx (AT

jb Λj aj J jq − AT
jb Λj ajAjbM

−1
bb M bq)T

−1
y

Cp
y = T−Ty (Cp

q − C
p
qbM

−1
bb M bq − MT

bqM
−1
bb C

p
bq + MT

bqM
−1
bb C

p
bM

−1
bb M bq)T

−1
y −MyṪ y T

−1
y

If vx is a centroidal momentum map, the invariance structure holds:

Cxvx +Cxvy = 0 (3.85)

(vx is a momentum map, if T x = A−Tcb M bb and vx is a constant of motion (3.60

.

))

Proof. : For the proof of the first part, the block matrices of the passive Coriolis matrix (3.82

.

)
are plugging into the transformation relations from the Appendix A.1

.

by using matrix
identities (A.6g

.

). This directly gives the results for Cp
x and for Cp

y. For Cp
xy the result can

be simplified by plugging the passive Coriolis terms in and removing canceling terms.

Cp
xy = T−Tx (AT

jb Λj aj J jq − AT
jb Λj ajAjbM

−1
bb M bq)T

−1
y (3.86)

For proving the second part of the Proposition, we have to show, that Cp
xvx +Cp

xyvy = 0.
Plugging the passive coriolis terms into the definition of Cx and Cy gives after removing
canceling terms:

Cx νb = AcbM
−1
b AT

jb Λj ajAjb(νj +M−1
b M bqq̇)

Cyq̇ = AcbM
−1
b AT

jb Λj ajAjb(J jqq̇ −M−1
b M bqq̇)

Cp
xvx +Cp

xyvy = 0

3.3.4. An Axiomatic Approach to Internal-External Velocity Decomposition

For control it is desirable to be able to separately control the motion arising from exter-
nal forces and the internal motion. The decomposition of the dynamics into external and
internal motion is extensively studied in [Gio20

.

]. Here we want to look at the decompo-
sition from the perspective of the transform, which generates the decomposition. We start
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3.3. Decoupling and Invariance

with an unknown transformation I and state necessary conditions for the existence of an
external and an internal velocity. Each condition imposes a constraint on the form of the
transformation. The goal is to find out, how the shape of the transformation changes with
the conditions imposed and to study the consequences.

Given an unknown transform I , we want to decompose the generalized velocities into
an external and an internal component:[

νext

νint

]
=

[
A B
C D

] [
νb
q̇

]
(3.87)

The transform is a (6 + 6) × (6 + n) matrix. It is assumed that the square matrix A and
(A−BD#C) are invertible and that the pseudo inverseD#3

.

and (D−CA−1B)# exists.
The inverse of I is:

I−1 =

[
(A−BD#C)−1 −A−1B(D −CA−1B)#

−D#C(A−BD#C)−1 (D −CA−1B)#

]
(3.88)

The transformed equations of motion (3.38

.

) are given by:[
M e M ei

M ie M i

] [
ν̇ext

ν̇int

]
+

[
Ce Cei

Cie Ci

] [
νext

νint

]
= T−T

[
Fb
τ

]
=

[
F ext

F int

]
(3.89)

The external velocity and the internal velocity must have the following properties:

1. The internal velocity must depend on the joint velocities q̇.

2. The external force F ext must not depend on the actuation of the joints τ .

3. The dynamics of the external velocity must be decoupled from the internal velocity
with respect to the mass matrix. This implies: M eiν̇

int = 0

4. The dynamics of the external velocity must be decoupled from the internal velocity
with respect to the Coriolis matrix. This implies: Ceiν

int = 0 orCiiν
ext+Ceiν

int = 0

The first condition implies that the block matrixDmust not be zero. The second necessary
condition implies for the transformation:

F ext = (A−BD#C)−T (F b −CTD#Tτ )

The condition must hold for any τ , which implies that CTD#T must vanish. It follows
that C = 0, sinceD must not be zero. The shape of the transform I becomes:

I =

[
A B
0 D

]
I−1 =

[
A−1 −A−1BD#

0 D#

]
(3.90)

3The pseudo-inverse D# can either be the Moore-Pensorse pseudo inverse , i.e. D# = DT (DDT )−1, or a
dynamically consistent pseudo inverse, i.e. D# = MDT (DMDT )−1 for some some invertible matrix
M , as long asDD# = I6×6 holds.
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3. Dynamics and Conserved Quantities

The immediate consequence of the first two conditions imposed is that any internal veloc-
ity only depends on the joint velocities. The third condition requires M eiν̇

int = 0. The
mass matrix is transformed byMI = I−TMI−1. The termM eiν̇

int is:

0
!

= M eiν̇
int = A−T (M bq −M bbA

−1B)(q̈ +D#Ḋq̇) (3.91)

The condition must hold for any q̈ and any q̇. Therefore: B = AM−1
bb M bq. The shape of

the transform I after the second condition imposed becomes:

I =

[
A AM−1

bb M bq

0 D

]
I−1 =

[
A−1 −M−1

bb M bqD
#

0 D#

]
(3.92)

and the transformed mass matrix is:

MI =

[
A−TM bbA

−1 0

0 D#T (M qq − MT
bqM

−1
bb M bq)D

#

]
(3.93)

The fourth condition requires that either Ceiν
int = 0 or Ciiν

ext + Ceiν
int = 0. Using

(A.5a

.

),(A.5b

.

):

0
!

= Ceiν
int

= A−T [Cbq + (Ṁ bb − Cb) M
−1
bb M bq − Ṁ bq] q̇

or

0
!

= Ciν
ext + Ceiν

int

= A−T [Cb − M bbA
−1Ȧ]νb

+A−T [Cbq + (Ṁ bb − Cb) M
−1
bb M bq − Ṁ bq] q̇ (3.94)

There are multiple possibilities for the conditions to be fulfilled. IfM eν
ext is a constant of

motion, the condition Ciν
ext + Ceiν

int is fulfilled (3.3.2

.

). In this case, the transformation
matrix A must the adjoint matrix: A = Acb and the center of mass frame must be aligned
with the inertial frame. In this case, the transformation I becomes:

I =

[
Acb AcbM

−1
bb M bq

0 D

]
I−1 =

[
A−1cb −M−1

bb M bqD
#

0 D#

]
(3.95)

subject to the condition aTcb(M bbνb +M bqq̇) = aTib(M bbνb +M bqq̇).
The term Cei = 0 vanishes, if the Coriolis matrix is non-passive (3.3.1

.

). If the Coriolis
matrix is passive, its off-diagonal term Cp

xy is (3.3.2

.

).

Cp
xyν

int = A−T (AT
jb Λj aj J jq − AT

jb Λj ajAjbM
−1
bb M bq)q̇

It might be possible that Cp
xy = 0, if the mass matrix has a special structure.

Up to now, both, the external and internal velocity are abstract concepts. They do not
relate to the body velocities and no frames are assigned to them. Therefore we state addi-
tional requirements:
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3.3. Decoupling and Invariance

5. The external force is expressed in a center of mass frame of some orientation4

.

.

6. The velocity of a body is composed of the sum of an external velocity and an internal
velocity of the body.

From requirement 5 it follows that the transformation block matrixA is the adjoint matrix
Acb, which transforms the total momentum expressed in frame b to frame c.
Requirement 6 states for the body velocity j: νj = νextj + νintj . Since the body velocity j
is: νj = Ajbνb + J jqq̇ and the external velocity expressed in frame j is: νextj = Ajbνb +

AjbM
−1
bb M bqq̇, the internal velocity must be νintj = J intjq q̇ = (J jq −AjbM

−1
bb M bq)q̇.

Finally, the external-internal velocity decomposition is given by the transformation I :

I =

[
Acb AcbM

−1
bb M bq

0 J intj

]
I−1 =

[
A−1cb −M−1

b M bqJ
int,#
j

0 J int,#j

]
(3.96)

with J intj = J jq −AjbM
−1
bb M bq

For the case that CoM frame is aligned to the inertial frame, the resulting external and
internal velocities are the same as in [Gio20

.

, eq. (A.4b)]. The axiomatic approach allows in
addition to make statements for the case that the CoM frame is not aligned to the inertial
frame, by using the results of decoupling (see Prop. 3.3.1

.

and Prop. 3.3.2

.

). If the CoM
frame is not aligned to the inertial frame, the total momentum expressed in the CoM frame,
M eν

ext, is not a constant of motion (3.60

.

). Therefore, requirement 4 can only be fulfilled
by decoupling: Ceiν

int = 0. This is the case, if the non-passive Coriolis matrix derived
from the Hamel equations (3.39

.

) is used. Decoupling is also achieved, if a passive Coriolis
matrix diagonalizes under the Internal/external transform.

4This requirement defines the meaning of external velocity. The dynamics of an external velocity must not
depend on internal motion. This can only be achieved, if the external velocity is expressed in a center-of-
mass frame.
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4. Application to Hopping Robots

4.1. Theory and Modeling

4.1.1. SE(2) Algebra

In this section the relations derived for SE(n) in Chapter 2.1

.

are translated to SE(2). The
Lee group SE(2) is three dimensional, constituting of a 2 dimensional frame origin, oxy
and a rotation angle θxy. The corresponding Lee algebra se(2) has also 3 dimensions, given
by the linear body velocity vxy and the angular velocity ωxy.

We start with the rotation matrix Rib(θ), which is the rotational part of the rigid body
transformation from the base frame b to the inertial frame i. The angle θ is measured from
the x-axis of the inertial frame to the x-axis of the body frame. The 2× 2 rotation matrix is
given by:

Rib(θ) =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
= θS

S =

[
0 −1
1 0

]
The se(2) element of the angular body velocity, ω̂b = RT

obṘob, is:

ω̂b = ωbS (4.1)

The skew matrix S has some useful properties, which can easily be verified:

ST = −S
SST = STS = −SS = I2x2
RxyS = SRxy

The SE(2) group elementHxy ∈ SO(2) (2.3

.

) is:

Hxy =

[
Rxy oxy
0 1

]
Ḣxy =

[
ωxyRxyS ȯxy

0 0

]
(4.2)

The se(2) element of body velocity ν̂xy = H−1xy Ḣxy (2.7

.

) is:[
ω̂xy vxy
0 0

]
=

[
ωxyS RT

xyȯxy
0 0

]
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4. Application to Hopping Robots

From this follows that the linear body velocity is vxy = RT
xyȯxy. The big adjoint transfor-

mation Adxy is for any ν̂1 ∈ se(2) (2.10

.

):

Adxyν̂1 =

[
Rxyω̂1R

T
xy Rxyv1 −Rxyω̂1R

T
xyoxy

0 0

]
=

[
ω1S Rxyv1 − ω1Soxy
0 0

]
Axy =

[
Rxy −Soxy
0 1

]
The little adjoint transformation adνxy is for any ν̂1 ∈ se(2) (2.11

.

):

adνxy ν̂1 =

[
ω̂xyω̂1 − ω̂1ω̂xy ω̂xyv1 − ω̂1vxy

0 0

]
=

[
02×2 ωxySv1 − ω1Svxy

0 0

]
axy =

[
ωxyS −Svxy

0 0

]

4.1.2. Transformations for Free Floating Robots on SE(2)

In this section we calculate the link twist Jacobian J jq. The i-th column of J jq for SE(n) is
(2.23

.

)

J ijq =

[
RT
bj
∂obj
∂qi

(RT
bj
∂Rbj
∂qi

)̌

]
(4.3)

using the relations

RT
xy

∂Rxy(θxy)

∂θxy
= S (4.4)

RT
xy

∂Rxy(q)

∂qi
= S

∂θxy(qi)

∂qi
(4.5)

the ith column of the SE(2) link twist Jacobian for j > 0 becomes:

J ijq =

[
RT
bj
∂obj
∂qi

∂θbj
∂qi

]
(4.6)

The Jacobian J jb for SE(2) corresponding to (2.47

.

) is

J0b =
[
I3×3 03×n

]
J jb =

[
Ajb(q) J jq

]
(4.7)
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4.1. Theory and Modeling

4.1.3. Lagrange Function on SE(2)

The adjointAjci,j for SE(2) corresponding to (2.44

.

) is

Ajci,j =

[
I2×2 Soj,jci
0 1

]
(4.8)

The mass matrix for joint j for SE(2) corresponding to (2.45

.

) is

Λj =

nj∑
i=1

[
mjciI2×2 mjciSoj,jci
−mjcio

T
j,jci
S Ijci +mjcio

T
j,jci
oj,jci

]
(4.9)

The mass matrix for SE(2) (2.50

.

) in terms of J jb is

M b =

n∑
i=0

JTjb ΛjJ jb (4.10)

The Coriolis matrix can be calculated through the Hamel equations (3.39

.

) or defined pas-
sively with the Euler-Lagrange method (3.41a

.

),(3.41b

.

),(3.41c

.

) and (3.41d

.

).
The gravitational potential for a system with nj masses per joint is given by (2.52

.

). As-
suming that gravity points downwards on the y-axis, the gravity potential becomes:

Ug(oib,θib, q) = mgoib + grT2

n∑
j=0

nj∑
i=1

mjciob,jci(q) (4.11)

wherem is the total mass of the system and r2 is the second row ofRib. The gravity system
matrixG (2.53

.

) for SE(2) is

G =

 R
T
ib
∂Ug
∂oib

∂Ug
∂θib
∂Ug
∂q

 =


mg sin(θib)
mg cos(θib)

∂Ug
∂θib
∂Ug
∂q

 (4.12)

4.1.4. Modeling the Floor

A viscous-elastic floor is modeled, which acts on the foot of the robot. The inertial floor
forces have a horizontal and a vertical component, denoted by iF

x
floor and iF

y
floor. They

are modeled as spring with damping. The vertical floor force is constrained to be positive,
in order to make sure that the floor does not pull the robot. The inertial floor forces are
given by:

iF
x
floor = Kx

flooro
x
if −Dx

floorȯ
x
if (4.13)

iF
y
floor = max(Ky

flooro
y
if −D

y
floorȯ

y
if , 0) (4.14)

49



4. Application to Hopping Robots

The floor forces are active only when the foot touches the ground. The inertial foot forces
have to be transformed to be base frame. This is achieved with the transformation dual to

the transformation of the base velocity to the inertial foot velocity: ȯif = J ȯif

[
νb
q̇

]
:

τ floorb = JTȯif iF floor (4.15)

4.1.5. Control Strategy

The robot is controlled by an an impedance controller [ASOH07

.

] of virtual springs. A
radial spring acts on the line between the CoM and the foot, rcf , and a polar spring acts
on the angle αi,cf between the vertical line and rcf . The radial spring is active during
both, flight and stance. The polar spring is active during stance only. In addition to the
virtual springs an energy controller is used to maintain a desired level of energy. The radial
controller containing the energy controller is always the same. There are 2 types of polar
controllers, which differ in the definition of the angle α to be controlled.

Control Structure

The structure of the full controller looks like:

Stance

τE = −KE(E − Edes)ṙcf
τr = −Kr(rcf − rdescf )−Dr ṙcf + τE (4.16)

τp = −Kp(α− αdes)−Dp α̇ (4.17)

Flight

τE = −KE(E − Edes)ṙcf
τr = −Kr(rcf − rdescf )−Drṙcf + τE (4.18)

τp = 0 (4.19)

The energy controller tries to maintain a desired level of energy Edes. The value of Edes

is usually chosen to be the initial energy E0. The control output τE is proportional to the
velocity of length between the center of mass and the foot [GG12

.

]. It is added to the radial
spring controller. The radial controller tries to maintain a desired length between the center
of mass and the foot. It operates during stance and flight with the same control parameters.
The value of rdescf is chosen as the initial CoM-foot length. The polar controller is a virtual
polar spring, which tries to maintain the angle αdes. The polar controller operates only
during stance. The definition of α depends on the type of polar controller used.
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4.1. Theory and Modeling

Controller I and II

Controller I is under-actuated and uses only radial control. Controller II is fully actuated
using both, radial and polar control. The angle αi,cf from the negative inertial y axis to the
line from the center of mass to the foot, is used as α for polar control (see Fig. (4.1

.

) for the
definition of the reference axes). The vectors from the center of mass to the foot, expressed
in the inertial frame and the CoM frame, respectively are:

iocf = RT
ib(obf − obc)

ocf = RT
bc(obf − obc) (4.20)

Their components are denoted iocf = [io
x
cf ; io

y
cf ] and ocf = [oxcf ;oycf ]. The corresponding

velocities are given by the Jacobians:

iȯcf = J
iȯcfυb

ȯcf = RcfJvintf
υb (4.21)

The distance rcf and the angle iαi,cf are obtained from iocf :

iocf =

[
rcf sin(iαcf )
−rcf cos(iαcf )

]
rcf = |ocf |

αi,cf = atan2(io
y
cf ,i o

x
cf ) +

π

2

The transformation from Cartesian to polar velocities is given by:

ṙcf = Jr(iocf )iȯcf

α̇i,cf = Jα(iocf )iȯcf (4.22)

with the polar and radial Jacobians:

Jr(iocf ) =
[
io
x
cf

rcf

io
y
cf

rcf

]
Jα(iocf ) =

[
−ioycf
r2cf

io
x
cf

r2cf

]
(4.23)

Finally the transformations from the generalized base velocities υb to ṙcf and α̇i,cf are:

ṙcf = Jr(iocf )RcfJvintf
υb

α̇i,cf = Jα(iocf )J
iȯcfυb (4.24)

The control outputs τr and τp transformed to the base frame, give the external forces:[
F b

τ

]control
= JTvintf

RT
cfJ

T
r (iocf )τr + JT

iȯcf
JTα(iocf )τp (4.25)

Where F b is the three dimensional wrench acting on the base. Due to use of the internal
velocity, the radial component in (4.25

.

) only excites the joint torques τ , whereas the polar
term also excites the angular component of F b. The linear force component in F b is always
zero.
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Controller III

The radial control part for controller III is the same as for controller II. Controller III con-
trols the orientation of the CoM frame, which is aligned to the locked velocity (Sect. (3.2.4

.

)),
instead of the orientation of the leg. The angle to be controlled, αc , is the angle from the
negative inertial y axis to the x axis of the center of mass frame.

αc = θb + θbc

α̇c = J α̇cυb

The control outputs τr and τp transformed to the base frame, give the external forces:

[
F b

τ

]control
= JTvintf

RT
cfJ

T
r (iocf )τr + JTα̇cτp (4.26)

4.1.6. Frame Conventions

The transformations between joints depend on the frame convention used. We assume
that the origin of frame j is along the x axis of frame j − 1. This means that the rotation
matrix only depends on qj in the case of a rotational joint and that a prismatic joint moves
along the x axis of frame j − 1:

j > 0: Rotational Joint oj−1,j =

[
lj
0

]
θj−1,j = qj

j > 0: Prismatic Joint oj−1,j =

[
qj
0

]
θj−1,j = 0 (4.27)

The quantity lj is a constant. The body frame 0 corresponds to the base frame b.
Given the frame convention defined, the kinematics of a floating base robot in SE(2)

with n joints is fully specified, if all inputs in the Table are provided.

Joint oxj−1,j(qj) oyj−1,j(qj) θj−1,j(qj)

1 oxb1(q1) 0 θb1(qi)
2 ox12(q2) 0 θ12(q2)
...

...
...

...
n oxn−1,n(qn) 0 θn−1,n(qn)

Table 4.1.: Kinematic Inputs for a Free Floating Robot with n Joints

The inputs in the Table depend on the joint type:
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4.2. Simulation of a Prismatic Hopper in the Plane

Joint Type oxj−1,j(qj) oyj−1,j(qj) θj−1,j(qj)

Revolute oxj−1,j 0 qj
Prismatic qj 0 0

Table 4.2.: Kinematic Inputs per Joint Type

The dynamics of a free floating robot with n joints and jn masses of joint j is fully speci-
fied by the providing the masses for each joint and their centers of mass relative to frame
j:

Joint nj mjci oxj,jci oyj,jci Ijci
0 1 m0,c1 ox0,0c1 oy0,0c1 I0c1

0
...

...
...

...
...

0 n0 m0,cn ox0,0cn oy0,0cn I0cn
1 1 m1,c1 ox1,1c1 oy1,1c1 I1c1

1
...

...
...

...
...

1 n1 m1,cn ox1,1cn oy1,1cn I1c1
...

...
...

...
...

...
...

...
...

...
n 1 mn,c1 oxn,nc1 oyn,nc1 Incn

n
...

...
...

...
...

n nn mn,cn oxn,ncn oyn,ncn Incn

Table 4.3.: Dynamic Inputs for a Free Floating Robot with n Joints

4.2. Simulation of a Prismatic Hopper in the Plane

The prismatic hopper consists of a base and a foot and a prismatic joint between them,
representing the leg (see Fig. 4.1

.

). The foot and the base consist of point masses (see Tab.
4.5

.

). The rest length of the leg is 12cm. The radial controller acts between the CoM and the
foot and is active during both, stance and flight (see Fig. 4.2

.

). The center of mass is always
on the leg. The rest length of the radial spring is 0.114cm. The polar string is only active
during stance (see Fig. 4.2

.

).
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Figure 4.1.: Drawing of the prismatic hopper

Figure 4.2.: The prismatic leg during stance and during flight. The polar spring is only
active during stance.

4.2.1. Setup and Simulation Parameters

The kinematic inputs (see Tab 4.4

.

) and the dynamics parameters (see Tab. 4.5

.

) are fed
into the Symbolic Lee Algebra Toolbox, described in Appendix A.2

.

, which calculates the
dynamic matrices and the Jacobians for control.

Joint oxj−1,j(qj) oyj−1,j(qj) θj−1,j(qj)

1 q1 0 0

Table 4.4.: Kinematic parameters for the prismatic leg
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4.2. Simulation of a Prismatic Hopper in the Plane

αi,cf (0)[deg] oxb oyb θb q1 vxb vyb ωb q̇1
0 0 0.3 −π/2 0.114 0 0 0 0

Table 4.7.: Initial conditions used all simulations of the prismatic leg

Joint nj mjci oxj,jci oyj,jci Ijci
0 1 0.957 0 0 0

1 1 0.050 0 0 0

Table 4.5.: Dynamics parameters for the prismatic leg

4.2.2. Simulation Results for the Prismatic Hopper

The prismatic leg has 4 configuration variables (oxb ,o
y
b , θb, q1) and 4 velocities (vxb ,v

y
b , ωb, q̇1).

It has only one prismatic joint q1 and the foot is a point. The parameters for the viscous-
elastic floor are displayed in Table (4.6

.

).

Direction Kfloor Dfloor

x 10000 1000
y 10000 1000

Table 4.6.: Floor parameters used for all simulations

During hopping forward, the leg picks up an angular momentum at lift-off. Since there
is no polar control during flight, the leg rotates during flight. To this end, it is hard to find
stable forward gaits by trial and error. Therefore, we restrict ourselves to hopping in place
for the prismatic leg.

For hopping in place, the initial angle of the base is chosen, such that the foot points
vertically downwards and the fall-off height is 30cm. The resulting initial conditions are
displayed in Table (4.7

.

). These initial conditions are used for all experiments for the pris-
matic leg. In the subsequent experiments the influence of different control parameters are
examined. Experiment I uses under actuated control to examine, how long the leg remains
upright without polar stabilization. Experiment II uses fully actuated control without the
energy controller, while experiment III uses both, fully actuated control and energy con-
trol. In all experiments no damping is used. The control parameters and commanding
values for all experiments of the prismatic leg are summarized in Table (4.8

.

).

55



4. Application to Hopping Robots

Experiment Kr/Dr Kp/Dp KE rdescf αdesi,cf Edes

EXP I 2200/0 0/0 0 0.114 n.a n.a
EXP II 2200/0 6/0 0 0.114 0 n.a
EXP III 2200/0 6/0 20 0.114 0 E0 =2.9047

Table 4.8.: Control parameters and commanding values used for the different experiments
of the prismatic leg. The polar gains are active only during stance, whereas the
radial and energy gains are active during both, stance and flight. No damping
is used in any experiment.
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4.2. Simulation of a Prismatic Hopper in the Plane

Experiment I - Under Actuated Hopping in Place

The first experiment examines, how long the foot remains upright without polar control
and without energy control (see Tab. 4.8

.

for control parameters). The results are depicted
in the Figures (4.3

.

). Figure (4.3a

.

) displays the hopping pattern of the center of mass. One
can clearly see that the leg starts to tilt after some time due to simulation noise. This
happens after 7 jumps (see Fig. 4.3d

.

). The result is to be expected, since the upright leg
without polar control is in an unstable equilibrium.
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Figure 4.3.: Results from experiment I of the prismatic leg for under-actuated control with-
out energy controller. The the leg starts to tilt after 7 hops due to disturbances
arising from simulation noise, since it is in an unstable equilibrium.

Experiment II - Fully Actuated Hopping in Place

In experiment II, we switch on polar control during stance, in order to stabilize the oth-
erwise unstable polar dynamics around the vertical. A stiffness gain of 6 N/m and no
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4. Application to Hopping Robots

damping was used (see Tab. 4.8

.

for control parameters).
The results for this experiment are displayed in the Figures (4.4

.

). The polar controller
is able to stabilize the leg, such that it remains upright (see Fig. 4.4a

.

). The energy (see
Fig.4.5c

.

) and the vertical momentum (see Fig. 4.4d

.

) decrease due to dissipation in the
ground. This leads to a reduction of the hopping height after each jump and eventually to
a final rest position after 12 jumps. This behavior can be mitigated by reintroducing the
energy lost at each jump by using an energy regulator and is done in the Experiment III.
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Figure 4.4.: Results from experiment II of the prismatic leg: Fully actuated hopping in place
without energy control. The leg successfully hops in place, but looses energy.

Experiment III - Fully Actuated Hopping in Place with Energy Recovery

In experiment III the energy controller is switched on with a gain KE = 20 (see Tab. 4.8

.

for
control parameters). The commanding value for the energy is the initial energy. The energy
controller regulates the total mechanical energy E. The control effort is proportional to
the velocity of the joint. The energy controller operates during both, stance and flight.
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4.2. Simulation of a Prismatic Hopper in the Plane

It is to be expected that during flight the controller only increases the average energy of
the spring, since it has nothing to push against. The results with a proportional term of
KE = 20 for the energy controller are depicted in the figures (4.5

.

). The energy controller
is able to recover the desired level of energy after each jump (see Fig. 4.5c

.

). However, it is
not able to recover the energy fully during stance. A bit of energy recovered during flight,
is stored in the spring. The average spring energy during flight increases slightly from hop
to hop (see Fig. 4.5c

.

).
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Figure 4.5.: Results from experiment III of the prismatic leg: Fully actuated hopping in
place with energy control. The energy regulator is able to maintain the desired
level of energy. The energy is not fully recovered during stance, leading to a
slight upward trend of the average spring energy during flight.
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4.3. Simulation of a Revolute Hopper in the Plane

The rotational leg consists of a point trunk, a tight, a shank and a mass less point foot.
Between the shank and the thigh a knee is modeled as a revolute joint (see Fig. 4.6

.

). The
length of both, thigh and shank are 12cm (see Tab. 4.9

.

). In the middle between the trunk
and the knee is a thigh point-mass and in the middle between the knee and the foot is
a shank point-mass (see Tab. 4.10

.

). The angle of the base is measured from the inertial
vertical to the thigh link. The joint angle is measured from the thigh to the shank.

Figure 4.6.: Drawing of the rotational leg

4.3.1. Setup and Simulation Parameters

The kinematic parameters (see Tab. 4.9

.

) and dynamic inputs (see Tab. 4.10

.

) are fed into the
Symbolic Lee Algebra Toolbox described in Appendix A.2

.

, which calculates the dynamic
matrices and the Jacobians for control. The length of both, the thigh and the shank is
l = 12cm.

Joint oxi−1,i(qi) oyi−1,i(qi) θi−1,i(qi)

1 l = 0.12m 0 q1
foot l = 0.12m 0 0

Table 4.9.: Kinematic parameters for the rotational leg
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4.3. Simulation of a Revolute Hopper in the Plane

Joint nj mjci oxj,jci oyj,jci Ijci
0 1 m00 = 0.835kg 0 0 0
0 1 m01 = 0.122kg l/2 = 0.06m 0 0

1 1 m11 = 0.05kg l/2 = 0.06m 0 0

Table 4.10.: Dynamics parameters for the rotational leg

4.3.2. Simulation Results for Revolute Hopper

The rotational leg with only one joint is a minimalistic model of a leg. During flight it has
no means to influence the angular momentum and therefore cannot position the leg to a
desired angle of attack before touch down . In the rigid-body model used herein, the foot
is a point and therefore cannot exert a torque during stance, since there is no ankle joint.
There is no means to control the orientation and the angular momentum of the leg.

The revolute hopper has 4 configuration variables (oxb ,o
y
b , θb, q1) and 4 velocities (vxb ,v

y
b , ωb, q̇1).

The parameters for the viscous-elastic floor are kept constant during all simulations (see
Tab. 4.11

.

).

Direction Kfloor Dfloor

x 10000 1000
y 10000 1000

Table 4.11.: Floor parameters used for all experiments of the rotational leg

The control parameters and the commanding values used in the different experiments
are summarized in Table (4.12

.

).

Experiment Kr/Dr Kp/Dp KE rdescf αdesi,cf Edes

EXP I 2200/0 0/0 0 rcf (0) = 0.1411 n.a n.a
EXP II 2200/0 6/0 0 rcf (0) = 0.1411 0 n.a
EXP III 2200/0 6/0 20 rcf (0) = 0.1411 0 E(0) = 2.8382

EXP IV 2200/20 6/0 20 rcf (0) = 0.1411 0 E(0) = 2.8382

EXP V 2200/20 6/0 20 rcf (0) = 0.1411 0 E(0) = 2.8382

EXP VI 2200/20 6/0 20 rcf (0) = 0.1411 0 E(0) = 2.8382

Table 4.12.: Summary of the control parameters and of the commanding values for the sim-
ulations of the revolute hopper. The polar gains are active during stance only,
whereas the radial and energy gains are active during both, stance and flight.
Experiments IV-VI use radial damping during flight only.
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The angular momentum after lift-off is a crucial parameter for the behavior of the leg.
Since the leg has no means to influence the angular momentum during flight, the angular
momentum after lift-off has to be very small, in order not to rotate the leg too much during
flight. There are several parameters that influence the angular momentum after lift-off:

• The trajectory of αi,cf during stance

• The trajectory of rcf during stance

• The viscous-elasticity of the floor

The tuning strategy employed was to fix αi,cf = 0, such that the line from the CoM to
the foot is vertical and to fix the initial height of the base at oyib = 0.3. Then the initial joint
angle q1 was varied and the angular momentum after the first take-off was measured. The
result is depicted in Figure (4.7

.

). The minimum angular momentum is at the initial joint
angle q1 = 102deg. This value is selected as an initial condition for all simulations (see Tab.
4.13

.

).

Experiment αi,cf (0)[deg] oxb 0yb θib q1 vxb vyb ωib q̇1
EXP I 0 0 0.3 -2.5174 1.7802 0 0 0 0
EXP II 0 0 0.3 -2.5174 1.7802 0 0 0 0
EXP III 0 0 0.3 -2.5174 1.7802 0 0 0 0
EXP VI 0 0 0.3 -2.5174 1.7802 0 0 0 0
EXP V 30 0 0.3 -1.9938 1.7802 0 0 0 0
EXP VI -0.4 2.7676 0.2574 -2.5243 1.7802 -0.1919 0.1263 0.3301 0

Table 4.13.: Initial conditions used for the simulations of the rotational leg
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Figure 4.7.: Parameter tuning for the rotational leg based on simulations. The response of
the angular momentum after the first lift-off as a function of the initial joint
angle q1 is analyzed and shown in the Figure. The angle αi,cf = 0 and the fall-
off height oyib = 0.3 are fixed. The minimum value of the angular momentum
at q1 = 102deg is taken as the initial condition for all experiments.
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4.3. Simulation of a Revolute Hopper in the Plane

Experiment I - Under Actuated Hopping in Place

The first experiment examines how long the leg remains upright without polar control. In
this experiment energy control is switched off (i.e. KE = 0). The only active controller is
the radial spring. The results are shown in Figure (4.8

.

). After the first lift-off the leg obtains
a positive angular momentum (see Fig. 4.8b

.

), which is high enough to rotate the com-foot
line rcf by about 30 degrees until the next touch down (see Fig. 4.8d

.

). Therefore it cannot
make another hop, but jumps away.
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Figure 4.8.: Results from Experiment I of the rotational leg: Under-actuated control with-
out energy control. At the fist lift-off, the leg gets a positive angular momen-
tum, which rotates the leg during flight by 30 deg. As a result, at the second
touch down it cannot make another hop, but drifts away.
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Experiment II - Fully Actuated Hopping in Place without Energy Control

In experiment II, polar controller II is used to bring the orientation of the foot-CoM axis to
its initial value of 0. The polar controller uses a gain of 6 Nm/rad and no damping. No
energy control is used (i.e. KE = 0).
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Figure 4.9.: Results from Experiment II of the rotational leg: Fully actuated control with-
out energy control. The leg makes a relatively stable forward movement. The
reason for the stability, is the alternating sign of the angular momentum from
hop to hop. While such a drifting hopping might be acceptable sometimes, it
has the drawback that the drift is not predictable and the motion does not look
natural.

The results are depicted in Figure (4.9

.

). Figure (4.9a

.

) shows a somewhat stable hopping
gait with forward drift. This indicates that the use of the polar springs helps stabilizing the
hopping, but still alone is not sufficient to achieve hopping in place for a revolute robot.
The polar control is not able to drive the angle to the desired value of 0 (see Fig. 4.8d

.

). The
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4.3. Simulation of a Revolute Hopper in the Plane

reason for the relative the stability is the change of sign of the angular momentum from
hop to hop (see Fig. 4.9b

.

). While such a gait might be a viable strategy for hopping in
place, it is not a natural movement for hopping forward.

Experiment III and IV - Fully-Actuated Hopping in Place with Energy Control

For experiment III energy control is activated with a gain of KE = 10. The results are
displayed in Figure (4.10

.

).
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Figure 4.10.: Results from Experiment III of the rotational leg: Fully actuated control with
energy control. The energy controller is able to maintain the level of energy.
The leg makes a relatively stable forward movement. The reason for the sta-
bility is the alternating sign of the angular momentum from hop to hop. While
such a gait might be a viable strategy for hopping in place, it is not a natural
movement for hopping forward.

The energy controller is capable of maintaining the initial level of energy (4.10c

.

) and
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the relatively stable gait remains (4.10a

.

). As in experiment II, the reason for relative the
stability arises from a gait, which changes sign of the angular momentum during flight
from hop to hop (4.10b

.

). While such a gait might be a viable strategy for hopping place, it
is certainly not natural for hopping forward.

In the previous experiments there were strong vibrations in the virtual radial spring
during flight, leading to oscillations in the knee. This is not desirable, because it is not a
behavior observed in nature and because systematically finding gaits which are stable in
the presence of such oscillations is difficult.

In experiment IV the radial damping is activated during flight (Dr = 20) to remove
radial oscillations and to stabilize the touch down state. All other control parameters in-
cluding initial conditions are the same in experiment III. The results are displayed in Figure
(4.11

.

). The controller successfully removes the vibrations in the spring, as well as in the
spring energy (see Fig. 4.11d

.

and Fig. 4.11c

.

). Different to experiment III, the total mechani-
cal energy during flight changes between jumps, but keeps well near the initial mechanical
energy (see Fig. 4.11c

.

). The pattern of changing sign of the angular momentum from ex-
periment III is removed. (4.11b

.

). Instead, the angular momentum during flight becomes
so small that the leg rotates only around 3deg during flight (4.11d

.

). This leads to a much
stabler gait. The leg almost hops in place with a small negative horizontal velocity 1

.

.

1Simulating for a longer time period shows that the movement converges to a stable gait with a small nega-
tive horizontal velocity.
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Figure 4.11.: Results from Experiment IV of the rotational leg: Fully actuated control with
energy control and radial damping. Full actuation together with radial damp-
ing minimizes the angular momentum during flight, such that the rotation in
the flight phase is only about 3deg. This is the basis for a stable gait. The leg
almost hops in place with a small negative horizontal drift.
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Experiment V and VI - Fully-Actuated Hopping in Forward with Energy Control

Motivated by the results of experiment IV, the goal was to empirically find a stable hopping
forward gait. To this end, the same control parameters and commanding values were used
as in experiment IV (see Tab. 4.12

.

) and only the initial conditions were changed. The initial
conditions from experiment IV were used as a starting point. Subsequently, the leg was
tilted from the vertical and the resulting gaits were analyzed. Note that the commanding
value for polar control was kept at αi,cf = 0. It turned out that an angle of attack of
αi,cf = 30deg, measured from the vertical, resulted in interesting gaits (see Tab. 4.13

.

for
initial conditions). The results are displayed in Figure (4.12

.

).
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Figure 4.12.: Experiment V: Forward hopping of the rotational leg: Fully actuated control
with energy control and radial damping. The initial chaotic movement con-
verges to a stable gait. The level of energy is not maintained, but stabilizes as
a lower level. After the transient phase, all states become stationary.

After the free-fall phase, the leg makes chaotic movements but self-stabilizes after a
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4.3. Simulation of a Revolute Hopper in the Plane

transient phase (see Fig. 4.12a

.

). Such a behavior can also be observed in the SLIP model,
where for a small range of initial angles of attack, the movement converges to a stationary
gait with a smaller apex that the initial fall-off height [GBS02

.

]. The level of energy is not
maintained, but stabilizes at a lower level than the initial energy (see Fig. 4.12c

.

). After the
transient phase, all states become stationary (Fig. 4.12

.

).
For a stable gait the leg must not accumulate to much rotation angle during flight as in

experiment IV (see Fig. 4.11d

.

). After each stance phase, the angular momentum has to be
reset to a low level. Since the leg has no means to control the angular momentum during
flight, the reset of the angular momentum has to happen during stance. In this case, this is
achieved by a synchronized angular momentum during stance, which has a zero crossing
in the middle of the stance phase (see Fig. 4.12b

.

).
The transition from chaotic movement to the stable gait was not systematically analyzed.

However, such a behavior is only possible, if the stable attractor has a considerably large
basis of attraction. Therefore it can be assumed, that the occurrence of a cyclic gait is
insensitive to initial conditions contained in the basin of attraction.

Experiment VI analyzes the stable gait quantitatively. The initial chaotic and transient
phase was removed by using a point of the converged trajectory of experiment V as an
initial condition for the new simulation. The initial conditions of the simulation of Exper-
iment VI are used at time t = 16.7010, which corresponded to an apex of the center of
mass.

The results are depicted in figures (4.13

.

) and (4.14

.

) for the whole simulation run of 20
seconds. The figures (4.15

.

) and (4.16

.

) show a zoom in at the end of the simulation. Apart
from periodic bursts in the forces of the floor (see Fig. 4.14a

.

), all figures show a stationary
behavior. The horizontal linear momentum has a constant pattern, which is only slightly
interrupted in the stance phase (see Fig. 4.15b

.

). The interrupts are so small that the the
horizontal center of mass position is almost linear (see Fig. 4.15a

.

and Fig. 4.15a

.

). This
is similar to the SLIP model, expect that the pattern during stance is different. While the
SLIP model has a U-shaped pattern, the horizontal linear momentum of the revolute hop-
per first undershoots and then overshoots. The pattern of overshooting and subsequently
undershooting can also be observed in other quantities, like the energy (see Fig. 4.16e

.

) or
the spring length (see Fig. 4.15e

.

). It could be a sign that the control action is not fully in
sync with the movement of the leg.

The revolute hopper has important sources of physical energy losses. At touch down,
the kinetic energy is dissipated by the floor. The loss at touch down cannot be avoided in
any case. The touch-down loss can be approximated by the loss of kinetic energy at the
time of touch-down. This measure is a lower bound for the touch down loss, since not
all kinetic energy is necessarily dissipated by the floor in one integration step. The touch
down loss of experiment VI amounts to 45mJ at each touch down.

The second type of loss is the dissipation of energy due to damping of the radial spring
during flight. The amount of energy lost depends on the radial spring loading and on the
velocity of the spring at lift-off. The radial dissipation loss cannot be avoided for a system
with a shank mass, since the spring has to be loaded at lift-off, in order to be able to drag
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the shank upwards.
It is hard specify an optimum for the radial dissipation loss. However, assuming that

all the energy of the radial spring at lift-off is converted to kinetic energy of the shank,
the spring energy at lift-off must be at least as high as the gravity potential of the shank
mass at its apex, which would correspond to 52mJ . Since parts of the spring energy is
dissipated, this value is a lower bound. In our case, the energy of the spring at lift-off is
80mJ , corresponding to a an absolute spring extension of 9mm or 6% of the rest length
(see Fig. 4.15e

.

). Therefore, it seems that the lift-off loss reached, is close to the optimum.
Another source of energy loss is the dissipation of energy by the floor after touch down.

It is not possible to calculate this loss directly, since the floor dissipation cannot reliably be
integrated using the bursting time series of floor forces (see Fig. 4.14a

.

).
Instead, the unknown floor dissipation after touch down is estimated as the residual

between the known energy inflows and the known energy outflows, by means of a cumu-
lative energy flow balance sheet. This analysis also allows to study the energy efficiency
of the revolute hopper.

Due to energy conservation, the cumulative energy inflows have to be equal to the cu-
mulative energy outflows at any point in time. The cumulative inflows of energy are the
work performed by the external (angular) forces and the joint torques. They are calculated
by integrating the power at the power ports of the external angular torque and the joint
torque, respectively.

The known cumulative outflows of energy are given by the temporary storage of energy
in the virtual springs, the touch down loss estimated above and energy dissipation in the
radial controller.

Figure (4.14f

.

) shows the cumulative energy inflows, the external work and the work of
joint torques, together with the cumulative outflows of energy. For the whole 20 seconds
run of the simulation, 7.15J and 4.65J of external and joint actuation work, respectively,
were provided to the system, totaling 11.8J . On the outflow side, the touch down losses
amounted to 2.9J , the radial dissipation losses amounted to 5.9J , the storage of energy
in the springs accumulates to zero and the continuous dissipation of energy by the floor
after touch down amounted to 3.0J , totaling 11.8J by definition. This analysis shows that
the radial dissipation consumes roughly 50% of the energy provided and the touch down
loss and the floor dissipation after touch down consumes another 25% each. The judgment
whether the controller is energy efficient is a subjective one. However, given that we have
a very small shank mass of only 5% of the total mass of the leg, the amounts of energy lost
per hop are small relative to the kinetic and gravity potential of the system (see Tab. 4.13

.

).
The loss per hop is about 7% of the initial energy of the system. To this end, the control
mechanism can be regarded as efficient.

In addition to the results shown here, the effects of using commanding angles for the
polar controller different from zero were analyzed. It turned out that commanding values
only slightly different from zero (2 − 3deg), resulted in large angular momenta during
flight, leading to unstable gaits. Therefore, the polar controller should not be looked at as
a tracking controller steering to a desired angle at lift-off. Instead, it should be regarded
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4.3. Simulation of a Revolute Hopper in the Plane

as a stabilizing element, which minimizes the angular momentum and allows the radial
controller to perform a stable gait.

In summary, the fully actuated revolute hopper performs stable gaits, which look natural
and have an almost linear horizontal angular momentum like the SLIP model. It produces
near optimal lift-off losses. It has desirable confined control actions and it is rather insen-
sitive to initial conditions. The price paid herein was the required radial damping during
flight, which led to additional energy losses and the requirement of a foot or multiple legs
for employing full actuation.

The important question for under-actuated control is: What is the stabilizing element re-
placing full actuation and what does this imply for the design of the robot. Put differently:
What is the minimum viable leg design, which can be expected to be able hop naturally
with under-actuated control and how to find under-actuated gaits?
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Figure 4.13.: Experiment VI: Forward hopping of the rotational leg: Fully actuated control
with energy control and radial damping.
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Figure 4.14.: Experiment VI: Forward hopping of the rotational leg: Fully actuated control
with energy control and radial damping
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Figure 4.15.: Zoom Experiment VI: Forward hopping of the rotational leg: Fully actuated
control with energy control and radial damping
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Figure 4.16.: Zoom Experiment VI: Forward hopping of the rotational leg: Fully actuated
control with energy control and radial damping
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Figure 4.17.: Experiment VI: Screenshots of a hopping cycle
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5. Conclusion

The goal of this work was to systematically find decompositions of the system dynamics
into external and internal components and to use those decompositions for efficient control
strategies.

Using Hamel equations derived for the manifold SE(3)×Rn, we systematically derived
all transformations, which decouple the motion of the base and the motion of the joints.
It turns out that any transformation, which decouples the base wrench from the joints
torques and simultaneously diagonalizes the mass matrix, decouples the dynamics. Em-
ploying a transformation, which results in a constant of motion of the transformed system,
leads to an invariance structure. These results hold only for the Bolzmann-Hamel equa-
tions, which have a non-passive Coriolis matrix. Therefore, a passive formulation was
derived and the conditions for decoupling were analyzed. The passive formulation found
is the same as the one derived using the Euler-Newton method. In the passive case, the
system does not decouple under any transform and shows invariance, when the transfor-
mation of the base velocity results in a constant of motion.

It might be worth investigating this further trying to find a different passive formula-
tion. However, passive decoupling, i.e vanishing of the upper off-diagonal Coriolis block
element, required complete decoupling of the base and of the joints, since the off-diagonal
blocks of a passive Coriolis matrix are the negative transpose of each other.

The results of decoupling have been applied to hopping robots. Mono-legs robots with
one prismatic or one revolute joint were considered.

Impedance control was used to control the system. It consisted of virtual radial springs
between the foot and the center of mass and polar springs at the center of mass. In addition
an energy controller was used to recover energy losses. For polar control two different
controllers are considered. The fist controller assumes a center of mass frame aligned to the
inertial frame and controls the inertial orientation of the radial spring. The latter controls
the orientation of the center of mass frame aligned to the locked velocity. So far, results
were provided for the first type of polar control only.

For the prismatic leg, stable fully actuated hopping in place was demonstrated. Under-
actuated hopping in place is unstable by design. Under-actuated and fully-actuated hop-
ping forward with a prismatic leg is devoted to future work.

For the revolute leg, stable fully actuated hopping forward was demonstrated by using
radial damping during flight. The occurrence of stable gaits is rather insensitive to initial
conditions, all measures are fully stationary and the control actions are confined to desir-
able values. The gaits look natural with an almost linear horizontal momentum. It turns
out that the radial controller acts as the stabilizing element allowing the polar controller to
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converge to stable gaits. For under-actuated hopping forward, a leg design with elements,
that can play the role of the stabilizing element, has to be considered.

To this end, important questions are: How to find stable hopping-forward gaits consid-
ering under-actuation during stance? What is the minimum viable leg design, which can
be expected to be able hop naturally with under-actuated control. These questions will be
addressed in future work.
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A.1. Transformation Relations Equations of Motion

Here we derive expressions for the transformed system matricesMT CT for a given Mass
matrix and Coriolis matrix the using the general decoupling transform T from (3.80

.

). The
mass matrix and the Coriolis matrix have form:

M =

[
M bb M bq

MT
bq M qq

]
C =

[
Cb Cbq

Cqb Cq

]
(A.1)

The transformation is (3.80

.

):

T =

[
T x T xM

−1
bb M bq

0 T y

]
T T =

[
T Tx 0

MT
bqM

−1
bb T

T
x T Ty

]
T−1 =

[
T−1x −M−1

bb M bq T
−1
y

0 T−1y

]
T−T =

[
T−Tx 0

−T−Ty MT
bqM

−1
bb T−Ty

]
(A.2)

The transformation rules 3.77

.

are:

MT = T−TMT−1

CT = T−TCT−1 −MT Ṫ T
−1

The derivative Ṫ is given by:

Ṫ =

[
Ṫ x Ṫ xy
0 Ṫ y

]
Ṫ xy = Ṫ xM

−1
bb M bq + T x(Ṁ

−1
bb M bq + M−1

bb Ṁ bq) (A.3)

By plugging in the mass matrix, Coriolis matrix and the transformations, a simple but
tedious calculation yields:

MT =

[
Mx 0
0 My

]
CT =

[
Cx Cxy

Cyx Cy

]
with the block matrices given by:

Mx = T−1x M bb T
−T
x (A.4a)

My = T−Ty (M qq − MT
bqM

−1
bb M bq)T

−1
y (A.4b)
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and

Cx = T−Tx (Cb − M bb T
−1
x Ṫ x)T−1x (A.5a)

Cxy = T−Tx (Cbq − CbM
−1
bb M bq − M bb Ṁ

−1
bb M bq − Ṁ bq)T

−1
y (A.5b)

Cyx = T−Ty (Cqb − MT
bqM

−1
bb Cb)T

−1
x (A.5c)

Cy = T−Ty (Cq − CqbM
−1
bb M bq + MT

bqM
−1
bb (CbM

−1
bb M bq − Cbq)T

−1
y −My Ṫ y T

−1
y

(A.5d)
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A.2. Symbolic Lee Algebra Toolbox SE(2) x Rn

The toolbox implements many of the relations derived in Section 4.1

.

. It is implemented in
Matlab using the Matlab symbolic toolbox. The configuration variables and generalized
velocities are implemented as functions of time. Therefore it is possible to take the sym-
bolic time derivative of any matrix expression. The Lee Algebra toolbox allows to access
elements of a time function matrix using indices. This is not possible in the Matlab sym-
bolic toolbox. The function symmat converts a matrix of Matlab time functions to a matrix,
which allows access to the elements. The notation of the Lee Algebra Toolbox is very much
aligned with the notation used in this work. Therefore is is easy to understand and write
code, if one is used to this notation.

One function worth mentioning is printsimmat, which converts symbolic matrices to
matrices used in the numeric simulation. The converted matrices contain the state vector
used in the simulation and are printed on screen. To this end, the simulation program does
not contain complex code, but only function bodies containing the converted matrices.
This makes the simulation program easily adaptable to different robots.
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Function Description
R xy = rotationmatrix R xy(theta xy) generates 2× 2 rotation matrix
H xy = framepose H xy(theta xy,O xy) calculates the rigid body transformHxy

O xy = frameorigin o xy(H xy); gets the origin of the frame from Hxy

R xy = frameorientaton R o xy(H xy) gets the Rotation matrix out of Hxy

theta xy = frameangle theta o xy(H xy) gets the angle from Hxy

A xy = Adjoint A xy(H xy) big adjoint matrix
a xy = adjoint a xy(H xy) little adjoint matrix
a xy = bodyvelocity2adjoint a xy(nu xy) little adjoint matrix from body velocity

Jodot xy = Jacobian Jodot xy(O xy,xq ib) Jacobian: ȯxy = J ȯxyυb
Jnu xy = Jacobian Jnu xy(H xy,xq ib) Jacobian: νxy = Jνxyυb
J ydot = Jacobian Jydot(H xy,xq ib); Jacobian: ẏ(oib, θib, q) = J ẏ υb

[Lam j, mc j, oc j]
= massmatrix( Lamda j(o jci mat,mj,Ij) calculates the mass matrix for a link

[M, Res] = vec2mat(symVec,Vars) calculates matrix M from column vector
symVec: symVec = M * Vars + Res. The re-
sult is not unique

M12 = row12(M) gets the first 2 rows from matrix M

printsimmat(M,symvarStr,simvarStr) converts symbolic matrix into a matrix for
numeric simulation.

M = symmat(X) converts a symbolic time function to a sym-
bolic matrix. The elements of M can be ac-
cessed by indices

Table A.1.: List of Functions in the Symbolic Lee Algebra Toolbox

A.2.1. Symbolic Sample Program

As an example for an application of the symbolic Lee Algebra Toolbox, the program that
symbolically calculated all relation required for the revolute hopper is printed.

1 % symbolic_rotatinalTorsoLeg2D.m
2 %
3 % calculates the all relations required for simulation
4 % of a 2D rotational foot with 3 masses
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5 % The com frame is aligned with locked velocity
6

7

8 clear all
9 close all

10

11 %% User input setup
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%↪→

12 nq = 1; % number of link variables q
13 sim_statevar = 'y'; % name of state vector used in numeric

simulation↪→

14 %% run setup: do not touch
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%↪→

15 %
16 % this setup is the same for all 2D floating robots with nq

serial joints↪→

17 % and nj masses and nj moments of Inertial per joint
18 %
19 nv = 3 + nq; % number of configuration variables
20 ns = 2* nv; % number of states
21

22 % define symbolic variables and time functions
23 syms t g % symbolic constants time, gravity constant
24

25 syms o_ib(t) [2 1], syms theta_ib(t), syms q(t) [nq 1]
26 syms v_ib(t) [2 1], syms w_ib(t), syms qdot(t) [nq 1]
27 syms vdot_ib(t) [2 1], syms wdot_ib(t), syms qddot(t) [nq 1]
28

29 assume(t,'real')
30 assume(g,'positive')
31

32 % collect variables
33 v0 = symmat([o_ib; theta_ib; q]);
34 v1 = symmat([v_ib; w_ib; qdot]);
35 v2 = symmat([vdot_ib; wdot_ib; qddot]);
36 nvar = length(v0); % number of variables
37

38 % collect variable names for substitution
39 % replace varsdiff with varsdot
40 % varsdotdiff with varsddot
41 % odot_ib with R_ib * V_ib
42
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43 varsdot =
symmat([rotationmatrix_R_xy(theta_ib)*v1(1:2);v1(3:end)]); %
time deriv.

↪→

↪→

44 varsddot = v2; % twice time deriv.
45

46 varsdiff = symmat(diff(v0,t));
47 varsdotdiff = symmat(diff(v1,t));
48

49 % variable conversion from sym to simulation
50 %
51 % the function printsimmat(Msym) replaces
52 % the symbolic time variables in Msym with
53 % the state vector entry used in the simulation.
54 % e.g
55 % nq = 1;
56 % sim_statevar = 'y';
57 % simvarStr =

string(['y(1)';'y(2)';'y(3)';'y(4)';'y(5)';'y(6)';'y(7)';'y(8)'])↪→

58 %
59 % theta_ib(t) is replaced with y(3) and
60 % w_ib(t) is replaced with y(5)
61

62 symvarStr = string([v0;v1]);
63 simvarStr = strcat(sim_statevar,"(",string((1:ns)'),")");
64

65 % define matrices
66 S = symmat([0,-1; 1,0]); % cross product matrix
67 R_ib = rotationmatrix_R_xy(theta_ib); % rotation from b to i
68

69 % Base frame vectors and tranformations
70 xq_ib = v0; % vector of all configuration

variables↪→

71 nuq_ib = v1; % generalized velocities
72 nu_ib = nuq_ib(1:3); % base twist vector
73

74 H_ib = framepose_H_xy(theta_ib,o_ib);
75

76 %%% End setup
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%↪→

77

78 %% User Inputs
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%↪→
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79 % additional variables
80 syms l % length on links
81 assume(l,'positive')
82

83 % kinematic specification: link to link Transform variables
84 theta_b1 = q1; % link 1
85 o_b1 = symmat([l;0]); % link 1
86

87 theta_1f = 0; % link f
88 o_1f = symmat([l;0]); % link f
89

90 % dynamic specification: centers of masses in frame j
91 o_bc1 = [0; 0]; % 2x1 center of mass 1 in link b
92 o_bc2 = [l/2;0]; % 2x1 center of mass 2 in link b
93 o_1c1 = [l/2;0]; % 2x1 center of mass 1 in link 1
94

95 %% Mass matrices for Links
96 % link b
97 o_bci_mat =[o_bc1,o_bc2]; % 2 x nmb centers of mass i in link b
98

99 syms m0 I0 [size(o_bci_mat,2) 1]
100 assume(m0,'positive')
101 assume(I0,'positive')
102 I0 = I0 *0; % in our case momentum of inertia of link b is 0
103

104 [Lam_b,mc_b,oc_b] = massmatrix_Lamda_j(o_bci_mat,m0,I0);
105

106 % link 1
107 o_1ci_mat = [o_1c1]; % 2 x nm1 centers of mass i in link b
108

109 syms m1 I1 [size(o_1ci_mat,2) 1]
110 assume(m1,'positive')
111 assume(I1,'positive')
112 I1 = I1 *0; % in our case momentum of inertia of link 1 is 0
113

114 [Lam_1,mc_1,oc_1] = massmatrix_Lamda_j(o_1ci_mat,m1,I1);
115

116 %% H_xy Transformations
117 H_b1 = framepose_H_xy(theta_b1,o_b1);
118 H_1f = framepose_H_xy(theta_1f,o_1f);
119

120 H_i1 = simplify(H_ib * H_b1);
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121 H_if = simplify(H_i1 * H_1f);
122 H_bf = simplify(H_b1 * H_1f);
123

124 %% Center of mass in frame b
125 % centers of mass of links b and 1 expressed in frame b
126 boc_b = oc_b;
127 boc_1 = row12(H_b1 * [oc_1;1]);
128

129 % put results in matrices
130 boc_mat = [boc_b,boc_1];
131 mc_vec = [mc_b;mc_1];
132

133 % center of mass in frame b: o_bc
134 o_bc = simplify(expand(boc_mat*mc_vec/sum(mc_vec)));
135 odot_bc = simplify(timederivative(o_bc,varsdiff,varsdot));
136

137 %% Center of mass in frame i
138

139 % inertial CoM of link j
140 ioc_b = row12(H_ib * [oc_b;1]);
141 ioc_1 = row12(H_i1 * [oc_1;1]);
142

143 % put results in matrices
144 ioc_mat = [ioc_b,ioc_1];
145 mc_vec = [mc_b;mc_1];
146

147 % inertial center of mass: o_ic
148 o_ic = simplify(expand(ioc_mat*mc_vec/sum(mc_vec)));
149 odot_ic = simplify(timederivative((o_ic),varsdiff,varsdot));
150

151 %% Jodot_xy Jacobians: i_odot_xy = Jodot_xy *nuq_ib
152 Jodot_i1 = Jacobian_Jodot_xy(frameorigin_o_xy(H_i1),xq_ib);
153 Jodot_if = Jacobian_Jodot_xy(frameorigin_o_xy(H_if),xq_ib);
154 Jodot_bf = Jacobian_Jodot_xy(frameorigin_o_xy(H_bf),xq_ib);
155

156 %% Jnu_xy Jacobians: nu_xy = Jnu_xy *nuq_ib
157 Jnu_ib = Jacobian_Jnu_xy(H_ib,xq_ib);
158 Jnu_i1 = Jacobian_Jnu_xy(H_i1,xq_ib);
159 Jnu_if = Jacobian_Jnu_xy(H_if,xq_ib);
160 Jnu_bf = Jacobian_Jnu_xy(H_bf,xq_ib);
161

162 %% dotJnu_xy: time derivative of Jnu_xy
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163 dotJnu_ib = simplify(timederivative(Jnu_ib,varsdiff,varsdot));
164 dotJnu_i1 = simplify(timederivative(Jnu_i1,varsdiff,varsdot));
165

166 %% nu_xy twists: nu_xy = Jnu_xy *nuq_ib
167 nu_i1 = simplify(Jnu_i1 * nuq_ib);
168 nu_if = simplify(Jnu_if * nuq_ib);
169

170 %% big adjoints A_xy: A_xy = Adjoint_A_xy(H_xy);
171 A_ib = Adjoint_A_xy(H_ib);
172

173 %% little adjoints a_xy: a_xy = adjoint_a_xy(nu_xy);
174 a_ib = adjoint_a_xy(H_ib,varsdiff,varsdot);
175 a_i1 = adjoint_a_xy(H_i1,varsdiff,varsdot);
176

177 %% Mass matrix Mb
178 Mb = simplify(expand( Jnu_ib.'* Lam_b *Jnu_ib + Jnu_i1.'*

Lam_1 * Jnu_i1 ));↪→

179 Mbdot = simplify(timederivative(Mb,varsdiff,varsdot));
180 MbI = simplify(expand(inv(Mb)));
181

182 %% passive coriolis matrix Cbp Euler-Newton
183 Psi_b = Lam_b * a_ib - a_ib.'* Lam_b;
184 Psi_1 = Lam_1 * a_i1 - a_i1.'* Lam_1;
185

186 CbPsi = Jnu_ib.'* Psi_b * Jnu_ib + Jnu_i1.'* Psi_1 *
Jnu_i1;↪→

187 CbLam = Jnu_ib.'* Lam_b *dotJnu_ib + Jnu_i1.'* Lam_1

*dotJnu_i1;↪→

188

189 Cbp = simplify(expand(CbPsi + CbLam));
190 Cbpvec = simplify(expand(Cbp*nuq_ib));
191

192 %% Lagrage Method: Coriolis matrix CbL
193 E_kin = 1/2 * simplify(expand(nuq_ib.'* Mb *nuq_ib));
194

195 % Coriolis matrix CbL: first 3 rows
196 CbL(1:3,:) = simplify(expand(Mbdot(1:3,:) -a_ib.'* Mb(1:3,:)));
197

198 % take functional derivative of E_kin with respect to q
199 % and convert the results to a matrix
200 gradL = functionalDerivative(E_kin,q);
201 gradLmat = simplify(expand(vec2mat(gradL,nuq_ib)));
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202

203 % Coriolis matrix CbL: last n rows
204 CbL(4,:) = Mbdot(4,:) - gradLmat;
205 CbLvec = simplify(expand(CbL*nuq_ib));
206

207 %% Gravity vector G
208 % Potential Energy
209 E_pot = simplify(expand(g*ioc_mat(2,:) * mc_vec));
210

211 % G vector:
212 Gb = functionalDerivative(E_pot,xq_ib);
213 Gb(1:2) = R_ib.' * Gb(1:2);
214

215 %% Center of mass frame H_bc
216

217 % w_bc from locked velocity
218 MbbI = inv(Mb(1:3,1:3));
219 w_bc = MbbI(3,:)*Mb(1:3,4:end)*qdot;
220 w_bc = collect(w_bc,cos(q1));
221

222 % xtheta_cb is obtained by integrating w_cb: this was done in
223 % integrate_w_bc_rotationalLeg2D.m
224 A = m01*m11 + m02*m11;
225 B = 2*m01*m11 + m02*m11;
226 a = m01*m02 + 5*m01*m11 + 2*m02*m11;
227 b = 2*B;
228

229 theta_bc = (B*q1)/b + 2*atan( (tan(q1/2)*(aˆ2 - bˆ2)ˆ(1/2))/(a +
b) ) * (A*b - B*a)/(b*(aˆ2 - bˆ2)ˆ(1/2));↪→

230 % theta_bc = (B*qv)/b + 2*atan2( tan(qv/2)*(aˆ2 - bˆ2)ˆ(1/2), a
+ b ) * (A*b - B*a)/(b*(aˆ2 - bˆ2)ˆ(1/2));↪→

231

232 % Transformations H_bc, H_ic
233 H_bc = framepose_H_xy(theta_bc,o_bc);
234 H_ic = H_ib * H_bc;
235 H_cf = inv(H_bc)*H_bf;
236

237 %% Com-Foot vectors: b_o_cf, i_o_cf and o_cf
238 % b_o_cf = o_bf - o_bc; i_o_cf = R_ib * b_o_cf
239

240 b_o_cf = frameorigin_o_xy(H_bf) - o_bc;
241 i_o_cf = R_ib * b_o_cf;
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242

243 R_bc = H_bc(1:2,1:2);
244 R_bf = H_bf(1:2,1:2);
245 R_cf = R_bc.' * R_bf;
246

247 o_cf = R_bc.' * b_o_cf;
248

249 %% Jodot_cy Jacobians: i_odot_cy = Jacobian_Jodot_xy *nuq_ib
250 Jiodot_cf = Jacobian_Jodot_xy(i_o_cf,xq_ib);
251 Jodot_cf = Jacobian_Jodot_xy( o_cf,xq_ib);
252 Jodot_ic = Jacobian_Jodot_xy(frameorigin_o_xy(H_ic),xq_ib);
253

254 %% big adjoints A_cy: A_cy = Adjoint_A_xy(H_cy);
255 A_cb = Adjoint_A_xy(inv(H_bc));
256

257 %% Com-Foot vectors: b_o_cf, i_o_cf and o_cf
258 % b_o_cf = o_bf - o_bc; i_o_cf = R_ib * b_o_cf
259

260 b_o_cf = frameorigin_o_xy(H_bf) - o_bc;
261 i_o_cf = R_ib * b_o_cf;
262

263 R_bc = H_bc(1:2,1:2);
264 R_bf = H_bf(1:2,1:2);
265 R_cf = R_bc.' * R_bf;
266

267 o_cf = R_bc.' * b_o_cf;
268

269 %% Jr_ocf, Jp_ocf: Radial and polar Jacobians
270 r = sqrt(i_o_cf(1)ˆ2 + i_o_cf(2)ˆ2);
271 rr = r*r;
272

273 Jr_iocf = [ i_o_cf(1)/r , i_o_cf(2)/r];
274 Jp_iocf = [-i_o_cf(2)/rr, i_o_cf(1)/rr];
275

276 r = sqrt(o_cf(1)ˆ2 + o_cf(2)ˆ2);
277 rr = r*r;
278

279 Jr_ocf = [ o_cf(1)/r , o_cf(2)/r];
280 Jp_ocf = [-o_cf(2)/rr, o_cf(1)/rr];
281

282 %% Momentum hc: h_b = Mbb*nu_ib + Mbq * qdot; hc = A_cbˆ(-T) *
h_b↪→
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283 h_b = simplify(Mb(1:3,:) * nuq_ib);
284 h_c = simplify(inv(A_cb).' * h_b);
285

286 A_ic_inert = Adjoint_A_xy(framepose_H_xy(0,o_ic));
287 h_inertc = simplify(inv(A_ic_inert).' * h_b);
288

289 %% o_xy: o_xy = frameorigin_o_xy(H_xy);
290 o_i1 = frameorigin_o_xy(H_i1);
291 o_if = frameorigin_o_xy(H_if);
292 o_ic = frameorigin_o_xy(H_ic);
293

294 %% Jv_xy: Jv_xy = row12(Jnu_xy)
295 Jv_if = row12(Jnu_if);
296

297 %% Jacobians for controllers
298

299 % Internal velocity Jacobian: Jvfint = Jv_if * P_int;
300 P_int = simplify([zeros(4,3),[-inv(Mb(1:3,1:3))*Mb(1:3,4);1]]);
301

302 % Jwf_ext: wf_ext = Jwf_ext * nuib; odot_cf = Jp_ocf * wf_ext
303 alpha_c = symmat(theta_ib + theta_bc + pi/2);
304 Jalphadot_c = Jacobian_Jydot(alpha_c,xq_ib);
305

306 Jrdot_cf = simplify(Jr_ocf * R_cf * Jv_if * P_int);
307 Jalpha_iodot_cf = simplify(Jp_iocf * Jiodot_cf);
308

309 %% Consistency tests Mb Cbp CbL
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%↪→

310 % Coriolis matrix
311 disp('%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%')
312 disp('CbPsi + CbPsiˆT nust be zero')
313 simplify(expand(CbPsi + CbPsi.'))
314 disp('%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%')
315

316 disp('%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%')
317 disp('Cbp must be passive Mbdot -CbPsi - CbPsiˆT = 0')
318 simplify(expand(Mbdot-Cbp-Cbp.'))
319 disp('%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%')
320

321 disp('%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%')
322 disp('Coriolis vectors of Euler-Mewton and Lagrange Method must

be the same')↪→
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323 diffCbvec = simplify(expand(Cbpvec-CbLvec))
324 disp('%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%')
325

326 %% convert sytem matrices to sim
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%↪→

327

328 printsimmat(Mb,symvarStr,simvarStr)
329 printsimmat(MbI,symvarStr,simvarStr)
330 printsimmat(Cbp,symvarStr,simvarStr)
331 printsimmat(Gb,symvarStr,simvarStr)
332 printsimmat(E_pot,symvarStr,simvarStr)
333

334 printsimmat(o_i1,symvarStr,simvarStr)
335 printsimmat(o_if,symvarStr,simvarStr)
336 printsimmat(o_ic,symvarStr,simvarStr)
337 printsimmat(o_cf,symvarStr,simvarStr)
338

339 printsimmat(Jodot_i1,symvarStr,simvarStr)
340 printsimmat(Jodot_if,symvarStr,simvarStr)
341 printsimmat(Jodot_ic,symvarStr,simvarStr)
342 printsimmat(Jodot_cf,symvarStr,simvarStr)
343

344 printsimmat(Jalpha_iodot_cf,symvarStr,simvarStr)
345 printsimmat(Jrdot_cf,symvarStr,simvarStr)
346 printsimmat(alpha_c,symvarStr,simvarStr)
347 printsimmat(Jalphadot_c,symvarStr,simvarStr)
348

349 printsimmat(h_c,symvarStr,simvarStr)
350 printsimmat(h_inertc,symvarStr,simvarStr)
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A.3. Useful Relations

There are some useful identities on transformations of the cross product [LLM17

.

, Chapter
1.1.7]: For any x and y ∈ R3 an any invertible matrixM

x̂y = x× y (A.6a)
x̂y = −ŷx (A.6b)

x̂ŷ − ŷx̂ = (x× y)̂ (A.6c)
(x× y)z = x(y × z) (A.6d)
R(x× y) = (Rx)× (Ry) (A.6e)

Rx̂RT = (Rx)̂ (A.6f)
˙M−1M = −M−1Ṁ (A.6g)
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