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Abstract—This article presents a benchmark problem that 

researchers can use to evaluate the performance of energy 

management algorithms for multi-energy source and multi-

motor electric vehicles. The model makes use of Modelica, an 

open source, a-causal, object-oriented language for modeling 

cyber-physical systems in multi-domains (e.g. electrical, 

mechanical, thermal) of the vehicle components. The model also 

includes the aspect of three-dimensional mechanics, which 

enables completely new degrees of freedom in the controller 

design in comparison to one-dimensional approaches. To 

support interoperability among multiple design tools, the 

Modelica vehicle model is provided as a Functional Mockup 

Unit, an industry standard for exchange of simulation models. A 

set of standardized input-output interfaces and key performance 

metrics is also provided in the benchmarking problem, enabling 

the systematic ranking of multiple energy management 

strategies.  

Keywords—energy management, vehicle dynamics control, 

electro-mobility, trajectory control, energy management, battery 

model, Modelica, Functional Mockup Interface, hydrogen fuel 

cell, multi-physical modelling, drivetrain models 

I. INTRODUCTION 

In order to stimulate advances in vehicular energy and 

power management, the IEEE Vehicular Technology Society 

(VTS) initiated the VTS Motor Vehicles Challenge in 2016. 

The competition’s themes have focused on energy 

management of hybrid energy storage systems (fuel 

cells/batteries/supercapacitors [1] [2] [3] [4]) and their 

applications to cars ( [5] [6]), trucks [7] and trains [8]. These 

competitions provide benchmark problems where researchers 

can evaluate and compare the performance of their energy 

management algorithms against other research groups. 

In this year’s competition we bring a new dimension to the 

challenge: torque allocation in multi-motor electric vehicles. 

In addition to managing a hybrid energy storage system, the 

competitors are asked to develop torque allocation for a four-

wheeled vehicle with three traction motors: two (rear) in-

wheel motors and one front motor. This multi-motor 

configuration offers various advantages. It can enhance 

energy efficiency of the vehicle by enabling energy 

 

 

recuperation in both front and rear axle [9] and also 

decreasing tire slip losses [10]. It improves motion control of 

the vehicle by extending the maximum lateral acceleration 

[11] and decreases response of inner (yaw-rate) control loops. 

This last feature is particularly attractive to improve tracking 

performance and vehicle dynamics stability of path/trajectory 

following algorithms of autonomous vehicles [12]. It also 

offers redundant traction actuators that can be exploited by 

fault tolerant controllers to improve vehicle reliability [13].  

As reference vehicle for this year’s competition we 

employed an adapted version of the DLR ROboMObil ( [14] 

[15] [16] [17]), which is extended here with a hydrogen fuel 

cell. To model this vehicle, we make use of Modelica [18], an 

open source, a-causal, object-oriented language that allows 

the modeling of cyber-physical systems in multi-domains, 

e.g. electrical, thermal and mechanical. It also offers powerful 

model inversion capabilities, which facilitate the design of 

non-linear motion control algorithms [19]. 

Since there is a manifold of simulators on the market, we 

decided to export the vehicle model through the functional 

mockup interface (FMI) [18] technology. This allows the 

competitors to develop a control strategy using their tool of 

choice. Our simulation model gives the benefit of a very high 

computational efficiency, with an average real-time factor 

larger than twenty on a standard PC, which can be particularly 

useful to accelerate the development of learning-based control 

algorithms (e.g. [20]).  

The paper is arranged as follows: Section II gives a general 

overview of the challenge; Section III introduces the 

Modelica model of the ROboMObil; Section IV describes the 

evaluation process and ranking of energy management 

algorithms. Section V summarizes all development steps and 

provides a look into future research. 

II. OVERVIEW OF THE CHALLENGE 

As depicted in Figure 1, the challenge considers the 

ROboMObil vehicle with a hybrid energy storage system 

(fuel cell & hydrogen tank and battery), two in-wheel electric 

motors installed in the rear axle (𝜏𝑅𝐿 , 𝜏𝑅𝑅), one central front 

motor (𝜏𝐹), and a front steer-by-wire actuation (𝛿). These 

actuators are manipulated by the vehicle’s motion controller 
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in order to track a pre-defined reference velocity (𝑣∗) and 

track curvature (𝜌∗). 

 

Figure 1: Block diagram of the benchmark problem.  

The competitors are invited to develop the energy 

management algorithm (EMA) for the vehicle (Figure 1 – top 

red block). The EMA determines the operating conditions for 

the two energy storage devices and the three electric motors; 

minimization of the energy consumption and battery 

degradation are some of the main goals of the EMA.  

A. Energy Storage and Vehicle Actuators 

The hybrid energy storage is composed of a 20 kW fuel cell 

and 20 kWh Li-ion battery. A DC/DC converter is connected 

to the fuel cell in order to regulate its current (𝐼𝐹𝐶) and power 

flow between the hybrid storage elements. The hybridization 

with a hydrogen range extender (REX), being composed of 

the fuel cell and a hydrogen tank, enables the reduction of 

usage of rare elements like Lithium while enhancing the 

vehicle’s range. Both the fuel cell & H2 tank and the battery 

provide energy to the two in-wheel motors and the central 

front motor. Because of their decoupled architecture, the in-

wheel motors can generate non-symmetric torques in the left 

and right rear wheels and, thus induce additional yaw-moment 

to the vehicle’s chassis. This yaw-moment can be exploited to 

enhance vehicle handling and safety [21]; it can also decrease 

the amount of front steering, thus reducing tire slip 

losses [10]. Additionally, a steer-by-wire actuator is installed 

in the front axle to modify the steering angle 𝛿.  

B. Mission Planning and Vehicle Control 

We assume that the planning of the vehicle’s mission is 

defined in advance, e.g. using trajectory planning methods 

such as [16]. The mission is characterized by a reference 

vehicle velocity 𝑣∗(𝑡) and the track curvature 𝜌∗(𝑡) over a 

given time horizon 𝑡 ∈ [0, 𝑡𝑒𝑛𝑑]. 
The motion controller tracks 𝑣∗ through manipulation of 

the reference traction force 𝐹∗. This reference force is 

converted into a reference torque 𝜏∗ = 𝐹∗𝑟𝑤, with 𝑟𝑤 being 

the wheel radius, which is then divided between the front and 

rear axle  

 𝜏𝐹
∗ = 𝜏∗𝛼𝐴𝐷 ,          𝜏𝑅

∗ = 𝜏∗(1 − 𝛼𝐴𝐷), (1) 

where 𝛼𝐴𝐷 indicates the variable front/rear axle distribution. 

Afterwards, the rear axle torque is allocated into left and right 

motor torques using a normalized torque vector ratio 𝛼𝑇𝑉 ∈
[0, 1]: 

 𝜏𝑅𝑅
∗ = 𝜏𝑅

∗𝛼𝑇𝑉 ,          𝜏𝑅𝐿
∗ = 𝜏𝑅

∗ (1 − 𝛼𝑇𝑉). (2) 

When 𝛼𝑇𝑉 = 0.5, both motors receive the same torque; 

𝛼𝑇𝑉 = 1 allocates all the torque solely to the right motor and 

𝛼𝑇𝑉 = 0 solely to the left motor. Additionally, all electric 

motors are subject to torque constraints: 

 𝜏𝑚𝑖𝑛.𝑖 ≤ 𝜏𝑖
∗ ≤ 𝜏𝑚𝑎𝑥,𝑖, (3) 

where 𝑖 ∈ {𝐹, 𝑅𝑅, 𝑅𝐿} is the motor index, 𝜏𝑚𝑖𝑛.𝑖 the minimum 

allowed torque and 𝜏𝑚𝑎𝑥,𝑖 the maximum allowed torque. 

The reference curvature 𝜌∗ is tracked through the 

manipulation of the steering angle 𝛿∗, while considering the 

additional yaw-moment generated by the torque vectoring. 

Note that, throughout this document, the superscript 𝑥∗ is 

used to denote the desired value for the variable 𝑥.  

C. Energy Management Algorithm (EMA) 

The EMA is responsible for computing four control 

variables, cf. the red variables in Figure 1 top: 

1. the normalized fuel cell current, 𝛼𝐹𝐶 ∈ [0,1], which 

affects the power split between the battery and the fuel cell 

(note 𝐼𝐹𝐶
∗ = 𝛼𝐹𝐶𝐼𝐹𝐶,𝑚𝑎𝑥 , where 𝐼𝐹𝐶,𝑚𝑎𝑥  is the maximum 

allowed fuel cell current); 

2. the axle torque distribution ratio, 𝛼𝐴𝐷 ∈ [0,1], to 

determine the front and rear distribution of the desired 

torque 𝜏∗, see eq. (1). 

3. the torque vectoring ratio, 𝛼𝑇𝑉 ∈ [0,1], to determine the 

torque allocation between right and left motors, see eq. (2). 

4.  the velocity derating factor, 𝛼𝑣 ∈ [0,1], which decreases 

the reference velocity 𝑣∗ to 𝛼𝑣𝑣
∗ (see Figure 1); it offers an 

additional degree of freedom to prevent violation of safety 

constraints in the system (e.g. over-discharge of the 

battery). 

The EMA provided by the competitors will be evaluated 

using a wide range of performance metrics, including energy 

consumption, violation of safety constraints, battery 

degradation and fulfillment of the vehicle’s mission (also 

referred as velocity derating in the sequel). These metrics will 

be defined in more detail in Section IV. 

The EMA will have access to several states of the vehicle 

and energy storage, such as battery state of charge, 

temperature, etc. Additionally, it will also receive a short 

preview of future values of the velocity and curvature 

references:  

 𝑣̂(𝑡 + Δ𝑡), 𝜌̂(𝑡 + Δ𝑡), (4) 

where Δ𝑡 ∈ [0, Δ𝑡𝑚𝑎𝑥] and Δ𝑡𝑚𝑎𝑥 is the preview window 

which is available in map data systems with a virtual horizon. 

This preview information can be generated by the trajectory 

planning module of the vehicle.  



 

 

 

III. COMPONENTS MODELING 

In this section we briefly describe the Modelica model of 

the ROboMObil ( [16], [17]) vehicle with a slightly modified 

architecture for this challenge, depicted in Figure 1. The aim 

is to describe the most relevant physical laws and effects with 

the focus on a numerical efficient simulation, which is 

necessary for a quick assessment of the EMAs or a machine 

learning process to synthesize the controller. 

A. ROboMObil’s Chassis Model 

To capture the fundamental dynamics of the ROboMObil, 

we use a double track model implemented with the Modelica 

planar mechanics library [22]. It offers three degrees of 

freedom: the vehicle can move in longitudinal and lateral 

direction and rotate about the vertical axis. The chassis model, 

depicted in Figure 2, consists of a front and rear axle, both 

with wheels, a car body and air resistance. 

In addition, the model contains three types of interfaces: 

mechanical (gray and white circles), thermal (red squares) and 

control (yellow connectors). The mechanical interfaces are 

used to exchange position and torque/force of mechanical 

elements. The heat interface captures the heat flow between 

components, and allows to quantify the energy losses that are 

eventually dissipated to the environment. The control 

interfaces contain signals that are generated by sensors (e.g. 

acceleration signal recorded by an inertial measurement unit) 

and control modules (e.g., steering actuator demand). 

carBody

axleFront

axleRear

airResistance

controlBus

flangeWheelFL flangeWheelFR

flangeWheelRL flangeWheelRR

flangeSteeringflangeDriveFront

heatPort

 

Figure 2: Structure of the Modelica planar vehicle model  

The rigid front axle is assembled from an open differential 

that distributes the torque of the central front motor – provided 

by “flangeDriveFront” connector in Figure 2 – to the left and 

right wheel, which utilizes a slip-based tire model, see 

Section III.B. Moreover, a steering mechanism that equally 

transmits the steering input onto both left and right front 

wheels is implemented. The rigid rear axle is, in contrast, 

composed only of two slip-based tire models. They can be 

directly driven by torque sources connected from outside to 

connectors “flangeWheelRL” and “flangeWheelRR” for left 

and right wheel, respectively. In this way, an in-wheel drive 

can be realized. 

B. Slip-based Tire Model with Losses 

ROboMObil’s four wheels are modelled with a slip-based 

tire model [23] which is extended with energy loss effects. To 

simplify the model, tire load fluctuation during cornering or 

braking/accelerating are neglected and the wheel is bounded 

to the track-plane (holonomic-constraint). While operating at 

constant load 𝑓𝑁, the slip velocity 𝑣𝑠𝑙𝑖𝑝 at the contact patch 

determines the slip forces according to Coulombs’s law for 

dry-friction characteristics, 

 𝑓𝑖 = −𝑓𝑁 µ(𝑣𝑠𝑙𝑖𝑝) 
𝑣𝑠𝑙𝑖𝑝,𝑖

𝑣𝑠𝑙𝑖𝑝
. (5) 

Eq. (5) can be used for both the longitudinal (𝑖 = 𝑙𝑜𝑛𝑔) and 

the lateral (𝑖 = 𝑙𝑎𝑡) direction, resolved in the wheel 

coordinate system. The friction coefficient µ depends on the 

slip velocity 𝑣𝑠𝑙𝑖𝑝 . To construct this dependency, we follow 

the approach developed in [23] and utilize two pairs of 

parameters: (𝑣𝑎𝑑ℎ𝑒𝑠𝑖𝑜𝑛, µ𝐴) and (𝑣𝑠𝑙𝑖𝑑𝑒 , µ𝑆). The former pair 

determines maximum friction µ𝐴 at 𝑣𝑠𝑙𝑖𝑝 = 𝑣𝑎𝑑ℎ𝑒𝑠𝑖𝑜𝑛 . The 

latter pair specifies a sliding area by friction µ𝑆 at slip 

velocities 𝑣𝑠𝑙𝑖𝑝  ≥ 𝑣𝑠𝑙𝑖𝑑𝑒 . 

The rolling motion of the wheel can be actuated by the 

driving or braking torque input, cf. “flangeWheelXY” in 

Figure 2, with X denoting front (“F”) of rear (“R”) position of 

the wheel and Y denoting its left (“L”) or right (“R”) side. 

The tire losses comprise losses at tire/road contact area due 

to the dry-friction contact and are expressed with the power 

loss  

 𝑃𝑙𝑜𝑠𝑠 = 𝑣𝑠𝑙𝑖𝑝√𝑓𝑙𝑜𝑛𝑔 + 𝑓𝑙𝑎𝑡. (6) 

C. Battery Model with Aging Degradation 

To obtain a good tradeoff between simulation speed and 

modeling accuracy, we modeled the battery with an 

equivalent electrical circuit model. This circuit consists of an 

ideal voltage source (𝑈𝑂𝐶𝑉) in series with an internal 

resistance (𝑅𝑖). The terminal voltage of the cell is described 

as  

 𝑢𝑐𝑒𝑙𝑙 = 𝑈𝑂𝐶𝑉(𝑆𝑜𝐶𝑏) − 𝑅𝑖(𝑆𝑜𝐶𝑏) ⋅ 𝑖𝑐𝑒𝑙𝑙 , (7) 

where 𝑖𝑐𝑒𝑙𝑙  is the current in the battery cell. 

Both the internal voltage and resistance depend on the 

battery state of charge (𝑆𝑜𝐶𝑏), a normalized indicator for the 

amount of charge stored in the battery. Lookup tables are 

employed to characterize this variation, but are limited to 

room temperature values. A more complex implementation 

with temperature dependency is given in [24].  

In Figure 3 the functional model of the battery pack is 

shown. On the left side we have the electrical connectors (in 

blue), which propagate the electric signals (voltage and 

current) to the other components in the vehicle, while on the 

right side we have the 𝑆𝑜𝐶𝑏 calculation realized by an 

integrator (𝑐𝑎𝑙𝑐_𝑆𝑜𝐶𝑏), in dependency of the nominal cell 

capacity 𝐶𝑐𝑒𝑙𝑙,0. The pack is scaled by the number of in serial 

𝑛𝑜𝑠 and in parallel 𝑛𝑜𝑝 connected cells. The battery model 

also contains a simple thermal model that captures heat flow 

between the battery cell and a (constant-temperature) 

environment using a thermal resistor.  
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Figure 3: The equivalent circuit battery model in Modelica 

The battery model also includes an aging model (agingCalc 

in Figure 3) for predicting the capacity degradation of the 

battery due to the charge/discharge events. This aging is 

computed using the average current (𝑖𝑎𝑣𝑔) and temperature 

(𝑇𝑎𝑣𝑔) of the battery over a discharge cycle, as described in 

[25] p. 1232. The normalized cell capacity loss during the 

drive cycle Δ𝐶𝑐𝑒𝑙𝑙  is calculated as  

 Δ𝐶𝑐𝑒𝑙𝑙(𝑖𝑎𝑣𝑔 , 𝑇𝑎𝑣𝑔 , 𝑁) =

= 𝜃1 exp (−
𝜃4
𝑇𝑎𝑣𝑔

+ (𝜃2 +
𝜃5
𝑇𝑎𝑣𝑔

𝑖𝑎𝑣𝑔))
⏟                      

start of battery lifetime − slow aging

 

+ 𝜃8 exp(𝑁 − 𝑁𝑘𝑛𝑒𝑒𝜃7)⏟              
"late" battery lifetime − fast aging

,  

(8) 

where 𝜃𝑖 are aging parameters taken from experiments carried 

out in [25]. The parameter 𝑁 is the number of discharge cycles 

and 𝑁𝑘𝑛𝑒𝑒  is a parameter point where the battery aging 

accelerates. The remaining cell capacity, in dependency of the 

initial cell capacity 𝐶𝑐𝑒𝑙𝑙,0 is defined as 

 𝐶𝑎𝑔𝑒𝑑 = (1 − Δ𝐶𝑐𝑒𝑙𝑙)𝐶𝑐𝑒𝑙𝑙,0. (9) 

To facilitate the evaluation of the EMA, we focus on the 

rate of aging of the battery during the driving cycle. It is 

determined via a linearization of Δ𝐶𝑐𝑒𝑙𝑙  around the current 

number of cycles 𝑁 as follows 

dΔ𝐶𝑐𝑒𝑙𝑙(𝑖𝑎𝑣𝑔 , 𝑇𝑎𝑣𝑔)

𝑑𝑁

=
dΔ𝐶𝑐𝑒𝑙𝑙(𝑖𝑎𝑣𝑔 , 𝑇𝑎𝑣𝑔, 𝑁)

dN
|
𝑁=𝑁

 

= 𝜃1 exp (−
𝜃4

𝑇𝑎𝑣𝑔
+ (𝜃2 +

𝜃5

𝑇𝑎𝑣𝑔
𝑖𝑎𝑣𝑔))𝜃3𝑁

𝜃3−1. 

(10) 

D. Quasi-Stationary Electric Motor Model 

The three traction motors installed in the vehicle (cf. Figure 

1) rely on permanent magnet synchronous machines 

(PMSM). They are represented using a quasi-stationary 

model (Figure 4) with the variables listed in Table 1. The 

fundamental electric machine equations 𝑑𝛹𝑑 𝑑𝑡⁄  and d𝛹q d𝑡⁄  

of the stator flux are given as: 

 𝑑𝛹𝑑
𝑑𝑡

= 𝑈𝑑 − 𝑅𝑠𝐼𝑑 + 𝛺𝐿  𝐿1𝐼q⏟
𝛹q

 , (11) 

 d𝛹q

d𝑡
= 𝑈𝑞 − 𝑅s𝐼q − 𝛺L  (𝛹PM + 𝐿1 ⋅ 𝐼d)⏟          

𝛹d

. (12) 

These equations are easily implemented in Modelica using 

the acausal equation environment, i.e. all equation hold for the 

four quadrants of operation of the electric machine and are not 

dependent on any signal flow direction [26].  

airGap_torque

tau

mechanical

Power

W

inertiaRotor

J=J_r

M_Mi

airGap_torq

lossesFriction

s
ig

n
a

lC
u

rre
n
t

V
o

lta
g

e

S
e

n
s
o

r

V

i_DC

u1 / u2 P_total

ElectricPower

fixed

prescribedHeatFlow

P_loss

LossPower

sensorFilter

PT1

T=0.01 s

I_d

flange

I_q

pin_n

pin_p

heatPort

electricMotorBus  

Figure 4: Quasi-stationary PMSM model 

To prevent a slow simulation, the electric motor model and 

its controller are designed in the rotating d/q-frame and the 

reverse transformation to the a/b/c phases is not explicitly 

implemented. The closed-loop response of the motor current 

(𝐼𝑞) controller is approximated by a second-order transfer 

function with cut-off frequency 100 Hz. 

Table 1: PMSM variables description 

Quantity Unit Description  

𝑈𝑑/𝑞 V Voltage in d-/q-axis 

𝐼𝑑/𝑞 A Current in d-/q-axis 

𝐿1 H Inductance in d- & q-axis 

𝑅𝑠 Ω Warm resistance per phase 

𝑝 - Pole pair number 

𝜓𝑃𝑀 Wb Magnetic flux of permanent magnets 

𝜓𝑑 𝑞⁄  Wb d-/q- component of stator flux 

𝜔𝐿 rad/s (Normed) Electrical angular velocity of rotor 

The model of the electric machine neglects reluctance 

influences (𝐿𝑑 = 𝐿𝑞 = 𝐿1). Its air-gap torque is calculated as 

follows: 

 𝜏𝑗𝑘 = 𝑀𝑀𝑖 = 3 2⁄ ⋅ 𝑝 ⋅ 𝛹𝑃𝑀 ⋅ 𝐼𝑞 . (13) 

Besides this quasi-stationary electric machine model, we 

also consider the energy losses within the PMSM, summed up 

in 𝑃𝑙𝑜𝑠𝑠 = 𝑃𝑙𝑜𝑠𝑠,𝑖𝑛𝑣 + 𝑃𝑐𝑜𝑝 + 𝑃𝑖𝑟𝑜𝑛 + 𝑃𝑓𝑟𝑖𝑐  in Figure 4: 

Inverter losses (switching and basic load) 

 𝑃𝑙𝑜𝑠𝑠,𝑖𝑛𝑣 =  𝑃𝑖𝑛𝑣,𝑐𝑜𝑛𝑠𝑡 + 𝑘𝑖𝑛𝑣 ∙ 𝐼𝑞 . (14) 

Copper losses (coil resistance) 

 𝑃𝑐𝑜𝑝 = (√3/2 ∙ 𝐼𝑞)
2
∙ 𝑅𝑠. (15) 

Iron losses (also known as core losses) 



 

 

 

 𝑃𝑖𝑟𝑜𝑛 =  𝑘ℎ𝑦𝑠𝑡 ∙ 𝜔𝑚 +  𝑘𝑒𝑑𝑑𝑦 ∙ 𝜔𝑚
2 . (16) 

Mechanical losses (friction effects, e.g., in bearings) 

 𝑃𝑓𝑟𝑖𝑐 =  𝑘𝑓𝑟𝑖𝑐 ∙ 𝜔𝑚 . (17) 

E. Hydrogen Fuel Cell Model 

The fuel cell model relies on a quasi-stationary model as 

proposed in [27] and depicted in Figure 5.  

s
e
n
s
o
rC

u
rr

e
n

t

A

v
o
lta

g
e

S
e
n
s
o

r

V

g
e
n

e
ra

to
rC

u
rre

n
t

H2Consumption H2_tank

I

H2power

H2_activation

R
B

switchH2onH2_dynamics

PT1

T=0.1 s H2_deactivated

k=0

H2Power

2Efficiency

add

+
-1

1
inv

k=1

powerLoss

H2SoC

H2Losses

ground

REXparameters

p

heatPort

n

I_dem

controlBus

re
x
B

u
s

 

Figure 5: Functional hydrogen range extender model 

Whenever a demanded current 𝐼𝑑𝑒𝑚 exceeds a minimum 

threshold (1 A in our model), the functional model 

approximates the fuel cell’s output current using first order 

system dynamics. The fuel consumption relies on two tables. 

The first table maps the necessary hydrogen mass flow that is 

taken from the tank (Figure 6 – blue line), modelled as an 

integrator, whereas the second table maps the efficiency 

(Figure 6 – green line) depending on the point of operation. 
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Figure 6: Efficiency and hydrogen consumption map of the fuel cell 

based on [27] 

F. Vehicle Motion Controller 

The longitudinal velocity control relies on a linear PI 

controller [28]. The lateral controller uses a model inversion 

technique to follow the reference curvature (𝜌∗) generated by 

the mission planner. It makes use of a simplified single-track 

model [29] 

 𝑥̇𝑆𝑇𝑀 = 𝐴(𝑣
∗)𝑥𝑆𝑇𝑀 + 𝐵(𝑣

∗)𝛿∗

+ 𝐸(𝑣∗)𝑀𝑧,𝑇𝑉 

𝛽∗̇ = 𝑣∗𝜌∗ − 𝑟∗, 

(18) 

where 𝑥𝑆𝑇𝑀 = [𝛽
∗, 𝑟∗]𝑇 is vector with the reference side-slip 

angle and yaw rate; 𝐴(𝑣∗) and 𝐸(𝑣∗) are matrices that depend 

on the vehicle velocity; 𝑀𝑧,𝑇𝑉 is the torque vectoring 

generated by the in-wheel motors: 

 
𝑀𝑧,𝑇𝑉 ≈

𝑐

2𝑟𝑤
(𝜏𝑅
∗ − 𝜏𝐿

∗) =
𝑐𝜏∗

2𝑟𝑤
(2𝛼𝑇𝑉 − 1), (19) 

where 𝑟𝑤 is the wheel radius and 𝑐 the vehicle’s track width. 

Assuming slow variations in vehicle curvature we can obtain 

 0 ≈ 𝐴(𝑣∗)𝑥𝑆𝑇𝑀 + 𝐵(𝑣
∗)𝛿∗ + 𝐸(𝑣∗)𝑀𝑧,𝑇𝑉 

0 ≈ 𝑣∗𝜌∗ − [0, 1]𝑥𝑆𝑇𝑀, 
(20) 

which represents a system of three linear equations with three 

unknowns (𝛿∗, 𝑥𝑆𝑇𝑀) = (𝛿
∗, 𝛽∗, 𝑟∗). The steering angle 

applied to the vehicle is computed from the solution of these 

equations: 

 𝛿∗ = 𝑓𝛿(𝑣
∗, 𝑀𝑧,𝑇𝑉 , 𝜌

∗). (21) 

This represents a feedforward control law, which allows the 

vehicle to follow the reference curvature (𝜌∗) when the model 

uncertainty is reduced. 

IV. ENERGY MANAGEMENT ALGORITHM 

This section provides a brief overview of the requirements 

for the EMA that the competitors will need to develop, as well 

the scoring and ranking assessment of the competition. 

A. Input/Output Interfaces 

The EMA will have access to the following vehicle states 

 𝑥 = [𝑣, 𝑎, 𝑆𝑜𝐶𝑏 , 𝑇𝑏 , 𝑆𝑜𝐶𝐹𝐶 , 𝑊̂] ∈ 𝑋𝐸𝑀𝐴, (22) 

which contain the current velocities 𝑣, accelerations 𝑎, state 

of charge 𝑆𝑜𝐶𝑏 and temperature of the battery 𝑇𝑏 , and the state 

of charge of the fuel cell 𝑆𝑜𝐶𝐹𝐶 . The variable 𝑊̂ is a vector 

with a short preview information about the reference velocity 

and track curvature 

 
𝑊̂ = (𝑣∗(𝑡 + 𝑘Δ𝑡𝑝), 𝜌

∗(𝑡 + 𝑘Δ𝑡𝑝))
𝑘=0

𝑁𝑝𝑟𝑒
, (23) 

where Δ𝑡𝑝 is the sample time and 𝑁𝑝𝑟𝑒 are the samples of the 

preview window. We denote 𝑋𝐸𝑀𝐴 as the set of all possible 

combinations of states that the EMA might receive.  

The EMA generates four output control signals, see Section 

II.C,  

 𝑢 = [𝛼𝐹𝐶 , 𝛼𝐴𝐷 , 𝛼𝑇𝑉 , 𝛼𝑣] ∈ 𝑈 = [0,1]
4, (24) 

where 𝑈 represents the set of allowed control actions.  

B. Safety Constraints  

The competitors will provide a control policy 𝜋 for the 

energy management that maps the states into the control 

actions 

 𝜋(𝑥): 𝑋𝐸𝑀𝐴 → 𝑈. (25) 



 

 

 

This policy will need to fulfill two type of safety 

constraints. The first are state of charge constraints of the 

energy storage devices: 

𝑋𝑠𝑎𝑓𝑒,𝑆𝑂𝐶 = {𝑥𝐸𝑀𝐴 ∈ 𝑋𝐸𝑀𝐴  

                      𝑆𝑜𝐶𝑏,𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶𝑏 ≤ 𝑆𝑜𝐶𝑏,𝑚𝑎𝑥  

                  𝑆𝑜𝐶𝐹𝐶,𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶𝐹𝐶 ≤ 𝑆𝑜𝐶𝐹𝐶,𝑚𝑎𝑥}, 
(26) 

where 𝑆𝑜𝐶𝑏,𝑚𝑖𝑛 , 𝑆𝑜𝐶𝐹𝐶,𝑚𝑖𝑛 represent the minimum 𝑆𝑜𝐶 levels 

for the energy storage devices, and 𝑆𝑜𝐶𝑏,𝑚𝑎𝑥 , 𝑆𝑜𝐶𝐹𝐶,𝑚𝑎𝑥 their 

maximum values. The second set of constraints is the battery 

temperature  

 𝑋𝑠𝑎𝑓𝑒,𝑇 = {𝑥𝐸𝑀𝐴 ∈ 𝑋𝐸𝑀𝐴:   𝑇𝑏 ≤ 𝑇𝑏,𝑚𝑎𝑥}. (27) 

This set of constraints can be temporarily violated; 

however, these violation increases the risk of failure of this 

component (e.g. thermal runaway [30]) and are penalized in 

the EMA performance score.  

C. Performance Metrics 

The EMA will be evaluated using the following 

performance metrics (see also Table 2). 

• 𝐽𝐸: Total energy consumption of the vehicle. It is 

computed by integrating the power delivered by the 

battery (𝑝𝑏𝑎𝑡) and the fuel cell (𝑝𝐹𝐶). 

• 𝐽𝑆𝑜𝐶: timespan that SoC constraints 𝑋𝑠𝑎𝑓𝑒,𝑆𝑂𝐶  are 

violated. 

• 𝐽𝑇𝐶: maximum temperature violation. 

• 𝐽𝑑𝑒𝑔: battery capacity that is lost during the vehicle 

mission due to battery cycle aging.  

• 𝐽𝑣 : derating metric that captures ability of the vehicle 

to track the velocity profile defined by the mission 

planning.  

Table 2: Summary of performance metrics 

Metric Formula  

𝐽𝐸 
∫ 𝑝𝑏𝑎𝑡(𝑡) + 𝑝𝐹𝐶(𝑡)𝑑𝑡
𝑡𝑒𝑛𝑑

0

 

𝐽𝑆𝑜𝐶 
∫𝕝{𝑥(𝑡)∉𝑋𝑠𝑎𝑓𝑒,𝑆𝑂𝐶}𝑑𝑡  

𝐽𝑇𝐶  max
𝑡
 max (0, (𝑇𝑏𝑎𝑡(𝑡) − 𝑇𝑏𝑎𝑡,𝑚𝑎𝑥)) 

𝐽𝑑𝑒𝑔 dΔ𝐶𝑐𝑒𝑙𝑙(𝑖𝑎𝑣𝑔, 𝑇𝑎𝑣𝑔)

𝑑𝑁
 

𝐽𝑣 
∫(1 − 𝛼𝑣(𝑡))𝑑𝑡 

𝕝{𝑐𝑜𝑛𝑑} is an indicator function that returns 1 if 𝑐𝑜𝑛𝑑 = 1, and zero 

otherwise 

Note that the value of these performance metrics will be 

dependent on the EMA provided by the algorithm 𝜋(𝑥) and 

the mission profile:  

 𝑊 = (𝑣∗(𝑡𝑘), 𝜌
∗(𝑡𝑘))𝑘=1

𝑁
. (28) 

D. EMA Baseline Policy  

The simulation model provided to the competitors contains 

a simple example policy, which is called baseline policy. This 

baseline policy is implemented as follows  

 𝜋̃(𝑥) = [𝛼̃𝐹𝐶(𝑥), 𝛼̃𝐴𝐷(𝑥) 𝛼̃𝑇𝑉(𝑥), 𝛼̃𝑣(𝑥)] 
(29) 

 
𝛼̃𝐹𝐶(𝑥) = {

𝑘𝐹𝐶   if   𝑥(𝑡) ∈ 𝑋𝑠𝑎𝑓𝑒,𝑆𝑂𝐶
0 otherwise

 
(30) 

 𝛼̃𝐴𝐷(𝑥) = 1/2 (31) 

 
𝛼̃𝑇𝑉(𝑥) =

1

2
+ 𝑘𝑇𝑉𝜌

∗(𝑣∗)2 
(32) 

𝛼̃𝑣(𝑥)

= {

1  if   𝑥(𝑡) ∈ 𝑋𝑠𝑎𝑓𝑒,𝑆𝑂𝐶
𝑠𝑎𝑡(𝑚0𝑆𝑜𝐶𝑏 + 𝑏0), 𝑖𝑓 𝑆𝑜𝐶𝑏(𝑡) ≤ 𝑆𝑜𝐶𝑏,𝑚𝑖𝑛
𝑠𝑎𝑡(𝑚1𝑆𝑜𝐶𝑏 + 𝑏1), 𝑖𝑓 𝑆𝑜𝐶𝑏(𝑡) ≥ 𝑆𝑜𝐶𝑏,𝑚𝑎𝑥

 

(33) 

This policy enforces 

• constant usage of the fuel cell (with ratio 𝑘𝐹𝐶) if 

safety constraints are fulfilled (eq. (30)); it disables 

the fuel cell whenever violation of 𝑆𝑜𝐶 constraints 

occur, eq. (33), 

• constant front-rear torque distribution ratio, eq. (31),  

• a torque allocation policy proportional to the 

expected lateral acceleration of the vehicle 

(𝜌∗(𝑣∗)2); where 𝑘𝑇𝑉 is a constant, eq. (32), 

• a simple derating strategy that reduces the maximum 

vehicle velocity whenever the battery 𝑆𝑜𝐶 are 

violated; see eq. (33) for details, where 𝑚0, 𝑏0, 𝑚1, 

𝑏1 are parameters and 𝑠𝑎𝑡() a saturation function 

that enforces the range [0,1]. 

This baseline policy generates baseline metrics, which are 

denoted as 𝐽𝐸 , 𝐽𝑆𝑜𝐶 , 𝐽𝑇𝐶 , 𝐽𝐷𝑒𝑔, 𝐽𝑣. 

Figure 7 shows an example of vehicle states and control 

inputs that were generated by the baseline EMA policy 𝜋̃(𝑥) 
during an urban driving cycle. 

 

Figure 7. Example of a subset of vehicle states and control inputs 

generated by the vehicle model and EMA baseline policy 

In this example, the battery temperature exceeds the upper 

limit at 1000 s, which might compromise battery safety. The 

derating strategy becomes active after 1800 s, decreasing 𝛼𝑣 

and the maximum velocity (and maximum power) that the 



 

 

 

vehicle can reach. The competitors are invited to develop 

better EMAs that can significantly avoid violation of the 

safety constraints, extend vehicle operation without loss of 

performance and reduced energy consumption. 

E. Evaluation and Ranking 

The score of the EMA over a given mission profile is 

computed as a weighted summation of the performance 

metrics, normalized with respect to the EMA baseline policy 

(𝜋̃). Mathematically, this means:  

 
𝐽 = 𝑘𝐸

𝐽𝐸

𝐽𝐸
+ 𝑘𝑆𝑜𝐶

𝐽𝑆𝑜𝐶

𝐽𝑆𝑜𝐶
 

+𝑘𝑇𝐶
𝐽𝑇𝐶

𝐽𝑇𝐶
+ 𝑘𝐷𝑒𝑔

𝐽𝐷𝑒𝑔

𝐽𝐷𝑒𝑔
+ 𝑘𝑣

𝐽𝑣

𝐽𝑣
, 

(34) 

where 𝑘𝐸 , 𝑘𝑇𝐶 , 𝑘𝐷𝑒𝑔 , 𝑘𝑣 are known weights (defined by the 

organizers) and 𝐽𝐸 , 𝐽𝑆𝑜𝐶 , 𝐽𝑇𝐶 , 𝐽𝐷𝑒𝑔, 𝐽𝑣 are the performance 

metrics obtained with the EMA provided by the competitor, 

𝜋(𝑥). Note that the overall score of the EMA depends not only 

on the policy 𝜋(𝑥), but also on the mission profile 𝑊, i.e.,  

 𝐽(𝜋,𝑊). (35) 

The evaluation will consider a bank of mission profiles 

𝑊1,𝑊2, … ,𝑊𝑀, which contain typical operating conditions 

for the vehicle. Each profile can be selected with probability  

 𝑝(𝑊𝑗) = 𝑝𝑗,   𝑗 = 1,… ,𝑀. (36) 

Some driving cycles (but not all) will be provided to the 

competitors; the driving cycle probability (𝑝𝑗) is also 

unknown to the competitors. The performance of an EMA 

will be performed based on the average cost over all mission 

profiles: 

 

𝔼{𝐽(𝜋,𝑊)} =∑𝑝(𝑊𝑗)𝐽(𝜋,𝑊𝑗)

𝑀

𝑗=1

, (37) 

where 𝔼{. } is the expected value operator (over 𝑊). The final 

EMA ranking will be performed as follows. We will collect 

all the energy management algorithms provided by the 

competitors, 𝜋1, … , 𝜋𝐿 , where 𝐿 is the number of received 

submissions. The competitor that provides the lowest average 

cost will be the winner, i.e.: 

 𝐿𝑤𝑖𝑛𝑛𝑒𝑟 = arg min
l∈{1,…,L}        

𝔼{𝐽(𝜋𝑙 ,𝑊)}. (38) 

V. SUMMARY AND OUTLOOK 

This article presents the conceptualization, modeling and 

setup for the IEEE Motor Vehicle Challenge 2023. It relies on 

a multi-domain modeling approach based on Modelica, FMI 

technology for a seamless model exchange between different 

simulation tools, as well as an integrated vehicle control with 

trajectory following. Prospective competitors are invited to 

submit algorithms that can efficiently perform the energy 

management of the multiple electric motors and energy 

storage devices available in the reference vehicle. A wide 

range of performance metrics will be used to rank the 

submitted strategies, including energy consumption, 

fulfillment of safety constraints, battery degradation and loss 

of vehicle performance (derating). 

The simulation framework will be available in the GitHub 

repository https://github.com/DLR-VSDC/IEEE-MVC-2023 

by November 2022. The repository will contain the vehicle 

model (FMU), the baseline energy management algorithm 

(MATLAB/Simulink) for an easy point-of-entry, and scripts 

to generate performance reports. The value of all vehicle and 

component parameters will be included in the repository to 

support the competitor’s controller synthesis process. 

Future points of interest in research are the development of 

more complex vehicle components and architectures which 

will be tuned and validated with real world experiments. 
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