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Abstract 

The definition of requirements is an important step of the aircraft design process. Usually, experts of different 

domains are involved in this multi-disciplinary process. Hence, knowledge from the different domains has to be 

efficiently shared and integrated. Supporting this process is the aim of the Codex (COllaborative DEsign and 

eXploration) framework, which is a Knowledge-Based Engineering (KBE) system currently being developed at 

the German Aerospace center (DLR). 

The design process results in the aircraft geometry determination which can be challenging for some 

components, subsystems or even new designs. To support this engineering task, this paper presents the codex-

geometry module for geometry modelling using semantic web technologies within the Codex KBE framework. 

User-defined rules are used to express geometric requirements and analysis functions, which are automatically 

executed in order to verify and evaluate a geometric design. The presented approach is demonstrated by the 

example use case of a conventional fuel system model including pipe systems and fuel pumps. 

Keywords: Fuel System, Geometry, Requirements, Semantic Web, Knowledge-Based Engineering 

1. Introduction 

The description of aircraft geometry is one of the main challenges during the overall aircraft design 
process. The design process starts with the requirements definition and further involves three major 
phases: Conceptual design phase, preliminary design phase and detailed design phase [1]. During the 
conceptual and preliminary design phase the geometry is usually described by a set of common aircraft 
parameters. Among others, such geometric parameters are subsequently used to derive aircraft 
characteristics mainly based on empiric methods. This approach works well for conventional aircraft 
concepts since comprehensive aircraft data and thus methods are available. However, for 
unconventional aircraft concepts this design approach can be challenging due to a lack of data. 
Especially the integration of unconventional onboard systems or propulsion systems into the aircraft 
design requires new methods for handling more detailed geometries. Therefore, this paper presents an 
approach to address the geometric integration of new subsystems of any kind at an early design stage. 

Another important aspect of the aircraft design process is that it includes a large number of experts 
from different domains or disciplines, who require effective ways of sharing and integrating their 
knowledge. Modern Knowledge-Based Engineering (KBE) systems support this by providing highly 
specialized environments and languages which are fit to their respective domain of application. 
However, this poses limitations on the integration of knowledge between the different domains, which 
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can lead to errors and inconsistencies among the different models. The use of Semantic Web 
Technologies (SWT) delivers a domain-neutral way of knowledge formalization and data integration. 
This can drastically reduce the effort required to integrate knowledge of multiple domains into a single 
representation. The COllaborative DEsign and eXploration (Codex) framework [2], which is currently 
being developed at the German Aerospace center (DLR), aims at combining KBE and SWT 
technologies for the continued digitalization of the design process. The framework can be used to create 
domain-specific knowledge-bases and integrate them into a single model of the overall product. 

This paper presents the codex-geometry module, which is developed as part of the Codex framework. 
The scope of this work includes geometry modelling using semantic web technologies as well as the 
formulation of geometric requirements and analysis functions. Geometric requirements are used in 
order to verify the implemented geometry model, and analysis functions are applied to prepare the 
design assessment for future developments. A simplified conventional fuel system model, including 
various pipe systems and fuel pumps, acts as an example use case to evaluate the presented approach. 
It is chosen due to the following three reasons: 

• There is comprehensive design experience for conventional fuel systems in literature which can 
be used for its application and testing 

• The geometric modelling of the fuel system is essential to meet system requirements at an early 
design stage [3] 

• The fuel system including its complex piping is appropriate to evaluate the capabilities of codex-
geometry 

1.1 Related and Present Work 

Two commonly used KBE tools in the aerospace sector are Pacelab APD [4] and ParaPy [5]. In both 
tools, the data is modeled in a hierarchical model created in an object-oriented programming language. 
This is effecive when modeling a product and sub-products from the same domain, but can get 
complicated to use when integrating the knowledge from different discplines (and therefore, different 
models). In contrast, the Codex framework follows a non-hierarchical modeling approach which focuses 
on avoiding such problems. It is based on "semantically expressing the precise meaning between 
models of different domains, which we assume to be key to create a highly collaborative KBE 
application" [2]. 

In [6] and [7] the creation of graph-based design languages or "design grammars" are discussed for a 
satellite design process. Design Cockpit 43 [8] aims at automating the design process and uses graph-
based design languages to store the engineering knowledge. [9] presents an algorithm for the 
automated generation of pipe routes in a given installation space based on a design language. Those 
languages are based on UML (Unified modeling language) and thus on an object-oriented model, 
whereas in the approach presented here a non-hierarchical, semantic web-based approach is followed. 

Some of the features of codex-geometry were already used in [10] for modelling and volume 
computations of a liquid hydrogen tank. 

The rest of this paper is structured as follows: Section 2 generally discusses the kind of fuel system 
model that is used as a demonstrative model. Section 3 briefly describes the Codex framework and 
presents the new codex-geometry module. Section 4 discusses the present approach to model the fuel 
system as well as the requirements. In Section 5 the results of the present approach are shown by a 
parametric study. Section 6 gives a short outlook on future work. 
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2. Fuel System Model 

Today’s commercial large aircraft (certified according to CS25) are equipped with complex pump driven 
fuel systems [11,12]. Such systems have the following basic functions: 

• Engine and auxiliary power unit (APU) fuel feeding 

• Fuel storage at suitable pressure  

• Fuel transfer between tanks 

• Refueling and defueling 

• Jettison (not applied to all aircraft) 

• Fuel measurement and management 

Each required fuel system function is fulfilled by one or more subsystem(s). A detailed breakdown is 
given by the ATA chapter 28-00 [13]. Figure 1 gives a schematic overview of a typical fuel system 
architecture. 

 

Figure 1 – Typical fuel system architecture [13] 

Within the scope of the present paper a simplified fuel system model is used for geometry-based and 
knowledge-based engineering demonstration purposes. The simplified fuel system model includes the 
refuel subsystem and the feed subsystem since both have similar design requirements and approaches 
(see Subsection 4.3). The feed subsystem is further divided into the engine feed, APU feed and cross 
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feed. While the boost pumps are also included, any other components, such as valves, gauging probes 
etc., are not considered. 

The outer aircraft geometry, similar to a B767, is used as a design space due to its availability on a 
conceptual level from the Avacon project [14]. The geometry data is stored in a CPACS format 
(Common Parametric Aircraft Configuration Schema) [35] and can be displayed in the TiGL Viewer [15]. 
In [3] the fuel system of a B777 is described in detail, which is assumed to be a comparable reference 
for the design of the present simplified fuel system model. Both, the design space and the simplified 
fuel system model are exemplary shown in Figure 2. 

 

Figure 2 – Aircraft model from CPACS data file(left) and derived fuel system model within design 
space (right) 

3. The Codex framework 

The present approach is built on the COllaborative DEsign and eXploration (Codex) framework [2], 
which is a knowledge-based engineering (KBE) tool based on Semantic Web Technologies and is 
currently under development at the German Aerospace center (DLR). Codex is written in the 
programming language Kotlin, which allows the creation of custom Domain-Specific Languages (DSL) 
within the language. This framework enables the users to create domain-specific knowledge-bases and 
integrate these into a single model of the overall product. Codex consists of several modules, each of 
them providing its own DSL and ontology. The framework can easily be extended by creating additional 
plugin modules for specific tasks or applications. The core modules which are used here are the 
following: 

• codex-semantic is the core module of the framework and is used for the creation and 
manipulation of semantic models. For this aim, it makes use of existing and well-established 
standards for knowledge representation such as RDF (Resource Description Framework) and 
OWL (Web Ontology Language) [16]. 

• codex-rules enables the definition of production rules [17]. The rules can be expressed via a 
custom DSL and allow for the dynamic, rule-based creation of system components. 

• codex-parametric allows users to semantically define and solve systems of parametric 
constraints with a DSL that closely resembles common mathematical notation. 

The codex-geometry module is also developed as part of the Codex framework. codex-geometry 
provides an ontology describing primitive geometric shapes, like spheres, cylinders, cuboids etc. 
Polylines and bezier curves can be modeled and used to create extrusions and pipes. Transformations 
on shapes and operations between different shapes (e.g. union, intersection etc.) allow the user to 
model complex geometries, following the principle of Constructive Solid Geometry [18]. For visualization 
purposes and enabling computations like the volume of a complex shape, codex-geometry uses the 



Rule-based Verification of a Geometric Design using the Codex Framework 

 

5 
 

OpenCascade CAD kernel [19] and the java bindings provided by JCAE [20]. Using these tools, the 
geometry can also be exported to BREP, STEP or STL files. Figure 3 shows the creation of an example 
shape with codex-geometry. Here the GeometrySyntax is used, which is the custom DSL that codex-
geometry provides for creating all kinds of geometric objects and operations. Using this syntax, first 
several points are created. Each of this points corresponds to an individual in the semantic model. Next, 
some primitive geometric objects are created, which are also added as individuals to the semantic 
model: A cuboid, a sphere and three different cylinders. The final shape (which is a common CSG 
example) is then obtained by intersecting the cuboid with the sphere and then subtracting the union of 
the three cylinders from the shape, which can be efficiently written in the GeometrySyntax as                  
val result = (cub intersect sph) - (cyl1 + cyl2 + cyl3). 

The resulting shape is exported to a BREP file and displayed in the TiGL viewer [15]. 

 

Figure 3 – Creating an example shape with codex-geometry 

Using the geometry ontology, geometric knowledge from different domains can seamlessly be 
integrated, even if the domain-specific models have no connection whatsoever. For example, for the 
fuel system use case a geometric representation is created from an existing wing design and then used 
as the design space for the creation of the fuel system (cf. Figure 2). 

4. Methodology 

The presented approach can be divided into the following steps: 

• Create a domain-specific ontology describing the components of a fuel system 

• Create the actual instances (supply lines, pumps etc.) for the example fuel system and their 
geometric representation 

• Define geometric requirements and analysis functions for the evaluation of the example model, 
which are automatically evaluated 

The following sections describe how the Codex framework is used for the three steps mentioned above. 

4.1 Creating a Domain-Specific Ontology and Rules 

In a semantic-web application, a model consists of classes, individuals (entities), and object- as well as 
data-properties. All knowledge in the model is expressed as statements in the form "[subject] [predicate] 
[object]" [21]. 

In order to create the example application, first a domain-specific ontology describing the concepts of 
the application is created. For this, the codex-semantic module is used. This ontology defines the 
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classes (e.g. SupplyLine, FuelType, Pump) and properties (e.g. hasFuelType, hasMass, 
hasOuterRadius) that are needed to describe the concrete design in the next step. 

At this step, as much domain knowledge as possible is expressed in the ontology as well as in rules. 
The codex-parametric module is used to express known relationships between data properties as 
parametric equations. This includes very basic facts like the correlation between the radius and 
diameter of a pipe, but also domain-specific knowledge like Barlow’s law for determining the required 
wall thickness of a pipe. Such relationships, which can be expressed as equations, are modeled as 
parametric rules in Codex. Figure 4 shows an example for such a rule, which applies Barlow’s law to a 
linear pipe segment. 

 

Figure 4 – Example for a parametric rule 

The codex-parametric engine is responsible for solving the resulting equation systems and will solve 
the equations as soon as enough parameters are available, regardless which parameters were provided 
by the user and which might be computed during the processing by some other rule. This gives the user 
a great deal of flexibility when creating a design. 

Furthermore, the codex-rules module is used to formulate production rules describing how to "translate" 
the domain-specific objects into geometric shapes, i.e. creating the corresponding individuals in the 
codex-geometry system. Similar to the parametric rules, the production system will execute a 
production rule automatically as soon as all necessary knowledge is available. For example, a 
production rule can describe how to create a geometric representation of a pipe from a set of points 
and parameters like curve radii, wall thickness etc. This rule will be automatically executed for each 
individual of type Pipe when all required properties are available. Some of these properties probably 
have been set by the user at the start, others might be computed by other rules in the system, like the 
required wall thickness by the rule shown in Figure 4. 

An interesting aspect of the creation of a three-dimensional pipe network is the geometrical calculation 
of a curved supply line segment. To facilitate the geometric integration, the spline of a circular arc is 
approximated by a cubic Bézier curve. To create the cubic Bézier curve, four control points are 
calculated. These support points can be derived imposing two constraints: First, the start and end point 
of the arc must be identical with the the start and end points of the Bézier curve, as well as their first 
derivatives. Second, the middle of the Bézier curve must lie on the circular arc. An example of a two-
dimensional approximation of a circular arc by a Bézier curve and a more detailed explanation is given 
in [22]. 

This example focuses mainly on the shapes of the supplylines and the design space. The pumps are 
not modeled in detail, but their placement is addressed by allocating a cylinder-shaped space for each 
pump. 
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4.2   Creating the Example Fuel System 

Based on the domain-specific ontology, an actual example design is built by creating individuals for the 
specific pipes, pumps etc. For each individual, input parameters can be specified by adding statements 
to the semantic model (e.g. "refuelCrossline hasInnerRadius 0.04"). 

Similarly, the geometric requirements (discussed in Section 4.3) are added as statements to the model 
(e.g. "refuelCrossline containdedIn designSpace"). 

The designer can also make use of the production rules here by introducing dependencies between 
supply lines. For example, if a connecting line should be created between 𝐿𝑖𝑛𝑒1 and 𝐿𝑖𝑛𝑒2, it is possible 

to choose a point 𝑃1 on 𝐿𝑖𝑛𝑒1 as the starting point of the connecting line and define the endpoint 𝑃2 as 
"the closest point to 𝑃1 on 𝐿𝑖𝑛𝑒2". Please note that at the time this statement is made, 𝑃2 can not 

immediately be computed as the shape of 𝐿𝑖𝑛𝑒2 may not be generated, yet. However, there is a 
production rule for this "closest point" computation that will be automatically triggered once the 𝐿𝑖𝑛𝑒2 
shape is complete. 

After adding all necessary statements, the parametric rules and the production rules are iteratively 
evaluated by Codex, thereby computing the missing parameters and generating the geometric shapes 
for all the individuals, until convergence is reached. Afterwards, the geometric requirements are 
evaluated in order to check if the resulting design is valid. 

4.3 Defining Requirements and Analysis Functions for the Fuel System Model 

The fuel system design is generally driven by different requirements and performance parameters like 
mass and pressure loss which are described subsequently. For the present fuel system model some 
exemplary requirements are defined. Technically, they are implemented as production rules, so they 
can be automatically evaluated by the codex-rules engine as soon as the respective geometric shapes 
are generated. In addition, two analysis functions are defined as parametric rules linking the structural 
mass as well as the fluid mechanical behavior to corresponding sizing parameters. 

4.3.1 Requirements of the Fuel System Model 

The fuel system model is evaluated with respect to several implemented requirements. The evaluation 
is based on geometric checks which link geometric components with each other. If any requirement is 
not fulfilled the Codex framework indicates the corresponding failed check. As shown in Table 1, four 
fundamental checks have been identified to formulate the requirements being applied to the fuel system 
model. However, additional checks and thus requirements can be easily implemented if needed. 
 

Table 1 – Implemented checks and requirements 

Check Description Requirements 

containedIn Check if volume A is entirely 
included in volume B 

Refuel line, engine feed and cross feed shall be 
contained in the design space (outer wing 
geometry). 

noOverlap Check if volume A and 
volume B share any volume 

All fuel lines shall not overlap with each other. 
The hazard of a uncontained rotor burst shall be 
minimized (explained below). 

connectedTo Check if volume A and 
volume B intersect with no 
gap 

All fuel lines which have wanted intersections 
shall be able to exchange fuel (example below). 

minimumDistance Check if volume A and 
volume B have a spacing of 
the defined minimum 
distance or higher 

Fuel lines shall have a minimum distance to the 
structure of 0.25 inches to surrounding structure 
(requirement not implemented yet due to 
missing detailed structure). 
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Uncontained rotor burst example 
When integrating the fuel system into the design space, the hazards of an uncontained rotor burst 
shall be minimized. Three different cases of engine rotor failure are defined in AC20-128A [23] with 
respect to spread angle, fragment size and considered energy as shown in Table 2. 

Table 2 – Uncontained engine rotor failure impact zones 

Spread angle Fragment size Energy 

±3° 1/3rd disk fragment infinite energy 

±5° intermediate fragment finite energy 

±15° small fragments protection by primary structure 

Following the recommendations of [23], the minimization of engine burst hazards can be achieved by 
relocating the components outside the debris impact zones, duplicate and separate critical components 
or protecting critical components using the airframe structure or additional shielding. This requirement 
is implemented by creating a geometric representation of the debris impact zone and then adding 
noOverlap requirements for all supply lines to this shape. According to [13] the 5° spread angle is 
usually the design driver, because it is difficult to justify shielding for the spread angle between 3° to 5°.  

 
Connected fuel line example 
In case of a preliminary design the connectedTo check detects gaps between intersecting fuel lines. 
Figure 5 shows an example with very small gaps which could be resolved after noticing the failed 
check. 

 

Figure 5 – Design problem detected by a connectedTo check 

4.3.2 Structural Mass of the Fuel System Model 

The structure of each fuel line is sized for a required internal and external maximum operating pressure 
as shown in Table 3. The main goal is to determine the wall thickness and resulting mass. The mass 
approximation does not consider additional structures such as fittings or clamping. Consequently, the 
following approach rather results in a mass trend depending on varying sizing parameters than in a 
complete fuel system mass model. 

Table 3 – Maximum operating pressure for fuel lines according to SAE ARP 8615 [24] 

Fluid subsystem Internal pressure (psig) External pressure (psig) 

Engine feed 60 15 

APU feed 60 15 

Crossfeed 60 - 

Refueling line 90 3 

Depending on the location and application there are rigid and flexible fuel lines. Rigid stainless steel 
fuel lines are used at areas which are subject to damage or heat such as the engine compartment. 
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Flexible fuel lines are typically made of a synthetic rubber interior reinforced by a fiber braid warp and 
a synthetic cover. They are used in areas with vibration between components such as engine and pylon. 
However, rigid fuel lines made of 5052 aluminum alloy are commonly used at remaining fuel system 
areas (being considered for the entire present fuel system model for simplification reasons). Table 4 
shows the mechanical properties which are applied to the fuel system model. [25,26] 

Table 4 – Mechanical Properties of 5052 aluminum alloy used as fuel line material [24,26,27] 

Property Value 

Density 2.67 
g

cm3 

Poisson’s ratio 0.33 

Elastic modulus for compression 70.7 GPa 

Maximum stress @ 105 Cycles 130.0 MPa 

The wall thickness is sized for the following three different failure modes according to AD2000 [28]: 

• Tensile strength (under internal pressure) 

• Compressive strength (under external pressure) 

• Elastic buckling (under external pressure) 

In addition, minimum thickness requirements for fuel lines are given by the SAE in [29]. The maximum 
thickness of the three failure modes and the minimum thickness requirement (=envelope) are 
considered to be a feasible wall thickness as exemplary shown in Figure 6. Potential deviation due to 
standardization of tube sizes are not taken into account. 

 

Figure 6 – Wall thickness depending on outer diameter based on refuel line conditions 
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4.3.3 Pressure Loss of the Fuel System Model 

The pressure loss of the present fuel system model is only investigated with respect to the fuel flow in 
fuel lines. The fuel flow depends on the respective fuel line e.g. due to a time requirement for refueling 
or continuous fuel flow for the engine. Table 5 shows the required fuel flows for the present fuel system 
model. 

Table 5 – Maximum fuel flow for reference aircraft according to B767’s Airplane Characteristics for 
Airport Planning and ICAO Engine Exhaust Emissions Data Sheet 

Fluid subsystem Fuel flow (kg/s) 

Engine feed 2.083 

APU feed 0.03 

Crossfeed 2.083 

Refueling line 26.87 

Commonly, Jet-A or Jet-A1 is used as commercial aviation fuel [13]. Due to its complex chemistry, the 
fuel properties may differ within certain limits. The specification limits and the implications of fuel system 
design with regard to different fuel properties are described in [30]. For the pressure loss analysis of 
the fuel system model the density and viscosity are necessary fuel related parameters. The density 
changes linearly with temperature within the temperature range of aircraft operation [30]. A temperature 
deviation of 100 K results in a density change of about 10 % for a representative measured fuel sample 
[31]. The viscosity varies considerably with temperature: From [31] the same fuel sample showed an 
increase from 500 𝜇Pas to 2750 𝜇Pas by lowering the temperature from 370 K to 270 K. To simplify the 
analysis function a reference temperature of 290 K is chosen and the resulting values for density and 

viscosity are 806 kg/m3 and 1550 𝜇Pas, respectively. The determination of pressure losses within the 
pipe system is conducted for linear segments and bends. In [32] the pressure loss of a fluid flow in a 
circular pipe due to friction is described and shown in Equation (1). 

 
𝛥𝑝 = 𝑓

𝑙

𝑑𝑖
⋅
𝜌𝑉2

2
 (1) 

In this regard 𝑓 is the friction factor, 𝑙 the length of the segment, 𝑑𝑖 the inner diameter, 𝜌 the density 
and 𝑉 the fluid velocity. The friction factor 𝑓 depends on the Reynolds number Re and the relative 
roughness of the pipe wall. Typical values for aircraft type tubing and the corresponding friction factor 
are provided by [33]. These values are approximated by the empirical correlations for laminar and 

turbulent flows up to Re < 106 given in [32] for a smooth pipe. For higher Reynolds numbers the impact 
of the wall roughness is taken into account by interpolating the friction factor based on aircraft type 
tubing in [33]. The total pressure loss of bends includes the friction losses and an additional bend 
depending loss as stated in [33] and shown in Equation (2). 

 
𝛥𝑝 = [𝑓

𝑙

𝑑𝑖
+ 𝐶 ⋅ 𝐾𝑡90] ⋅

𝜌𝑉2

2
 (2) 

The loss coefficient due to 90° bends 𝐾𝑡90 depends on the ratio of inner diameter and bend radius as 

well as the friction factor. The correction factor 𝐶 for bends other than 90° is interpolated from a chart. 

5. Demonstration by a Parametric Study 

The capabilities of the Codex framework are demonstrated by a parametric study. The latter considers 
all requirements and analysis functions of Subsection 4.3 for defined geometric input parameters. As 
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mentioned before, it is not claimed to show a complete design study for a fuel system but an exemplary 
parametric study being related to realistic design trades. 

5.1   Input Parameters 

Each fuel line of the fuel system model is described by the inner pipe radius, fuel line length and bend 
radius (the latter in case of a curved segment). The length is a result from the built fuel system model 
as described in Section 2 and Section 4. The bend radius is set to two times the inner pipe radius. The 
inner pipe radius is used as the main input variable for the parametric study. As stated in Equation (3) 
it depends on the fuel flow �̇�, fuel velocity 𝑣 and fuel density 𝜌. 

 �̇� = 𝜋𝑟𝑖
2 ⋅ 𝑣 ⋅ 𝜌 (3) 

The inner radius is derived from a fuel velocity range while the other parameters are defined above. 
According to [3] the fuel velocity in feed lines is kept below approximately 3 m/s. However, the fuel 
velocity in the APU feed is even further reduced due to its low fuel flow requirement (otherwise very 
small, not realistic inner radii may result). 

For the refuel line the opposite case is true: Very high fuel flow requirements lead to high radii and/or 
high fuel velocities. Nevertheless, the maximum combination of inner pipe radius and fuel velocity is 
limited by the static discharge requirement. The fuel flow through pipes generates static electricity due 
to friction. Consequently, a discharge may cause ignition if explosive mixtures are present [34]. 
According to [34] the limitation of Jet A-1 is shown in Equation (4). 

 

 𝑣 ⋅ 𝑟𝑖 ≤ 0.25 𝑚2/𝑠 (4) 

Taking the considerations from above into account results in the value ranges as shown in Table 6. 
Each row represents one sizing case being evaluated in the following subsection. 

Table 6 – Fuel velocity range and resulting inner pipe radius range for parametric study 

Sizing case Engine feed APU feed Crossfeed Refuel line 

 𝑣 (m/s) 𝑟𝑖 (m) 𝑣 (m/s) 𝑟𝑖 (m) 𝑣 (m/s) 𝑟𝑖 (m) 𝑣 (m/s) 𝑟𝑖 (m) 

1 1.524 0.023 0.1524 0.0088 1.524 0.023 4.572 0.048 

2 1.8288 0.021 0.18288 0.0080 1.8288 0.021 4.8768 0.047 

3 2.1336 0.020 0.21336 0.0075 2.1336 0.020 5.1816 0.045 

4 2.4384 0.018 0.24384 0.0070 2.4384 0.018 5.4864 0.044 

5 2.7432 0.017 0.27432 0.0066 2.7432 0.017 5.7912 0.043 

6 3.048 0.016 0.3048 0.0062 3.048 0.016 6.096 0.042 

5.2   Results 

The results of the parametric study are shown in Figure 7. The mass trend, as explained in 4.3.2, is 
shown against the cumulative pressure loss of the pipe network. Based on the implemented analysis 
functions higher pipe radii result in higher mass but in lower pressure loss and the other way around. 
Hence, a trade-off between mass and pressure loss should be considered when designing fuel systems. 
However, a potential optimization has to be conducted on aircraft level with both penalties (mass and 
pressure loss) being combined in one assessment parameter e.g. the block fuel of a representative 
mission. Such an optimization trade is out of this study’s scope. 
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In addition, four out of six sizing cases result in an overlap of two pipes which are marked as failed 
sizing cases. The information can be used to sort out the failed sizing cases or to change the fuel line 
way points for instance. 

 

Figure 7 – Results of parametric study (decreasing radius from left to right) 

Figure 8 shows the uncontained rotor disk failure requirement for the 5° spread angle case and for one 
representitive sizing case from Table 6. All components or fuel lines being located within this impact 
zone can be checked and based on the results the integration can be adapted in order to minimize the 
hazard for this failure case. 

 

Figure 8 – Example for uncontained rotor disk failure for 5° spread angle 
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6. Conclusion and Outlook 

This paper presented an approach to address the geometric integration of subsystems at an early 
design stage of the aircraft design process. It uses and extends the Codex framework which is based 
on Semantic Web technologies. The capabilities of this approach were demonstrated based on the 
example use case of an aircraft fuel system. Geometric requirements as well as analysis functions were 
modeled to evaluate the resulting example sizing cases. 

In conclusion, the combination of semantic modeling, design requirements and analysis functions can 
support the aircraft design process. In some cases, simple geometrical checks can be used to model 
complex design requirements. An important prerequisite for many checks is having a geometric 
representation of the design space. Overall, the usage of the Codex framework makes the system 
flexible and easy to extend. Plans for future work include improving the level of detail of the fuel system 
model, implementing a wider range of requirements and enhancing the analysis functions. In addition, 
the approach may be applied to further use cases. 

In this paper, the requirements and analysis functions were used to evaluate and compare a number of 
different fuel system sizing cases in a parametric study. In the bigger picture, this is the first step towards 
an automated design of geometric subsystems consisting of synthesis and analysis. In their future work 
the authors plan to approach the automatic generation of a geometric design based on user-defined 
requirements and target functions. 
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