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We demonstrate nonequilibrium scaling laws for the aging and equilibration dynamics in glass formers
that emerge from combining a relaxation equation for the static structure with the equilibrium scaling laws
of glassy dynamics. Different scaling regimes are predicted for the evolution of the structural relaxation
time τ with age (waiting time tw), depending on the depth of the quench from the liquid into the glass:
“simple” aging (τ ∼ tw) applies for quenches close to the critical point of mode-coupling theory (MCT) and
implies “subaging” (τ ≈ tδw with δ < 1) as a broad equilibration crossover for quenches to nearly arrested
equilibrium states; “hyperaging” (or superaging, τ ∼ tδ

0
w with δ0 > 1) emerges for quenches deep into the

glass. The latter is cut off by non-mean-field fluctuations that we account for within a recent extension of
MCT, the stochastic β-relaxation theory (SBR). We exemplify the scaling laws with a schematic model that
quantitatively fits simulation data.

DOI: 10.1103/PhysRevLett.129.238003

The response of a viscous fluid to a sudden change in
control parameters reveals a rich phenomenology as the
system adapts to this change. If the timescale of structural
relaxation in the fluid τ is large, a slow evolution of both
static and dynamic properties of the fluid with system
age (i.e., the waiting time tw after the quench) is observed.
For kinetically arrested states such as glasses, this aging
dynamics implies that the properties of the material depend
on the protocol of its fabrication, a clear nonequilibrium
signature [1–3]. The understanding of the nontrivial time-
scales in aging is fundamental for theoretical physics and
materials science alike [4–6].
This concerns, in particular, empirical scaling relations

that have been observed in experiment and simulation of
systems that are widely different on the microscopic scale,
ranging from molecular and polymeric glasses [7–13],
colloidal systems [14–17], metallic alloys [18–20], and
laponite suspensions [21,22] to spin glasses [23–25]:
simple aging (τ ∼ tw) and subaging (τ ∼ tδw with δ < 1)
are commonly found; hyperaging (τ ∼ tδ

0
w , with δ0 > 1) is

present as an intermediate law with a nonuniversal expo-
nent [12,14] and was explicitly reported, for example, in
laponite suspensions (δ0 ≈ 1.8) [26] and colloidal gels

(δ0 ≈ 1.37) [27]. The physical mechanisms behind these
scaling laws, and, in particular, their relation to the micro-
scopic details of the fluid and/or the protocol of the control-
parameter quench, so far remained unresolved.
Here we establish nonequilibrium scaling laws of aging

that emerge from the equilibrium scaling laws for structural
relaxation near the critical point of mode-coupling theory
(MCT). They are power laws with nonequilibrium expo-
nents that are, via MCT, directly linked to the equilibrium
structure of a glass-forming material and are thus generic,
although not universal (since the exponents depend on
microscopic details). Our predictions arise from combining
two recent theoretical approaches to describe glass-forming
fluids: The nonequilibrium self-consistent generalized
Langevin equation theory (NE-SCGLE) suggests a starting
point linking the evolution of static properties to the relax-
ation dynamics of the system. The stochastic β-relaxation
theory (SBR) provides scaling laws for this relaxation
dynamics that also include the effect of non-mean-field
fluctuations beyond MCT. We elucidate the predicted
aging regimes through quantitative comparison to simula-
tion results for density-quenched hard-sphere-like systems
[28,29].
MCT is a microscopic theory [30,31] that successfully

describes the liquid-state dynamics close to the glass
transition. Originally restricted to the equilibrium ensem-
ble, recent extensions allow one to treat nonlinear response
to various external fields [32–36]. Its application to aging
dynamics was proposed 20 years ago by Latz [37,38], but
the complexity of that theory has so far only allowed to
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obtain some results linked to the seminal work by
Cugliandolo et al. [4,39] on the p-spin model [40]. The
complexity stems from the fact that, in absence of the
equilibrium fluctuation-dissipation theorem, correlation
and response functions are not straightforwardly connected
and are described by coupled integral equations that are not
readily evaluated.
To cut this Gordian knot, the NE-SCGLE [41–43]

invokes an assumption of “local stationarity” for the
relaxation process, reducing the complexity of the full
problem considerably. Essentially, it partially decouples the
evolution of the correlation functions from that of the
underlying static response functions. The resulting theory
tests favorably against both simulation [28,29,44] and
experimental data [45–47].
NE-SCGLE in fact refers to two separate ingredients: an

evolution equation for the static observables and an under-
lying kinetic theory for the mobility of rearrangements, the
SCGLE [48]. The latter is, for the present purposes,
structurally identical to MCT. In particular, it provides
the same robust asymptotic scaling laws for the equilibrium
structural relaxation [49]. We will use those well-
established scaling laws to describe the asymptotic wait-
ing-time dependence after a quench.
The nonequilibrium extension of the SCGLE usually

references Onsager’s laws of linear irreversible thermody-
namics and the corresponding stochastic theory of thermal
fluctuations [50,51]. Under certain assumptions, it leads to
an innocuous looking relaxation equation for the waiting-
time evolution of the nonequilibrium static structure
factor Sðk; twÞ. We elaborate in the Supplemental
Material [52] that this equation can also be rationalized
within the integration through transients (ITT) frame-
work used to derive nonequilibrium extensions of MCT
[32]. In brief, the nonequilibrium distribution function pðtÞ
obeys ∂tpðtÞ ¼ ΩðtÞpðtÞ with some linear differential
operator ΩðtÞ, and a formal solution is pðtÞ − pðtwÞ ¼R
t
tw
dt0 expþ½

R
t
t0 ΩðτÞ dτ�Ωðt0ÞpðtwÞ. For a sudden quench,

ΩðtÞ ¼ Ωi for t < 0 and ΩðtÞ ¼ Ωf for t > 0; using
Ωðt0ÞpðtwÞ ¼ ∂twpðtwÞ for t0 ≥ tw > 0 avoids the need to
formulate the effect of the quench in the time-evolution
operator explicitly. Integrating the formal solution over
density-pair fluctuations to obtain the static structure factor,
and projecting (in the spirit of MCT) the exponential
propagator onto density-pair modes as the relevant varia-
bles, we obtain after neglecting memory effects on this
level Sðk; tÞ − Sðk; twÞ ≈

R
t
tw
dt0C4ðk; t; t0Þ∂twSðk; twÞ with a

four-point density correlation functionC4ðk; t; t0Þ. Thus, for
t → ∞,

∂Sðk; twÞ
∂tw

¼ −μðk; twÞðSðk; twÞ − SfðkÞÞ; ð1Þ

where μðk; twÞ is a mobility factor that is slaved to the
structural-relaxation dynamics [7,56]. The initial state

before the quench is Sðk; 0Þ ¼ SiðkÞ, and SfðkÞ character-
izes the quenched-to-final state. Equation (1) essentially is
a formalized version of the empirical Tool model of
physical aging [57].
Equation (1) already predicts universal scaling laws for

the aging dynamics to be encoded in the equilibrium
dynamics: since the glass transition is a dynamical phe-
nomenon, in its vicinity the static structure functions
remain regular, and we can linearize Sðk; twÞ for small
control-parameter distances εðtwÞ to the transition. The
evolution is thus asymptotically governed by the evolution
of the distance parameter along the relevant direction in k
space (MCT’s critical eigenvector [30,58]),

∂twεðtwÞ ¼ −μ½εðtwÞ�ðεðtwÞ − εfÞ: ð2Þ
Now enter the scaling laws for μðεÞ: close to the critical
point of MCT, μðεÞ ∼ 1=τðεÞ ∼ ð−εÞγ for liquid states
(ε < 0), and μðεÞ ¼ 0 in the ideal glass state (ε ≥ 0).
The exponent γ is related to the equilibrium structure of
the system at its glass transition through the MCT exponent
parameter λ [30,49,52]. Since μ approaches zero, Eq. (2)
has nonequilibrium stationary solutions where the relaxa-
tion toward equilibrium gets “stuck.”
We immediately get two important scaling laws from

Eq. (2).
(i) For quenches close to the glass-transition point

(jεfj ≪ jεij), there exists a growing window in tw, where
∂twε ∼ jεjγþ1, which results in jεj ∼ t−1=γw and, thus, simple
or full aging, τ ∼ tw as tw → ∞.
(ii) For a deep quench into the ideal glass, εf ≫ jεðtwÞj

holds in the limit of tw → ∞, because the relaxation gets
stuck around values close to zero. Then, ∂twε ∼ jεjγ ,
resulting in the asymptotic law τ ∼ tγ=ðγ−1Þw . Since γ > 1,
the exponent δ0 ¼ γ=ðγ − 1Þ is also larger than unity, and
we find hyperaging or superaging, τ ∼ tδ

0
w for tw → ∞ with

a nonuniversal exponent δ0 that depends on the microscopic
structure of the system.
These scaling laws describe the idealized indefinite

aging of a system that is quenched to a state with infinite
relaxation time. In reality, the ultimate MCT-like diver-
gence of the relaxation time is not observed. We attribute
this to long-wavelength fluctuations that cause deviations
from the mean-field-like scenario [59–61] and render the
scaling laws transient rather than truly infinite-tw asymp-
totes, as we shall discuss below.
For quenches to liquid states close to the glass transition,

εf < 0, the mobility always remains positive, and the
corresponding long-time behavior is then (iii) τ ∼ const
for tw → ∞. For the typical slow evolution of the structural-
relaxation time, this implies a broad crossover where τ
grows sublinearly with tw, and hence subaging transiently
appears during equilibration. Although not a rigorous
asymptote, an empirical power law, τ ≈ tδw with δ < 1,
typically fits well in this regime [40].
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To elucidate the emergence of the three regimes—
simple, sub-, and hyperaging—we devise a schematic
model of aging. Qualitatively, the mobility is the inverse
of an integrated friction memory kernel; in the spirit of
MCT schematic models, we assume that the slow dynamics
of all such microscopic correlation functions is governed by
a single-mode (density) correlation function ϕðt; twÞ,

μðtwÞ ¼ 1=
Z

∞

0

dtϕðt; twÞ: ð3aÞ

The latter obeys a Mori-Zwanzig-type integral equation,

∂tϕðt; twÞ þ ϕðt; twÞ þ
Z

t

0

mðt − t0; twÞ∂t0ϕðt0; twÞdt0 ¼ 0:

ð3bÞ
In Eq. (3b), we anticipate that tw only enters parametrically
in determining the coupling coefficients of the memory
kernel mðt; twÞ. This encodes the assumption of local
stationarity and is in the spirit of the ITT framework
[33] that relates nonequilibrium transport coefficients to
such “transient” correlation functions.
We complete the schematic model by the closure

mðt; twÞ ¼ v1ðtwÞϕðt; twÞ þ v2ðtwÞϕðt; twÞ2; ð3cÞ
with two coupling parameters v1 and v2 that describe the
current tw-dependent state of the system. For fixed tw, the
model specified by Eqs. (3b) and (3c) is the widely studied
schematic F12 model of MCT. It has a line of glass
transitions ðvc1; vc2Þ where ε ¼ 0.
Equations (3) define our schematic model. Together with

the (mean-field) assumption τðtwÞ ∝ 1=μðtwÞ, and v1 ¼ vc1,
v2ðtwÞ ¼ vc2ð1þ εðtwÞÞ to define the distance to the glass-
transition point, it allows one to fit available computer-
simulation data for τðtwÞ after mapping εi ¼ εð0Þ and εf to
the simulation’s control parameters.
Results for τðtwÞ from the schematic model for quenches

to various final states close to the MCT transition give a
consistent description of computer-simulation data for
density-quenched quasihard spheres (Fig. 1). For the fit,
we have allowed to adjust a global timescale and the
proportionality factor between μ and 1=τ. Instead of fitting
the exponents to the data, we have fixed the exponent
parameter λ ¼ 0.735 to match the MCT prediction
for hard-sphere-like systems [52] (by adjusting vc1 and
vc2). This predicts the exponent γ ¼ 1=2aþ 1=2b with
Γð1−aÞ2=Γð1−2aÞ¼ λ¼Γð1þbÞ2=Γð1þ2bÞ, and thus
the exponent δ0 ≈ 1.684.
The schematic model demonstrates the three aging

regimes of the theory: empirical subaging is found as an
equilibration crossover for quenches to final states in the
liquid, εf < 0, while hyperaging emerges as the asymptote
for quenches to the glass, εf > 0. A growing intermediate-tw
window that extends to tw → ∞ at the critical point ofMCT,
εf ¼ 0, displays simple aging.

The evolution of τ after the quench relates to the well-
known problem of determining a diverging relaxation time
at fixed waiting time tw (corresponding to a typical
experiment duration or probing timescale): approaching
the transition, the power-law divergence of τ as a function
of quenched to state εf that is predicted by the idealized
theory, is cut off at any finite tw and replaced by a crossover
to a slower growth (Fig. 2). In our theory, we obtain
τ ∼ jεjδ0 , with a prefactor that diverges with increasing tw
(dash-dotted lines in Fig. 2).

FIG. 1. Structural-relaxation time τ as a function of waiting
time tw after an instantaneous quench. Solid lines: schematic
model, quenches from εi ¼ −0.5 to εf . Inset: values in the
Supplemental Material [52]. A dashed line indicates simple aging
τ ∼ tw, a dotted line hyperaging τ ∼ tδ

0
w with δ0 ¼ 1.684, and a

dash-dotted line subaging τ ≈ tδw with δ ¼ 0.9. Thick dashed
lines: SBR for εf ¼ 0.01 and 0.02. Symbols: simulation results
for quasihard spheres from Ref. [29], quenched to various final
packing fractions φf , translated to schematic-model units
(τ ↦ 2τ, tw ↦ 100tw).

FIG. 2. Structural-relaxation time τ at various fixed waiting
times tw as a function of the final point of the quench εf (solid
lines and symbols: theory and simulation as in Fig. 1; thick
dashed lines from SBR). Thin dashed line, equilibrium diver-
gence at the ideal glass transition point (εf ¼ 0), τeq ∼ jεfj−γ
(γ ¼ 2.46214 corresponding to λ ¼ 0.735); dash-dotted lines,
nonequilibrium asymptotes τ ∼ BðtwÞεδ0f .
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Deviations from the ideal theory are noted in the
simulation data for quenches to the highest final densities
and at large tw. We attribute this to the avoidance of the
ideal MCT transition, which also causes the hyperaging
regime to be interrupted.
To understand this, we turn to the SBR [59,60], a recent

extension of MCT that includes fluctuations in the local
glassiness, viewing σ ∼ ε as a dynamical fluctuating order
parameter. SBR predicts scaling laws that replace the
divergent power law with a crossover between a power
law and exponential growth. Specifically [62], different
laws arise for the structural-relaxation time and for the
mobility,

τ ∼
�Z

0

−∞

dsffiffiffiffiffiffi
2π

p
Δσ

e−
ðs−σÞ2
2Δσ2 jsjbγ

�
−1=b

; ð4aÞ

μ ∼
Z

0

−∞

dsffiffiffiffiffiffi
2π

p
Δσ

e−
ðs−σÞ2
2Δσ2 jsjγ; ð4bÞ

where we identified σ ¼ ε. Here,Δσ is a material parameter
that quantifies the strength of long-wavelength order-
parameter fluctuations (we set Δσ ¼ 0.1). Using Eq. (4)
to evaluate μ in Eq. (2) and to calculate τ, we obtain an
improved asymptotic description of the τ versus tw curves
(colored dashed lines in Fig. 1) that account for the
crossover from hyperaging to a constant τ as the system
finally equilibrates even in the ideal MCT glass.
A clear hyperaging signature still survives as a transient.

In the simulation data, this is best seen as a nonmonotonic
variation of the ratio τ=tw as a function of tw that is present
for quenches to φf > φc (Fig. 3) and that fits well the
corresponding SBR prediction (solid lines in Fig. 3).
Experimental data on colloidal suspensions [14] for deeper
quenches show the nonmonotonic variation of t=τw even
more clearly (see Supplemental Material [52]).

It is worth noting that the qualitative change observed in
Figs. 1 and 3—true aging replaced by eventual equilibra-
tion—implies a merely quantitative change for a measure-
ment performed at fixed system age: SBR predictions for τ
at fixed tw (dashed lines in Fig. 2) are only shifted
compared to the ideal MCT curves. Experiments at fixed
system age can never address the question of whether τ
truly diverges or not.
To summarize, we obtained scaling laws for the evolu-

tion of the structural relaxation time τ as a function of
system age tw after the quench of a glass-forming fluid to
states close to the ideal glass-transition point of MCT. The
scaling laws delineate regimes of simple and transient
hyper- and subaging.
The results link the hyperaging exponent δ0 to the

exponent characterizing the equilibrium relaxation time.
Hence, they link a nonequilibrium dynamical exponent of
the system to a nontrivial equilibrium exponent and through
this to the system’s equilibrium static structure.
We conclude with some remarks. (i) Our analysis based

on Eq. (1) takes any theory of glassy dynamics as input.
Like the ITT framework, it can, in principle, be combined
with approaches different from MCT or SBR, although the
derivation of the scaling laws from Eq. (2) is more rigorous
within MCT where glass transitions are Al bifurcations
with a single critical eigenvector in k space.
(ii) The predicted hyperaging exponent δ0 is not univer-

sal; it depends on the details of the microscopic structure.
It can be determined from the exponent parameter λ ∈
½1=2; 1� through a scaling analysis of the equilibrium
dynamics, and within MCT it is calculated via a functional
of the equilibrium static structure factor SðqÞ (see
Supplemental Material [52] for details). In practice, generic
values of λ (and δ0) emerge for broad classes of glass
formers: λ ≈ 0.735 fixes δ0 ≈ 1.68 as typical for hard-
sphere-like glasses. On the boundary between repulsive
and attractive glasses in systems with strong short-ranged
attractions, higher-order glass-transition singularities [63]
are predicted to suppress hyperaging (as there, γ → ∞ and
hence δ0 → 1); the value δ0 ≈ 1.37 found in Ref. [27]
corresponds to λ ≈ 0.88, which is not unreasonable for
attractive glasses predicted by MCT. Systems with nearly
nonstretched structural-relaxation dynamics, on the other
hand, should approach the upper limit of δ0 ≈ 2.3.
(iii) The connection between equilibrium and nonequili-

brium dynamics rests on the β-scaling law, a very robust
feature of MCT that emerges also in a more general field-
theoretical framework [61] or in generalized mode-
coupling theory [64]. It will be interesting to see how full
microscopic calculations beyond the schematic model will
reflect on the predicted aging behavior.
(iv) Interrupted hyperaging versus subaging emerges as

a clear separation between ideal glasslike dynamics and
the dynamics that arises from the avoidance of the ideal
glass transition. Hyperaging is also predicted to be more

FIG. 3. Ratio τ=tw as a function of waiting time tw. Simulation
data of Ref. [29] (filled symbols, data divided by 50; φc ≈ 0.585)
and exemplary SBR results for εf ¼ −0.1, 0, and 0.1 (solid lines,
bottom to top). Dashed lines indicate the corresponding asymp-
totes of the ideal glass MCT.
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pronounced as one quenches deeper into the glass. This
leads us to speculate that models with a nonavoided MCT-
like glass transition might show clear long-time hyperaging
asymptotes. High-dimensional systems of hard spheres,
approaching the expected mean-field-like behavior in
d ¼ ∞ [65,66], could be suitable candidates. Numerical
solutions of spin glasses with MCT transitions, e.g., the
spherical p-spin model, so far favor sub- and normal aging
[4,40,67], but the analytical determination of the scaling
laws is still an open issue in these models [40,67].
Hyperaging in a trapped phase has been discussed very
recently in the context of decision-making models that
incorporate reinforcement by memory effects [68]. Our
Eq. (2) predicts weak ergodicity breaking and aging that
gets stuck at the MCT-critical point; it will be interesting to
explore the connection to the strong ergodicity breaking
discussed in spin glasses [69] and the loss of ultrametricity
connected with the hyperaging asymptote in suitably
enhanced models.
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[67] A. Andreanov and A. Lefèvre, Europhys. Lett. 76, 919
(2006).

[68] J. Moran, A. Fosset, D. Luzzati, J.-P. Bouchaud, and M.
Benzaquen, Chaos 30, 053123 (2020).

[69] M. Bernaschi, A. Billoire, A. Maiorano, G. Parisi, and F.
Ricci-Tersenghi, Proc. Natl. Acad. Sci. U.S.A. 117, 17522
(2020).

PHYSICAL REVIEW LETTERS 129, 238003 (2022)

238003-6

https://doi.org/10.1103/PhysRevE.87.052306
https://doi.org/10.1088/1361-648X/ac3b75
https://doi.org/10.1088/1361-648X/ac3b75
https://doi.org/10.1063/1.4935000
https://doi.org/10.1103/PhysRevE.98.040601
https://doi.org/10.1038/s41598-019-52591-x
https://doi.org/10.1103/PhysRevE.76.041504
https://doi.org/10.1103/PhysRevE.100.042601
https://doi.org/10.1103/PhysRevE.100.042601
https://doi.org/10.1039/dc9878300021
https://doi.org/10.1039/dc9878300021
https://doi.org/10.1016/0378-4371(87)90281-0
https://doi.org/10.1016/0378-4371(87)90281-0
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.238003
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.238003
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.238003
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.238003
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.238003
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.238003
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.238003
https://doi.org/10.1111/j.1151-2916.1946.tb11592.x
https://doi.org/10.1111/j.1151-2916.1971.tb12186.x
https://doi.org/10.1111/j.1151-2916.1976.tb09376.x
https://doi.org/10.1063/5.0039524
https://doi.org/10.1063/5.0039524
https://doi.org/10.1063/5.0087649
https://doi.org/10.1063/5.0087649
https://doi.org/10.1006/jmaa.1995.1352
https://doi.org/10.1006/jmaa.1995.1352
https://doi.org/10.1209/0295-5075/106/56003
https://doi.org/10.1103/PhysRevB.94.014202
https://doi.org/10.1103/PhysRevLett.124.195501
https://doi.org/10.1103/PhysRevLett.124.195501
https://doi.org/10.1209/0295-5075/111/56008
https://doi.org/10.1209/0295-5075/111/56008
https://doi.org/10.1126/science.1068238
https://doi.org/10.1063/5.0026979
https://doi.org/10.1063/5.0026979
https://doi.org/10.1146/annurev-conmatphys-031016-025334
https://doi.org/10.1088/1751-8121/ab099d
https://doi.org/10.1088/1751-8121/ab099d
https://doi.org/10.1209/epl/i2006-10352-9
https://doi.org/10.1209/epl/i2006-10352-9
https://doi.org/10.1063/5.0009518
https://doi.org/10.1073/pnas.1910936117
https://doi.org/10.1073/pnas.1910936117

