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Abstract

A cloud tomographic retrieval algorithm relying on (i) the spherical harmonics discrete ordinate
method for computing the radiative transfer and (ii) the surrogate minimization method for solving
the inverse problem has been designed. The retrieval algorithm uses regularization, accelerated projected
gradient methods, and two types of surrogate functions. The performances of the retrieval algorithm are
analyzed on a few synthetic two- and three-dimensional problems.

1 Introduction

This is a preprint of the paper https://doi.org/10.1016/j.jqsrt.2021.107954

Remote sensing of clouds in the Earth’s atmosphere, using space-borne optical sensors, usually assumes
horizontally homogeneous clouds and is focused on the retrieval of simple parameters, such as the cloud
optical thickness and cloud top height. For this purpose, one-dimensional radiative transfer codes are used.
This very crude approximation of the real cloud structure causes biases of the retrieved parameters in most
cases.

A promising approach for treating clouds as multi-dimensional objects is cloud tomography. In cloud
tomography, the focus is on the retrieval of cloud extinction field, and under some assumptions, of the
microphysical parameters of the cloud. Some important contributions in this field are summarized below.

1. Levis et al. [1] demonstrated a full three-dimensional tomographic cloud retrieval by using as radiative
transfer model, the spherical harmonics discrete ordinate method (SHDOM) developed by Evans [2].
The inverse problem is solved by the surrogate minimization method in conjunction with the gradient
descent method. Specifically, the authors used reflectance measurements for nine different viewing an-
gles and reconstructed the three-dimensional cloud extinction field on a Cartesian grid. In a subsequent
paper, Levis et al. [3] retrieved the extinction field while treating the effective radius and variance of
the cloud particles as unknowns, but constrained to vary only along the vertical direction. This work
was extended in Ref. [4] by adding polarization and deriving a framework for a full three-dimensionl
tomography of cloud droplets for both their mass concentration in space and their distribution across
a range of sizes.

2. Martin and Hasekamp [5] used adjoint methods to retrieve two-dimensional cloud extinction fields. The
inverse problem is solved with a gradient-based quasi-Newton approach, i.e., the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) algorithm [6]. At each step, the value of the objective function to be mini-
mized (the misfit function) and its gradient are computed with two calls of the radiative transfer model.
In the first call, the value of the objective function is computed by solving the forward radiative transfer
equation, while in the second call, the gradient of the objective function is computed by solving the
adjoint radiative transfer equation. The radiative transfer model is a simplified two-dimensional model,
in which, the set of directions is a circle defined by one angular variable, rather than a sphere defined
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by two angular variables. Although the problem is simplified, the main concepts of cloud tomography
are fully represented.

In a series of two papers we intend to describe cloud tomographic retrieval algorithms that use SHDOM
for computing the radiative transfer and either the surrogate minimization method or the adjoint method
for solving the inverse problem. In the present paper, the focus is on the surrogate minimization method.
Actually, surrogate minimization algorithms are a family of algorithms that can be regarded as a generaliza-
tion of expectation minimization algorithms [7]. Such an algorithm aims at turning an otherwise intractable
minimization problem into a tractable one by iterating two steps. The surrogate step computes a tractable
surrogate function to substitute the original objective function and the minimization step seeks to minimizes
this surrogate function. In the literature, surrogate minimization algorithms are also referred to as optimiza-
tion transfer algorithms [8], iterative majorization [9], or auxiliary function method [10]. These algorithms
are very efficient because they can (i) turn a non-differentiable problem into a smooth problem, (ii) separate
the parameters of a problem, (iii) linearize an optimization problem, (iv) deal gracefully with equality and
inequality constraints, and (v) generate an algorithm that avoids large matrix inversion. Iteration is the price
we pay for simplifying the original problem.

Levis et al. [1] showed how to construct a surrogate function in cloud tomography. The key point is to
consider a surrogate function, in which the source function and the surface radiance, computed by a three-
dimensional radiative model, are kept constant during the minimization step. Our aim is to implement this
idea in an efficient and versatile retrieval algorithm. The paper is organized as follows. After formulating
the radiative transfer problem in Section 2, we provide a succinct presentation of SHDOM in Section 3. In
Section 4, we formulate the inverse problem in cloud tomography, while in Section 5, we describe in detail
the surrogate minimization method. The construction of the regularization term is discussed in Section 6,
the performances of the retrieval algorithm are analyzed in Section 5, while the final section of our paper
contains a few concluding remarks.

2 Problem formulation
We consider the solar radiative transfer in a rectangular prism of lengths Lx, Ly and Lz. The top and the
bottom faces of the prism are denoted by St and Sb, respectively, while the lateral faces are denoted by S1x

(x = 0), S2x (x = Lx), S1y (y = 0), and S2y (y = Ly). The boundary-value problem for the diffuse radiance
at point r in direction Ω consists in (i) the inhomogeneous differential equation

dI
ds

(r,Ω) = −σext(r)I(r,Ω) + σext(r)J(r,Ω), (1)

(ii) the boundary conditions at the top and bottom surfaces

I(rt,Ω
−) = 0, rt ∈ St, (2)

and (in the case of a Lambertian surface)

I(rb,Ω
+) =

As

π
F0T (r0b, rb)

+
As

π

∫
Ω−
|µ−|I(rb,Ω

−) dΩ−, rb ∈ Sb, (3)

respectively, and (iii) the (periodic) boundary conditions at the lateral faces,

I(r1x,Ω) = I(r2x,Ω), I(r1y,Ω) = I(r2y,Ω), (4)

for rix ∈ Six and riy ∈ Siy with i = 1, 2. Here,

J(r,Ω) =
ω(r)

4π

F0

|µ0|
P (r,Ω,Ω0)T (r0, r)

+
ω(r)

4π

∫
Ω

P (r,Ω,Ω′)I(r,Ω′) dΩ′, (5)
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is the source function,

T (r0, r) = exp(−
∫ r

r0

σext(r
′)ds′) (6)

is the transmission along the characteristic starting at r0 and ending at r, σext and σsct = ωσext are the
extinction and scattering coefficients, respectively, ω is the single-scattering albedo, P is the phase function,
As is the surface albedo, Ω0 = (µ0, ϕ0) with µ0 < 0, is the solar direction, F0 is the solar flux, Ω+ and
Ω− denote an upward and a downward direction, respectively, Ω is the unit sphere, Ω+ and Ω− stand for
the upper and lower unit hemispheres, respectively, r2x = r1x + Lxi, r2y = r1y + Lyj, and (i, j,k) are the
Cartesian unit vectors.

3 Spherical harmonics discrete ordinate method
In cloud tomography, we use the radiances measured by a detector from multiple locations and viewing
angles. For each viewing direction Ωmq, q = 1, . . . , Na, we assume that the signal of the pth detector pixel,
that collects the radiances around the location rtp ∈ St with p = 1, . . . , Np, can be modeled as

I(rtp,Ωmq) =
1

A

∫
St

h(rt − rtp)I(rt,Ωmq) dSt, (7)

where h(rt − rtp) is the characteristic function of the pth detector pixel projected on the top surface, A the
area of the top face of the prism, and I(rt,Ωmq) the radiance at point rt ∈ St in direction Ωmq.

In the present study, the top-of-atmosphere radiance I(rt,Ωmq), which enters in Eq. (7), is computed
by using our own implementation of SHDOM. Essentially, SHDOM uses discrete ordinates Ωjk = (µj , ϕk),
j = 1, . . . , Nµ, k = 1, . . . , Nϕ, and spherical harmonics Ymn(Ω), m = −M, . . . ,M , n = |m|, . . . , N , to
represent the radiance field at a set of grid points ri, i = 1, . . . , Npts, where Nµ is the number of Gaussian
quadrature cosine zenith angles µj , Nϕ the number of discrete azimuth angles ϕk, N = Nµ−1 the maximum
expansion order, M = Nϕ/2 − 1 the maximum number of azimuthal modes, and Npts the number of grid
points. Note that in SHDOM, an adaptive grid is implemented to add grid points in regions where more
resolution is judged to be needed, while for solar problems with the delta-M method, the TMS method of
Nakajima and Tanaka [11] is used to compute the source function. The output quantities of SHDOM, that
are relevant in our analysis, are the grid point values of (i) the expansion coefficients of the source function
in terms of spherical harmoinics Jmn(ri), and (ii) the surface radiance at the bottom surface in the upward
discrete ordinate direction Ω+

jk, I(rbi,Ω
+
jk). The radiance at a point rt ∈ St in direction Ωmq is computed

by integrating the source function through the medium, that is,

I(rt,Ωmq) = I(rb,Ωmq)T (rb, rt)

+

∫ rt

rb

σext(r)J(r,Ωmq)T (r, rt) ds. (8)

In Eq. (8), the grid point values

J(ri,Ωmq) =

M∑
m=−M

N∑
n=|m|

Jmn(ri)Ymn(Ωmq) (9)

are used to compute the integral of the source function J(r,Ωmq), while for a Lambertian surface, the grid
point surface radiances

I(rbi,Ωmq) = I(rbi,Ω
+
jk) (10)

are used to compute the surface radiance I(rb,Ωmq) by bilinear interpolation. A brief summary of SHDOM
is given in Appendix A.
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4 Inverse problem
For an atmosphere consisting of a cloud and air molecules, the extinction field is given by

σext(r) = σcld
ext(r) + σmol

ext (r), (11)

where σcld
ext(r) and σmol

ext (r) are the extinction coefficients of the cloud and air molecules, respectively. In
cloud tomography, we seek to retrieve σext(r) within the volume of the cloud. This is equivalent to seeking
σcld

ext(r) since σmol
ext (r) is known. For a numerical retrieval, the extinction field is represented on a discrete grid

{ri}
Npts

i=1 , and the grid point values of the extinction coefficient σext(ri) are encapsulated in the extinction
vector

σext = (σext(r1), . . . , σext(rNpts
))T .

In this regard, cloud tomographic retrieval can be formulated as an estimation of σext that minimizes the
objective function

Eα(σext) = R(σext) + αL(σext), (12)

where

R(σext) =
1

2

Na∑
q=1

Np∑
p=1

[I(rtp,Ωmq;σext)− Imes(rtp,Ωmq;σ
†
ext)]

2 (13)

with (cf. Eqs. (7) and (8))

I(rtp,Ωmq;σext) =
1

A

∫
St

h(rt − rtp)I(rt,Ωmq;σext)dSt, (14)

I(rt,Ωmq;σext) = I(rb,Ωmq;σext)T (rb, rt;σext)

+

∫ rt

rb

σext(r)J(r,Ωmq;σext)T (r, rt;σext) ds, (15)

is the residual, L(σext) a regularization term, α the regularization parameter, I and Imes the simulated and
measured signals, respectively, and σ†ext the true extinction vector to be retrieved. Note that in Eqs. (14)
and (15), the dependency on the extinction vector σext is indicated explicitly.

A gradient-based optimization method requires the computation of the derivatives of the objective function
with respect to the extinction field, or more precisely and in view of Eq. (15), of the derivatives of the source
function J , the surface radiance I(rb, ·), and the transmission function T . This computational process
is complex with respect to time and memory requirements. However, in the framework of the surrogate
minimization method, the complex optimization problem can be decomposed into a series of much simpler
sub-problems that are easier and faster to optimize.

5 Surrogate minimization method
The surrogate minimization algorithm computes the minimum of an objective function via two steps. The
first step is to construct a proper surrogate that bounds the objective function tightly. The second step is to
optimize the surrogate whose optimum is much easier to obtain. Given an estimate σextl at the lth iteration,
the two steps of a typical surrogate minimization algorithm can be formulated as follows [7, 8].

Surrogate Step. Substitute Eα(σext) by a surrogate function Qα(σext|σextl), such that

Eα(σext) ≤ Qα(σext|σextl) (16)

with equality holding at σext = σextl, i.e., Eα(σextl) = Qα(σextl|σextl).

Minimization Step. Compute the next parameter estimate σext,l+1 by minimizing the surrogate function
Qα(σext|σextl) with respect to σext, i.e.,

σext,l+1 = argmin
σext

Qα(σext|σextl). (17)
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Note that in the same spirit as the generalized expectation minimization algorithm [15], in a generalized
surrogate minimization algorithm, instead of minimizing Qα(σext|σextl), one attempts to find a σext,l+1 such
that

Qα(σext,l+1|σextl) ≤ Qα(σextl|σextl). (18)

Since the surrogate constructed at the current estimator is a majorant to the objective function, each mini-
mization step over the surrogate will decrease the objective function monotonically. Indeed, from Eqs. (16)
and (17) it is apparent that

Eα(σext,l+1) ≤ Qα(σext,l+1|σextl) ≤ Qα(σextl|σextl) = Eα(σextl). (19)

Convergence and convergence rate results for the surrogate minimization algorithm were derived for convex
problems. For example, Mairal [16] showed that for strongly convex objective functions, the algorithm
converges at a rate of O(1/

√
l) in a finite-sum setting and O(1/l) in a stochastic setting. However, when

the objective function is non-convex, there is no guarantee that an exact global minimum is reachable, and
theoretical convergence results are hard to be obtained (the limit points of the sequence {σextl} are only
critical points of the objective function). Moreover, the step size can be very small, leading to a slower
convergence rate in practice.

In the following we address the two major issues in devising a surrogate minimization algorithm, namely,
how a surrogate function is defined and how the resultant surrogate function is minimized.

5.1 Surrogate function
There are mainly three approaches to the construction of surrogate functions, i.e., by using the Jensen’s
inequality, the first-order Taylor approximation, and the low quadratic bound principle [8]. Unfortunately,
these methods cannot be applied in the case of cloud tomographic retrieval. The reasons are that whether the
objective function is not convex, or the computation of the gradient of the objective function is a complex
process. However, in Ref. [1] it was shown that for cloud tomographic retrieval, a good choice for the
surrogate function is

Qα(σext|σextl) = R̂(σext|σextl) + αL(σext), (20)

where

R̂(σext|σextl) =
1

2

Na∑
q=1

Np∑
p=1

[Î(rtp,Ωmq;σext|σextl)− Imes(rtp,Ωmq;σ
†
ext)]

2, (21)

Î(rtp,Ωmq;σext|σextl) =
1

A

∫
St

h(rt − rtp)Î(rt,Ωmq;σext|σextl) dSt, (22)

Î(rt,Ωmq;σext|σextl) = I(rb,Ωmq;σextl)T (rb, rt;σext)

+

∫ rt

rb

σext(r)J(r,Ωmq;σextl)T (r, rt;σext) ds. (23)

From Eq. (23) we deduce that the source function and the surface radiance are kept constant during the
minimization step. Thus, in the minimization step, the computation of the derivatives of the surrogate func-
tion Q with respect to the extinction field requires only the knowledge of the derivatives of the transmission
function T . Because these derivatives can be computed analytically in a very simple manner, the complexity
of the problem is substantially reduced.

Unfortunately, for the surrogate function (20), condition (16) is not at all obvious. All what we can say
is that the result

I(rt,Ωmq;σextl) = Î(rt,Ωmq;σextl|σextl), (24)

implies that the equality holds at σext = σextl. With regard to the inequality, we can only intuitively expect
that, because Î(·;σext|σextl) is an approximation of I(·;σext), the residual corresponding Î(·;σext|σextl) is
larger than that corresponding to I(·;σext). As we do not have a theoretical justification of this result,
we adopt a pragmatic strategy; the convergence of the surrogate minimization approach will in fact be a
numerical proof of the fulfillment of condition (16).
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Algorithm 1 Surrogate minimization algorithm. The input data are the initial guess σext0, the initial value
of the regularization parameter α0, the ratio of a geometric sequence of regularization parameters q, and the
number of steps (of the outer iteration) Nout

iter .
Input: σext0, (α0, q), Nout

iter ;
Output: σext;
for l = 0, . . . , Nout

iter − 1 do
• compute I(rbi,Ωmq,σextl) and Jmn(ri,σextl) by calling SHDOM;
• compute the surrogate function Qαl(σext|σextl) by using Eqs. (20)–(23);
• compute the new iterate σext,l+1 = argminσext

Qαl(σext|σextl);
• compute the new regularization parameter αl+1 = qαl;
if convergence test is satisfied then
• σext = σext,l+1;
exit;

end if
end for

The standard procedure of the surrogate minimization approach is summarized in Algorithm 1. The
following peculiarities of the algorithm can be emphasized.

1. The regularization parameter is not kept constant during the iteration. From the theory of iterative
regularization methods, it is known that the amount of regularization should be gradually decreased
during the iteration. For this reason, we use a decreasing geometric sequence of regularization param-
eters αl+1 = qαl, where q < 1 is the ratio of the sequence.

2. The iteration can be stopped according to (i) the relative residual convergence test: R(σext,l) −
R(σext,l+1) ≤ εRFR(σext,l), or (ii) the absolute residual convergence test: R(σext,l+1) ≤ εAFR(σext0),
for some prescribed tolerances εRF and εAF.

A general rule states that the closer is the surrogate function to the objective function, the more efficient
is the surrogate minimization algorithm. In this regard, we may construct a surrogate function in which the
single-scattering radiance is changed during the minimization step, or equivalently, the multiple-scattering
components of (i) the spherical harmonic coefficients of the source function Jmn(ri;σext) and (ii) the grid
point radiances at the bottom surface I(rbi,Ωmq;σext) are kept constant during the minimization step.
This computational step, which is described in Appendix B, is implemented in the post-processing stage
of SHDOM and is performed on the final adaptive grid by using the TMS correction in conjunction with
the delta-M scaling method. Although both surrogate minimization models involve only the derivatives of
the transmission function, the model with a variable single-scattering radiance is more time consuming and
memory demanding.

5.2 Minimization step
In principle, in the minimization step we intend to compute a minimum of the surrogate functionQαl(σext|σextl).
However, in the framework of a generalized surrogate minimization algorithm, instead of minimizingQαl(σext|σextl),
we aim to find a σext,l+1 such that condition (18) is satisfied. This can be done by applying a finite number
steps, say N inn

iter of a standard optimization algorithm. Thus, we do not require convergence of iterates; a
decrease of the surrogate function after N inn

iter steps is sufficient. The resulting algorithm is similar to a REG-
ularization based on INexact Newton (REGINN) iteration method for nonlinear problems [17, 18]. In this
method (i) an outer Newton iteration updates the current iterate, and (ii) an inner iteration provides the
update by approximately solving a linearized version of the nonlinear equation. Moreover, the finite number
of steps of the inner iteration plays the role of a regularization parameter. As a result, and because the
amount of regularization should be decreased during the iterative process, the number of steps of the inner
iteration is increased during the outer iteration. Adopting this idea, we use the following linear selection rule:

N inn
iterl =

[
N inn

iter0 + l
N inn

iter1 −N inn
iter0

Nout
iter

]
, (25)
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Algorithm 2 Projected gradient method. The input data are the initial guess x0 and the number of steps
of the inner iteration K.
Input: x0, K;
Output: xK ;
for k = 0, . . . ,K − 1 do
• compute ∇f(xk);
• compute the step length τk = arg minτ f(PB(xk − τ∇f(xk)))
by a line search algorithm;
• xk+1 = PB(xk − τk∇f(xk));

end for

where N inn
iter0 and N inn

iter1 with N inn
iter0 < N inn

iter1 determine the interval of variation of N inn
iterl, and [x] denotes the

integer part of x.
In the following, we simplify the notation by making the changes σext → x, Qαl(σext|σextl)→ f(x), and

N inn
iterl → K. Because the extinction is a positive quantity, we consider the box solution domain

B(x) = {x | l ≤ x ≤ u}, (26)

where l and u are lower and upper bound vectors, respectively, and the vector inequality x ≤ y should be
understood componentwise.

The simplest first-order optimization algorithm (that requires only gradient calculations) is the projected
gradient method illustrated in Algorithm 2. Some peculiarities of the algorithm can be summarized as follows.

1. PB(x) is the projection operator onto the box B that thresholds the values of x at the boundaries of
the box. It is given by

(PB(x))i =

 li
xi
ui

xi < li
li ≤ xi ≤ ui
xi > ui

, (27)

where xi is the ith component of the vector x.

2. In the standard gradient method, a step length τk, which guarantees a sufficient decrease in f(xk −
τ∇f(xk)) over τ ∈ R+, is computed by means of a line search algorithm. Specifically, in a backtracking
line search algorithm based on Wolfe conditions [6], the step length τ is reduced starting from an initial
value τ0, until (i) the average rate of decrease from f(xk) to f(xk−τ∇f(xk)) is at least some prescribed
fraction ε1 of the initial rate of decrease in that direction, and (ii) the rate of decreases of f in the
direction −∇f(xk) at xk − τ∇f(xk) is larger than some prescribed fraction ε2 of the rate of decrease
in the direction −∇f(xk) at xk. These two conditions, known as the Armijo–Goldstein condition and
the curvature condition, respectively, provide an upper and lower bound on the admissible step length
values. In our algorithm, we use only the Armijo–Goldstein condition, which in the case of the projected
gradient method is

f(zkτ ) ≤ f(xk)− ε1∇f(xk)T (xk − zkτ ), (28)
zkτ = PB(xk − τ∇f(xk)). (29)

In order to increase the convergence rate of the projected gradient method several acceleration methods
have been designed. Algorithms 3 and 4 [19, 20, 21] represent variants of the Nesterov acceleration method
[22, 23] and the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) [24] for non-convex problems,
respectively. As compared to the original versions for convex problems, the modified methods accept the new
iterate when the corresponding function value is sufficiently decreased, and this fact leads to a more stable
convergence behavior. Some comments can be made here.

1. Algorithms 3 and 4 achieve the O(1/k2) convergence rate for convex problems and converge to a critical
point of f at linear rates.

2. Algorithm 3 requires one proximal step, while Algorithm 4 requires two; thus, the Nesterov acceleration
method computes faster than FISTA.
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Algorithm 3 Nesterov acceleration method for non-convex problems. The input data are the initial guess
x0, the initial step length τ0, the integer parameter β of the Nesterov method, e.g., β = 3, and the number
of steps of the inner iteration K.
Input: x0, τ0, β, K;
Output: xK ;
• initialize y0 = x0;
for k = 0, . . . ,K − 1 do
• compute ∇f(yk);
• compute the step lengthτk = arg minτ f(PB(yk − τ∇f(yk)))
by a line search algorithm or set τk = τ0;
• xk+1 = PB(yk − τk∇f(yk));
• vk+1 = xk+1 + k

k+β (xk+1 − xk);
• compute f(xk+1) and f(vk+1);
if ( f(xk+1) ≤ f(vk+1) ) then
• yk+1 = xk+1;

else
• yk+1 = vk+1;

end if
end for

3. Because Algorithms 3 and 4 guarantee a monotone decrease of the objective function, the computation
of the step length by a line search algorithm is not absolutely required. However, our numerical analysis
indicates that such an algorithm improves the convergence rate.

The fourth algorithm that is implemented in our retrieval tool is the BFGS algorithm that uses the gradient
projection method to determine a set of active constraints at each iteration, a limited memory BFGS matrix
to approximate the Hessian of the objective function, and a line search procedure relying on Wolfe conditions
to compute the step length.

6 Regularization
The last problem that we address is the choice of the regularization term L(σext). In order to simplify our
presentation we consider a two-dimensional geometry. In cloud tomography, the role of regularization is to
enforce the smoothness of the spatial variability of the extinction field. There are two reasons for which
the use of smooth extinction fields is advantageous. The first one is that in SHDOM, a strongly varying
extinction field may cause a significant increase of the number of grid points. The second one is that for
non-smooth extinction fields it is more probable that the retrieval algorithm get stuck in a local minimum.
The amount of smoothness is controlled by the regularization parameter α; a small value of α allows for
more roughness in the cloud extinction field, while a large value of α ensures more smoothness. Although
smoothing regularization terms can be constructed by using the L2 norm of the gradient vector, we decided
to use spatial filtering techniques from image processing [12, 13, 14]. Spatial filters fall into two category:
linear and nonlinear.

1. A linear filter replaces the value of the extinction field at the grid point (i, j), σext(i, j) by a weighted
sum of its neighbors. The matrix defining the weight associated to each neighbor is called convolution
kernel, and is of the form

W =

 w(i− 1, j + 1) w(i, j + 1) w(i+ 1, j + 1)
w(i− 1, j) w(i, j) w(i+ 1, j)

w(i− 1, j − 1) w(i, j − 1) w(i+ 1, j − 1)

 . (30)

The filtered pixel value σfilter
ext (i, j) is given by

σfilter
ext (i, j) =

1

C

1∑
i1=−1

1∑
j1=−1

w(i+ i1, j + j1)σext(i+ i1, j + j1), (31)
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Algorithm 4 FISTA for non-convex problems. The input data are the initial guess x0, the initial step length
τ0, and the number of steps of the inner iteration K.
Input: x0, τ0, K;
Output: xK ;
• initialize y0 = x0, θ0 = 1;
for k = 0, . . . ,K − 1 do
• compute ∇f(yk) and ∇f(xk);
• compute the step lengths τk = arg minτ f(PB(yk − τ∇f(yk))) and
ηk = arg minτ f(PB(xk − τ∇f(xk))) by a line search algorithm or set
τk = ηk = τ0;
• zk+1 = PB(yk − τk∇f(yk));
• vk+1 = PB(xk − ηk∇f(xk));
• compute f(zk+1) and f(vk+1);
if ( f(zk+1) ≤ f(vk+1) ) then
• xk+1 = zk+1;

else
• xk+1 = vk+1;

end if
• θk+1 = 1

2 (1 +
√

1 + 4θ2
k);

• yk+1 = xk+1 + θk−1
θk+1

(xk+1 − xk) + θk
θk+1

(zk+1 − xk+1);

end for

where C is a normalization factor equal to
∑1
i1=−1

∑−1
j1=1 w(i+ i1, j + j1). From the category of linear

filters, the averaging and Gaussian filters with the convolution kernels

Wavr =

 1 1 1
1 1 1
1 1 1

 and WGauss =

 1 2 1
2 4 2
1 2 1

 , (32)

respectively, are low-pass filters that smooths the extinction field.

2. A nonlinear filter assigns to σext(i, j) a value that is not a linear combination of the surrounding values.
The median filter is a nonlinear, low-pass filter with a smoothing effect. For a 3 × 3 region around
σext(i, j), the median pixel value σfilter

ext (i, j) is obtained as follows: (i) set σ̂ext(k) = σext(i+ i1, j + j1),
where k = j1 + 2 + 3(i1 + 1) for i1, j1 = −1, . . . , 1, (ii) sort the set {σ̂ext(k)}9k=1 in ascending order, and
finally, (iii) set σfilter

ext (i, j) = σ̂ext(5) (note that 5 = [9/2] + 1 is the median index of the sequence).

Parenthetically we note that low-pass filters attenuate variations of the extinction field and have the tendency
to eliminate details and blur the cloud edges. Using spatial filters, we construct the regularization term as

L(σext) =
∑
i

∑
j

[σext(i, j)− σfilter
ext (i, j)]2 (33)

where the summation over i and j is performed over all permissible values of σext(i+ i1, j + j1).

7 Numerical Simulations
In this section we analyze the performances of the retrieval algorithm on a few synthetic two-dimensional
problems. The true cloud extinction field is chosen as σcld†

ext (x, z) = σmaxχ(x, z), where χ(x, z) with 0 ≤
χ(x, z) ≤ 1 is the normalized extinction field of the cloud. Because at each outer iteration, the adaptive grid
evolves from a base grid to a final grid and the values of the source functions are specified on the final grid,
the base grid point values of the extinction field are the unknowns of the inverse problem. At each step of the
outer iteration, the values of the extinction field on the final grid are interpolated from the base grid values.
Note that the same interpolation rule is used when splitting cells during the adaptive grid procedure. The
following cloud models are considered in our numerical analysis.
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1. Two circular clouds with the extinction field [5]

σcld†
ext (x, z) = σmax[χ1(x, z) + χ2(x, , z)], (34)

χi(x, z;x0, z0, Rc) = cos
[ π

2Rc

√
(x− x0i)2 + (z − z0)2

]1.25

, i = 1, 2, (35)

where σmax = 6 km−1, x01 = 2 km, x02 = 4 km, z0 = 1 km, and Rc = 0.6 km. Thus, the maximum
optical thickness is τmax = 7.2. The lengths of the domain of analysis are Lx = 6 km and Lz = 2 km, the
numbers of base grid points are Nx = 31 and Nz = 11, and the base grid spacings are ∆x = ∆z = 200m.
Thus, the number of unknowns is Npts = 341.

2. A box cloud with the extinction field

σcld†
ext (x, z) = σmaxχ(x, z), (36)

χ(x, z) =

{
1
0

x1 ≤ x ≤ x2 and z1 ≤ z ≤ z2

rest (37)

where σmax = 3 km−1, x1 = 1.2 km, x2 = 4.4 km, z1 = 0.4 km, z2 = 1.6 km, and τmax = 3.6. The cloud
extinction field is smoothed at the boundaries in order to avoid discontinuities between the cloudy and
clear regions. The lengths of the domain of analysis, the numbers of base grid points, and the base grid
spacings are as in the case of two circular clouds.

3. Two two-dimensional cloud fields obtained from the cloud liquid water content output from a large
eddy simulation (LES) of stratocumulus [2]. The two-dimensional slices are selected from the three-
dimensional cloud liquid water content. The native extinction field is scaled and interpolated on a
discrete domain with (i) lengths Lx = 6 km and Lz = 1 km, (ii) numbers of base grid points Nx = 61
and Nz = 11, and (iii) base grid spacings ∆x = ∆z = 100m. The interpolated values are normalized
to 1 to obtain the normalized extinction field χ(x, z), and the cloud extinction fields are chosen as
σcld†

ext (x, z) = σmaxχ(x, z) with σmax = 10 km−1 (LES1) and σmax = 12 km−1 (LES2). The variation
of the optical thickness τ with respect to the horizontal coordinate x is illustrated in Fig. 1 and the
number of unknowns is Npts = 671.

Other scene parameters are listed below.

1. The cloud single-scattering albedo and the phase function are computed by Mie theory at a wavelength
of 672 nm and for a Gamma size distribution

P (a) ∝ aα exp

[
−α

(
a

amod

)]
(38)

of parameters aeff = 10 µm, amod = 2aeff/3, and α = 6. Here, a is the particle radius, and the
droplet size ranges between 0.02 and 50.0 µm. In addition to the cloud, molecular Rayleigh scattering
is considered as background.

2. The solar zenith angle is θ0 = 0◦, and a Lambertian reflecting surface with the surface albedo As = 0.05
is chosen.

3. There are Na = 9 viewing zenith angles corresponding to the Multiangle Imaging SpectroRadiometer
(MISR). These are given by ±70.5°, ±60°, ±45.6°, ±26.1°, and 0◦, where ± indicates the forward-
and aftward-facing cameras. Note that the domain size was chosen sufficiently large to avoid artifacts
caused by periodic boundary conditions, even for the most oblique MISR viewing angles (±70.5°).

4. The characteristic function of the pth detector pixel is the box function

h(x− xp) =

{
1
0
|x− xp| ≤ ∆x/2

rest (39)

5. The number of discrete ordinates is (Nµ = 32) × (Nϕ = 2Nµ = 64), and the spherical harmonics
truncation indices are N = Nµ − 1 and M = Nϕ/2− 1.
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Figure 1: Variation of the optical thickness τ with respect to the horizontal coordinate x for the LES1 cloud
(left) and the LES2 cloud (right).

6. The delta-M scaling method, the TMS correction, and an adaptive grid with a splitting accuracy of
10−3 are used.

Some input parameters of the retrieval algorithm are chosen as follows.

1. The initial extinction field σext0 correspond to an atmosphere with no cloud.

2. The components of the lower and upper bound vectors that constrain the extinction field are li =
10−6 km−1 and ui = 103 km−1 for all i = 1, . . . , Npts.

3. Unless otherwise specified, the standard surrogate function is that in which the source function and the
surface radiance are kept constant during the minimization step (cf. Eqs. (20)–(23)).

4. The number of steps of the outer iteration is Nout
iter = 300, and if not stated otherwise, the number of

steps of the inner iteration varies between 5 and 7, that is, N inn
iter0 = 5 and N inn

iter1 = 7. The algorithm
stops when the number of steps of the outer iteration exceeds Nout

iter = 300.

5. The regularization terms corresponds to an averaging filter, the initial value of the regularization pa-
rameter is α0 = 0.1, and the ratio of the geometric sequence of regularization parameters is q = 0.8.

6. The initial step in the line search algorithm is τ0 = 250.

The simulations were performed on a computer Intel(R) Core(TM) i5-3340M CPU @ 2.70GHz with 7858Mb
RAM.

In Figs. 2–5, we show the true extinction field σ†ext(ri), the retrieved extinction field σext(ri), and the
absolute error in extinction field at each base grid point

εext(ri) = |σext(ri)− σ†ext(ri)| (40)

for all test examples. From these plots, the same conclusions as in Refs. [1, 5] can be drawn: the errors are
larger in opaque regions within the clouds, and the retrieval algorithm has the tendency to blur the boundary
of the cloud (especially, in the case of the LES2 cloud).

11



Figure 2: True extinction field σ†ext(ri) (top), retrieved extinction field σext(ri) (middle), and absolute error
in extinction field at each base grid point εext(ri) = |σext(ri) − σ†ext(ri)| (bottom) for two circular clouds.
The results are computed with the Nesterov acceleration method.
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Figure 3: The same as in Fig. 2 but for a box cloud. The results are computed with the Nesterov acceleration
method.
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Figure 4: The same as in Fig. 2 but for the LES1 cloud. The results are computed with the BFGS method.
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Figure 5: The same as in Fig. 2 but for the LES2 cloud. The results are computed with the BFGS method.
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Cloud
Model

Optimization
Method

Residual
Decrease
Ratio

Relative
Error in

Extinction

Comput.
Time
(h:min)

Circular
Clouds

Proj. Grad. 4.27× 10−7 1.88× 10−2 0:36
Nesterov 1.62× 10−7 1.23× 10−2 0:39
FISTA 2.18× 10−7 1.34× 10−2 0:46
BFGS 6.85× 10−7 3.66× 10−2 0:33

Box
Cloud

Proj. Grad. 1.51× 10−6 8.43× 10−2 0:39
Nesterov 8.56× 10−7 7.78× 10−2 0:41
FISTA 9.51× 10−7 7.90× 10−2 0:48
BFGS 2.31× 10−6 9.68× 10−2 0:35

LES1
Cloud

Proj. Grad. 7.45× 10−6 10.03× 10−2 1:15
Nesterov 3.08× 10−6 8.76× 10−2 1:23
FISTA 3.78× 10−6 9.06× 10−2 1:40
BFGS 1.72× 10−6 7.64× 10−2 1:20

LES2
Cloud

Proj. Grad. 1.20× 10−4 25.89× 10−2 1:23
Nesterov 7.75× 10−5 23.79× 10−2 1:34
FISTA 8.74× 10−5 24.34× 10−2 1:53
BFGS 1.92× 10−5 20.41× 10−2 1:29

Table 1: Residual decrease ratio, relative error in extinction field, and computational time for the considered
cloud models and optimization methods.

In Fig. 6 we plot the variation of the (total) relative error in the extinction field

εext =

∥∥σext − σ†ext

∥∥
2∥∥σ†ext

∥∥
2

(41)

with respect to the outer iteration index, while in Table 1 we illustrate the residual decrease ratioR(σext)/R(σext0),
the relative error in the extinction field εext, and the computational time for the considered cloud models and
optimization methods. Excepting the BFGS results, which require special attention, the following conclusions
are apparent.

1. The relative error decreases very fast at the beginning of the iterative process and very slowly after
that (the step size becomes very small). The Nesterov and FISTA acceleration methods have a better
convergence rate than the projected gradient method. In this regard it should be pointed that for a
LES2 cloud, the projected gradient method attains a relative error of 24.85× 10−2 after 400 iterations
and of 24.03× 10−2 after 500 iterations (in this case, the computational time is 2h : 38min).

2. The Nesterov acceleration method is the most accurate, and faster than FISTA.

3. The behavior of the residual decrease ratio reproduces that of the relative error; smaller values of
the residual decrease ratio correspond to smaller values of the relative error. In this regard, we may
conclude that a good stopping rule of the outer iteration is the absolute residual convergence test, i.e.,
R(σext,l+1) ≤ εAFR(σext0).

In the minimization step, the BFGS method yields the largest decrease of the objective function. However,
this fact does not have a positive effect on the stability of the surrogate minimization algorithm. To obtain
a stable algorithm, the amount of regularization should be increased, or equivalently, the number of steps of
the inner loop should be decreased. From Fig. 7, we see that for the LES1 cloud, both the residual R(σext)
and the relative error in extinction field εext decrease monotonically during the iterative process when the
number of steps of the inner iteration varies between N inn

iter0 = 2 and N inn
iter1 = 4. Note that for the LES clouds,

the results in Fig. 6 and Table 1 correspond to N inn
iter0 = 3 and N inn

iter1 = 5 (in this case, although R(σext) and
εext do not decrease monotonically, the relative error is the smallest one).

The algorithm has several features that increase its performances.
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Figure 6: Relative error in extinction field versus the outer iteration index for two circular clouds (top left),
box cloud (top right), LES1 cloud (bottom left), and LES2 cloud (bottom right).
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Figure 7: Residual (left) and relative error in extinction field (right) versus the outer iteration index for the
LES1 cloud. The results are computed with the BFGS method for the following intervals of variation of the
number of steps of the inner iteration: (N inn

iter0 = 2, N inn
iter1 = 4), (N inn

iter0 = 3, N inn
iter1 = 5), (N inn

iter0 = 4, N inn
iter1 = 6),

and (N inn
iter0 = 5, N inn

iter1 = 7).

1. In the projected gradient method, the step length algorithm avoids guessing an optimal value for the
step length τ . This is illustrated in Fig. 8 for two circular clouds. When τ is fixed, its optimal value,
for which a relative error of 3.12× 10−2 is obtained, is 200; for τ = 50 and τ = 250, the relative errors
are much higher. In contrast, the step length algorithm directly yields a relative error of 1.88× 10−2.

2. The regularization improves significantly the convergence rate of the algorithm. This can be seen in
Fig. 9 for a box cloud. The relative errors computed without regularization by using the projected
gradient method, Nesterov acceleration, and FISTA are 14.61× 10−2, 15.43× 10−2, and 12.33× 10−2,
respectively. When regularization is used, the relative errors decrease by a factor between 1.5 and 2;
they are 8.43 × 10−2, 7.78 × 10−2, and 7.90 × 10−2, respectively (see Table 1). In fact, the benefit
of using regularization can be explained by a numerical experiment, in which a box cloud with the
non-smooth extinction field σcld

ext(x, z) = σmaxχε(x, z), where χε(x, z) = (1 + σfε)χ(x, z), ε is a random
number uniformly distributed in the interval (−1, 1), and χ(x, z) is given by Eq. (37), is considered. In
Fig. 10, we plot the residual R(σext) versus the relative distance d =

∥∥σext − σ†ext

∥∥
2
/
∥∥σ†ext

∥∥
2
(= εext)

for different values of the standard deviation σf and by considering 1000 configurations for each σf .
As expected, we see that R(σext) → 0 as σf → 0. Moreover, we see that (i) for a given value of the
standard deviation σf , the points are clustered in a domain, in which the residual may decrease by one
order of magnitude, and (ii) the same residual may correspond to points situated in different clusters,
that is, to points situated at different distances with respect to the true solution (in other words, in
the neighborhood of the solution, the residual function is not injective). Thus, the use of non-smooth
extinction fields with uniform small-scale distributions may increase the risk that the retrieval algorithm
get stuck in a local minimum, or that it recede an optimal point and starts to oscillate.

3. The use of a surrogate function, in which the single-scattering radiance is changed during the mini-
mization step, slightly improves the convergence rate. In the case of the LES2 cloud (see Fig. 11), the
relative errors corresponding to the surrogate function in which only the transmission in Eq. (23) is
changed during the minimization step, are 25.89×10−2 for the projected gradient method, 23.79×10−2

for Nesterov acceleration, and 24.34× 10−2 for FISTA. For the surrogate function, in which the source
function and the surface radiance are kept constant during the minimization step, the relative errors
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Figure 8: Relative error in extinction field versus the outer iteration index for two circular clouds. The results
are computed with the projected gradient method and correspond to a step length algorithm for computing
τ and a fixed values of τ .

are 23.63×10−2, 21.58×10−2, and 22.46×10−2, respectively; thus, a reduction of about 2% is attained.
However, in this case, the computational times increase by about 20%, and it is a decision question if
the modified surrogate function should be used or not.

We conclude our numerical analysis by presenting the retrieval results for the three-dimensional cloud
extinction field σcld†

ext (x, y, z) = σmaxχ(x, y, z) with σmax = 8 km−1, obtained from a large eddy simulation of
stratocumulus [2] and from which the two-dimensional slices LES1 and LES2 were considered. The discrete
domain of analysis has (i) the lengths Lx = Ly = 6 km and Lz = 2 km, (ii) the numbers of base grid points
Nx = Ny = 31 and Nz = 11, and (iii) the base grid spacings ∆x = ∆y = ∆z = 200m. The number of
unknowns is Npts = 10571. The true and retrieved extinction fields computed with the Nesterov acceleration
method are illustrated in Figs. 12 and 13. For these results, the residual decrease ratio is 2.10 × 10−4, the
relative error in the extinction field is 23.08× 10−2, and the computational time is 7h16min. In conclusion,
the retrieval accuracy is acceptable and comparable to that obtained for the two-dimensional slice LES2, but
the computational time is on average 5 times higher.

8 Conclusions
A retrieval algorithm for cloud tomography has been designed. For this purpose, we used our own imple-
mentation of SHDOM to compute the radiative transfer and the surrogate minimization method to solve the
inverse problem. The following features of the algorithm deserve to be mentioned.

1. The objective function to be minimized includes, in addition to the residual, a regularization term. This
is constructed by using spatial filtering techniques from image processing, and in particular, averaging,
Gaussian, and median low-pass filters. The regularization parameter which controls the amount of
smoothness is gradually decreased during the iteration.

2. The iteration is stopped according to the absolute residual convergence test, i.e., when the residual
declines a specified fraction of its initial value.

3. The algorithm includes a surrogate step, in which the original objective function is substituted by a
tractable surrogate function, and a minimization step, in which the surrogate function is minimized.
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Figure 9: Relative error in extinction field versus the outer iteration index for a box cloud. The results are
computed with and without regularization. The regularization terms corresponds to an averaging filter.
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Figure 10: Residual R(σext) versus the relative distance d =
∥∥σext − σ†ext
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for a box cloud with

a non-smooth cloud extinction field σcld
ext(x, z) = σmaxχε(x, z), where χε(x, z) = (1 + σfε)χ(x, z) and ε ∼

U(−1, 1). The results correspond to different values of the standard deviation σf and 1000 configurations for
each σf .
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Figure 11: Relative error in extinction field versus the outer iteration index for the LES2 cloud. The results
correspond to a surrogate function in which the source function and the surface radiance are kept constant
during the minimization step (1) and a surrogate function in which the single-scattering radiance is changed
during the minimization step (2).

Figure 12: True extinction field (top) and retrieved extinction field (bottom) in the xz-plane for a three-
dimensional cloud extinction field obtained from a large eddy simulation of stratocumulus. The results are
computed with the Nesterov acceleration method.
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Figure 13: The same as in Fig. 12 but for the yz-plane.

Accordingly, at each step of an outer iteration, the objective function is approximated by a surrogate
function, while at each step of an inner iteration, the surrogate function is reduced.

4. To construct a surrogate function, the single-scattering radiance can either be changed or kept constant
during the minimization step.

5. To minimize the surrogate function, several first-order optimization methods are employed. These
include the (i) projected gradient method, the non-convex versions of (ii) the Nesterov acceleration
method and (iii) FISTA, and (iv) the BFGS algorithm. The optimization methods are used in com-
bination with a step length algorithm based on Wolfe conditions. Analogous to REGINN iteration
method, the number of steps of the inner iteration is increased during the outer iteration.

In fact, the algorithm performances are mainly increased by the use of (i) regularization and (ii) accelerated
projected gradient methods. Depending on the application, the use of a surrogate function, in which the
single-scattering radiance is changed during the minimization step, may also improve the algorithm efficiency.

In a companion paper we will describe the implementation of the adjoint method in the cloud tomographic
retrieval algorithm. This method can compute a more accurate gradient, but the accuracy comes at the cost
of requiring one extra call to the radiative transfer solver.

Appendix A
In SHDOM, discrete ordinates and spherical harmonics are used to represent the radiance field during different
parts of the solution algorithm.

1. The discrete ordinates are a reduced Gaussian grid and are used to integrate the radiative transfer
equation spatially. There are Nµ Gaussian quadrature cosine zenith angles, µj , and Nϕ evenly spaced
azimuth angles, ϕk. The discrete ordinate set is reduced by having fewer azimuth angles at larger
|µ|j ; thus, Nϕ depends on j. The corresponding Gauss-Legendre quadrature weights and azimuthal
integration weights (normalized appropriately) are wµj and wϕjk, respectively.
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2. The spherical harmonics are orthonormal real valued functions and are used to compute the source
function including the scattering integral. They are defined by

Ymn(µ, ϕ) = P |m|n (µ)um(ϕ), (42)

where P |m|n (µ) are the normalized associated Legendre functions, and

um(ϕ) =


(1/
√
π) cos(|m|ϕ)

(1/
√

2π)

(1/
√
π) sin(|m|ϕ)

m > 0

m = 0

m < 0

(43)

are the Fourier harmonics. Specifically, the source function (5) is expressed in the spherical harmonic
space as

J(r,Ω) =

M∑
m=−M

N∑
n=|m|

Jmn(r)Ymn(Ω), (44)

where N = Nµ − 1 is the maximum expansion order and M = Nϕ/2 − 1 is the maximum number of
azimuthal modes. Moreover, by means of the addition theorem for the Legendre functions, the phase
function, expanded in terms of unnormalized Legendre polynomials

P̃n(cos Θ) =

√
2

2n+ 1
Pn(cos Θ), (45)

as

P (r, cos Θ) =

Nrank∑
n=1

χn(r)P̃n(cos Θ), (46)

where χn(r) are the Legendre phase function coefficients and Nrank is the maximum expansion order
of the phase function, is truncated in the spherical harmonic space as

P (r, cos Θ) = 4π

M∑
m=−M

N∑
n=|m|

χn(r)

2n+ 1
Ymn(Ω)Ymn(Ω′), (47)

where cos Θ = Ω ·Ω′.

The input parameters of SHDOM are the extinction coefficient σext, the single scattering albedo ω, and the
expansion coefficients of the phase function χn. The quantities are specified at all grid points ri. If the
delta-M scaling method is applied, σext, ω, and χn are scaled before their use. The scaled quantities σext, ω,
and χn are given, respectively, by

σext = (1− fω)σext, (48)

ω =
1− f

1− fω
ω, (49)

2

2n+ 1
χn =

1

1− f

( 2

2n+ 1
χn − 2f

)
, n = 0, . . . , N, (50)

where
f =

1

2N + 3
χN+1 (51)

is the truncation fraction.
The solution method is based on Picard iterations. At the beginning of each iteration step, the expansion

coefficients Jmn(ri), m = −M, . . . ,M , n = |m|, . . . , N , are assumed to be known at all grid points ri. They
are updated according to the following computational steps.
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1. The source function is transformed to discrete ordinates,

J(ri,Ωjk) =

M∑
m=−M

N∑
n=|m|

Jmn(ri)Ymn(Ωjk)

=

M∑
m=−M

um(ϕk)

N∑
n=|m|

Jmn(ri)P
|m|
n (µj), (52)

where Ωjk = (µj , ϕk).

2. The discrete ordinate radiance I(ri,Ωjk) is computed from the source function J(ri,Ωjk) by integrating
the radiative transfer equation. Essentially, (i) the radiances are computed at all grid points ri and
in all downward directions Ω−jk by integrating the radiative transfer equation with the top boundary
condition I(rti,Ω

−
jk) = 0, i.e.,

I(ri,Ω
−
jk) =

∫ ri

rti

σext(r)J(r,Ω−jk)T (r, ri)ds, (53)

(ii) the radiances at all points on the bottom surface rb+i and in all upward directions Ω+
jk are computed

from the boundary condition, e.g., in the case of a Lambertian surface,

I(rbi,Ω
+
jk) =

As

π
F0T (r0bi, rbi)

+
As

π

Nµ/2∑
j′=1

Nϕj′∑
k′=1

wµj′wϕj′k′ |µ−j′ |I(rbi,Ω
−
j′k′), (54)

(iii) the radiances are computed at all grid points ri and in all upward directions Ω+
jk by integrating

the radiative transfer equation with the boundary condition (54), i.e.,

I(ri,Ω
+
jk) = I(rbi,Ω

+
jk)T (rbi, ri)

+

∫ ri

rbi

σext(r)J(r,Ω+
jk)T (r, ri) ds. (55)

Here and in the following, a bar notation stands for a delta-M scaled quantity.

3. The discrete ordinate radiance is transformed to the spherical harmonic space according to

Imn(ri) =

Nµ∑
j=1

wµjP
|m|
n (µj)

Nϕj∑
k=1

wϕjkI(ri,Ωjk)um(ϕk). (56)

4. The source function is updated from the radiance in the spherical harmonic space as

Jmn(ri) = ω(ri)
χn(ri)

2n+ 1
Imn(ri)

+ ω(ri)
χn(ri)

2n+ 1
Ymn(Ω0)

F0

|µ0|
T (r0i, ri). (57)

The following additional features of SHDOM should be mentioned.

1. An adaptive grid is implemented to add grid points in regions where the source function is changing
more rapidly. The adaptive grid evolves from the base grid by splitting cells where more resolution is
judged to be needed. The criterion for splitting cells is based on how much the source function changes
across a cell. A cell may be split in half in either of the three Cartesian directions, depending on
whether any of them exceed the splitting criterion.
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2. Because the solution method is similar to an order of scattering approach, convergence is slower for
optically thicker or more scattering media. For these situations, an acceleration method, based on the
observed geometric convergence of the solution, is used.

For solar problems with the delta-M method and when the TMS method [11] is used to compute the source
function, the spherical harmonic representation of the source function Jmn(ri) is transformed to a desired
viewing direction Ωmq by using the relations

J(ri,Ωmq) =

M∑
m=−M

N∑
n=|m|

Jmn(ri)Ymn(Ωmq) +4J(ri,Ωm), (58)

4J(ri,Ωmq) =
F0

|µ0|
T (r0i, ri)

[ ω(ri)

1− fω(ri)

1

4π

Nrank∑
n=1

χn(ri)P̃n(cos Θq)

− ω(ri)

M∑
m=−M

N∑
n=|m|

χn(ri)

2n+ 1
Ymn(Ω0)Ymn(Ωmq)

]
, (59)

where cos Θq = Ω0 ·Ωmq. Note that according to Eqs. (58) and (59), the TMS method replaces the scaled,
truncated Legendre phase function expansion for the singly scattered solar radiation by the full, unscaled
phase function expansion, while the multiply scattered contribution still comes from the truncated phase
function.

Appendix B
In this appendix we describe a procedure to construct a surrogate function in which only the single-scattering
radiance is changed during the minimization step. Specifically, after the iterative process of SHDOM has
converged, we perform the following computational steps.

Step 1. We use the spherical harmonic coefficients

Jmn(ri;σext|σextl) = Jms
mn(ri;σextl) + J ss

mn(ri;σext), (60)
Jms
mn(ri;σextl) = Jmn(ri;σextl)− J ss

mn(ri;σextl), (61)

J ss
mn(ri;σext) = ω(ri)

χn(ri)

2n+ 1
Ymn(Ω0)

F0

|µ0|
T (r0i, ri;σext), (62)

to construct the surrogate function. This result implies that in the framework of the TMS method,
the spherical harmonic representation of the source function Jmn(ri;σext|σextl) transforms to direction
Ωmq according to the relation

J(ri,Ωmq;σext|σextl) =

M∑
m=−M

N∑
n=|m|

Jms
mn(ri;σextl)Ymn(Ωmq)

+
F0

4π|µ0|
T (r0i, ri;σext)

ω(ri)

1− fω(ri)

×
Nrank∑
n=1

χn(ri)P̃n(cos Θq), (63)

where cos Θq = Ω0 ·Ωmq. The grid point values J(ri,Ωmq;σext|σextl) are then used in Eq. (23), i.e.,

Î(rt,Ωmq;σext|σextl) = I(rb,Ωmq;σextl)T (rb, rt;σext)

+

∫ rt

rb

σext(r)J(r,Ωmq;σextl)T (r, rt;σext) ds. (64)

to compute the integral of the source function J(r,Ωmq;σext|σextl) .
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Step 2. We use the grid point surface radiance

I(rbi,Ωmq;σext|σextl) = Ims(rbi,Ωmq;σextl) + Iss(rbi,Ωmq;σext), (65)
Ims(rbi,Ωmq;σextl) = I(rbi,Ωmq;σextl)− Iss(rbi,Ωmq;σextl) (66)

Iss(rbi,Ωmq;σext) =
As

π
µ0T (r0bi, rbi;σext) (67)

to compute the surface radiance I(rb,Ωmq;σext|σextl) by bilinear interpolation.

Thus, the radiance I(rt,Ωmq;σext|σextl), which determines the surrogate function Qα(σext|σextl) according
to Eqs. (20)–(22), is given by Eq. (64) in which I(rb,Ωmq;σextl) and J(r,Ωmq;σextl) are replaced by
I(rb,Ωmq;σext|σextl) and J(r,Ωmq;σext|σextl), respectively. From Eqs. (63) and (67), we infer that the
derivatives of J(ri,Ωmq;σext|σextl) and I(rbi,Ωmq;σext|σextl) are also expressed in terms of the derivatives
of the transmission function T . It should be pointed out that in the retrieval, either Step 1, or both Steps 1
and 2 can be performed.

Some comments are in order.

1. The single-scattering radiance is usually defined as the solution of a boundary-value problem consisting
in the inhomogeneous differential equation

dIss
ds

(r,Ω) = −σext(r)Iss(r,Ω) + σext(r)Jss(r,Ω), (68)

Jss(r,Ω) =
ω(r)

4π

F0

|µ0|
P (r,Ω,Ω0)T (r0, r), (69)

and the boundary conditions

Iss(rt,Ω
−) = 0, rt ∈ St, (70)

Iss(rb,Ω
+) = 0, rb ∈ Sb. (71)

In this case, by Step 1 above we ensure that this single-scattering radiance is changed during the
minimization step.

2. We define the single-scattering radiance as the solution of a boundary-problem consisting in the inho-
mogeneous differential equation (68)–(69) and the boundary conditions (70) and

Iss(rb,Ω
+) =

As

π
F0T (r0b, rb). (72)

In this case, by Steps 1 and 2 above we ensure that this single-scattering radiance is changed during the
minimization step. Actually, by this procedure, the multiple-scattering components of (i) the spherical
harmonic coefficients of the source function Jmn(ri;σext) and (ii) the grid point radiances at the bottom
surface I(rbi,Ωmq;σext) are kept constant during the minimization step.

3. To exploit a full analytical computation of the derivatives of the transmission function, we define
the single-scattering radiance as the solution of a boundary-problem consisting in the inhomogeneous
differential equation (68)–(69) and the boundary conditions (70) and

Iss(rb,Ω
+) =

As

π
F0T (r0b, rb)

+
As

π

∫
Ω−
|µ−|Iss(rb,Ω−)dΩ−, rb ∈ Sb, (73)

In this case, the surface radiance Iss(rb,Ωmq;σext) in Eq. (65), is computed from the grid point values

Iss(rbi,Ωmq;σext) =
As

π
F0T (r0bi, rbi;σext)

+
As

π

Nµ/2∑
j′=1

Nϕj′∑
k′=1

wµj′wϕj′k′ |µ−j′ |Iss(rbi,Ω
−
j′k′ ;σext), (74)
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with

Iss(rbi,Ω
−
j′k′ ;σext) =

∫ rbi

rti

σext(r)Jss(r,Ω
−
j′k′ ;σext)T (r, rbi;σext) ds, (75)

Jss(r,Ω
−
j′k′ ;σext) =

M∑
m=−M

N∑
n=|m|

ω(r)
χn(r)

2n+ 1
Ymn(Ω0)Ymn(Ω−j′k′)

× F0

|µ0|
T (r0, r;σext). (76)

In principle, the computation of the derivatives of Iss(rbi,Ω
−
j′k′ ;σext), and so, of Iss(rbi,Ωmq;σext), also

requires only the computation of the derivatives of the transmission function T . However, our numerical
analysis showed that this computational step is extremely time consuming, and for this reason, less
recommendable.
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