
Atmos. Meas. Tech., 14, 3837–3869, 2021
https://doi.org/10.5194/amt-14-3837-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

XCO2 retrieval for GOSAT and GOSAT-2 based on
the FOCAL algorithm
Stefan Noël1, Maximilian Reuter1, Michael Buchwitz1, Jakob Borchardt1, Michael Hilker1, Heinrich Bovensmann1,
John P. Burrows1, Antonio Di Noia2, Hiroshi Suto3, Yukio Yoshida4, Matthias Buschmann1, Nicholas M. Deutscher5,
Dietrich G. Feist6,7,8, David W. T. Griffith5, Frank Hase9, Rigel Kivi10, Isamu Morino4, Justus Notholt1,
Hirofumi Ohyama4, Christof Petri1, James R. Podolske11, David F. Pollard12, Mahesh Kumar Sha13, Kei Shiomi3,
Ralf Sussmann14, Yao Té15, Voltaire A. Velazco5,a, and Thorsten Warneke1

1Institute of Environmental Physics, University of Bremen, FB 1, P.O. Box 330440, 28334 Bremen, Germany
2Earth Observation Science, University of Leicester, LE1 7RH, Leicester, UK
3Japan Aerospace Exploration Agency (JAXA), 305-8505, Tsukuba, Japan
4National Institute for Environmental Studies (NIES), 305-8506, Tsukuba, Japan
5Centre for Atmospheric Chemistry, School of Earth, Atmospheric and Life Sciences,
University of Wollongong, NSW 2522, Australia
6Max Planck Institute for Biogeochemistry, 07745 Jena, Germany
7Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, 82234 Oberpfaffenhofen, Germany
8Ludwig-Maximilians-Universität München, Lehrstuhl für Physik der Atmosphäre, 80539 Munich, Germany
9Karlsruhe Institute of Technology, IMK-ASF, 76021 Karlsruhe, Germany
10Finnish Meteorological Institute, Space and Earth Observation Centre, Tähteläntie 62, 99600 Sodankylä, Finland
11NASA Ames Research Center, Atmospheric Science Branch, Moffett Field, CA 94035, USA
12National Institute of Water and Atmospheric Research Ltd (NIWA), Lauder,Private Bag 50061,
Omakau 9352, New Zealand
13Royal Belgian Institute for Space Aeronomy (BIRA-IASB), 1180 Brussels, Belgium
14Karlsruhe Institute of Technology, IMK-IFU, 82467 Garmisch-Partenkirchen, Germany
15Laboratoire d’Etudes du Rayonnement et de la Matière en Astrophysique et Atmosphères (LERMA-IPSL), Sorbonne
Université, CNRS, Observatoire de Paris, PSL Université, 75005 Paris, France
anow at: Deutscher Wetterdienst, Meteorological Observatory, 82383 Hohenpeissenberg, Germany

Correspondence: S. Noël (stefan.noel@iup.physik.uni-bremen.de)

Received: 11 November 2020 – Discussion started: 15 December 2020
Revised: 9 March 2021 – Accepted: 9 April 2021 – Published: 26 May 2021

Abstract. Since 2009, the Greenhouse gases Observing
SATellite (GOSAT) has performed radiance measurements in
the near-infrared (NIR) and shortwave infrared (SWIR) spec-
tral region. From February 2019 onward, data from GOSAT-
2 have also been available.

We present the first results from the application of the
Fast atmOspheric traCe gAs retrievaL (FOCAL) algorithm
to derive column-averaged dry-air mole fractions of carbon
dioxide (XCO2) from GOSAT and GOSAT-2 radiances and
their validation. FOCAL was initially developed for OCO-2
XCO2 retrievals and allows simultaneous retrievals of several

gases over both land and ocean. Because FOCAL is accurate
and numerically very fast, it is currently being considered as
a candidate algorithm for the forthcoming European anthro-
pogenic CO2 Monitoring (CO2M) mission to be launched in
2025.

We present the adaptation of FOCAL to GOSAT and dis-
cuss the changes made and GOSAT specific additions. This
particularly includes modifications in pre-processing (e.g.
cloud detection) and post-processing (bias correction and fil-
tering).
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A feature of the new application of FOCAL to GOSAT
and GOSAT-2 is the independent use of both S- and P-
polarisation spectra in the retrieval. This is not possible for
OCO-2, which measures only one polarisation direction. Ad-
ditionally, we make use of GOSAT’s wider spectral cover-
age compared to OCO-2 and derive not only XCO2, water
vapour (H2O), and solar-induced fluorescence (SIF) but also
methane (XCH4), with the potential for further atmospheric
constituents and parameters like semi-heavy water vapour
(HDO). In the case of GOSAT-2, the retrieval of nitrous oxide
(XN2O) and carbon monoxide (CO) may also be possible.

Here, we concentrate on the new FOCAL XCO2 data
products. We describe the generation of the products as well
as applied filtering and bias correction procedures. GOSAT-
FOCAL XCO2 data have been produced for the time interval
2009 to 2019. Comparisons with other independent GOSAT
data sets reveal agreement of long-term temporal variations
within about 1 ppm over 1 decade; differences in seasonal
variations of about 0.5 ppm are observed. Furthermore, we
obtain a station-to-station bias of the new GOSAT-FOCAL
product to the ground-based Total Carbon Column Observ-
ing Network (TCCON) of 0.56 ppm with a mean scatter of
1.89 ppm.

The GOSAT-2-FOCAL XCO2 product is generated in
a similar way as the GOSAT-FOCAL product, but with
adapted settings. All GOSAT-2 data until the end of 2019
have been processed. Because of this limited time interval,
the GOSAT-2 results are considered to be preliminary only,
but first comparisons show that these data compare well with
the GOSAT-FOCAL results and also TCCON.

1 Introduction

Carbon dioxide (CO2) is the most important greenhouse gas
in the context of global warming (e.g. IPCC, 2013). The
amount of CO2 in the atmosphere is primarily determined by
natural and anthropogenic sources and sinks, but our current
understanding of these sources and sinks has significant gaps
(e.g. Ciais et al., 2014; Reuter et al., 2017a; Friedlingstein
et al., 2019; Janssens-Maenhout et al., 2020). Retrievals of
column-averaged carbon dioxide (XCO2) from the satellite
sensors SCIAMACHY (ENVISAT) (Burrows et al., 1995;
Bovensmann et al., 1999; Reuter et al., 2010, 2011) and
TANSO FTS (GOSAT) (Kuze et al., 2016), as well as from
the Orbiting Carbon Observatory-2 (OCO-2) satellite (Crisp
et al., 2004; Eldering et al., 2017; O’Dell et al., 2012, 2018)
have been used for over a decade to obtain information on
natural CO2 sources and sinks (e.g. Chevallier et al., 2014;
Chevallier, 2015; Reuter et al., 2014b, 2017a; Schneising
et al., 2014; Basu et al., 2013; Houweling et al., 2015;
Kaminski et al., 2017; Liu et al., 2017; Eldering et al., 2017;
Yin et al., 2018; Palmer et al., 2019) and on anthropogenic
CO2 emissions (e.g. Schneising et al., 2008, 2013; Reuter

et al., 2014a, 2019a; Nassar et al., 2017; Schwandner et al.,
2017; Miller et al., 2019; Labzovskii et al., 2019; Wu et al.,
2020; Zheng et al., 2020).

The first satellite measurements of XCO2 were per-
formed by the Scanning Imaging Absorption Spectrometer
for Atmospheric CHartographY (SCIAMACHY) instrument
(Bovensmann et al., 1999; Gottwald and Bovensmann, 2011;
Reuter et al., 2010, 2011) on the European environmen-
tal satellite ENVISAT launched in 2002 and operating until
April 2012.

Whereas greenhouse gases were only one field of applica-
tion among others of SCIAMACHY, later satellite missions
focused explicitly on these. In 2009, the Greenhouse gases
Observing SATellite (GOSAT; Kuze et al., 2009, 2016) was
launched, followed by the Orbiting Carbon Observatory-2
(OCO-2; Crisp et al., 2017; Eldering et al., 2017; O’Dell
et al., 2012, 2018) in 2014. Furthermore, in 2016 the Chinese
TanSat mission was launched; the first results were presented
by Yang et al. (2018). Follow-on instruments to GOSAT and
OCO-2 (GOSAT-2; Suto et al., 2021) (OCO-3; Taylor et al.,
2020) have been in orbit since 2018 and 2019, respectively.
The TanSat, GOSAT, and OCO-2 and OCO-3 instruments
are still operating, and several different retrieval algorithms
have been developed to derive XCO2 from their near-infrared
(NIR) and shortwave infrared (SWIR) spectra.

The main challenge for spaceborne XCO2 measurements
is the required accuracy of the resulting data products as the
atmospheric background of XCO2 is high compared to the
variability, which is typically less than a few percent (about
2 % seasonal cycle variations in the Northern Hemisphere
in addition to an annual increase of about 0.5 % yr−1; see
e.g. Schneising et al., 2014; Buchwitz et al., 2018). Depend-
ing on the application, even higher accuracies are needed.
An accurate XCO2 retrieval usually requires a complex re-
trieval method and large computational effort. This is no ma-
jor problem for the number of measurements provided by the
GOSAT instruments, but even current OCO-2 retrievals re-
quire significantly larger computational effort. However, new
missions with much higher spatial resolution and coverage
are currently in preparation to address the challenging ques-
tions on CO2 local and global sources and sinks in a changing
climate; one amongst them is the forthcoming European an-
thropogenic CO2 Monitoring (CO2M) mission (Kuhlmann
et al., 2019; Janssens-Maenhout et al., 2020), dramatically
increasing the computational power needed for retrievals.

About 3 years ago, Reuter et al. (2017b, c) developed the
Fast atmOspheric traCe gAs retrievaL (FOCAL) and applied
it to OCO-2 data. To show the applicability of the FOCAL
method not only to OCO-2 but also to other satellite sen-
sors, we present in this study a new application of FOCAL
to GOSAT and also some first results from an application
to GOSAT-2. GOSAT-FOCAL has several advantages over
GOSAT BESD (Heymann et al., 2015), the currently used
IUP GOSAT XCO2 retrieval product (Heymann et al., 2015),
which provides only XCO2 data over land. However, FO-
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CAL is able to retrieve not only XCO2 but – depending on
the used spectral ranges – also other atmospheric parameters
like XCH4, H2O, HDO, CO, and N2O. In the present study
we concentrate on XCO2, as this is the most important (and
because of its high requirements for accuracy possibly the
most challenging) anthropogenic greenhouse gas.

The paper is organised as follows: in Sect. 2 we list all data
sets used in this study. The retrieval algorithm is described
in Sect. 3. Sections 4 and 5 then show the results of the re-
trieval and the validation. Finally, the conclusions are given
in Sect. 6.

2 Data sets used

2.1 GOSAT and GOSAT-2

The Greenhouse gases Observing SATellite (GOSAT; Kuze
et al., 2009) was launched in January 2009 and is still in op-
eration. The Thermal And Near infrared Sensor for carbon
Observation (TANSO) on-board GOSAT consists of a Cloud
and Aerosol Imager (TANSO CAI) and a Fourier Transform
Spectrometer (TANSO FTS), which measures radiances in
the NIR and SWIR spectral region with S and P polarisa-
tion and in the thermal infrared spectral region without po-
larisation with a spectral resolution of 0.2 cm−1. The FO-
CAL retrieval uses as the main input calibrated GOSAT L1B
V220.220 spectra from the three NIR–SWIR bands (around
0.76, 1.6, and 2.0 µm) of TANSO FTS.

GOSAT-2 (Nakajima et al., 2017; Suto et al., 2021) was
launched in October 2018 and comprises similar instrumen-
tation as GOSAT. The GOSAT-2 FTS has the same spectral
resolution but an extended spectral range for SIF and CO re-
trievals.

We use calibrated GOSAT-2 L1B NIR–SWIR data
V101.101.

Both GOSAT and GOSAT-2 perform point measurements
with a spatial resolution (footprint diameter) of about 10 km.
For both instruments, we use a tabulated instrumental line
shape (ILS) with a kernel width of 15 cm−1. For GOSAT this
has been generated by a theoretical formula parameterising a
“real-world” FTS instrument (see e.g. formula 5.21 in Davis
et al., 2001), which depends on the maximum optical path
difference (MOPD, ±2.5 cm for GOSAT) and the size of the
instantaneous field of view (IFOV, 15.8 mrad for GOSAT).
The same formula has been used by Heymann et al. (2015).
This ILS is symmetric and the same for S and P polarisation.

For GOSAT-2, we use a preliminary tabulated ILS pro-
vided by JAXA generated on 16 January 2020, which is dif-
ferent for S and P polarisation and asymmetric, especially
in the NIR band. Meanwhile, this ILS has been officially re-
leased and is available via the NIES web site.

2.2 Reference spectra and external databases

For the retrieval several reference spectra and databases are
used.

The solar spectrum used in the forward model is based on
a high-resolution solar transmittance spectrum (O’Dell et al.,
2012) in combination with an ISS solar reference spectrum
(Meftah et al., 2018). For the SIF retrieval we used a chloro-
phyll fluorescence spectrum by Rascher et al. (2009), which
has been scaled to 1.0 mWm−2 sr−1 nm−1 at 760 nm.

We use tabulated cross sections at a 0.001 cm−1 sampling
based on HITRAN2016 (Gordon et al., 2017) and the absorp-
tion cross section database ABSCO v5.0 (Benner et al., 2016;
Devi et al., 2016) from the NASA (National Aeronautics and
Space Administration) ACOS OCO-2 project.

Surface elevation, surface roughness, and surface type are
derived from the Global Multi-resolution Terrain Elevation
Data (GMTED2010; Danielson and Gesch, 2011) of the
US Geological Survey (USGS) and the National Geospatial-
Intelligence Agency (NGA) at a spatial resolution of 0.025◦.
Meteorological information (pressure, temperature, water
vapour profiles) is obtained from the ECMWF (European
Centre for Medium-Range Weather Forecasts) ERA 5 model
data (Hersbach et al., 2020), which are available every 1 h on
a 0.25◦ horizontal grid and on 137 altitude layers.

We use XCO2 data from the CarbonTracker (CT) model
CT2019 and CT-NRT v2020-1 (Jacobson et al., 2020a, b)
and data from the Total Carbon Column Observing Network
(TCCON; see e.g. Wunch et al., 2011a) in the context of the
bias correction reference database (see Sect. 2.3). TCCON
data are also used for validation (see Sect. 5). Table 1 lists the
TCCON stations which provided data for the present study.

XCO2 a priori profiles are derived using the 2018 version
of the simple empirical CO2 model SECM (Reuter et al.,
2012). In the context of validation, we use the 2020 ver-
sion of SECM. XCH4 a priori data are from the simple
CH4 climatological model SC4C2018 developed and used by
Schneising et al. (2019) and briefly described by Reuter et al.
(2020).

For CO2 we use the “synth” a priori error covariance ma-
trix described by Reuter et al. (2017b). For H2O, we use the
same error covariance matrix as Reuter et al. (2017b), but
scaled by a factor of 5 to reduce the dependencies of the
retrieval results on the a priori. For CH4, for convenience,
we scale the CO2 matrix to result in an XCH4 uncertainty of
45 ppb, which is considered to be a reasonable estimate. Note
that only the matrices are scaled, not the a priori values.

2.3 The reference database

Quality filtering and bias correction usually require knowl-
edge of a “true” (in this case XCO2) value. For this, we do
not simply use model data as truth, as one aim of XCO2 prod-
ucts is to improve models. Another method is to take ground-
based TCCON measurements as a basis for bias correction.
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3840 S. Noël et al.: XCO2 from GOSAT and GOSAT-2 using FOCAL

Table 1. TCCON stations used in this study.

Site Long. (deg) Lat. (deg) Elev. (km) Reference(s)

Ascension Island (SH) −14.33 −7.92 0.01 Feist et al. (2014)
Bialystok (PL) 23.03 53.23 0.18 Deutscher et al. (2019)
Bremen (DE) 8.85 53.10 0.04 Notholt et al. (2019a)
Burgos (PH) 120.65 18.53 0.04 Morino et al. (2018b)
Darwin (AU) 130.89 12.42 0.03 Griffith et al. (2014a)
Edwards (US) −117.88 34.96 0.70 Iraci et al. (2016a)
East Trout Lake (CA) −104.99 54.35 0.50 Wunch et al. (2017)
Eureka (CA) −86.42 80.05 0.61 Strong et al. (2019)
Four Corners (US) −108.48 36.80 1.64 Dubey et al. (2014)
Garmisch-Partenkirchen (DE) 11.06 47.48 0.74 Sussmann and Rettinger (2018a)
Hefei (CN) 117.17 31.90 0.04 Liu et al. (2018)
Indianapolis (US) −86.00 39.86 0.27 Iraci et al. (2016b)
Izaña (ES) −16.50 28.30 2.37 Blumenstock et al. (2017)
Karlsruhe (DE) 8.43 49.10 0.11 Hase et al. (2014)
Lamont (US) −97.49 36.60 0.32 Wennberg et al. (2016)
Lauder (NZ) 169.68 −45.04 0.37 Sherlock et al. (2014a, b), Pollard et al. (2019)
Ny Ålesund (NO) 11.90 78.90 0.02 Notholt et al. (2019b)
Orleans (FR) 2.11 47.97 0.13 Warneke et al. (2019)
Paris (FR) 2.36 48.85 0.06 Te et al. (2014)
Park Falls (US) −90.27 45.95 0.44 Wennberg et al. (2017)
Pasadena (US) −118.13 34.13 0.21 Wennberg et al. (2014)
Réunion Island (FR) 55.49 −20.90 0.09 De Mazière et al. (2017)
Rikubetsu (JP) 143.77 43.46 0.36 Morino et al. (2017)
Saga (JP) 130.29 33.24 0.01 Kawakami et al. (2014)
Sodankylä (FI) 26.63 67.37 0.18 Kivi et al. (2014)
Tsukuba (JP) 140.12 36.05 0.03 Morino et al. (2018a)
Wollongong (AU) 150.88 −34.41 0.03 Griffith et al. (2014b)
Zugspitze (DE) 10.98 47.42 2.96 Sussmann and Rettinger (2018b)

However, although TCCON measurements are very accurate
(estimated 1σ precision is 0.4 ppm; see Wunch et al., 2010),
they are only available at certain locations and are therefore
more suited for validation.

Our choice is therefore to use a database generated from
a combination of TCCON measurements and CarbonTracker
(CT) model data for a reference year (2018 for GOSAT, 2019
for GOSAT-2), which should on average reproduce large-
scale features correctly.

This database is produced in the following way: as a first
step, we determine from the CT data global daily 3D maps
close to 13:00 local time (i.e. GOSAT and GOSAT-2 Equator
crossing time). We reduce the altitude grid to five layers with
the same dry-air sub-columns, i.e. the same quantity of par-
ticles, and interpolate the data from the native CT horizontal
resolution of 3◦×2◦ to 0.5◦×0.5◦. Then we determine from
the TCCON data for each day mean values (XCOTCCON

2 ) for
13:00±2h local time. Next, we select collocated CT data
and correct them for the TCCON averaging kernels, result-
ing in a TCCON-corrected CT value at the TCCON location
(XCOCT

2 ). The application of the averaging kernels corrects
for different vertical resolutions and/or sensitivities (see e.g.
Rodgers and Connor, 2003; Wunch et al., 2010). We look

for contiguous regions where CT XCO2 data differ by less
than 0.75 ppm from the CT value at the TCCON location;
these data are then used for the reference database. The ref-
erence database therefore does not contain any TCCON data
– it only contains CT data which were confirmed by TCCON,
but individual values may differ by up to 1.5 ppm. The choice
of the 0.75 ppm ranges is based on a trade-off between accu-
racy (agreement with TCCON) and spatial coverage of the
database.

The results are daily maps containing CO2 data for five
vertical sub-layer altitudes. The spatial coverage is usually
not global and varies from day to day. There are typically
more data in the Southern Hemisphere during the second half
of the year compared to the first half of the year (see Fig. 1).
When comparing with GOSAT or GOSAT-2 measurement
results, the true XCO2 is then computed from the CO2 layers
of the reference database considering the retrieval’s averag-
ing kernels.

Specifically, for GOSAT we use CT2019 data in combi-
nation with TCCON GGG2014 (see Table 1) for 2018 here.
For GOSAT-2 we also use TCCON GGG2014 data, but need
to rely on CT-NRT v2020-1 for 2019. Because the CT NRT
data are not yet available for the whole year of 2019, the
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Figure 1. XCO2 from the GOSAT-FOCAL reference database. The
black markers show the locations of TCCON stations. (a) 1 April
2018. (b) 1 October 2018.

GOSAT-2 reference database does not cover the whole year;
there are essentially no data after August 2019. This is a lim-
iting factor for GOSAT-2, especially because this also means
that data in the Southern Hemisphere are less present in the
2019 database.

2.4 GOSAT Level 2 products

To assess the quality of the newly created GOSAT-FOCAL
XCO2 products, they have been compared with several other
well-established GOSAT Level 2 data sets (see Sect. 5). The
GOSAT BESD v01.04 product from IUP (Heymann et al.,
2015) is a near-real-time product generated in the context
of the Copernicus Atmospheric Monitoring Service (CAMS,
https://atmosphere.copernicus.eu/, last access: 30 July 2020)
project. It is available from 2014 onward. The GOSAT Re-
moTeC v2.3.8 product from SRON (Butz et al., 2011) and
the full-physics GOSAT product from the University of Le-
icester v7.3 (Cogan et al., 2012) were generated in the con-
text of the Copernicus Climate Change Service (C3S, https:
//climate.copernicus.eu/, last access: 30 July 2020) and cover

the GOSAT time series from 2009 until the end of 2019. The
recently released NASA GOSAT ACOS v9r product (O’Dell
et al., 2012, 2018; Kiel et al., 2019) is also available for the
years 2009 to 2019. The operational GOSAT XCO2 prod-
uct v02.95 (bias corrected) from NIES (Yoshida et al., 2013)
currently ends in August 2020. The BESD product contains
only XCO2 data over land; all other products are available
for water and land surfaces.

3 Retrieval algorithm

The retrieval is performed in three main steps: pre-
processing, processing, and post-processing. These are de-
scribed in the following subsections.

3.1 Pre-processing

During pre-processing all required input data for the main
processing step are collected. Furthermore, a first filtering of
data is performed to reduce processing time.

The pre-processing procedure is largely based on the pre-
processing as present in the BESD GOSAT product (Hey-
mann et al., 2015). The sequence of pre-processing activities
is as follows.

1. Extract measured spectra, geolocation, and information
on quality and measurement modes (e.g. gain, scan di-
rection) from the GOSAT L1B product.

2. Estimate instrument noise and cloud parameters.

3. Filter for data quality, latitudes, solar zenith angle,
signal-to-noise ratio, and clouds (see Table 2 for set-
tings).

4. Extract surface type, elevation, and roughness derived
from the surface database for each measurement.

5. Add corresponding meteorological information (pres-
sure, temperature, dry-air column, and water vapour
profiles) for the time and place of the measurements.
This includes a correction for surface elevation; i.e.
model profiles are extended or cut according to the value
from the surface database.

6. Add a priori gas profiles for each measurement (CO2
from SECM, CH4 from SC4C, H2O from meteorology).
For GOSAT-2, a priori profiles for CO and N2O are also
added. The latter do not depend on geolocation; they are
based on the tropical reference atmosphere from Ander-
son et al. (1986), scaled to column average values of
XCO= 0.1 ppm and XN2O= 330 ppb.

Because FOCAL is a fast algorithm and the number of
GOSAT and GOSAT-2 measurements is much lower than for
OCO-2, we chose to set the pre-processing filters to be rela-
tively relaxed and to apply the quality filtering mostly in the
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post-processing. As can be seen from Fig. 2 about two-thirds
of the measurements are filtered out during pre-processing.

3.1.1 Noise estimate

Similar to Heymann et al. (2015) the spectral noise is initially
assumed to be independent from the wavenumber for each
band. It is estimated from the standard deviation of the real
part of the “dark” off-band signal (i.e. the first 500 spectral
points in each band). In a later step (see Sect. 3.2) this noise
will be modified to account for additional forward model er-
rors and overall scaling.

3.1.2 Cloud filter

The cloud filtering is based on two physical properties of
clouds: clouds are (usually) bright and clouds are high
(higher than the surface) so that little water vapour is above
them. In the pre-processing these properties are described by
two quantities: effective albedo and water vapour filter. These
are derived for each spectrum as described in Heymann et al.
(2015). The effective albedo for each band is estimated from
the mean reflectance L within a spectral range outside the
absorption. L is determined from the mean radiance I , the
mean irradiance I0, and the solar zenith angle α via

L=
πI

I0 cosα
. (1)

The specific wavenumber ranges and irradiance values used
for filtering are given in Table 3.

The water vapour filter is determined from a spectral re-
gion with strong water vapour absorption in the SWIR-3
band (see Table 3). This filter is defined as the ratio between
the median radiance and the median of the estimated noise in
this spectral range.

A ground pixel is assumed to be cloudy if either the ef-
fective albedo in one of the bands or the water vapour filter
exceeds the thresholds given in Table 2.

3.2 Processing

The processing is based on the Fast atmOspheric traCe gAs
retrievaL (FOCAL) algorithm, which is described in detail
in Reuter et al. (2017c). A first successful application of this
algorithm to OCO-2 data is given in Reuter et al. (2017b).
Therefore, we only summarise the main features of the algo-
rithm here and point out the differences to the OCO-2 appli-
cation.

FOCAL approximates modifications of the direct light
path due to scattering in the atmosphere by a single scattering
layer, which is characterised by its height (pressure level), its
optical thickness, and an Ångström parameter that describes
the wavenumber dependence of scattering. The layer height
is normalised to the surface pressure. Furthermore, Lamber-
tian scattering on the surface is considered. For atmospheric
scattering processes an isotropic phase function is assumed.

Table 2. Pre-processing filter limits.

Filter Value

GOSAT quality flag good or poor
GOSAT-2 quality flag good, fair, or poor
Maximum solar zenith angle 70◦

Maximum latitude 70◦

Minimum SNR 10
Maximum effective albedo 0.7
Maximum water vapour filter 4.0

Figure 2. Example for GOSAT data filtering during the different
processing steps (April 2019). Filters are listed in sequential order
from top to bottom on the vertical axis. Numbers in the horizontal
bars denote the percentage of remaining data after this filter was ap-
plied. Orange: total number of measurements before filtering. Yel-
low: pre-processing filters. Blue: step 1 post-processing filters (con-
vergence and noise). Green: random forest post-processing filter.
Light blue: additional post-processing filters.

Atmos. Meas. Tech., 14, 3837–3869, 2021 https://doi.org/10.5194/amt-14-3837-2021
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Table 3. Parameters for cloud filtering.

Effective albedo

GOSAT band Waveno. range (cm−1) Irradiance (Wcm−2 cm)

SWIR-1 13 190–13 210 7.4× 10−6

SWIR-2 6267–6279 6.0× 10−6

SWIR-3 4800–4810 4.3× 10−6

Water vapour filter

GOSAT band Waveno. range (cm−1)

SWIR-3 5176–5193

Figure 3. Same as Fig. 2, but for GOSAT-2.

With this approximation, the FOCAL forward model is es-
sentially an analytical formula; it uses pre-calculated and
tabulated cross sections such that calculations can be per-
formed considerably fast. The inversion of the forward model
is based on optimal estimation (Rodgers, 2000) and uses the
Levenberg–Marquardt–Fletcher method (Fletcher, 1971) to
minimise the cost function.

The OCO-2 retrieval of Reuter et al. (2017b, c) uses four fit
windows in the NIR (near-infrared) and SWIR spectral range
to derive the atmospheric parameters XCO2, water vapour,
and SIF. In contrast to OCO-2, GOSAT and GOSAT-2 cover
a wider spectral range and provide spectra in two polarisation
directions referred to as S and P. Therefore, we treat both po-
larisation directions as independent spectra in our retrieval
as opposed to the average of both as usually used in other
GOSAT retrievals (see e.g. Butz et al., 2011; Cogan et al.,
2012; O’Dell et al., 2012). However, recently Kuze et al.
(2020) presented a methane retrieval for GOSAT based on
an algorithm from Kikuchi et al. (2016), which also makes
use of both polarisation directions.

We use both polarisation corrections mainly for the fol-
lowing reasons.

– In principle, information is lost when averaging S and P
spectra.

– In general, the sensitivity of the instruments and there-
fore the calibration of the measured spectra is different
for S and P. For example, the measured ILS is given in-
dependently for S and P.

– S and P include different information on scattering,
which can also be used in filtering and/or bias correc-
tion.

Furthermore, the FOCAL fitting windows (see Table 4)
have been adapted to the specific GOSAT(-2) spectral bands
such that, in addition, other atmospheric constituents and pa-
rameters like HDO can be derived. In the case of GOSAT-2,
XN2O and CO total columns can also possibly be retrieved.
This results in six fitting windows for GOSAT and eight win-
dows for GOSAT-2 for each polarisation. The retrieval is per-
formed on a wavenumber axis.

Because of the large number of target gases and spectral
bands the retrieval requires various state vector elements.
These are listed together with the fit windows, from which
they are determined, and their a priori values and uncertainty
ranges in Table 5 for GOSAT and GOSAT-2.
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Table 4. Definition of GOSAT and GOSAT-2 spectral fit windows (same for S and P). Windows 7 and 8 are only available for GOSAT-2.

No. Primary target Waveno. range (cm−1) Considered gases

1 SIF 13 170–13 220 O2
2 O2 12 930–13 170 O2
3 HDO 6337–6410 CO2, H2O, HDO, CH4
4 CO2 6161–6297 CO2, H2O, HDO, CH4
5 CH4 5945–6135 CO2, H2O, HDO, CH4
6 CO2 4801–4907 CO2, H2O, HDO

7 N2O 4364–4449 N2O, H2O, HDO, CH4
8 CO 4228–4328 CO, H2O, HDO, CH4

Table 5. State vector elements and related retrieval settings. A priori values are also used as a first guess. “Fit windows” lists the spectral
windows (see Table 4) from which the element is determined. “All” means that an element is determined from all fit windows of the
specified polarisation. “Each” means that a corresponding element is fitted in each fit window. A priori values labelled “PP” are taken from
pre-processing; “est.” denotes that they have been estimated from the background signal.

Element Fit windows A priori A priori uncertainty Comment

Gases

co2_lay 3, 4 , 5, 6 (S and P) PP 10.0 CO2 profile (five layers; ppm)
ch4_lay 3, 4, 5 (S and P) PP 0.045 CH4 profile (five layers; ppm)
h2o_lay 3, 4, 5, 6 (S and P) PP 5.0 H2O profile (five layers; ppm)
sif_fac 1 (S and P) 0.0 5.0 SIF spectrum scaling factor
delta_d 3, 4, 5, 6 (S and P) −200.0 1000.0 δD profile scaling factor
n2o_scl 7 (S and P) 1.0 0.1 N2O profile scaling factor, only GOSAT-2
co_scl 8 (S and P) 1.0 1.0 CO profile scaling factor, only GOSAT-2

Scattering parameters

pre_sca_s all S 0.2 1.0 Layer height (pressure), S
tau_sca_0_s all S 0.01 0.1 Optical depth, S
ang_sca_s all S 4.0 1.0 Ångström coefficient, S
pre_sca_p all P 0.2 1.0 Layer height (pressure), P
tau_sca_0_p all P 0.01 0.1 Optical depth, P
ang_sca_p all P 4.0 1.0 Ångström coefficient, P

Polynomial coefficients (surface albedo)

poly0 each est. 0.1 Estimated surface albedo
poly1 each 0.0 0.01
poly2 each 0.0 0.01 Not in SIF window (1)

Spectral corrections

wav_shi each 0.0 0.1 Wavenumber shift
wav_squ each 0.0 0.001 Wavenumber squeeze

Note: for GOSAT-2 the polynomial degree in fit window 1P is (accidentally) set to 2 and in fit window 7S to 1.

For GOSAT, the retrieval determines CO2, CH4, and H2O
on five layers with same number of air particles, from which
the column average values XCO2, XCH4, and XH2O are then
calculated. Furthermore, solar-induced fluorescence (SIF) is
determined by scaling a corresponding reference spectrum.

Instead of the HDO column, we fit a scaling factor for the
relative abundance of HDO compared to H2O, δD, which is

defined as

δD =
Rmeas

RVSMOW
− 1, (2)

where Rmeas is the ratio of the measured HDO and H2O
columns, and RVSMOW (3.1152×10−4) is the corresponding
value for Vienna Standard Mean Ocean Water (VSMOW).
δD is usually given in units of per mill.
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δD = 0 ‰ corresponds to HDO concentrations as in VS-
MOW and δD =−1000 ‰ to no HDO. We assume the same
profile shape for HDO as for H2O. For GOSAT-2, we also fit
scaling factors to (fixed) CO and N2O profiles.

As mentioned above, atmospheric scattering is considered
in FOCAL by a single scattering layer, which is described by
three parameters (height, optical depth, and Ångström coeffi-
cient). As scattering is different for S- and P-polarised light,
we fit two independent layers for S and P.

In addition, we determine in each fit window (indepen-
dently for S and P) a polynomial background function de-
scribing the surface albedo. For this we use second-order
polynomials except for the small SIF windows (no. 1) for
which a linear function is sufficient. Note that in the current
version of the GOSAT-2 product the polynomial degree in fit
window 1P is accidentally set to 2 and in fit window 7S to 1.
This has no major impact on the retrieved XCO2 and will be
corrected in a future product version.

The GOSAT data files only contain a fixed spectral axis.
As described in e.g. Heymann et al. (2015), the spectral cali-
bration of GOSAT changes with time, especially at the begin-
ning of the mission. This change can be corrected by a spec-
tral scaling factor. We determine this overall scaling factor by
a spectral fit in the SIF window before the retrieval. So far,
this spectral pre-fitting seems to be unnecessary for GOSAT-
2. In the retrieval, we then additionally consider for both
GOSAT and GOSAT-2 possible additional spectral shifts and
squeezes in each fit window by corresponding state vector
elements, but the influences of these spectral changes on the
results is rather small.

Noise model

The noise N derived from the off-band signal is only an es-
timate. It does not consider a possible wavenumber depen-
dence of the noise within one spectral band. Furthermore, a
potential error of the forward model needs to be considered.
In the optimal estimation method this can be achieved by in-
cluding the forward model error in the measurement error
covariance. For this, we define a scaling factor s for the esti-
mated noise and the quantity δF , which denotes the relative
error of the forward model. The forward model error is pro-
portional to the continuum radiance outside the absorption I ,
which is estimated from the 0.99 percentile of the measured
radiance at the edge of each fit window. The quantities δF
and s are determined using the approach described in Reuter
et al. (2017b), i.e. by running the retrieval for a representative
subset of data and then fitting the function

RSR(NSR)=
√
(sNSR)2+ δF 2 (3)

to binned values of the residual-to-signal ratio (RSR) as a
function of the noise-to-signal ratio (NSR). RSR is defined
as the standard deviation of the retrieved spectral residual in
each fit window divided by the continuum signal I ; NSR is
the standard deviation of the noise divided by I .

With the method described in Reuter et al. (2017c) it is
also possible to define a 2σ outlier limit based on NSR and
RSR data, which will be used to filter out data that are too
noisy during post-processing (see Sect. 3.3). This is param-
eterised by a second-order polynomial as a function of the
uncorrected NSR:

fN (NSR)= a0+ a1 NSR+ a2NSR2, (4)

which is added to the RSR function of Eq. (3). The coeffi-
cients ai are determined via a fit. To avoid extrapolation, fN
is set to the edge values outside the fitting range.

In order to cover the varying signal over the year, we base
the noise model fits on data from 1 d per month for one refer-
ence year. For GOSAT, we take data from December 2017 to
November 2018 (as there are few GOSAT data available in
December 2018). For GOSAT-2 we use data from February
2019 to December 2019. In the case of GOSAT-2 we further
restrict the input data for the noise model parameter fit to
data over land because some of the data over water show an
unexpected behaviour (low RSR in the case of large NSR),
which needs further investigation. In this sense, the current
GOSAT-2 noise model is considered to be preliminary and
may need some refinement in the future.

Figure 4 shows as an example the noise model results for
GOSAT and GOSAT-2 in the fit windows 2 (O2(A) band)
and 6 (strong CO2 absorption) for P polarisation. The orange
line gives the fitted RSR function and the red line the out-
lier limit. The derived values from the noise model for all
fitting windows and polarisations are given in Tables 6 and 7
for GOSAT and GOSAT-2. The forward model errors δF are
on average slightly larger for GOSAT-2 than for GOSAT. In
the SWIR, values similar to OCO-2 are obtained, but in the
NIR the OCO-2 δF is typically smaller (about 0.003). This
indicates that for GOSAT and GOSAT-2 instrumental and/or
calibration effects seem to impact the radiance errors more in
the NIR than in the SWIR.

3.3 Post-processing

The purpose of post-processing is to filter out invalid data
and to perform a bias correction for the products. The cur-
rent post-processing focuses on XCO2. The post-processing
is performed in several steps, namely the following:

1. basic filtering based on physical knowledge;

2. filtering out low-quality data using parameters and lim-
its determined with a random forest classifier;

3. application of a bias correction using a random forest
regressor; and

4. additional filtering-out of data with a bias correction that
is too large.

These steps are described in the following subsections.
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Figure 4. Example results from the noise model. (a) GOSAT fit window 2P. (b) GOSAT 2 fit window 2P. (c) GOSAT fit window 6P.
(d) GOSAT 2 fit window 6P.

Table 6. Parameters of the GOSAT noise model.

Fit window s δF a0 a1 a2 NSR range

S polarisation

1 1.12 2.17× 10−3 9.369× 10−5 1.613× 10−1
−9.185× 10−1 0.003–0.049

2 1.07 5.50× 10−3 1.183× 10−3 2.557× 10−2 1.107× 100 0.003–0.047
3 1.14 3.61× 10−3 5.241× 10−4 1.251× 10−1

−6.776× 10−1 0.003–0.043
4 1.07 3.37× 10−3 5.480× 10−4 7.250× 10−2 3.716× 10−2 0.003–0.041
5 1.07 3.58× 10−3 8.836× 10−4 3.433× 10−2 8.853× 10−1 0.003–0.047
6 1.00 7.12× 10−3 1.680× 10−3

−9.060× 10−3 1.190× 100 0.001–0.047

P polarisation

1 1.13 2.42× 10−3 5.961× 10−4 8.736× 10−2 6.867× 10−1 0.003–0.049
2 1.05 7.50× 10−3 3.177× 10−3

−1.109× 10−1 2.711× 100 0.003–0.049
3 1.21 3.17× 10−3 4.909× 10−4 1.226× 10−1 5.539× 10−2 0.003–0.037
4 1.09 3.33× 10−3 6.725× 10−4 4.661× 10−2 1.002× 100 0.003–0.035
5 1.04 3.58× 10−3 6.457× 10−4 5.710× 10−2 2.663× 10−1 0.003–0.039
6 1.00 6.96× 10−3 1.488× 10−3

−9.996× 10−4 1.262× 100 0.003–0.049

3.3.1 Basic filter

The basic filtering removes measurements for which the re-
trieval does not converge or for which the quality of the fit
results is too low. We consider this to be the case if the χ2

calculated over all fit windows is larger than 2 or if for at least
one of the fit windows the RSR outlier limits (see Sect. 3.2)
are exceeded. Furthermore, we apply some initial filters for

nonphysical values to the derived scattering parameters (i.e.
layer height outside the atmosphere, Ångström coefficient
not within [1,5]). Note that all retrieved scattering parame-
ters such as the Ångström exponent can be considered “effec-
tive” parameters as they have to account for not only cloud–
aerosol scattering but also Rayleigh scattering (which has an
Ångström coefficient of 4). Because Rayleigh scattering is al-
ways present and we filter out cloudy scenes, we usually get
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Table 7. Parameters of the GOSAT-2 noise model.

Fit window s δF a0 a1 a2 NSR range

S polarisation

1 0.90 3.65× 10−3 5.895× 10−4 2.314× 10−1
−1.524× 101 0.003–0.009

2 0.94 5.21× 10−3 1.143× 10−3 1.352× 10−2 4.058× 100 0.003–0.009
3 1.20 3.14× 10−3 3.972× 10−4 2.756× 10−1 7.753× 100 0.001–0.009
4 1.08 5.25× 10−3 2.491× 10−4 2.683× 10−1

−4.440× 10−1 0.001–0.007
5 1.06 4.04× 10−3 2.184× 10−4 4.112× 10−1

−2.730× 101 0.001–0.007
6 1.01 4.73× 10−3 6.001× 10−4 4.469× 10−1

−2.822× 101 0.001–0.011
7 1.16 7.53× 10−3 1.289× 10−3 3.984× 10−1

−1.377× 101 0.001–0.009
8 1.11 9.34× 10−3 9.305× 10−4 5.126× 10−1

−2.263× 101 0.003–0.017

P polarisation

1 0.96 2.83× 10−3 8.010× 10−5 2.856× 10−1
−9.105× 100 0.003–0.017

2 0.97 6.08× 10−3 2.258× 10−3
−1.191× 10−1 6.365× 100 0.003–0.015

3 1.19 3.20× 10−3 6.571× 10−4 9.767× 10−2 1.049× 101 0.001–0.011
4 1.10 5.25× 10−3 3.868× 10−4 2.064× 10−1

−1.886× 100 0.001–0.009
5 1.08 4.17× 10−3 6.688× 10−5 4.935× 10−1

−3.445× 101 0.001–0.009
6 1.02 4.68× 10−3 1.181× 10−3 1.123× 10−1 1.245× 100 0.001–0.015
7 1.01 7.11× 10−3 1.907× 10−3

−3.405× 10−2 1.012× 101 0.003–0.015
8 1.10 9.52× 10−3 2.093× 10−3 1.632× 10−1

−2.418× 100 0.003–0.021

higher effective Ångström coefficients than those expected
from clouds or aerosols only.

We also limit the maximum allowed optical depth of the
scattering layer to 0.02 to filter out clouds or aerosol amounts
that are too thick and use a maximum allowed XCO2 pos-
teriori uncertainty of 2 ppm. As described by Reuter et al.
(2017c), FOCAL simulates scattering only for an isotropic
phase function. The prominent forward peak, usually exist-
ing for Mie scattering phase functions of cloud and aerosol
particles, basically does not modify the light path. As FO-
CAL’s optical depths of the scattering layer do not include
this forward peak, these optical depths are much smaller than
optical depths including a strong forward peak while having
a similar influence on the light path modification (see discus-
sion in the publication of Reuter et al., 2017c). The maximum
value of 0.02 for the layer optical depth should therefore not
be interpreted as e.g. an aerosol optical depth.

The limits for the optical depth of the scattering layer and
the XCO2 error are somewhat arbitrary and actually result
from visual inspection of the retrieval results. However, they
are only intended as a first rough quality filter to facilitate
later filter and bias correction methods, which will partly
use the same parameters (see below). The detailed choice of
these limits is therefore considered uncritical for the final re-
sults.

The above-mentioned filter parameters and limits (see Ta-
ble 8) are applied to both land and water surfaces and are
the same for GOSAT and GOSAT-2 except for the RSR out-
lier limit, which has been determined individually for each
instrument. Figures 2 and 3 show how many data points are

Table 8. Basic filter parameters.

Filter Range for valid data

Good convergence χ2
≤ 2

RSR (each fit window, S and P) below outlier limit
Scattering layer height (S and P) 0 to 1
Ångström coefficient (S and P) 1 to 5
Scattering layer optical depth (S and P) 0 to 0.02
XCO2 error 0 to 2.0 ppm

typically filtered out in this step. The different performance
of the RSR filters for both instruments indicates that the fil-
tering for GOSAT-2 needs some further optimisation, which
is planned for the next version of the products.

3.3.2 Random forest filter

In the next step, data are filtered out based on their expected
XCO2 bias, i.e. the difference to a true XCO2. Of course, this
true XCO2 value is normally not known. We therefore use the
XCO2 reference database (as described in Sect. 2.3) to train
a random forest classifier (Pedregosa et al., 2011) to identify
those variables which would remove – in combination with a
corresponding random forest database – a pre-described per-
centage p of data based on their XCO2 bias. This is done
independently for data over land and water. Note that we are
only interested here in the XCO2 bias on top of an overall
global bias as the latter will be handled via the bias correc-
tion.
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This method is similar to the random forest filter used by
Schneising et al. (2019) in the context of CH4 and CO re-
trieval. Other approaches for data filtering used e.g. by Man-
drake et al. (2013) and Reuter et al. (2017b) identify the best
variables through the minimisation of local XCO2 variability
in the retrieved products. However, all methods essentially
serve the same purpose, i.e. to derive a reproducible filtering
procedure which does not solely rely on expert knowledge.

We determine the list of relevant variables and the random
forest database for the filtering in the following way: we use
the (uncorrected) results of the retrieval for the reference and
apply the basic filtering as described in Sect. 3.3.1. Then, the
subset of these data is selected which has a corresponding
true value in the reference database. For these data we deter-
mine the XCO2 bias (measurement – reference XCO2) and
subtract the global median for land and water of this bias.
We then sort the data according to this bias and flag those p
percent of data with the highest absolute bias values as “bad”.

For GOSAT, this results in a total of 54 317 data points
over land and 109 414 over water. These numbers are smaller
for GOSAT-2 (land: 10 625, water: 40 459). The random for-
est classifier is then trained by randomly using 90 % of these
data as input. The training is done in two iterations: first with
a complete set of possible input variables (“features”) and
output variables (“estimators”) and then using only a reduced
set consisting of the 10 best features and/or estimators, i.e.
those with the highest random forest score (relevance) in the
first run. This relevance is a quantity which describes the rel-
ative importance of each feature for the filtering. Relevances
are normalised such that the sum of all relevances is 1. The
random forest classifier then decides for each measurement
based on these 10 variables if it is filtered out or not.

The initial list of possible features and estimators essen-
tially includes all quantities available after the retrieval, in-
cluding viewing angles, surface properties, and the contin-
uum signal for each fit window. Furthermore, the retrieved
values of the state vector elements and their errors are in-
cluded in this list as are averaging kernels for the profiles.
We explicitly exclude the geolocation of the measurement
(latitude, longitude) and the retrieved values (but not the er-
rors) for the data products we are interested in, i.e. the gases
and SIF. This is to avoid e.g. the filtering-out of certain ge-
ographical regions or removing all points with high XCO2
values.

Note that in glint mode over ocean, the inclusion of in-
formation about the viewing geometry as possible features
bears the risk that the random forest procedure may infer the
geolocation from a combination of these.

However, we include as a possible filter variable the gra-
dient of the retrieved CO2 profile (i.e. the difference between
the two lowermost layers) as this has shown to be a suitable
quantity.

The original number of candidate variables presented to
the random forest classifier is quite high (193 for GOSAT

and 246 for GOSAT-2) as can be seen from Figs. 5 and 6 (top
left plots), but there are few with high relevance.

The 10 best variables selected partly differ for land and
water surface (as shown in the middle and left top panels), but
they usually comprise scattering parameters, polynomial co-
efficients, spectral corrections, and some XCO2-related pa-
rameters.

The other 10 % of the input data are used to test the per-
formance of the classifier. The results from this test and
other cross-validation activities indicate that the random for-
est classification is – depending on surface – only accurate in
about two-thirds of the cases. This accuracy is defined as the
fraction of correctly classified samples. This means that the
filtering also removes possibly valid data points and does not
remove all possibly bad ones. However, we do not expect a
perfect classification because it is not possible to describe all
inter-dependencies via the set of input features. Note that the
performance of the filter is similar for both the training and
the test data sets. This indicates that there are no problems
with over-fitting.

To obtain high quality of the remaining XCO2 data, we
therefore need to filter out quite a large percentage of data
(and perform an additional filtering at a later time; see
below). For future data products further investigations are
planned to improve the performance of the classifier, e.g. by
providing additional features from the combination of exist-
ing ones (like the already used CO2 gradient). The percent-
age p of data to be filtered out is usually a trade-off between
data quality and the remaining amount of data. In the present
case a 50 % limit has been selected. Actually, as can be seen
from Figs. 2 and 3, the relative amount of data filtered out via
the random forest classifier is not exactly 50 % of the data re-
maining after the previous filters.

3.3.3 Bias correction and filtering

XCO2 retrieval methods usually require a bias correction to
be applied to the data. This correction is often based on multi-
linear regressions using parameters identified from correla-
tion analyses of differences to an assumed true XCO2 data
set. Different data products use different methods to define
this “truth”. In many cases, ground-based TCCON measure-
ments are taken as a reference for the true XCO2, like in the
GOSAT BESD product (Heymann et al., 2015), the SRON
products (Guerlet et al., 2013), the product from the Univer-
sity of Leicester (Cogan et al., 2012), and also the operational
GOSAT product from NIES (Inoue et al., 2016). The bias
correction of the NASA ACOS OCO-2 product is quite com-
plex (O’Dell et al., 2018; Kiel et al., 2019); it uses as a refer-
ence a modification of the Southern Hemisphere approxima-
tion introduced by Wunch et al. (2011b). The ACOS product
takes multi-model mean data as a reference and derives cor-
rections from data in the Southern Hemisphere below 20◦ S
where CO2 is assumed to be quite uniform in small areas.
A similar small area approximation is also used by Reuter
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Figure 5. Random forest results for GOSAT. (a–c) Results from the random forest filter. (d–f) Results from random forest bias correction.
(a, d) Normalised relevance (score) of all filter variables. (b, e, c, f) Selected variables and their relevance for the land and water surfaces.

et al. (2017c) to correct FOCAL OCO-2 data. This correc-
tion method is not possible for GOSAT and GOSAT-2 data
because of their sparse sampling. We therefore follow a dif-
ferent approach here.

For the bias correction we use as input the same data set
as for the random forest filter, but with this random forest
filter applied; 50 % of the resulting data set is then used to
train a random forest regressor (see also Schneising et al.,
2019), which aims to minimise the true XCO2 bias, i.e. the

difference to the reference database value without the global
median subtracted, as a function of the specified features. To
create the bias correction database and the corresponding list
of best features we again run the training twice, first with
the full list (the same as for the filter) and then with the top
10 features. Again, we use different corrections for land and
water. The resulting parameters and their performance are
shown in the bottom panels of Figs. 5 and 6. The bias correc-
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Figure 6. As Fig. 5, but for GOSAT-2.

tion selects similar best features as the filter, but not exactly
the same quantities in the same sequence.

The actual number of features and variables to be used
for both filtering and bias correction is a trade-off between
many variables (explaining all relations with a risk of over-
fitting and high computational effort) and few variables (no
over-fitting, but maybe missing some relations). Considering
10 features for the bias correction is more than other algo-
rithms typically use, but this is appropriate in our case be-
cause we take into account the different relevance of these

parameters, which drops off rapidly within the first 10 vari-
ables (see top panels of Figs. 5 and 6).

The validity of this choice is confirmed by the application
of the bias correction to the training data set and the other
50 % of the input data, which shows a comparable reduction
of the XCO2 scatter. This is an indication for a good perfor-
mance (e.g. no over-fitting) of the regressor.

During application of the bias correction, the random for-
est regressor estimates the XCO2 bias based on the values
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Figure 7. Gridded GOSAT (a) and GOSAT-2 (b) XCO2 bias cor-
rection for 2019.

of the input variables. This bias is then subtracted from the
retrieved value.

Currently, there is only a bias correction for XCO2, but
in principle this method is also applicable to other quantities
depending on the availability of a corresponding reference
database.

After the bias correction there are still a few outliers left in
the XCO2 data. These are filtered out by an additional filter
on the XCO2 bias derived via the random forest classifier.
The limits for this filter are the global median bias for the test
data set plus and minus 2 ppm. The median bias is different
for land and water surfaces and also for GOSAT and GOSAT-
2. The actual limits are given in Table 9. The value 2 ppm is
estimated from visual inspection of the data. Figures 2 and 3
show that typically less than 1 %–2 % of the remaining data
(less than 0.1 % of all) are affected by this last filter.

The spatial variability of the finally derived bias correction
(see Fig. 7) is typically below 1 ppm, but as mentioned above
there is a systematic difference between land and water data
of about of 1–1.5 ppm (see Table 9).

Table 9. Bias filter limits.

Filter Range for valid data

GOSAT land −6.9 to −2.9 ppm
GOSAT water −8.1 to −4.1 ppm

GOSAT-2 land −4.0 to 0.0 ppm
GOSAT-2 water −5.5 to −1.5 ppm

4 Results

The FOCAL retrieval has been applied to all GOSAT and
GOSAT-2 measurements until the end of 2019. On average,
FOCAL needs 22 s with six iterations for the processing of
one GOSAT ground pixel. For GOSAT-2 the numbers are
slightly higher (28 s for seven iterations) because of the addi-
tional fit windows and state vector elements. All performance
values are given for a single core of an Intel Xeon E5-2667v3
CPU (3.2 GHz). These numbers are actually about 1 order
of magnitude larger than the ones given in Reuter et al.
(2017b, c) for the FOCAL application to OCO-2. This is be-
cause we use separate S- and P-polarisation spectra and more
retrieved variables for GOSAT(-2), which requires more and
larger fit windows. For each of these fit windows and pa-
rameters, weighting functions have to be calculated, which
involves a convolution with the ILS. This convolution is the
most time-consuming part of the FOCAL retrieval. This is
even more relevant for GOSAT(-2) because the FTS ILS is
in principle sinc-shaped; i.e. it has a sharp peak in the centre
but wide wings, which requires a large kernel width (in our
case 15 cm−1) for the convolution.

The left plots in Figs. 8 and 9 show examples for mea-
sured and fitted nadir-mode radiance spectra for GOSAT and
GOSAT-2 over land in the different fitting windows for P po-
larisation. Since the difference between measured and mod-
elled spectra is small and thus hard to see, we show in these
figures on the right side the corresponding residuals and the
estimated noise. The results for S polarisation look similar
and are therefore not shown here. The residuals are on the
order of magnitude of the noise, which is slightly higher
for P polarisation than for S polarisation. Some small spec-
tral structures are visible in the residuals; they appear more
clearly in the smoothed residuals (convoluted with a 21-pixel
boxcar), e.g. for GOSAT and GOSAT-2 in the O2(A) band
(window 2), and some broadband oscillations in window 4
and 5 for GOSAT-2. These features are present in both S and
P polarisations and also occur in other measurements, so they
seem systematic. A reduction of these features could further
improve future products.

In Fig. 10 some statistical information about the GOSAT-
FOCAL data products is given. A time series for the number
of valid data is given in the top plot. In recent years, about
5 %–6 % of the available measurements could be transferred
to valid XCO2 data. The number of valid data points in-
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Figure 8. Example for a single GOSAT measurement (P polarisation): (a, c, e, g, i, k) measured (red) and retrieved (green) spectra in the
different fit windows; because of the good agreement the red curve is essentially barely visible below the green curve. (b, d, f, h, j, l) Cor-
responding residuals (measurement – fit). Light blue: unsmoothed. Blue: smoothed with a boxcar width of 21 spectral pixels (= 4.2 cm−1).
Red: estimated noise error range. The radiance unit is W cm−2 cm sr−1.

creases from 2009 to 2019. This is mainly due to an increase
in the data over water, which is related to optimisations in
GOSAT operations (better use of glint geometry) over wa-
ter. As expected, the mean global XCO2 shown in the mid-
dle plot increases with time. Global mean values over wa-
ter are typically slightly higher than over land. The observed

XCO2 variability (standard deviation, bottom plot) is larger
over land. Part of this variability is attributed to influences
of surface elevation and to different scattering pathways be-
tween the land and water measurements. For GOSAT-2, only
retrieved data from 2019 are available so far. The total num-
ber of available measurements is about 2.8 million compared
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Figure 9. Same as Fig. 8, but for GOSAT-2.

to about 3.5 million GOSAT measurements in 2019. Only
about 3 % of the GOSAT-2 data remain after all filtering and
post-processing, which is roughly half of the corresponding
number for GOSAT (but similar to the first year of GOSAT).
As can be seen from Fig. 3 more GOSAT-2 data are filtered
out due to failed or bad convergence and by the RSR outlier
limits than for GOSAT (Fig. 2). Future improvements of the

GOSAT-2 calibration or the noise model are considered to
help here.

For further analyses, we have generated monthly maps on
a 5◦× 5◦ grid. Example plots for the months April and Au-
gust 2019 (the beginning and end of the growing season) are
shown in Fig. 11 for GOSAT and in Fig. 12 for GOSAT-2.
The data are not filtered for low numbers of input data in
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Figure 10. Statistics for valid GOSAT measurements (after pre- and
post-processing filtering) for each year. Blue: measurements over
water. Green: measurements over land. Red: all data. (a) Number
of valid measurements, including the percentage of all originally
available measurements. (b) Global mean XCO2. (c) Corresponding
standard deviation.

the grid points, which explains some individual outliers in
the plots. Overall, the spatial patterns observed by GOSAT
and GOSAT-2 look reasonable. The north–south gradient in
XCO2 is visible with a different sign in April and August for
both instruments. The spatial coverage of the GOSAT-2 data
is lower than for GOSAT because more data are filtered out
(see above). This especially affects regions like the northern
part of Africa.

5 Verification and validation

For the verification and validation of the GOSAT- and
GOSAT-2-FOCAL products we perform a comparison with
various reference data sets (see Sect. 2), namely the follow-
ing.

Figure 11. Example for gridded GOSAT XCO2 data. (a) April
2019. (b) August 2019.

– The GOSAT BESD v01.04 product from IUP (referred
to as BESD later).

– The GOSAT ACOS v9r product from NASA (referred
to as ACOS later).

– The GOSAT UoL_FP v7.3 product from the University
of Leicester (referred to as UoL later).

– The GOSAT RemoTeC v2.3.8 product from SRON (re-
ferred to as SRON later).

– The GOSAT operational product v02.95 (bias cor-
rected) from NIES (referred to as NIES later).

– Collocated TCCON GGG2014 data (referred to as TC-
CON later).

For the comparisons, all data have been adjusted using the
same a priori (SECM2020).

Since all GOSAT products use different retrieval and filter
methods, they do not contain the same number of data (see
Fig. 13). Currently, the NASA ACOS product has the largest
number of valid data points, followed by the new GOSAT-
FOCAL product with about 20 % less data.
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Figure 12. Example for gridded GOSAT-2 XCO2 data. (a) April
2019. (b) August 2019.

Figure 13. Number of valid XCO2 data points in the different
GOSAT products from 2009 to 2019.

5.1 Direct comparisons

There are enough common measurement points included in
the different GOSAT products to perform a direct compari-
son. Figure 14 shows as an example a comparison between
the GOSAT-FOCAL data for the year 2018 with the corre-
sponding ACOS, BESD, SRON, NIES, and UoL products.
For each plot we only use data for which both data sets have
a valid XCO2 value. For these data we performed a linear
regression using the orthogonal distance regression (ODR)
method (see e.g. Boggs et al., 1987). Unlike common lin-
ear regression, ODR considers uncertainties for both axes
(data sets) by minimising the orthogonal distances between
the model curve and the data points. The ODR results are
shown by the red line and its label. The number of colloca-
tions, the median and mean, and the standard deviations of
the differences are given in the titles.

Overall, the data scatter around the 1 : 1 line in a simi-
lar way for all comparisons. ODR slopes vary between the
data sets from 0.84 (for FOCAL vs. ACOS) up to 1.08 (for
FOCAL vs. BESD). Most collocations are available for the
ACOS data set because this has the largest number of valid
data. Mean and median differences are quite similar and
reach from −0.17 ppm (comparison to BESD) to 0.67 ppm
(comparison with UoL). The scatter (standard deviation of
the differences) reaches from 1.4 ppm (ACOS, NIES) to
1.8 ppm (BESD).

5.2 TCCON comparisons

TCCON provides high-quality XCO2 (and other) data, which
are currently considered to be the main reference for green-
house gas data obtained from satellite measurements. There-
fore, we compared the different GOSAT data sets with collo-
cated TCCON measurements from 2009 to the end of 2018.
BESD data are not included because they do not cover the
complete time interval. Collocation criteria are the follow-
ing:

– maximum time difference of 2 h;

– maximum spatial distance of satellite measurement
from TCCON station of 500 km; and

– maximum surface elevation difference between satellite
measurement and TCCON station of 250 m.

In addition to these criteria we also consider in the valida-
tion only stations and TCCON data sets which have at least
50 collocations for all algorithms. This improves the compa-
rability of regional and seasonal biases. As a consequence,
not all stations listed in Table 1 contribute to the validation.

The comparison procedure is the same as used by Reuter
et al. (2020) and described by Reuter et al. (2019b). In sum-
mary, for each TCCON site, the time series of satellite mi-
nus TCCON differences are computed under consideration
of the averaging kernels, i.e. different vertical sensitivities.

https://doi.org/10.5194/amt-14-3837-2021 Atmos. Meas. Tech., 14, 3837–3869, 2021



3856 S. Noël et al.: XCO2 from GOSAT and GOSAT-2 using FOCAL

Figure 14. Comparison of GOSAT-FOCAL data (x axis) from 2018 with other GOSAT data (y axis). The colour of the data points corre-
sponds to the density of data points at that location (normalised to a maximum value of 1). The dashed line corresponds to perfect agreement.
The red line shows the result of a linear fit using the orthogonal distance regression (ODR) method. The total number of collocated data as
well as the median, mean, and standard deviation of the XCO2 differences between the two data sets are given in the title of the sub-plots.
(a) FOCAL vs. ACOS. (b) FOCAL vs. BESD. (c) FOCAL vs. NIES. (d) FOCAL vs. SRON. (e) FOCAL vs. UoL.

The resulting time series are fitted with a trend model, which
includes an offset term, a slope term, and a sine term for sea-
sonal fluctuations. The offset term is considered the station
bias, and the station scatter is computed from the standard
deviation of the fit residual. Results for the GOSAT time se-
ries at the TCCON stations are shown in Fig. 15. Overall, the
temporal variations of XCO2 are well reproduced by all data.

Figure 16 shows as a summary of the GOSAT TCCON
comparisons the derived bias and scatter for the different sta-
tions and products. The new GOSAT-FOCAL product com-
pares well with the other data sets. Its differences to TC-
CON have a station-to-station bias (the standard deviation of
the station bias) of 0.56 ppm and a mean scatter (root mean
square, or rms, scatter per station) of 1.89 ppm. The seasonal
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Figure 15. Time series of collocated GOSAT data at various TCCON sites for different data products including the new GOSAT-FOCAL
data set.

component of the bias has a station-to-station average stan-
dard deviation of 0.37 ppm. Overall, the ACOS product per-
forms best in this comparison.

Note that the biases shown in Fig. 16 essentially corre-
spond to a bias anomaly since the mean bias over all stations
was removed from all products. This is because for most ap-
plications this mean bias is not relevant since most informa-

tion is contained in gradients. Subtracting a mean bias also
facilitates a comparison of different bias patterns between
the algorithms. The subtracted mean station bias is actually
small; for GOSAT it varies between 0.17 ppm (for ACOS)
and 0.64 ppm (for NIES). Because of the subtracted mean
bias different signs of biases for different products could be
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Figure 16. Overview of TCCON validation results for GOSAT.

coincidental. However, the biases of FOCAL and ACOS are
consistent with the biases found by Reuter et al. (2020).

In Figs. 17 and 18 we show results from a preliminary
comparison of the new GOSAT-2-FOCAL data with TC-
CON. These results are considered less reliable because they
are based on a data set which covers less than a year. There
are sufficient collocations for only seven TCCON stations,
and some of them comprise only a few months of data, which
limits the fit of our trend model. The mean scatter of the
GOSAT-2 data is 1.86 ppm and therefore similar to the one
for GOSAT. The derived station-to-station bias for GOSAT-
2-FOCAL is 1.14 ppm. This high value is mainly due to the
biases derived for the stations Orleans and Réunion Island
(where few data are available) as well as the station Pasadena,
which also showed larger discrepancies to the GOSAT prod-
ucts (see Fig. 16). We are confident that the station-to-station

bias will improve when more and improved GOSAT-2 data
are available.

Via the TCCON comparison it is also possible to validate
the reported precision of the FOCAL data products (i.e. the
specified XCO2 error). The basic idea is to estimate the true
precision from the variability of the XCO2 bias relative to
trend-corrected, collocated TCCON data. For this purpose,
we define 20 bins with increasing reported XCO2 uncertainty
and compute the corresponding true precision from the scat-
ter relative to TCCON (i.e. the fit residual mentioned above).

The corresponding scatter plot is shown in Fig. 19. We
use the fitted linear curve to correct the reported uncertainty
of the GOSAT-FOCAL data. After the correction, all data
scatter around the 1 : 1 line (dashed).
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Figure 17. Time series of collocated FOCAL GOSAT-2 data at various TCCON sites.

A similar correction will be performed for the GOSAT-
2-FOCAL product as soon as sufficient data (GOSAT-2 and
TCCON) are available, which is currently not the case.

5.3 Time series

To investigate the temporal behaviour of the FOCAL XCO2
data sets, we performed comparisons based on monthly data
from 2009 to 2019, which were spatially gridded to 5◦× 5◦

(examples are shown in Figs. 11 and 12). Similar data sets
have been generated for the SRON, UoL, ACOS, and NIES
GOSAT products. We also produced a corresponding gridded
GOSAT BESD data set; since these are near-real-time (NRT)
data only, there are no GOSAT BESD data before 2014 avail-
able (when the NRT processing started). GOSAT-2 data start
in February 2019.
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Figure 18. Overview of TCCON validation results for the GOSAT-
2-FOCAL product.

Figure 19. Comparisons of the (binned) original XCO2 errors (re-
ported precision without correction) of the GOSAT-FOCAL product
with estimated errors based on collocated TCCON data (true preci-
sion).

We then selected grid points for which the standard er-
ror of the mean is less than 1.6 ppm for each combination of
GOSAT-FOCAL XCO2 and a correlative data set (as a basic
quality filter, similar as done by Reuter et al., 2020). These
data were then averaged over different latitudinal ranges,
namely

– global (90◦ S–90◦ N),

– the Northern Hemisphere (25–90◦ N),

– the tropics (25◦ S–25◦ N), and

– the Southern Hemisphere (25–90◦ S).

Figure 20 shows the results of these comparisons. The left
plots display time series of the different data sets and the right
plots the difference between the GOSAT-FOCAL XCO2 and
the reference data. All data products reproduce the overall in-
crease in XCO2 with time and the seasonal variations. On av-
erage, FOCAL data are typically about 0.5 ppm higher than
the other data sets (except for BESD). This is related to the
choice of the true XCO2 for the bias correction. There are
long-term changes of the order of 1 ppm over the complete
time series, which differ for each data set. For example, the
GOSAT-FOCAL data show in the tropics relative to SRON
a higher value at the start of the time series, but both data
sets agree at the end. On the other hand, the average differ-
ence to the UoL data in the Northern Hemisphere is negative
during the first years, but it increases to an almost constant
small positive offset below about 0.5 ppm. There is not much
difference in the temporal behaviour between the GOSAT-
FOCAL and the ACOS and NIES time series. The seasonal
shapes also differ slightly, with amplitudes of about 0.5 ppm
and somewhat larger differences in the Southern Hemisphere
where seasonal variations are generally smaller.

Overall, the agreement within the GOSAT data sets is
broadly consistent with the systematic regional and seasonal
biases derived from the TCCON validation, especially con-
sidering that all gridded data sets are based on a different
spatial and temporal sampling. Also, the FOCAL products
for GOSAT and GOSAT-2 seem to agree quite well, but more
GOSAT-2 data are needed to confirm this.

6 Conclusions

Based on the FOCAL retrieval method a new XCO2 data set
for GOSAT and a first XCO2 data set for GOSAT-2 have been
generated, making use of both measured polarisation direc-
tions. The GOSAT-FOCAL data set compares well with cor-
responding data from other currently available GOSAT re-
trieval algorithms, i.e. the RemoTeC product from SRON,
the UoL FP product, the NASA ACOS product, the NIES
product, and the BESD product from IUP. All data sets use
different filtering and bias correction schemes and therefore
also comprise a different number and sampling of data. The
GOSAT-FOCAL product performs well in this context and
has almost as many valid data as the ACOS product. Based
on gridded data, differences in long-term variations of all
data sets of the order of 1 ppm per decade are observed. Also,
seasonal variations differ by about 0.5 ppm.

Comparisons with ground-based TCCON data reveal for
the GOSAT-FOCAL product an overall station-to-station
bias of 0.56 ppm and a mean scatter of 1.89 ppm. These
values are comparable to and in some cases even better
than those of the already existing GOSAT products, some of
which have less valid data.

The first GOSAT-2 results using the FOCAL method are
also quite promising, but further investigations, longer time
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Figure 20. Gridded monthly mean time series of different GOSAT XCO2 products. (a, c, e, g) Time series of mean XCO2 for four different
regions (from top to bottom: global, Northern Hemisphere, tropics, Southern Hemisphere). (b, d, f, h) Corresponding differences to the
GOSAT-FOCAL product.
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series, and more correlative data sets are required for a quan-
titative assessment of the GOSAT-2-FOCAL data quality.

Overall, the FOCAL method has proven to be computa-
tionally fast and to produce XCO2 results with similar accu-
racy as other, typically more time-consuming, retrieval algo-
rithms. This is the case not only when applied to OCO-2 but
also for GOSAT and GOSAT-2. FOCAL is therefore consid-
ered to be a good candidate algorithm for future satellite sen-
sors producing large amounts of data, like the forthcoming
European anthropogenic CO2 Monitoring (CO2M) mission.
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