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This paper presents a sampled–data form of the recently reformulated incremental nonlinear
dynamic inversion (INDI) applied for robust spacecraft attitude control. INDI is a combined
model– and sensor–based approach mostly applied for attitude control that only requires an
accurate control effectiveness model and measurements of the state and some of its derivatives.
This results in a reduced dependency on exact knowledge of system dynamics which is known
as a major disadvantage of model–based nonlinear dynamic inversion controllers. However,
most of the INDI derivations proposed in the literature assume a very high sampling rate of
the system and its controller while also not explicitly considering the available sampling time
of the digital control computer. Neglecting the sampling time and its effect in the controller
derivations can lead to stability and performance issues of the resulting closed–loop nonlinear
system. Therefore, our objective is to bridge this gap between continuous–time, highly sampled
INDI formulations and their discrete, lowly sampled counterparts in the context of spacecraft
attitude control where low sampling rates are common. Our sampled–data reformulation
allows explicit consideration of the sampling time via an approximate sampled–data model in
normal form widely known in the literature. The resulting sampled–data INDI control is still
robust up to a certain sampling time since it remains only sensitive to parametric uncertainties.
Simulation experiments for this particular problem demonstrate the bridge considered between
INDI formulations which allows for low sampling control rates.

I. Introduction

Future small satellite systems are expected to be more performant not only for fine pointing capabilities in data
acquisition but also in terms of high agility for maneuverability, e. g., for high dynamic slewing capability to command

the platform for fast and flexible data acquisition [1–9]. This emerging field of ‘agile Earth Observation’ motivated the
development of a high-agility attitude control system [10] for the the satellite platform BIROS (Bispectral InfraRed
Optical System) [3] while actuated with a redundant array of three orthogonal ‘High-Torque-Wheels’ (HTW) [1, 2].
However, for agile reorientation, a challenge arises from the fact that time-optimal slew maneuvers are, in general, not of
the Euler-axis rotation [11, 12] type; especially whenever the actuators are constrained independently [13]. The topic of
optimal spacecraft rotational maneuvers is quite extensive and has been studied for many decades [13–19]. Some of the
agile attitude control solutions have been experimentally validated for imaging satellites in-orbit [20]. However, most of
the work reported in literature relies on optimization and some form of path planning and trajectory optimization, which
might be difficult to implement on-board and in practice. In this paper, we are motivated to find an agile attitude control
solution in closed-loop feedback form. This is challenging because of the many nonlinearities involved in reorientation
of small satellites as shown in [10, 20] which calls for a robust nonlinear control approach.

Several nonlinear control methodologies have arisen in the past decades; in part to overcome shortcomings of
conventional linear techniques, but also to overcome model or parametric uncertainties that can damage the closed-loop
stability and convergence of the system. Among the most popular of these control methodologies are feedback
linearization (FBL), treated extensively in [21–23] and initially based on early papers of Krener and Brockett in the
seventies [24, 25], adaptive control [26], and backstepping [27, 28]. Nonlinear dynamic inversion (NDI), which is
how feedback linearization is more commonly known in the aerospace literature [29–33], uses an accurate model of
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the system to entirely or partly cancel its nonlinearities by means of feedback and exact state transformations. This
transforms the nonlinear system dynamics into a linear form over a desired region of interest. For the obtained system,
conventional linear control techniques can be applied successfully for achieving desired closed-loop dynamics, hence
eliminating the need of linearizing and designing different (linear, robust) controllers for several operational points as in
gain-scheduling. The motivations behind the application of NDI for flight control systems originate from difficulties
with ensuring stability and performance in between operational points of widely-used gain-scheduled controllers. More
advanced methods involving robustness and improvements of the method in NDI-based flight control applications have
been considered, among many others, in [29, 32–40]. Although initially intended for flight control, NDI for aerospace
applications have also found its way for spacecraft control and re-entry vehicles [41–44]. The main disadvantage for the
construction of these NDI control laws is that accurate knowledge of the nonlinear system dynamics is required for
an explicit cancellation. For this reason, NDI is considered an explicit control method where the desired dynamics
of the closed-loop system reside in some explicit model to be followed. Therefore, this explicit aspect of NDI-based
control laws is considered to be a disadvantage despite its abilities to linearize and decouple certain classes of nonlinear
MIMO systems when full knowledge of the nonlinearities is available. Moreover, this model-based aspect is also
strongly influenced by modeling uncertainties. In reality, the model mismatch in the implementation of NDI control
laws, together with all sensor aspects, delays and biases, can compromise the performance and stability of the controlled
system. Many successful attempts have been carried to identify and reduce these aforementioned flaws of NDI-based
control laws with regards to robustness. These attempts are focused in improving the robustness of the overall control
architecture by means of applying linear robust control in the outer loop of the system. The works [32, 43] combine NDI
with the structured singular value (`-analysis) and H∞ synthesis for reentry flight clearance, and significant benefits
were found over conventional NDI. However, not all uncertainties were taken into account or they were covered by
lumped uncertainties hence introducing conservatism.

Incremental nonlinear dynamic inversion (INDI) has been proposed as a promising sensor-based approach providing
high performance and robust nonlinear control for aerospace vehicles without requiring a detailed model of the controlled
plant. The INDI approach reduces its dependency on on-board or baseline models while making use of actuator output
and angular acceleration measurement feedback. In contrast to regular NDI, this method is inherently implicit in
the sense that desired closed-loop dynamics do not reside in some explicit model to be followed but result when the
feedback loops are closed [36, 37]. Theoretical development of increments of nonlinear control action date back from
the late nineties and started with activities concerning ‘implicit dynamic inversion’ for inversion-based flight control
in the works of P. R. Smith, B. J. Bacon et al. [33, 36], where the architectures considered in this paper were firstly
described. Other designations for these developments found in the literature are ‘modified NDI’ and ‘simplified NDI’,
but the designation ‘incremental NDI’ is considered to describe the methodology and nature of these type of control
laws better [34, 45–48]. INDI has been elaborated and applied theoretically in the past decade for advanced flight
control applications [33, 34, 36–38, 48] as well as in space applications for spacecraft attitude control [49]. More
recently, this technique has been applied also in practice for quadrotors using adaptive control [50, 51], and in real flight
tests [52–54], verifying its performance and robustness properties against aerodynamic model uncertainties [34, 55, 56]
and disturbance rejection [50, 51, 55, 56].

INDI relies on the assumption that for small time increments and high sampling rates, the nonlinear system dynamics
in its incremental form is simply approximated by the (linearized) control effectiveness evaluated at the current state.
However, previous theoretical stability and robustness proofs for INDI controllers have many drawbacks and were
not mathematically consistent as pointed out in [57, 58]. Most of the previous attempts to prove stability were only
based on simplifying assumptions and approximated transfer functions and block diagrams [34, 50, 51]. Recently, the
INDI control in the literature has been reformulated for systems with arbitrary relative degree and without recurring
to cascaded-control structures, i. e., without using a time–scale separation assumption [57, 58]. This reformulation
allowed to extended further the incremental nonlinear control approach for Sliding Mode Control [59]. For these new
reformulations and extensions, conditions for stability and robustness analyses have been established and analyzed using
Lyapunov-based methods. Another nonlinear control method is time–delay–control (TDC) [60–62], more commonly
known in the motion control and robotics community and pioneered in the 90’s by the works of Hsia, and Youcef-Toumi
et al. [60]. TDC works by estimating and compensating disturbances and system uncertainties (model and parametric)
by utilizing time–delayed signals of some of the system variables. In [62] it has been shown that TDC can be rendered
equivalent to a PID–control under some assumptions and some discrete sampling considerations. This motivates the
question to study how neglecting the sampling time and its effect in the controller derivations can lead to stability and
performance issues of the resulting closed–loop nonlinear system [63, 64].

In this paper, we present three main contributions in the context of nonlinear spacecraft attitude control system
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design. 1) We revisit the NDI and the reformulated INDI for the spacecraft attitude control problem and introduce a
time–delay explicitly in this incremental reformulation of INDI. 2) We consider the reformulated INDI control for the
spacecraft attitude control problem and introduce its sampled–data form based on the model from [64, 65] where the
nonlinear dynamics are approximated by a discrete model with piece–wise constant inputs. 3) We bridge the gap between
continuous–time, highly sampled (100 – 1000 Hz) INDI formulations and their discrete, lowly sampled counterparts
in the context of spacecraft attitude control where low sampling rates are common (1 – 10 Hz). In that sense, our
sampled–data reformulation allows explicit consideration of the sampling time via an approximate sampled–data model
in normal form widely known in the literature.

The outline of this paper is as follows. A nonlinear model of rigid spacecraft equipped with reaction wheels is
presented in Section II. Section III presents incremental nonlinear dynamic inversion in continuous–time form while
Section IV presents incremental nonlinear dynamic inversion in sampled–data form, both for the particular problem of
spacecraft attitude control. Attitude control numerical simulations are presented in Section V. Conclusions are finally
presented in Section VI.

II. Spacecraft Model
In this section we describe the nonlinear rotational dynamics model for spacecraft including a generic set of reaction

wheels in arbitrary configuration which are driven by exogenous inputs provided by each wheel’s powertrain [10, 20].
In this paper we make use of the Modified Rodrigues Parameters (MRPs) [66–68] as they represent a well defined
attitude parameterization for all Eigen-axis rotations in the large domain of 0◦ ≤ \ < 360◦, where \ is the principle
angle rotation around the Euler-axis _. Typically, Euler angles and quaternions are used to parameterize the attitude
kinematics of rigid bodies and most attitude controllers are based on these parameterizations. The preference of using
MRPs is motivated to address the problem of agile reorientation while using a minimal set of three rigid body attitude
coordinates, thus avoiding redundancy of parameters (quaternions) or singularities (Euler angles). The MRP attitude
kinematics parameterization and their potential advantages have been shown to be suitable for attitude stabilization and
control applications [66–68].

A. Kinematics
Consider first an array consisting of = reaction wheels. Introducing unit vectors a8 ∈ R3 which give the orientation

of the spin-axis of each reaction wheel with respect to the spacecraft coordinate system, these are collected in the
configuration or alignment matrix given by

G =

[
a1 a2 · · · a=

]
∈ R3×= (1)

Then each a8 can define the 8−th reaction wheel or ‘actuator’ frame by taking a8 as the first axis and making the
remaining axes constitute an orthogonal frame. In that sense, the kinematics of the 8−th reaction wheel with respect to
its corresponding actuator frame, in terms of its spin-axis angle ΦF and angular velocity ΩF , is simply given by

¤ΦF,8 = ΩF,8 8 = 1, . . . , = (2)

Consider now the spacecraft equipped with the = reaction wheels just introduced. The MRP vector 2 expressed in
inertial frame is defined in relation to the Euler-axis _ and to the principle angle rotation \ through [66, 68]

2 = _ tan
\

4
(3)

while its kinematic differential equation in relation with the spacecraft angular velocity lll ∈ R3 (in body fixed frame) in
vector form is given by [66, 68] as

¤2 =
1
4
[
(1 − 2>2)O3×3 + 2Y(2) + 222>] lll =

1
4
H(2) lll (4)

where the skew map Y(·) : R3 ↦→ so(3) is a linear isomorphism between R3 and the Lie algebra so(3) of 3 × 3
skew-symmetric matrices and is defined such that Y(x) y = x × y for any x, y ∈ R3, or simply as:

Y(x) =


0 −G3 G2

G3 0 −G1

−G2 G1 0

 , x ∈ R3 (5)
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Moreover, in this paper we will also be interested in the fact that the time derivative of the MRP kinematic differential
equation produces the exact relation [68]

¥2 =
1
4
[ ¤H(2) ·lll + H(2) · ¤lll

]
=

1
4
I (2,lll, ¤lll) (6)

where

¤H(2) ·lll =
1
2
[

22>lll(1 − 2>2)lll − (1 + 2>2)lll>lll2 − 42>lllY(lll)2 + 4(2>lll)22
]

which relates the MRP “acceleration” ¥2 to the rigid body’s angular velocity lll and angular acceleration ¤lll. This
relationship will be key for the attitude control design as it will be shown later on.

B. Dynamics
Following the derivations in Karpenko et al. [20], we obtain the rotational dynamics model as follows. First, consider

the angular momentum of the spacecraft equipped with the reaction wheel array in question

N = Olll + h (7)

where, expressed in body-fixed frame, N ∈ R3 is the total angular momentum of the system, O ∈ R3×3 is the constant
inertia matrix of the spacecraft when the reaction wheels are rotating freely, lll ∈ R3 is the spacecraft angular velocity,
and h ∈ R3 is the total angular momentum vector associated with the reaction wheel array. The angular momentum h
can be expressed from individual actuator frames to body-fixed frame as

h = GhF = G OwΩΩΩ, (8)

where Ow is a diagonal matrix of reaction wheel spin-axis inertia values and ΩΩΩ the inertial angular rate of the reaction
wheel array. Defining ΩΩΩF as the angular rate of the reaction wheel relative to the actuator frame [20], we have

ΩΩΩ = ΩΩΩF + G>lll (9)

where the term G>lll is the extra angular velocity of the reaction wheels due to rotation of the spacecraft. Combining
Eq. 8 with (9) and left–multiplying by G−1 gives the angular momentum associated with the reaction wheels

hF = Ow (ΩΩΩF + G>lll) (10)

Since the wheel angular momentum rate is related to the internal control torque vector generated by the reaction wheels
as

¤hF = 3F (11)
we can obtain the differential equation

¤ΩΩΩF = O−1
w 3F − G> ¤lll (12)

that describes the reaction wheel dynamics in terms of reaction wheel torques 3F ; these are considered as the exogenous
inputs to the system provided by the wheel’s powertrain. Because the angular momentum must be conserved in the
absence of external perturbations, applying the transport theorem [14, 20] to Eq. (7), the following relation is obtained

dN
dC

����
I
=

d
dC
N +lllB/I × N = 0 (13)

where I and B denotes the inertial and body frame, respectively, and we had denoted lll ≡ lllB/I overall in the paper for
notation convenience. Using Eq. (10), Eq. (13) can be further expanded as

O ¤lll + G Ow ¤ΩΩΩ +lll × (Olll + G OwΩΩΩ) = 0 (14)

Combining Eqs. (12) and (14), the comprehensive nonlinear model for spacecraft dynamics equipped with reaction
wheels [20] is given by

�


¤lll

¤ΩF,1
...

¤ΩF,=


=


−lll ×

(
Olll + G OwΩΩΩF + G Ow G>lll

)
gF,1
...

gF,=


(15)
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where

� =


O + GOwG

> a1�F,1 · · · a=�F,=

�F,1a>1 �F,1 · · · 0
...

...
. . .

...

�F,=a>= 0 · · · �F,=


is an augmented inertia coupling matrix for the full system and therefore always invertible.

C. Full nonlinear spacecraft model
The augmentation of the nonlinear spacecraft dynamics model together with the MRP kinematics can be rewritten as

a full model in the generic form of affine =-dimensional multivariable nonlinear system with < inputs D8 and ? outputs
H8 as

¤x = f (x) + g(x)u (16a)
y = h(x) (16b)

where x ∈ R=, u ∈ R<, and y ∈ R ? . The functions f (x) = [ 51 (x) · · · 5= (x) ]>, g(x) = [ g1 (x)> . . . g< (x)> ]>
∈ R=×<, and h(x) = [ ℎ1 (x) · · · ℎ? (x) ]> are assumed to be smooth vector fields continuously differentiable on
R=. In this paper we consider the output MRP as control variables y = h(x) = 2 and assume to have three reaction
wheels (=F = 3) as actuators, hence u = 3F = [ gF,1 gF,2 gF,3 ]>, and ? = < = 3. In the usual case where ? < <,
meaning that there are more control inputs than control variables, the inversion required for input–output linearization is
not direct and some form of control allocation is required. Else, when ? > <, the system is said to be underactuated and
therefore the input–output linearization is underdetermined and possibly not feasible. These two cases are however
out of the scope of this paper since ? = <. Considering the vector x = [2> lll> ΩΩΩ>

F ]> with 2 = [ f1 f2 f3 ]>,
lll = [lG lH lI ]>, and ΩΩΩF = [ΩF,1 ΩF,2 ΩF,3 ]>, the full nonlinear system dynamics in Eqs. (16a)–(16b)
results in = = 9 and is given by:

f (x) =


1
4 H(2) lll

�−1

[
−lll ×

(
Olll + G OwΩΩΩF + G Ow G>lll

)
03×1

]  (17a)

g(x) =


03×3

�−1

[
03×3

13×3

]  = M (17b)

h(x) = 2 (17c)

III. Incremental Nonlinear Dynamic Inversion in Continuous-time Form
In this section we revisit incremental nonlinear dynamic inversion in the context of input–output feedback linearization

described in (companion) normal form, and we apply this transformation to the attitude control problem. Moreover, we
consider the continuous–time descriptions already widely described in the literature [34, 48, 49, 57, 58].

A. Nonlinear Dynamic Inversion Preliminaries
Finding an explicit relationship between the input D and the output H is generally not straightforward because they

are not directly related. Consider again the generic model of affine =-dimensional multivariable nonlinear systems
described in Eqs. (16a)–(16b). Collecting all differentiated outputs H8 results in < equations in the form of [57, 69]

y (1) = l (x) + S (x)u (18)
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where

y (1) =


H
(d1 )
1
H
(d2 )
2
...

H
(d< )
<


, l (x) =



Ld1
5
ℎ1 (x)

Ld2
5
ℎ2 (x)
...

Ld<
5
ℎ< (x)


,

S (x) =



L61L
d1−1
5

ℎ1 (x) L62L
d1−1
5

ℎ1 (x) · · · L6<L
d1−1
5

ℎ1 (x)
L61L

d2−1
5

ℎ2 (x) L62L
d2−1
5

ℎ2 (x) · · · L6<L
d2−1
5

ℎ2 (x)
...

...
...

L61L
d<−1
5

ℎ< (x) L62L
d<−1
5

ℎ< (x) · · · L6<L
d<−1
5

ℎ< (x)


and Ld 9

5
ℎ 9 , L68L

d 9−1
5

ℎ 9 are the Lie derivatives [21, 70] of the scalar functions ℎ 9 with respect to the vector fields
f and g8 , where 9 , 8 = 1, 2, . . . , <, respectively. Moreover, the system is said to have a vector of relative degree
1 = [ d1 . . . d? ]> at some point x̄ ∈ R= of the state–space when there exists a region of interest D0 ⊂ R= around x̄
such that for all x ∈ D0, S (x) is nonsingular (i.e., invertible) and L68L:

5
ℎ 9 (x) = 0, 0 ≤ : ≤ d 9 − 1, 1 ≤ 8, 9 ≤ <. In

other words, the vector of relative degree represents, for each output H8 , 8 = 1, . . . , ?, the number of output differentiations
needed for the input to appear [21, 70]. Moreover, the vector of relative degree of the continuous–time nonlinear system
satisfies

d = ‖1‖1 =

<∑
8=1

d8 ≤ = (20)

where d is henceforth called the total relative degree of the system. Furthermore, the system is said to have uniform
relative degree when d1 = d2 = · · · = d<. Denoting the < outputs H 9 and their derivatives up to the (d 9 − 1) order as
new states / = [ /1 . . . /< ]>, where /8 = [ b81 . . . b8d8 ]

>, 8 = 1, . . . , <, and defined as

b1
1 := ℎ1 (x), b1

2 := L 5 ℎ1 (x), · · · , b1
d1 := Ld1−1

5
ℎ1 (x),

b2
1 := ℎ2 (x), b2

2 := L 5 ℎ2 (x), · · · , b2
d2 := Ld2−1

5
ℎ2 (x),

...
...

...

b<1 := ℎ< (x), b<2 := L 5 ℎ< (x), · · · , b<d< := Ld<−1
5

ℎ< (x),

(21)

if the total relative degree is equal to the order of the system (d = =), the d–coordinates b
9

8
, 9 = 1, 2, . . . , <; 8 =

1, 2, . . . , d 9 , describe fully the nonlinear behavior of the original system, and moreover, the system is said to be full–state
feedback linearizable. Otherwise, whenever the total relative degree is strictly less than the order of the system (d < =),
a part of the system dynamics would become unobservable via input–output linearization using the new set of the
d–coordinates b 9

8
, and therefore, these coordinates do not fully describe the original system. In such case, the input–output

linearization decomposes the dynamics of the nonlinear system into an external part (input–output), described by the
d–coordinates, and an internal part (unobservable), described by a new set of (= − d)–coordinates and therefore called
the internal dynamics of the system. The unobservable states, usually denoted as ( = [ [1 . . . [=−d ]>, are defined
via smooth functions 5(x) = [ q1 . . . q=−d ]> in the neighborhood D0 of x as

( = 5(x) (22)

such that
mq8

mx
g 9 (G) = 0, for 1 ≤ 8 ≤ = − d, for 1 ≤ 9 ≤ <, ∀x ∈ D0 (23)

Considering a new coordinate–system z defined as

z = Z (x) =
[
7(x)
5(x)

]
=

[
/

(

]
(24)
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where Z represents a diffeomorphism on the domain D0, then the original nonlinear system can be transformed into the
normal form [21, 22, 57, 70] as

¤/ = G2/ + H2 [l (x) + S (x)u]
���
x=Z −1 (z )

(25a)

¤( = f 2 (/, () = L 5 5(x)
���
x=Z −1 (z )

=
m5(x)
mx

f (x)
���
x=Z −1 (z )

(25b)

y = I2/ (25c)

where the triplet (G2, H2,I2) is in Brunovsky block canonical form, i. e., G2 = diag{G8
>}, H2 = diag{H8

>},
I2 = diag{I8

>}, 8 = 1, . . . , <, where (G8
>, H

8
>,I

8
>) is a canonical form representation of a chain of d8 integrators

G8
> :=



0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
. . .

...

0 · · · 0 1
0 0 · · · 0


, H8

> :=



0
0
...

0
1


, I8

> :=
[

1 0 · · · 0
]
, 8 = 1, . . . , < (26)

The transformation Z is required to be a diffeomorphism by the necessity of Z being invertible (at least locally in D0),
i.e., Z−1 (Z (x)) = x, ∀x ∈ D0, in order to recover the original state vector from the new coordinate z, together with
the necessity of Z and its inverse Z−1 to be smooth mappings in R= guaranteeing that the description of the nonlinear
system in the new coordinates is still a smooth one. Since it is generally difficult to find a diffeomorphism defined for all
x ∈ R=, the requirement of having a diffeomorphism well defined for all x ∈ D0 ⊂ R= makes it a local one. Defining
the vector >(x) and matrix :(x) as

>(x) = −S (x)−1 l (x) (27a)

:(x) = S (x)−1 (27b)

and denoting . as a virtual control input, the state feedback control law u defined as

u = >(x) + :(x). = S (x)−1 [. − l (x)] (28)

cancels all nonlinearities in closed-loop in absence of external disturbances and model uncertainties, resulting in the
system

¤/ = G2/ + H2. (29a)
¤( = f 2 (/, () (29b)
y = I2/ (29c)

which is still described in normal form and decomposed into an external (input–output) part and an internal (unobservable)
part. This resulting system is now driven by the virtual control input and entirely described in the newly defined
z–coordinates ((, /). The equation ¤( = f 2 (0, () defines the zero–dynamics of the system which is defined as the internal
dynamics that appear in the system when the input and the initial conditions are chosen such that the output is made or
kept identically to zero for all C ≥ 0. Furthermore, the system is said to be minimum phase if the zero–dynamics have an
asymptotically stable equilibrium point in the domain of interest [70]. Referring back to the H8 differentiated outputs in
Eq. (18), application of the control input in (28) results in < equations in the form of H (d8 )

8
= a8 , 8 = {1, . . . , <}, or,

with a slight abuse of notation, more compactly as [57, 69]

y (1) = l (x) + S (x)u = . (30)

and the sought linear input–output relationship between the new input . and the output y is obtained as long as
: = S (x)−1 is nonsingular. Apart from being linear, an interesting result from this relationship is that it is also
decoupled since the input a8 only affects the differentiated output H (d8 )

8
. From this fact, the input transformation (28) is

called a decoupling control law, and the linear system (30) results in an integrator–chain. The integrator–chain (30)
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is sought to be rendered exponentially stable with the proper design of ., for instance (with a proper choice of
:8 , 8 = 0, 1, . . . , 1 − 1) such as

. = −:0y − :1 ¤y − · · · − :1−1y
(1−1) (31)

From this typical control problem it can be seen that the entire system will have two control loops [34, 46, 47]: the
inner linearization loop (28), and the outer control loop provided by the design of . (31). This resulting NDI control
law depends on accurate knowledge of the model and its parameters, hence it is susceptible to model and parametric
uncertainties contained in both l (x) and S (x).

Now we bring back the discussion into spacecraft attitude control for rigid spacecraft models as described in Eq. (17a),
where in this case = = 9. Recall the output of the system to be the MRP vector y = h(x) = 2 = [ f1 f2 f3 ]>,
meaning that ? = 3, and therefore the system has a vector of relative degree 1 = [ d1 d2 d3 ]> = [ 2 2 2 ]> and
total relative degree d = 6. Since d < =, the input–output linearization will consist of both an external and an internal
part, where the internal part is comprised of three (= − d) unobservable states. For the design of an attitude controller as
in Eq. (28), first we obtain l (x) and S (x) as follows. First consider

L1
5 h(x) =

m2

mx
f (x) = 1

4
H(2)lll (32)

then l (x) is given by
l (x) = L2

5 h(x) = ∇[L1
5 h(x)] f (x) (33)

where ∇[L1
5
h(x)] represents the Jacobian of the MRP kinematics and is given by

∇[L1
5 h(x)] =

m [L1
5
h(x)]

mx
=

1
4
m
[
H(2)lll

]
mx

=

[
1
4
m

[
H (2)lll

]
m2

1
4 H(2) 03×3

]
︸                                     ︷︷                                     ︸

purely kinematic and fully known

(34)

from which it can be easily shown that

1
4
m
[
H(2)lll

]
m2

=
1
2


lGf1 + lHf2 + lIf3 lI − lGf2 + lHf1 lIf1 − lGf3 − lH

lGf2 − lI − lHf1 lGf1 + lHf2 + lIf3 lG − lHf3 + lIf2

lH + lGf3 − lIf1 lHf3 − lG − lIf2 lGf1 + lHf2 + lIf3

 (35)

Finally, S (x) is given as

S (x) = L6L1
5 h(x) =

m
[
L1

5
h(x)

]
mx

g(x) = ∇[L1
5 h(x)]M (36)

The attitude control design begins by first considering the new coordinate–system given by the local diffeomorphism (24)
where the external states / = [ /1 /2 /3 ]> are given by /8 = [ b1

8
b2
8
]> = [ f8 ¤f8 ]>, 8 = 1, 2, 3, and the choice

for the remaining internal states ( = 5(x) = [ q1 q2 q3 ]> are written in compact form as

5(x) = N�� [lll ΩΩΩF ]> (37)

where
N�� =

[
M−1

12 M−1
13

]
, M12 = −GO−1, M13 = −(O Ow)−1 (O + GOwG

>)

and furthermore, the choice of N�� has been found such that the following condition

5(0) = 0,
m5

mx
g(x) = m5

mx
M = 0, (38)

is fulfilled according to the definition of 5(x). Then the original nonlinear system can be transformed into the normal
form (25) and the state feedback nonlinear dynamic inversion (NDI) control law u is obtained as in (28)

u = S (x)−1 [. − l (x)] =
[
∇[L1

5 h(x)]M
]−1 [

. − ∇[L1
5 h(x)] f (x)

]
(39)

8



while denoting . as a virtual control input to be considered later. With this NDI control law, and in absence of external
perturbations and model uncertainties, the nonlinearity is cancelled resulting in the nominal closed-loop system as

¤/ [6] = G2[6×6]/ [6] + H2[6×3]. [3] (40a)
¤([3] = f 2 (/ [6] , ([3]) (40b)
y [3] = I2[3×6]/ [6] (40c)

where the subscript indexes indicate the dimensions of the vectors and matrices, and G2, H2, I2 are in Brunovsky block
canonical form as in Eq. (26). Furthermore, the internal dynamics characterized in the x-coordinates are given by

f 2 (/, ()
���
x=Z −1 (z )

= M−1
12 ¤lll − M−1

13
¤ΩΩΩF (41)

where the zero–dynamics are be given by f 2 (0, () = 0 which makes the system marginally stable at the origin and
around the small neighborhood D0 in consideration, and therefore the spacecraft attitude control system is non-minimum
phase. Zero–dynamics defines the internal dynamics of the system when the input and the initial conditions are chosen
such that the output is maintained identically to zero at all times. Therefore, whenever / = 0 (which implies lll = 0) we
obtain from definition that ¤lll = 0 and ¤ΩΩΩF = 0. Note that nothing is said about the correspondingΩΩΩF which shall remain
constant and therefore responsible to keep the angular momentum fixed inertially. Furthermore, since ∇[L1

5
h(x)]M is

not singular, the linear input–output relationship between ¥2 and . is obtained as a double–integrator

¥2 =


¥f1

¥f2

¥f3

 =

aG

aH

aI

 = . (42)

Normally, the error MRP is obtained with a multiplicative approach (by composition of the relative orientations)
but since our control structure involves a path planner which commands an attitude profile in increments, we denote
e = 24 = 23 − 2, which is a valid representation of the MRP error for small incremental rotations [71], and therefore
¤e = ¤24 = ¤23 − ¤2. The double-integrator (42) can be therefore rendered exponentially stable with

. = ¥23 + k� ¤e + k%e (43)

where ¥23 is the feedforward reference term for tracking tasks, and k� and k% being 3×3 constant diagonal matrices whose
8−th diagonal elements k�8

and k%8
, respectively, are chosen so that the polynomials B2 + k�8

B + k%8
8 = 1, . . . , = = 3,

B2 + k�8
B + k%8

8 = 1, . . . , = = 3 (44)

may become Hurtwiz. This results in the exponentially stable and decoupled error dynamics ¥e + k� ¤e + k%e = 0

¥e + k� ¤e + k%e = 0 (45)

which implies that e(C) → 0 as C → ∞.

B. Incremental Nonlinear Dynamic Inversion
The concept of incremental nonlinear dynamic inversion (INDI) amounts to the application of NDI to a system

expressed in an incremental form. This improves the robustness of the closed-loop system as compared with conventional
NDI since dependency on the accurate knowledge of the plant dynamics is reduced. Unlike NDI, this control design
technique is implicit in the sense that desired closed-loop dynamics do not reside in some explicit model to be followed
but result when the feedback loops are closed [36, 37]. To begin the discussion, we introduce a sufficiently small
time–delay _ and define the following deviation variables

¤x0 := ¤x(C − _), x0 := x(C − _), u0 := u(C − _) (46)

which are _–time–delayed signals of the current state derivative ¤x(C), state x(C), and control u(C), respectively. The
explicit consideration of the time–delay _ in these deviation variables has not been widely considered in the literature;
in reality, an infinitesimal time increment is not practically feasible and because of digital implementation of control
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systems, the lowest possible delay admissible by these assumptions is given by the actual sampling rate of the on-board
digital computer. For highly sampled applications of INDI (100 – 1000 Hz), an associated (approximate) discrete–time
model of the plant provides implicit consideration of the sampling time but most often this is done for the angular rate
dynamics with a Taylor series approximation and not for the entire plant (with relative degree > 1). Moreover, we will
denote

Δ ¤x := ¤x − ¤x0, Δx := x − x0, Δu := u − u0 (47)

as the incremental state derivative, the incremental state, and the so–called incremental control input, respectively. To
obtain an incremental form of system dynamics [33, 34, 36–38, 48, 49, 72], we consider the first–order Taylor series
expansion of y (1) as in [57, 58], not in the geometric sense, but with respect to the newly introduced Δx and Δu
(functions of the time–delay _) as

y (1) = y (1)0 + m

mx

[
l (x) + S (x)u

] ����x=x0
u=u0

Δx + S (x0)Δu + O(Δx2) = y (1)0 + S (x0)Δu + T(x, _) (48)

with

y (1)0 = l (x0) + S (x0)u0 (49a)

T(x, _) = m

mx

[
l (x) + S (x)u

] ���x=x0
u=u0

Δx + O(Δx2) (49b)

and the perturbation term T(x, _) as in [57, 58] satisfies

lim
_→0

‖T(x, _)‖2 → 0, ∀ x (50)

This assumption of having high sampling rates such that (50) holds has been widely considered as valid in the incremental
nonlinear dynamic inversion and incremental backstepping control literature [52, 54, 72, 73]. From now on, we shall
refer to S (x0) as the instantaneous control effectiveness (ICE) matrix, meaning that this model–based term is sampled
at each incremental instant. This leaves us with an approximate linearization about the _−delayed signals that is
performed incrementally, and not with respect to a particular equilibrium or operational point of interest. We now
introduce a formal assumption to continue with the incremental nonlinear control design.

Time-scale separation (TSS) assumption: For a sufficiently small time-delay _ and for any (bounded) incremental
control input, it is assumed that Δx does not vary significantly during _. In other words, the input rate of change is
much faster than the state rate of change, so this is seen as a time-scale separation assumption:

n)(( (C) ≡ ‖Δx‖2 � 0, ∀ Δu (51)

which leads to

‖T(x, _)‖2 � 0 (52)

and therefore
y (1) � y (1)0 + S (x0) (u − u0) (53)

This assumption shows that for small time increments (high sampling rates) the nonlinear system dynamics in its
incremental form (in relative coordinates) are simply approximated by its instantaneous control effectiveness (ICE)
matrix S (x0), i.e., the control effectiveness evaluated at the current state. Since this results in a change of coordinates
(absolute to relative), the development of control laws in the original set of (absolute) coordinates implies or requires the
availability of y (1)0 and u0 in (53). For the obtained approximation (53), NDI is applied to obtain a relation between the
incremental control input and the output of the system

u = u0 + S (x0)−1 [. − y (1)0 ] (54)

10



Note that the incremental input u0 that corresponds to y (1)0 is measured or estimated from the output of the actuators,
and it has been assumed that a commanded control is achieved sufficiently fast as to being able to neglect the effect of
the actuator dynamics. The total control command along with the obtained linearizing control u0 = u(C − _) can be
rewritten as

u(C) = u(C − _) + S (x(C − _))−1
[
. − y (1) (C − _)

]
(55)

and its referred to as the incremental nonlinear dynamic inversion (INDI) control law. The dependency of the closed–loop
system on accurate knowledge of the dynamic model in l (x) is largely decreased, improving robustness against model
uncertainties contained therein. Therefore, this implicit control law design is more dependent on accurate measurements
or accurate estimates of y (1)0 , the state derivatives, and u0, the incremental control input, respectively. The cancelling of
all nonlinearities in closed–loop, in absence of external disturbances and model uncertainties, results in the system

¤/ = G2/ + H2 [. + T(x, u, _)] (56a)
¤( = f 2 (/, () (56b)
y = I2/ (56c)

which is still described in normal form. The stability and robustness properties of this system has been thoroughly
studied in [57, 58] and the reader is referred to these references for more details. Referring back to the attitude control
problem, since we will consider the dynamics in its incremental form as in (48) for the control design, the application of
INDI results in a control law that is only subject to sensor uncertainties and model uncertainties contained within the
estimated ICE matrix S̄ as

u(C) = u(C − _) + S̄ (x(C − _))−1
[
. − y (1) (C − _)

]
(57)

However, notice that

S̄ (x(C − _)) = L6L1
5 h(x(C − _)) =

m
[
L1

5
h(x(C − _))

]
mx

ḡ(x(C − _)) (58)

= ∇[L1
5 h(x(C − _))]︸                  ︷︷                  ︸

purely kinematic

M̄︸︷︷︸
purely parametric

(59)

where the only (parametric) uncertainties are contained in the estimated ḡ(x(C − _)) = M̄ which contains information
only about the spacecraft inertia matrix and the inertias of the wheel–set. This means that in the particular case of this
plant, namely a rigid body spacecraft actuated with a non-redundant set of orthogonal reaction wheels and parameterized
by MRPs, the incremental nonlinear dynamic inversion is robust against uncertainties since the term ∇[L1

5
h(x(C − _))],

contained in S (x(C − _)) is given by a kinematic and known relationship, therefore void of uncertainty. Moreover, this
purely kinematic term in the resulting control law is only subjected to the measured errors contained in x(C − _). To
conclude the INDI attitude control design, we have made use of the fact that

y (1)0 = ¥20 =
1
4
[ ¤H(20) ·lll0 + H(20) · ¤lll0

]
(60)

where the relationship

¤H(20) ·lll0 =
1
2
[

22>
0lll0 (1 − 2>

0 20)lll0 − (1 + 2>
0 20)lll>

0lll020 − 42>
0lll0Y (lll0) 20 + 4(2>

0lll0)220
]

(61)

is given and therefore highly beneficial to compute ¥20 analytically which is otherwise very hard to estimate with finite
differences or by approximation since this would amplify the noise contained in measurements. By using the measured
y (1)0 and commanded u0 incrementally, we practically obtain a nonlinear ‘self-scheduling’ NDI control law that is robust
to model and parametric uncertainties. Notice, however, that this INDI control law is depending on the instantaneous
control effectiveness (ICE) matrix reflected in S (x0), which in turn is only susceptible to parametric uncertainties in
M that are related to inertia values of the rigid body and its reaction wheels. This remark gives a hint to one of the
key differences with respect to time-delay control (TDC), where the control effectiveness is considered as a fixed–gain
matrix instead [74].
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IV. Incremental Nonlinear Dynamic Inversion in Sampled-Data Form
In this section we are interested in bridging the continuous–time derivation of INDI with respect to a discrete or

sampled–time counterpart. In contrast to linear systems where exact sampled-data models can be obtained, for nonlinear
systems a sampled–data model can only approximate the real dynamics up to a certain degree [63–65]. However, the
accuracy of such models can be characterised in a precise way. Considering an analogous system to (16) but described
as a sampled–data model, we will derive parallels in terms of incremental control design but recalling that these models
are obtained as an approximation of the input–output mapping of the nonlinear forms already system presented.

A. Preliminaries
Since a sampled–data model is sought such that it closely approximates the nonlinear input–output mapping given in

the previous section, we may obtain these approximations by considering that the control inputs u(C) are provided in
sampled–time by a zero–order hold (ZOH). When assuming the input comes from a digital–to–analog converter as such
zero–order hold signals, the input is hence generated as piece–wise constant signals. Such piece–wise constant inputs
are provided in between sampling time intervals of amplitude _ are given by

u(C) := u: = u(:_), for C ∈ [:_, (: + 1)_) , : ≥ 0 (62)

where : ∈ Z+ is the sampled or discrete–time index [64]. Furthermore, recalling the shift–operator @ that shifts the
current state as @x: = x:+1, we will be interested in using the X–operator [64, 65] defined as

X =
@ − 1
_

(63)

which corresponds to a reparameterisation of sampled–data models that allows to explicitly include the sampling period
in a discrete–time description [75]. Denoting x: = [ G:1 · · · G:= ]> ∈ R= as the sampled–time state sequence,
y: = [ H:1 · · · H:? ]> ∈ R ? as the sampled–time output sequence, and u: = [ D:1 · · · D:< ]> ∈ R< as the
piece–wise continuous and sampled–time input sequence, an approximated sampled–data (discrete–time) dynamics
model corresponding to (16) will result in a model of the form

Xx: = f : (x:) + g: (x:)u: (64a)
y: = h: (x:) (64b)

where the functions f : (x:) = [ 5:1 (x:) · · · 5:= (x:) ]>, g: (x:) = [ g:1 (x:)
> . . . g:< (x)

> ]> ∈ R=×<, and
h: (x:) = [ ℎ:1 (x:) · · · ℎ:? (x) ]> are assumed to be analytical approximations of the original nonlinear model,
and therefore smooth vector fields continuously differentiable on R=.

B. A Sampled–Data Model for Deterministic Nonlinear Systems
Yuz and Goodwin [64, 65] presented a sampled–data model as in Eqs. (64a)-(64b) for deterministic nonlinear

systems. The model results in a truncation error of order [ _d1+1 . . . _d?+1 ]> between the sampled–data model
output y: and the continuous–time output y(C) of the original system (16a)–(16b) at sampling instants C = :_ when
the inputs u(C) are generated from u: as sampled–time and piece–wise constant (ZOH) control inputs. The fact that
this model is close in a well defined sense to the continuous–time output helps to bridge the connection between
continuous–time incremental nonlinear control methods and their discrete or sampled–time counterparts in appropriate
fashion. Moreover, the key fact of using models described as in (64) is that these are models already given in incremental
form, but in the discrete sense, i.e., as state transitions represented as

x:+1 = x: + _ · Xx: (65)

where also the sampling time_ is considered explicitly. Denoting /: = [ I:1 · · · I:d ]> and(: = [ I:d+1 · · · I:= ]>,
we can consider the new coordinate–system defined as

z: = ZB (x:) =
[
7B (x:)
5B (x:)

]
=

[
/:
(:

]
(66)

where clearly z: = [ I:1 · · · I:= ]> and ZB defines the diffeomorphism on the domain D0, and then the original
continuous-time nonlinear system (16a)–(16b) system can be approximated as the following discrete normal form [64, 65]
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X/: = GB/: + HB

[
l (/: , (:) + S (/: , (:)u:

]
(67a)

X(: = f B (/: , (:) (67b)
y: = IB/: (67c)

where the triplet (GB , HB ,IB) is in Brunovsky block canonical form, i. e., GB = diag{G8
:}, HB = diag{H8

:
}, IB =

diag{I8
:}, 8 = 1, . . . , <, and (G8

: , H
8
:
,I8

:) are given as the following matrices [64, 65]

G8
: :=



0 1 _/2 · · · _d8−2

(d8−1)!
0 0 1 · · · _d8−3

(d8−2)!
...

. . .
. . .

...

0 · · · 0 1
0 0 · · · 0


, H8

: :=



_d8−1

d8!
_d8−2

(d8−1)!
...

_/2
1


I8

: :=
[

1 0 · · · 0
]
, 8 = 1, . . . , <.

and therefore, the model is explicitly defined in terms of the approximated analytical functions l (/: , (:), S (/: , (:),
f B (/: , (:), and the system sampling time _, which are based on the original continuous–time nonlinear model. Note
that

lim
_→0

G8
: → G8

>, lim
_→0

H8
: → H8

> (68)

which recovers the original continuous time normal form for small sampling times [75]. Furthermore, the local
truncation error between the output y: = I2/: of the discrete-time nonlinear model and the true system output y(C) is
of order _1+1. This results in a well approximated sampled–data system for sufficiently small sampling times and low
relative degrees (1 or 2). Considering the sampled vector >(/: , (:) and sampled matrix :(/: , (:) as

>(/: , (:) =
[
−S (/: , (:)−1 l (/: , (:)

]
(69a)

:(/: , (:) = S (/: , (:)−1 (69b)
and denoting .: as the sampled–time virtual control input, the state feedback control law u: defined as

u: = >(/: , (:) + :(/: , (:).: = S (/: , (:)−1 [.: − l (/: , (:)
]

(70)

cancels all nonlinearities in closed-loop in absence of external disturbances and model uncertainties, resulting in the
system represented in the following approximated discrete normal form

X/: = GB/: + HB.: (71a)
X(: = f B (/: , (:) (71b)
y: = I2/: (71c)

which is still described in normal form and decomposed into an external (input–output) part and an internal (unobservable)
part. In this case, this sampled–data model is driven by the sampled–time virtual control input and approximated
by the corresponding sampled z:–coordinates ((: , /:). The sampled–data model (67) results in having a vector of
relative degree 1: = [ d:1 . . . d:? ]> = [ 1 . . . 1 ]> with respect to the output y: [64, 65] and furthermore, the
discrete-time zero dynamics are given by two subsystems, namely the sampled counterpart of the continuous–time zero
dynamics X(: = f B (0, (:) and a linear subsystem of dimension denoted as 1̄ = [ d1 − 1 . . . d? − 1 ]>. From the
approximated model (67) it is clear that we can collect the d shifted outputs with a slight abuse of notation as

Xz (1) (: ) = l ((: , /:) + S ((: , /:)u: = .: (72a)

and note that the relationship between the continuous–time 1 differentiated outputs and the shifted state variables is
given by the forward Euler method also obtained by a truncated Taylor series expansion, i.e., as

y (1) � Xz (1) (: ) =
z (1) (:+1) − z (1) (: )

_
(73)

where again, a linear input–output relationship between the .: and the output y: is precluded by the condition of
S ((: , /:)−1 being nonsingular.
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C. Incremental Nonlinear Dynamic Inversion in Sampled–Data Form
We are now interested in the main result of this paper, which is a sampled–data form of the incremental nonlinear

dynamic inversion control so far considered. Notice that, generally speaking, the nonlinear control laws uses the
approximated or estimated model described by S̄ and l̄ as

u: = S̄ ((: , /:)−1 [.: − l̄ ((: , /:)
]

(74)

which causes a problem in terms of uncertainties since inserting this control law gives

X/: = GB/: + HB

{
l ((: , /:) + S ((: , /:)S̄ ((: , /:)−1 [.: − l̄ ((: , /:)

]}
(75)

resulting in the closed–loop dynamics
X/: = (GB − QHB) /: + &#�� (76)

which is not linearizing anymore because of the extra term &#�� containing uncertain nonlinear terms [57, 58]. This
major flaw of NDI–based control systems is well known, and also previously demonstrated by [34, 76, 77]. In order to
partially tackle this flaw of NDI, we are now interested in obtaining an INDI control but in a sampled–data framework.
To design a sampled–data form incremental nonlinear dynamic inversion, first we introduce the following assumption.

Small time delay (STD) assumption: For a sufficiently small time-delay _ so that l ((: , /:) and S ((: , /:) does not
vary significantly during _, we assume the following approximations to hold:

n()�;
(C) ≡ l ((: , /:) − l ((:−1, /:−1) � 0 (77)

n()�"
(C) ≡ S ((: , /:) − S ((:−1, /:−1) � 0 (78)

this implies that
l ((: , /:) � l ((:−1, /:−1) = Xz (1) (:−1) − S ((:−1, /:−1)u:−1 (79)

which, by defining the following deviation variables

ΔXz (1) (: ) := Xz (1) (: ) − Xz (1) (:−1) , (80a)
Δu: := u: − u:−1, (80b)

and in virtue of (78) (as in the TSS assumption), (79) leads to

ΔXz (1) (: ) � S ((:−1, /:−1)Δu: (81)

in other words
Xz (1) (: ) � Xz (1) (:−1) + S ((:−1, /:−1) (u: − u:−1) + O(_1+1). (82)

Recalling the control law in Eq. (74), and considering our given STD assumption, we may now use

l̄ ((: , /:) = l ((:−1, /:−1) (83)

which is given by Eq. (79) and by applying nonlinear dynamic inversion results into the following sampled–time INDI
controller

u: = u:−1 + S̄ ((: , /:)−1 [.: − Xz (1) (:−1)
]

(84)

where
S̄ ((: , /:) := S ((:−1, /:−1) (85)

and

Xz (1) (:−1) =
z (1) (:−1) − z (1) (:−2)

_
(86)

Referring back to the attitude control problem, since we will depart from the (approximated) discrete normal form
in (71) for the control design, the application of INDI results in a control law that is also depending only on the
uncertainties contained within the ICE matrix

u: = u:−1 + S ((:−1, /:−1)−1 [.: − Xz (1) (:−1)
]

(87)
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However, notice that

S ((:−1, /:−1) = ∇[L1
5 h(x:−1)]︸             ︷︷             ︸

purely kinematic

M̄︸︷︷︸
purely parametric

(88)

The purely kinematic term in the resulting control law is only subjected to the measured errors contained in x:−1. For
the sampled–time attitude control, we have the following sampled quantities

/: = 7B (x:) =



I:1

I:2

I:3

I:4

I:5

I:6


=



f:1

¤f:1

f:2

¤f:2

f:3

¤f:3


(89)

and notice that the system has a vector of relative degree 1: = [ d:1 d:2 d:3 ]> = [ 1 1 1 ]> with respect to the
output y: . To conclude the INDI attitude control design, we have made use of the fact that, because of (86), we can
rewrite

X ¤2: =
¤2: − ¤2:−1

_
� ¥2: (90)

and therefore

Xz (1) (:−1) = ¥2:−1 =
1
4
[ ¤H(2:−1) ·lll:−1 + H(2:−1) · ¤lll:−1

]
(91)

where the relationship

¤H(2:−1) ·lll:−1 =
1
2
[

22)
:−1lll:−1 (1 − 2)

:−12:−1)lll:−1

−(1 + 2)
:−12:−1)lll)

:−1lll:−12:−1 − 42)
:−1lll:−1Y (lll:−1) 2:−1 + 4(2)

:−1lll:−1)22:−1
]

(92)

is given analytically. By virtue of eigenvalue assignment, we may find .: such that

.: = −Q7(x:) = −Q/: (93)

obtaining therefore the following closed-loop system in absence of model uncertainties and perturbations

X/: = (GB − HBQ) /: (94a)
X(: = f B ((: , /:) (94b)

y:,�! = IB/: (94c)

where again, the local truncation error between y:,�! and y(C) is of order [ _d1+1 . . . _d?+1 ]>. This concludes the
control design using the sampled–data form of incremental nonlinear dynamic inversion for spacecraft attitude control.

V. Attitude Control Simulations
For numerical simulations using the comprehensive analytical nonlinear model of Sec. II, we consider the satellite

platform BIROS (Bispectral InfraRed Optical System) [3] which was successfully launched into space on 22nd June
2016 at 05:55 CEST, and is the second technology demonstrator along with the TET-1 satellite of the DLR R&D
‘FireBIRD’[4] space mission aiming to provide infrared (IR) remote sensing for early fire detection (forest fires, volcanic
activity, gas flares and industrial hotspots). These small satellites are extensions and largely based on the flight-proven
BIRD (Bi-spectral Infra-Red Detection) satellite bus launched in 2001 [78, 79]. Among several mission goals and
scientific experiments, to demonstrate a high-agility attitude control system, the platform is actuated with an array of
three orthogonal ‘High-Torque-Wheels’ (HTW) [1, 2]. The HTWs are placed in an orthogonal configuration, which
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(a) BIROS CAD drawing (b) ‘High-Torque-Wheels’ (yellow) at BIROS payload compartment

Fig. 1 BIROS (Bispectral InfraRed Optical System) satellite and its array of three ‘High-Torque-Wheels’. Image
credits [3], DLR.

means that the satellite’s reaction wheel array alignment matrix is simply G = diag( [ 1 1 1 ]). Wheel characteristics
for these HTWs are presented in Table 1.

For agile reorientation, however, a challenge arises from the fact that fast slew maneuvers are in general not of the
Euler-axis rotation type [11, 12], specially whenever the actuators are constrained independently [13] as it will be in our
case. Moreover, BIROS’ On-Board-Computer (OBC) can only accomodate rotational acceleration or torque commands
up to twice per second (2 Hz) which means that these commands must be piece–wise constant sampled–time control
inputs. In [10], the problem of designing fast slew maneuvers was considered as a trajectory optimization problem.
However, these optimized slews are hardly implementable in practice, even less when agility is required on demand.
Generally speaking, on–board trajectory optimization is very computationally demanding and can consume considerable
time to obtain feasible solutions. For those reasons, we are interested in performing on–board agile maneuvers by means
of our sampled–data formulation of INDI in combination with a simple path planner which can command large angle
maneuvers to be tracked by the closed–loop control system. In the simulations to be performed, we consider BIROS to
have an inertia matrix of

O =


10 1 0.5
1 7 0.2

0.5 0.2 9

 Kg · m2

The initial HTW wheel speeds are set to zero since we will consider these wheels only for agile reorientation; normally

Table 1 Wheel characteristics

Performance HTW

Max. speed [rad/s] 300
Nominal torque [Nm] 0.21
Max. torque [Nm] 0.25

Mechanics

Moment of inertia [Kg · m2] 5 × 10−3

during operation, wheel speeds have some initial conditions that represents the angular momentum stored in the satellite
platform. The nominal operation values presented in Table 1 are considered as the actuator limits in order to restrict
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the demands of the attitude maneuver as to avoid the case when wheels must be saturated by their respective control
commands.

Because the focus of this paper is to introduce a sampled–data formulation for INDI controllers, we shall focus
first on the numerical analysis without actuator and sensor dynamics in order to test this formulation in practice. It
is well known from the literature [50, 51, 57, 80] that the actuator dynamics have to be "sufficiently" fast and also
synchronized with the sensor and the filters in order to avoid undesired interaction between the controller and the plant
due to the time–delayed sensor measurements, estimates, and incremental control actions. Not having synchronized
signals between the time–delayed sensor signal and the time–delayed actuator signal might cause instability issues in
INDI [50, 81]. In that sense, and actually corroborated in practice, the reaction–wheel "inner–loop" which is commanded
by a desired torque provides the output at much higher rates from the ones to be simulated (100 Hz) and therefore, we
neglect these actuator dynamics.
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Fig. 2 MRP reference tracking commands

The MRP tracking reference commands, illustrated in Fig. 2, are designed to be smoothly up to a second order
and obtained with a simple reference trajectory generator. The feedforward acceleration command is designed as a
piece–wise “doublet” discrete signal. This acceleration profile can be integrated twice in discrete–time to obtain the
corresponding MRP and MRP rate commands that are going to be used as the reference. This approach for reference
command generation (that can be seen as a motion/trajectory/path planner) is quite important because the resulting
feedforward acceleration will produce a moment command that corresponds closely to the path specified, hence why we
can approximate the MRP attitude error by the algebraic expression presented (MRP additive error) and not using the
MRP multiplicative error (by composition or relative orientations). The rest-to-rest maneuver is designed to achieve
a desired final attitude by performing full three–axis control without an optimizer to design the resulting profile. It
is important to mention that this trajectory is a time–dependent attitude path for the MRP specified a-priori, giving
the satellite’s on board computer the capability to perform agile maneuvers on demand without having to request an
optimization routine to find a time optimal path dynamically. For all simulations we consider the virtual controller
. = ¥y3 + k� ¤e + k%e so that the (second order) error dynamics

¥e + k� ¤e + k%e = 0 (95)

are equivalent across the different scenarios considered. This is a classical second order dynamics where considering a
natural frequency l= and damping coefficient of Z we can obtain the gains

k�8
= 2 · Z · l=, 8 = 1, 2, 3 (96a)

k%8
= l2

=, 8 = 1, 2, 3 (96b)

For all simulations we fix Z = 0.707 and leave l= as a tuning parameter depending on the sampling of the controller.
The simulation results are as follows. This first simulation is done at a sampling of 10 Hz which is already quite

close to simulation results using a sampling of 100 Hz (not shown). In this case, we set l= = 1 rad/s. For the attitude
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control motion obtained, see Fig. 3; it can be seen that the MRP attitude tracking profile is quite satisfactory because
of the tracking errors shown. Along with these results, Fig. 4 shows the resulting angular velocity of the spacecraft
together with the angular velocity of the reaction wheels while Fig. 5 shows the corresponding HTW virtual control
input together with the resulting commanded wheel torques (input control) using the sampled–data INDI control. This
maneuver showcases also that the limits have been avoided and that the platform is commanded with high-agility.
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Fig. 3 INDI control at 10 Hz: MRP attitude tracking profile (left) and its corresponding tracking errors, 24

(middle) and ¤24 (right).
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Fig. 4 INDI control at 10 Hz: resulting angular velocity of the spacecraft (left) and angular velocity of the
reaction wheels (right).

A second simulation is performed where the sampling time has been set to 1 Hz. In this case, we set l= = 0.1 rad/s
because this parameter has a strong influence on the tracking performance as well as on the stability of the closed–loop
control system which is operating on a such low sampling rate. During simulations it was found that this relationship or
dependency can be further analyzed to improve the response of the system, but this falls out of the scope of this paper.
Moreover, for this simulation we have perturbed the plant by adding inertia parametric uncertainties to also test the
robustness of our sampled–data INDI controller. Table 2 shows the considered perturbations on the diagonal elements
of the inertia matrix, giving rise to 27 combinations that are tested in a (small) Monte Carlo campaign. Figure 6 shows
the attitude control motion obtained under these parametric uncertainties together with the resulting tracking errors.
Despite the relative big errors obtained, the system demonstrates still being to remain closed-loop stable and performant
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Fig. 5 INDI control at 10 Hz: virtual control . (left) and commanded wheel torques (right) during the fast slew
maneuver.

by completing the desired maneuver under the parametric perturbations considered. In this case, simulation results
also demonstrated that the platform can be commanded with high-agility while showcasing that the robustness of this
INDI approach is preserved even at a such low sampling rate of 1 Hz. Along with these tracking performance results,
Fig. 4 shows the resulting angular velocity of the spacecraft together with the angular velocity of the reaction wheels
for all the perturbed cases considered. In these plots it can be seen the piece–wise linear behaviour of these variables
since the low–sampling frequency of the control system is more noticeable. This is more evident by inspecting Fig. 5
which shows the corresponding HTW virtual control input together with the resulting commanded wheel torques (input
control) using our sampled–data INDI control. Here, the piece–wise constant nature of these control commands are
more evident and clearly shows that INDI control at such low sampling rate of 1 Hz is still possible. However, this
maneuver showcases that the platform is operating at the limits of the reaction wheels which calls for a re-assement of
the maneuver profile (increase the maneuver time, for instance) or re–tuning of the controller parameter l=. This last
approach might render the system unstable or not be able to perform as desired; but it is noticeable that changing the
motion profile for a less aggressive maneuver, or by allowing more time to complete it, could improve the closed–loop
response without much effort on control re-design or control parameter tuning. It is therefore proven that ‘down–scaling’
the sampling time is feasible with our approach. Of course, there will be a limit on how low can the sampling time be.

In summary, simulation results shows that an agile attitude control system using INDI is promising because of
the capability to track agile maneuvers effectively. Having used a sampled–data approach also allows to consider the
sampling–time explicitly in the formulations and also to study what happens while decreasing the achievable sampling
time of the control computer. In [74, 82] it was shown a relationship between INDI and TDC/PID control where the
influences of the parametric uncertainty on the robust performance and stability have been shown to be superior for
INDI in comparison to TDC/PID control. This clearly suggests, that although they may have similar performance, the
INDI control laws possess better robustness and stability properties. The systematic gain tuning (using the desired error
dynamics as a guide) and self scheduling property of our INDI controller (because of the obtained model–based terms)
have been shown to be scaled and readily applied to attitude control of rigid spacecraft for agile maneuvers.

Table 2 Uncertainties

Parameter Nominal Value [Kg · m2] Uncertainty

OG,G 10 ±5 %
OH,H 7 ±5 %
OI,I 9 ±5 %
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Fig. 6 INDI control at 1 Hz: MRP attitude tracking profile (left) and its corresponding tracking errors, 24
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Fig. 7 INDI control at 1 Hz: resulting angular velocity of the spacecraft (left) and angular velocity of the
reaction wheels (right).
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VI. Conclusion
In this paper a sampled–data form of the recently reformulated incremental nonlinear dynamic inversion (INDI) is

proposed and applied in the context of spacecraft attitude control. The objective was to bridge the gap between highly
sampled INDI formulations (100 – 1000 Hz) and their lowly sampled counterparts in the context of spacecraft attitude
control where low sampling rates are common (1 – 10 Hz) . This was done by introducing a sampled–data reformulation
of INDI that allows explicit consideration of the sampling time via an approximate sampled–data model in normal form
available in the literature. Having an explicit consideration of the sampling time in the plant and in the controller is
important because there is a limit where the stability and performance of the resulting closed–loop nonlinear system can
be compromised. Moreover, this sampled–data model is better suited for the INDI controller since it can be applied for
plants with higher relative degree than one. Regarding the attitude control, it was done in terms of Modified Rodrigues
Parameters (MRPs) where the scheduling of the time–varying control effectiveness is achieved with the Jacobian of the
MRP kinematics. This is an improvement over similar control strategies previously developed for rigid body spacecraft
since it results in an architecture without a cascaded inner–loop based on a time–scale separation assumption for the
rate loop which is commonly done. This results in the control effectiveness of the control loop composed entirely of
kinematic (fully known) and parametric terms, making it useful as a scheduling term for the robust nonlinear controller.
This resulting non–cascaded inversion–based architecture only requires an accurate control effectiveness model and
measurements of the state and some of its derivatives resulting in a combined model– and sensor–based control approach.
Simulations experiments for different sampling times showed the effectiveness of this method.
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