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Abstract: The precise information on fuel characteristics is essential for wildfire modelling and
management. Satellite remote sensing can provide accurate and timely measurements of fuel charac-
teristics. However, current estimates of fuel load changes from optical remote sensing are obstructed
by seasonal cloud cover that limits their continuous assessments. This study utilises remotely sensed
Synthetic-Aperture Radar (SAR) (Sentinel-1 backscatter) data as an alternative to optical-based imag-
ing (Sentinel-2 scaled surface reflectance). SAR can penetrate clouds and offers high-spatial and
medium-temporal resolution datasets and can hence complement the optical dataset. Inspired by
the optical-based Vegetation Structural Perpendicular Index (VSPI), an SAR-based index termed
RADAR-VSPI (R-VSPI) is introduced in this study. R-VSPI characterises the spatio-temporal changes
in fuel load due to wildfire and the subsequent vegetation recovery thereof. The R-VSPI utilises SAR
backscatter (σ◦) from the co-polarized (VV) and cross-polarized (VH) channels at a centre frequency
of 5.4 GHz. The newly developed index is applied over major wildfire events that occurred during
the “Black Summer” wildfire season (2019–2020) in southern Australia. The condition of the fuel load
was mapped every 5 (any orbit) to 12 (same orbit) days at an aggregated spatial resolution of 110 m.
The results show that R-VSPI was able to quantify fuel depletion by wildfire (relative to healthy
vegetation) and monitor its subsequent post-fire recovery. The information on fuel condition and
heterogeneity improved at high-resolution by adapting the VSPI on a dual-polarization SAR dataset
(R-VSPI) compared to the historic forest fuel characterisation methods (that used visible and infrared
bands only for fuel estimations). The R-VSPI thus provides a complementary source of information
on fuel load changes in a forest landscape compared to the optical-based VSPI, in particular when
optical observations are not available due to cloud cover.

Keywords: microwave remote sensing; synthetic aperture radar; Sentinel-1; Sentinel-2; wildfire; fuel
mapping; vegetation recovery

1. Introduction

Wildfires are a global phenomenon that causes disturbances across terrestrial ecosys-
tems and plays a critical role in altering Earth’s carbon and water cycle [1]. Recent studies
indicate that around the globe wildfires burn nearly 423 Mha yr−1 [2] of vegetated land
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with the majority in open landscapes, such as grasslands and savannahs [3]. However,
most ecological biomes are affected by wildfire at some point in time. In a global context,
Australia has one of the highest wildfire incident rates [4]. Given the ascendency of wildfire-
prone and -reliant vegetation across the Australian landscape ranging from closed-canopy
forests, savannas, and grasslands to sparsely vegetated deserts, Australia is the ideal lo-
cation to investigate the wildfire regimes at a continental scale. Over the past millennia,
wildfires have played a significant role in shaping the distribution and arrangement of
Australian vegetation, in particular in south-eastern Australia. Wildfire regimes in these
regions have the potential to occur at higher intensities and more frequently than in other
parts of Australia [5] and possibly even the world [6].

Due to the extreme consequences of wildfires, estimating and forecasting wildfire
risk [7,8] is critical. Wildfire risk depends mainly on three measures—the availability of
ignition sources, fuel conditions (fuel load and structural distribution and connectivity, and
moisture content), which determine the availability and tendency of the vegetation fuel to
burn, and the ease of wildfire spread once the wildfire has ignited [9,10]. This is further
influenced by the local topography, as well as preceding and current weather conditions.
In southern Australia, eucalypt forests are the most dominant woody vegetation. The fuel
load in these fire-prone forests is largely characterised by overstory trees, intermediate trees,
elevated fuel layer, near-surface fuels, and surface fuels [11]. The fuel load characteristics
in eucalypt forests affect fire spread, flame height, and fire duration and intensity [11].
Even though fuel load strongly enhances the wildfire risk, its spatio-temporal variability
remains poorly understood. Thus, long-term time-series maps of fuel load and conditions
are an important factor in advancing the knowledge in spatio-temporal characteristics and
improving the wildfire risk predictions. Many operational wildfire models principally
rely on meteorological datasets (wind, temperature, humidity, precipitation), as well as
topography and modelled fuel characteristics, which are often only coarsely mapped in
their spatial and temporal resolutions [12–16]. Consequently, predictions of wildfire spread
from these models are less accurate than the predictions from wildfire models that use fuel
datasets of high quality [17–19].

In the past, there has been a reliance on visual, field-based methods to assess the
fuel load condition, composition, structure, and re-accumulation following a wildfire [20].
These methods were often subjective and could only be implemented across small areas,
given their stochastic spatio-temporal nature that would require substantial areas to be
monitored [21]. Therefore, a dataset that considers the spatio-temporal variability of the
re-accumulated fuel load (post-fire), over a large geographic extent is unfeasible to obtain
using conventional field survey methods [22].

In contrast to these traditional methods, space-borne remote sensing can provide
continuous datasets for analysing and monitoring the changing fuel conditions for any
location from regional to continental scales [23]. Broadband optical sensors, such as those
onboard the National Aeronautics Space Administration (NASA)’s Landsat missions and
the European Space Agency (ESA)’s Sentinel-2 mission, provide observations useful to
resolve part of this complexity because of acquisitions at sufficient spatial and temporal
resolutions. Numerous studies have investigated vegetation characteristics in different
forest biomes, such as temperate [24,25], boreal [26], Mediterranean [27,28], and euca-
lypt [29] forests. Spectral indices, such as the Normalized Difference Vegetation Index
(NDVI) [30], Normalized Burn Ratio (NBR) [31], and differenced NBR (dNBR) [32], have
been extensively used for assessing the vegetation condition related to the quantification of
the current state of the fuel or the wildfire severity itself.

In NBR, near-infrared (NIR) is mostly sensitive to the lignin and the shortwave-
infrared (SWIR) wavelength is sensitive to water absorption [32]. Since NBR is based on
those wavelengths, it is only sensitive to the changes in the leaf structure and density and
overlooks the changes in fuel structure and recovery [33]. NBR’s modified version, dNBR,
provides a relative metric of change compared to pre-fire conditions. Since the dNBR
index provides a measure of change in vegetation due to wildfire, it fails to consider the
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heterogeneous description of the vegetation. That is, for the same intensity of burn, a pixel
with sparse pre-fire vegetation will measure lower dNBR (small change). However, a pixel
with dense pre-fire vegetation will display a higher dNBR (higher change) [34]. Thus, for
the areas with diverse vegetation strata and densities, mapping vegetation characteristics
is challenging [35]. On the other hand, Massetti et al. [29] introduced a multi-spectral
index called Vegetation Structure Perpendicular Index (VSPI) that incorporates the SWIR-1
(1.6 µm) and SWIR-2 (2.2 µm) bands of the Landsat 8 satellite. The results showed that VSPI
was able to observe the spatio-temporal disturbance in fuel loads over a longer period when
compared to NDVI and NBR. The main shortcomings of the methods discussed above
stems from optical remote sensing being affected by the presence of cloud cover, which
means that continuous monitoring of vegetation characteristics is adversely impacted,
leading to temporal gaps in the time series. Moreover, the dense canopy of the forests along
with its shadows obstructs the reflectance signal from optical sensors to accurately map
vegetation characteristics [36], especially from the understorey.

Radar sensors have the potential to overcome some of the drawbacks of optical remote
sensing and offers a complementary approach to continuously monitoring the biomass,
state of disturbed vegetation, and post-fire recovery due to its all-weather, and day–night
imaging capability [37–39]. A radar sensor is an active sensor that uses a system mode
called Synthetic Aperture Radar (SAR). SAR works on microwave signals that are at least
four orders of magnitude longer than the optical [40]. Consequently, these recorded signals
saturate less at higher biomass levels [41] and can penetrate through clouds [42] and dense
canopies [43], unlike optical remote sensing. However, SAR generates high-resolution
imagery that is highly influenced by speckle noise and soil moisture content (depending on
canopy penetration), and, therefore, requires separate methods to account for the variations
of soil moisture content [44]. The application of SAR to burnt area studies is defined by
changes in backscatter due to loss in vegetation structure by wildfire. These variations in
backscatter are directly proportional to the degree of burn, and thus enable SAR to detect
wildfire scars and monitor post-fire regrowth [45,46]. Determining the impact of the fire and
monitoring the post-fire regrowth of the forest fuel load using SAR is not a novel approach,
however; it is a new application area with a limited number of studies [37,38,43,45,47].

To date, very few studies have continually updated large scale maps on the structure
of the forest vegetation in an Australian context by using optical remote sensing [29] and
microwave remote sensing [48]. Given that the channels with longer wavelengths can
better capture the standing woody material [49], this study aims to expand the use of the
VSPI [29] and apply it to the time-series of independent sensors—Sentinel-1 (10 m; before
speckle reduction) and Sentinel-2 (20 m)—to produce high-resolution forest vegetation
condition maps that provide a better measure of depletion in fuel structure relative to
healthy vegetation and its subsequent recovery to the original state, with a temporal
resolution between 5 (Sentinel-2) and 12 (Sentinel-1) days. With this background in mind,
the robustness of the new index, i.e., RADAR-VSPI (R-VSPI), is tested and compared with
VSPI across various wildfires in different parts of southern Australia.

2. Materials and Methods
2.1. Optical- and SAR-Based VSPI

A major application of remote sensing in wildfire ecology studies includes burn severity
mapping, i.e., the provision of fuel depletion measures due to a wildfire. Kollenkark et al. [50]
have shown that the spectral data collected from optical remote sensing often represent a
convoluted mixture of vegetation properties, soil background, shadow etc. As a consequence,
NIR-SWIR reflectance-based indices that have been developed to quantify the impact of
wildfire on fuel load are limited in their capacity. Massetti et al. [29] estimated changes in
fuel structure in a forest due to wildfire using orthogonal transformations to estimate the
perpendicular deviation of the signal from a standard reference, based on a two-dimensional
perpendicular vegetation index (PVI) [51]. The authors computed a vegetation line formed
by an assumed linear relationship between the scaled surface reflectance values acquired
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from two SWIR channels (1.6 µm and 2.2 µm) over healthy vegetation (Figure 1a). The
vegetation line is assembled using a linear function, where m and c are the slope and intercept,
respectively. The line characterises the spatio-temporal conditions of the forest vegetation
not affected by external disturbances, such as wildfires or clearing. The disturbances caused
by wildfires come with a change in water content and structure, which shifts the scaled
surface reflectance values of the paired dataset to another line (Figure 1a). With time, the
scaled surface reflectance values from the disturbed vegetation return progressively to the
pre-disturbance state due to the recovery in vegetation (Figure 1c). The VSPI for disturbance
A is then computed as the orthogonal distance in between the vegetation line and the point A
(xA, yA) in the 2-D space [52]:

VSPIA =
1√

m2 + 1
× (yA −mxA − c) (1)

Figure 1. Illustration of VSPI on optical (a), SAR (b). The solid line represents the healthy vegetation,
whereas the dashed isolines (VSPIa, VSPIb, VSPIc, VSPId) represents the orthogonally displaced
vegetation point due to external disturbances, such as wildfires. The optical values of SWIR-1 and
SWIR-2 bands are expressed as scaled surface reflectance in linear units, whereas the SAR values of
VH and VV polarization channels are expressed in dB scale. (c) Schematic illustration of undisturbed
vegetation (dots along the vegetation line) and the recovery of the disturbed vegetation to the pre-fire
state; from point 1 to 6 for Optical (blue) and SAR (Orange) data. Illustrations in Figure 1a,c are
adapted from [29].

As an analogue to the vegetation line computed using optical signals, a linear relation-
ship between the backscatter from co-polarized (VV) and cross-polarized (VH) channels is
hypothesised (Figure 1b). While SAR signals observed over forests are inherently complex
observations that are affected by the various physical properties of the target, the simplify-
ing assumption here is that the backscatter from VV is predominantly sensitive towards
surface scattering components (such as the landscape moisture), whereas the energy mea-
sured from the VH (i.e., measuring energy returning at a 90◦ offset to the transmitting
wave) is largely a function of the volume scattering [53], i.e., the structure of the vegetation.
Thus, in this hypothesis for tracking forest degradation, cross-polarized observations from
SAR are termed on the y-axis. The method for the calculus of the vegetation line and the
computation of the orthogonal distance remains the same as discussed above. It is expected
and will in fact be shown that these assumptions hold reasonably well for forests but may
require further investigation for different vegetation types, such as shrublands [54].

2.2. Study Area and Wildfires

Five wildfires were selected in four different states and territories (denoted as ‘study ar-
eas’) to assess the performance of R-VSPI and VSPI from Sentinel-1 and Sentinel-2 datasets,
respectively (Table 1, Figure 2). The wildfires occurred during the 2019–2020 “Black Sum-
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mer” wildfire season (between September 2019 and March 2020) in south-eastern and
south-western Australia, including the Australian Capital Territory (ACT), New South
Wales (NSW), Victoria (VIC), and Western Australia (WA). The study areas are charac-
terised by temperate climate zone and native vegetation, such as forest and woodlands
of eucalyptus types combined with grasslands and heathlands [55], qualifying it as an
excellent location for the study.

Figure 2. Overview of different terrestrial biomes [56] and five wildfires. The illustrations represent
the fire sample (black) and control sample (yellow) masks for wildfires in VIC (Victoria), NSW
(New South Wales), ACT (Australian Capital Territory), and WA (Western Australia). The base maps
are Band12/Band 8/Band 4 infrared colour composites of the Sentinel-2 acquisition of the nearest
date (post-fire) to the wildfire event (Table 1).

Table 1. Characteristics of the five wildfires that were analyzed across four different study areas in
Australia [57]. The total number of available Sentinel-1 (S1) and Sentinel-2 (S2) satellite scenes, date
and location of the wildfires, and closest scene to the wildfire are also shown, as well as the size of
the wildfire and control samples. Terrestrial biomes are a representation from [56].

Date Location

Closest Satellite
Acquisition (Post-Fire)

Extent
(Ha)

Sampling
Area

Number of
Scenes

Terrestrial
Biomes

S1 S2
Wildfire
Sample

(Ha)

Control
Sample

(Ha)
S1 S2

29 December
2019–late

January 2020

Corryong
(VIC)

10 January
2020

8 January
2020 110,000 480 373 117 94

Temperate
broadleaf forests
(wet sclerophyll)



Remote Sens. 2022, 14, 3132 6 of 18

Table 1. Cont.

Date Location

Closest Satellite
Acquisition (Post-Fire)

Extent
(Ha)

Sampling
Area

Number of
Scenes

Terrestrial
Biomes

S1 S2
Wildfire
Sample

(Ha)

Control
Sample

(Ha)
S1 S2

27 December
2019–30

December 2019

Badja
Forest
(NSW)

5 January
2020

10 January
2020 315,000 457 620 115 71

Temperate
broadleaf forests
(wet sclerophyll)

27 January
2020–17

February 2020

Orroral
Valley
(ACT)

8 February
2020

4 February
2020 87,000 316 226 232 56

Temperate
broadleaf forests
(wet sclerophyll)

11 December
2019

Yanchep
(WA)

19
December

2019

18
December

2019
11,500 280 362 125 87 Temperate

broadleaf forests
(dry sclerophyll)

15 December
2019

Wilbinga
(WA)

18
December

2019

18
December

2019
6500 404 481 125 87

The “Black Summer” wildfire season was exceptional in terms of area burnt and
wildfire severity [58–61]. These mega wildfires had a devastating and direct impact on the
ecosystems, humans, and economy. The Black Summer wildfires eventually resulted in the
burning of 24 million hectares of mainly native forests, i.e., 50 times larger than California’s
most extensive wildfire ever recorded [62] and five times more extensive than the size
of the 2019 wildfires in the Amazon [63], and led to extremely poor air quality in major
cities [64,65].

2.3. Sentinel Constellation Time-Series Dataset

This study utilises the Copernicus Sentinel-1 C-band (5.4 GHz) dual-polarization data,
i.e., vertical–vertical (VV) and vertical–horizontal (VH), in Interferometric Wide swath (IW)
mode [66]. The native spatial resolution in IW-mode is 5 m× 20 m. A continuous-time series
was obtained from Google Earth Engine for the period 1 January 2017 to 31 January 2021
(Table 1) with repeat overpasses every 5 days (any orbit) and 12 days (same orbit) over Aus-
tralia. This imagery collection includes the SAR-Ground Range Detected (GRD) scenes that
have been pre-processed (steps: application of orbit file, thermal noise removal, radiometric
calibration, and terrain correction) using ESA’s Sentinel-1 toolbox to produce a calibrated
and ortho-rectified product with normalized backscattering coefficients (σ◦) in dB scale [67].
The Sentinel-1 images have a data-inherent granular appearance, which is due to speckle
noise. To reduce this, a bilinear interpolation algorithm [68] was applied, before resampling
(by ways of averaging) the data from its native resolution to 110 m × 110 m pixels.

The Copernicus Sentinel-2 (S2) mission provides a high-resolution dataset with a
global 5-day temporal resolution. The multispectral imager (MSI) on-board S2 acquires
measurements in 13 spectral bands, including visible and NIR at 10 m, and SWIR at
20 m [69]. These are commonly used bands of the electromagnetic spectrum for studying
the characteristics of vegetation-, soil-, and wildfire-related parameters in the optical
domain. This study uses the Level-2A (L2A) orthorectified, atmospherically corrected
scaled surface reflectance time series available from 1 December 2018 to 31 January 2021
(Table 1) [70]. The scaled surface reflectance values were taken from the SWIR-1 and SWIR-2
channels from every Sentinel-2 image acquisition that fitted the cloud percentage (<20%)
criteria. The scaled surface reflectance values were filtered for snow, water, cirrus, and
cloud shadow using a quality assessment band.

2.4. Computation of Indices

The reference lines of the VSPI were computed using all available pre-fire data. The
VSPI was subsequently determined for all dates and scenes as the orthogonal distance from
the reference line (Equation (1)) with m and c as the slope and the intercept parameters
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of the reference line, and x and y as the scaled surface reflectance values of SWIR-1 and
SWIR-2 bands of Sentinel-2. Similar to the VSPI calculated with the Sentinel-2 data, the
R-VSPI was estimated for all dates and scenes as the orthogonal distance from the reference
line (Equation (1)) where the x- and y-values were set to be the backscatter values of VV
and VH polarization channels of Sentinel-1, respectively.

The Sentinel-2 -based NBR and dNBR were calculated as follows,

NBR = (NIR − SWIR2)/(NIR + SWIR2) (2)

dNBR = NBRPRE − NBRPOST (3)

while the NDVI is the normalized difference vegetation index measured between the pixel
values of NIR and Red-edge bands:

NDVI = (NIR − Red)/(NIR + Red) (4)

The Radar Forest Degradation Index (RFDI) [53,71] as well as the co-polarized to
the cross-polarized (VV/VH) ratio [72], were computed with Sentinel-1 data. Since the
Sentinel-1 data does not offer HH and HV polarization channels, the RFDI was modified to
use VV for HH and VH for HV (Equation (5)). This modified RFDI (mRFDI) is generally
computed using intensity values [73]. mRFDI is designed to detect structural changes
and recovery in a forest. The values of mRFDI range from 0 to 1, where values nearing
0 indicate undisturbed forest structure and values nearing 1 indicate highly disturbed
forest structure.

mRFDI = (σ◦VV − σ◦VH)/(σ◦VV + σ◦VH) (5)

The mean of all pixels within the wildfire boundary was computed for every available
acquisition date. A vegetation mask was used at 25-m resolution across the Australian
continent [48]. For the identification of pixels from burnt areas, the extent of all the
wildfires was manually delineated by photointerpretation of Sentinel-2 colour composites
(Red: B2.2, Green: B0.84, Blue: B0.67). The control samples were undisturbed forests areas
that offered reference forest conditions as a benchmark during the recovery of burnt areas.
The control samples were selected from the unburnt forest (geographically near to the
burnt area; Figure 2) and were monitored throughout the time series to be consistently
unburnt and undisturbed.

3. Results and Discussion
3.1. Sentinel-1 Analysis
3.1.1. Vegetation Lines from Sentinel-1

Figure 3 shows the multi-temporal correlation plots and subsequent vegetation lines
for the five wildfires derived from the backscatter values of the Sentinel-1 datasets. The
regression slopes obtained for the Sentinel-1 data ranged from 0.82 to 1.1 for the different
fires (Figure 3). The slopes of the vegetation line derived from Sentinel-1 data showed
variation in the different study areas as the density and structure in the broader expanse of
eucalypt forests vary significantly [74]. In that sense, the slope for Wilbinga was the lowest
compared to all wildfires (Figure 3).
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Figure 3. Density plots and vegetation lines from the backscatter values in the VV and VH bands
from Sentinel-1 for the study areas Orroral Valley (Australian Capital Territory), Badja (New South
Wales), Corryong (Victoria), Yanchep (Western Australia), and Wilbinga (Western Australia).

Figure 4a illustrates an example of the (non-burnt) vegetation line (black) and the
displaced burnt-area lines (colored) for the Orroral Valley wildfire (ACT) using backscatter
values from Sentinel-1. The vegetation line (black) obtained from the paired backscatter
values over the forest areas from the pre-fire period represents undisturbed healthy vege-
tation (Figure 4a). The disturbance caused by wildfires, shifted the post-fire backscatter
values away from the reference (vegetation) line, indicating the depletion of the forest fuel
or change in the vegetation structure due to wildfire impact (Figure 4a). For the immediate
post-fire period, the displaced isolines formed from the post-fire backscatter values of
Sentinel-1 showed a clear, negative displacement from the vegetation line (Figure 4a). This
is in accordance with the hypothesis (Figure 1B,C).

Figure 4. Illustration of vegetation and burnt area lines from (a) Sentinel-1 and (b) Sentinel-2 scaled
surface reflectance data for the Orroral Valley wildfire. The solid line (black) represents the healthy
vegetation, whereas the coloured solid isolines represents the displaced vegetation line during the
post-fire months. The optical values of SWIR-1 and SWIR-2 bands are expressed in scaled surface
reflectance values (unitless), whereas the backscatter values of VH and VV polarization channels are
expressed in dB scale.
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3.1.2. Analysis of Temporal Patterns from Sentinel-1

All indices computed from Sentinel-1 (R-VSPI, mRFDI, and VV/VH ratio) can distin-
guish disturbances caused by wildfire events from the undisturbed vegetation through a
clear deviation in the spectral indices from their original reference (Figures 5a and 6). In
addition, they also allow for the assessment and monitoring of the post-fire recovery of the
burnt vegetation (Figures 5a and 6). The R-VSPI and mRFDI values for the Orroral Valley
wildfire report that the disturbed vegetation still has not fully recovered to the level of the
pre-fire period after 11 months (Figure 5a). For the same wildfire event and within the
same time period the VV/VH ratio showed recovery of the vegetation by approaching the
control sample and the pre-fire conditions (Figure 5a). A similar trend was also observed
for the Corryong wildfire (Figure 6). The faster recovery using the ratio may have resulted
due to the fact that the R-VSPI and mRFDI are more complex mathematical descriptors
than a simple linear ratio. However, for the Yanchep wildfire in WA, all three indices,
i.e., R-VSPI, mRFDI, and VV/VH ratio, showed post-fire vegetation recovery as the signals
approached the control after 11 months (Figure 6).

Figure 5. (a) Two-year time series of R-VSPI, mRFDI, and VV/VH ratio using Sentinel-1 backscatter
dataset for Orroral Valley wildfire (ACT); (b) two-year time series of VSPI, dNBR, and NDVI using
Sentinel-2 scaled surface reflectance dataset for Orroral Valley wildfire (ACT). Data are shown for
burnt/wildfire samples (red) and control samples (green). The black lines indicate the latest imagery
post the wildfire event (vertical) and pre-fire conditions (horizontal, mean of the wildfire sample
taken pre-fire). The rainfall data is shown in column bars (blue).

Generally, the R-VSPI control samples marginally fluctuated around a steady-state value
of zero, whereas the control sample values of mRFDI and VV/VH ratio showed a much
higher relative variability within ranges of 0.5–0.8 and 0.5–0.7, respectively (Figures 5a and 6).
It was also noticed that the post-fire signal from R-VSPI, mRFDI, and VV/VH ratio for all five
wildfires showed significant noise (Figures 5a and 6), which was likely due to the effect of
moisture from rainfall in and around the period of the satellite pass (Bragg scattering is the
main physical mechanism generated by the raindrops impacting the surface, increasing the
C-band SAR backscatter; [75]) and, subsequently, high levels of soil surface wetness [43,76].
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Seasonal patterns in the control sample plots of R-VSPI and mRFDI are visible in the time series
of the Orroral Valley, Corryong, Badja, and Yanchep burnt areas, except for the Wilbinga area.

Figure 6. Four-year time series of R-VSPI, mRFDI, and VV/VH ratio using Sentinel-1 backscatter
dataset for the other four selected wildfires. Data are shown for burnt/wildfire samples (red) and
control samples (green). The black lines indicate the latest imagery post the wildfire event (vertical)
and pre-fire conditions (horizontal, mean of the wildfire sample taken pre-fire). The rainfall data is
shown in column bars (blue).

3.1.3. Spatio-Temporal Detection of Wildfire Scars from Sentinel-1

The Sentinel-1-based indices R-VSPI, mRFDI, and VV/VH ratio showed a heteroge-
nous appearance due to speckle (coherent effect inherent to SAR observations) compared
to Sentinel-2-based indices (VSPI, dNBR, and NDVI) (Figure 7). Nevertheless, all of these
indices were successful in detecting the wildfire scars following the respective wildfire
events. However, while the wildfire scars were still evident 11 months after an individ-
ual event using R-VSPI and mRFDI, the VV/VH ratio index showed largely recovered
conditions post-fire. This trend agrees with that reflected in the time series of Figure 5a,
where both R-VSPI and mRFDI were observed not to be returning to the same level as the
undisturbed control sample while the VV/VH ratio values matched those of the control
sample and the pre-fire conditions at that point in time. In comparison with mRFDI, the
R-VSPI drops quicker towards recovery for wildfire scars (Timeline 5 and 7), but is still able
to delineate the degradation for a longer period (11 months post-fire) (Figure 7). The lower
values running seemingly along a line from north to south in the centre of the images is the
local ridge between east- and westward facing slopes. The distinctive local difference in
the indices compared to the surrounding area can be due to various effects ranging from
different fire behaviour on the ridge, variations in vegetation, as well as the subsequent
recovery. The latter is particularly noticeable in the optical indices that indicate a faster
recovery on the west-facing slopes than the ones facing east (Figure 7).



Remote Sens. 2022, 14, 3132 11 of 18

Figure 7. Multi-temporal comparison of SAR-based (R-VSPI, mRFDI, and VV/VH Ratio) and optical-
based (VSPI, dNBR, and NDVI) vegetation indices for Orroral Valley wildfire that occurred in
January–February 2020 in ACT. The colour maps for R-VSPI, mRFDI, VSPI, dNBR, and NDVI have
been applied a linear stretch by a percent clip minimum and percent clip maximum value of 0.5. The
VV/VH ratio maps are an RGB combination of the channels, red: VV, green: VH and blue: VV/VH,
which signifies green as unburnt, and purple as burnt. The five scenes selected for optical include
pre-fire scene: (i) 24 September 2019 (−5 months), closest date to the wildfire; (ii) 8 February 2020
(Timeline–0), and post-fire scenes; (iii) 15 July 2020 (5 months); and (iv) 18 September 2020 (7 months);
and (v) 23 January 2021 (11 months). Similarly, the five scenes selected for optical indices include
pre-fire scene (vi) 22 September 2019 (−5 months), closest date to the wildfire; (vii) 4 February 2020
(Timeline–0), and post-fire scenes; (viii) 15 May 2020 (3 months); (ix) 21 September 2020 (7 months);
and (x) 19 January 2021 (11 months).

3.2. Sentinel-2 Analysis
3.2.1. Vegetation Lines from Sentinel-2

Figure 8 displays the multi-temporal correlation plots and subsequent vegetation
lines for the same wildfires derived from the scaled surface reflectance bands (SWIR-1 and
SWIR-2) of Sentinel-2 datasets. The regression slopes obtained for the Sentinel-2 data varied
between the selected wildfires ranging from 0.71 for Corryong to 0.81 for the Wilbinga
event, respectively. For the Wilbinga wildfire (WA) a higher vegetation line slope is attained
from Sentinel-2 compared to the vegetation line slopes of other wildfires (Figure 8).

Figure 4b demonstrates an example of the (non-burnt) vegetation line (black) and
the displaced burnt-area lines (colored) for the Orroral Valley wildfire (ACT) using the
scaled surface reflectance values from Sentinel-2. The vegetation line (black) obtained from
the paired scaled surface reflectance values over the forest areas from the pre-fire period
represents undisturbed healthy vegetation (Figure 4b). The disturbance caused by wildfires
shifted the post-fire scaled surface reflectance values away from the reference (vegetation)
line, indicating the depletion of the forest fuel due to wildfire impact (Figure 4b). For the
immediate post-fire period, the displaced isolines formed from the post-fire scaled surface
reflectance values of Sentinel-2 showed a positive displacement from the vegetation line
(Figure 4b). This is in accordance with the hypothesis (Figure 1A,C).
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Figure 8. Density plots and linear vegetation lines from the scaled surface reflectance in the SWIR-1
(1.6 µm) and SWIR-2 (2.2 µm) bands from Sentinel-2 for different wildfires in South-Eastern Australia.
Orroral Valley (Australian Capital Territory), Badja (New South Wales), Corryong (Victoria), Yanchep
(Western Australia, and Wilbinga (Western Australia).

3.2.2. Analysis of Temporal Patterns from Sentinel-2

The VSPI, dNBR, and NDVI time-series derived from Sentinel-2 data for the respective
study areas indicate that these indices can also distinguish the wildfire events by a clear
deviation from the undisturbed vegetation conditions. Moreover, the difference between
these indices and the undisturbed vegetation curve is able to track the potential post-fire
vegetation recovery (Figures 5b and 9). However, the various Sentinel-2 based indices
showed different time frames between them for the post-fire vegetation recovery.

The VSPI values calculated for the Orroral Valley wildfire (ACT) indicated that the
disturbed vegetation still has not fully recovered (nearly reaching pre-fire conditions,
meaning undisturbed vegetation line) 11 months after the fire occurrence (Figure 5b).
However, for the same wildfire event the NDVI and dNBR values indicate full recovery
of vegetation by reaching the pre-fire conditions in a period of 8 months (Figure 5b). A
similar trend was also found for the Badja Forest fire (NSW), for which VSPI and dNBR
showed signals for substantial recovery in a span of 12 months (Figure 9), while NDVI
values indicated a much quicker recovery to pre-fire conditions. The reason may be
attributed to the fact that the NIR-Red channel-based vegetation index, such as the NDVI,
showed a quicker recovery during the post-fire period (reaching pre-fire conditions) due
to the saturation of the optical signal, which may be due to both epicormic regrowth
or understory recovery, and therefore could represent a mixed response [26]. For the
Corryong, Yanchep, and Wilbinga wildfires, the post-fire temporal patterns of all indices do
not reconcile with the undisturbed vegetation curve even 12 months after the wildfire. They
exhibit a little change in the indices after extended time periods, indicating a stagnating
recovery (Figure 9).
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Figure 9. Two-year time series of VSPI, dNBR, and NDVI using Sentinel-2 scaled surface reflectance
dataset for the other four selected wildfires. Data are shown for burnt/wildfire samples (red) and
control samples (green). The black lines indicate the latest imagery post the wildfire event (vertical)
and pre-fire conditions (horizontal, mean of the wildfire sample taken pre-fire).

In general, the VSPI control (undisturbed/unburnt) sample values are stable and
varied around a steady-state value of 0, whereas the control sample values of dNBR and
NDVI ranged in between −0.15 and 0.16 and 0.4 and 0.9, respectively (Figures 5b and 9). In
addition, seasonal patterns in the control sample plots are visible in Badja, Yanchep, and
Wilbinga (Figure 9). The dNBR and NDVI show some seasonality for the vegetation around
the Orroral Valley (Figure 5b) and Corryong (Figure 9) study areas, while no substantial
changes are evident in the VSPI.

3.2.3. Spatio-Temporal Detection of Wildfire Scars from Sentinel-2

The burnt area of the Orroral Valley wildfire is clearly visible for all the Sentinel-2-
based indices, such as VSPI, dNBR, and NDVI (Timeline–0 in Figure 7). There was no clear
delineation of areas with higher fire severity as with the radar indices, which may be due
to the apparent saturation of the indices in the acquired data immediately following the
wildfire event. The heterogeneity of the fire scarring started being clearly distinguishable in
the VSPI, dNBR, and NDVI data about three months post-fire. While the wildfire scar was
still delineated 11 months post-fire by VSPI and dNBR, the NDVI showed mostly recovered
conditions from seven months post-fire. This trend agrees with that reflected in the time
series of Figure 5b, where NDVI returned to the control sample and the pre-fire conditions.

3.3. Comparison of Sentinel-1 and Sentinel-2 Data Sensitivity towards Forest Fuel Condition

The density plots (Figures 3 and 8) show that the maximum number of points are
concentrated along the vegetation line, for both sensor types. The high R2 values between
the multi-temporal backscatter pairs of VV and VH polarization channels of Sentinel-1
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(Figure 3) as well as scaled surface reflectance pairs of SWIR-2 and SWIR-1 of Sentinel-2
(Figure 8) for the selected wildfires indicate that most of the spatio-temporal variability of
undisturbed vegetation is defined by the vegetation line. The clear orthogonal displacement
for Sentinel-1 (Figure 4a) may be attributed to Sentinel-1 higher wavelength at C-band
as compared to the SWIR bands from Sentinel-2 (Figure 4b), which allows deeper signal
penetration into the vegetation canopy resulting in higher sensitivity towards internal
structure layers within the affected vegetation canopy [43,77–79].

The post-fire temporal patterns Sentinel-1-based vegetation indices (Figure 5a—Orroral
valley and Figure 6—Badja) showed that the vegetation was recovering after a wildfire at a
slower rate compared to the Sentinel-2-based vegetation indices (Figure 5b—Orroral valley
and Figure 9—Badja) and was still far from the pre-fire conditions. These differences in the
recovery pattern may be indicating that the post-fire recovery shown by the VSPI might
be tracking changes in the surface and near-surface fine fuels, such as tall and low shrubs,
and dead and live grass in the understory [29], which often regrows more quickly than the
over- and intermediate-story of the forest following a high intensity wildfire [80].

Mostly, the performance of R-VSPI for studying the temporal patterns of vegetation
recovery in the case of the five wildfires was seen to be nearly the same in comparison
to mRFDI and VV/VH ratio. In addition, the performance of R-VSPI in analyzing the
post-fire temporal patterns is comparable to that of the VSPI. Using R-VSPI and VSPI in
combination, rather than dNBR and mRFDI, may be advantageous as they have the same
basic mathematical function. The strength of deriving both optical and radar indices using
the same mathematical functions is in the simplicity of the formulation as well as the
possibility to further explore complementarities in the derived indices, e.g., scaling is an
option to transfer the data into a common numerical space to further investigate common
(or complementary) behaviour over time. Any identified relationship could then lead to
identifying the locally specific regrowth behaviour. Furthermore, once the relative changes
between the indices are better understood, allometric transfer functions could be used for
mutual gap-filling the derived data sets, which would be particularly useful during long
periods of cloud cover, where SAR data can make full use of its all-weather capability. For
the same duration, the recovery patterns from VSPI were quite distinct for the selected
wildfires and are often caused by a mixture of drivers. For example, the post-fire vegetation
recovery in Orroral Valley (Figure 5b) and Badja (Figure 9) wildfires were more sudden
and linear, perhaps signaling a different recovery pathway as a result of potentially more
favorable weather conditions. This was the case with the Australian 2019/2020 “Black
Summer” wildfire season that followed an extreme drought in 2019 and ended with rainfall
events across south-eastern Australia [81]. Rainfall during the acquisition, intercepted
water, and soil moisture are likely to have an impact on the radar-based metrics. However,
the impact is unlikely to have a long-term effect, and hence was not discussed in detail in
this paper. All the indices could also detect the wildfire scars in the scenes immediate to the
wildfire event (spikes in Figures 5, 6 and 9, clear red/yellow/purple patches in Figure 7).
The extent of the disturbance captured by all the indices varied across different wildfire
events for the same index (Figures 5, 6 and 9).

Comparing the two sensors, SAR (Sentinel-1) was able to offer a dense time-series
of pre- and post-fire acquisitions (due to its insensitivity towards cloud cover) and better
spatio-temporal variability compared against optical (Sentinel-2) data, which has to be
filtered for cloud-free scenes (Table 1). Previous studies have also shown that SAR has
higher sensitivity towards the vegetation structure providing more detail to the impact of
the wildfire and recovery compared to the traditional indices applied to optical data [82],
whereas optical and infrared data has higher sensitivity towards leaf area index [83],
and leaf tissues and photosynthetic activity [84]. This presents the complementary and
convergent nature of the two different datasets. Due to the complementarity of SAR and
optical remote sensing, and sensitivities to fuel structure and biomass, a future line of
work may investigate combining the VSPI in a joint SAR-optics framework to generate an
enhanced signal that may provide a better assessment towards fire-affected vertical fuel
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strata and the subsequent recovery. Availability of adequate field data related to fuel load
will assist in validation, which is a limitation of this study.

4. Conclusions

The VSPI is a perpendicular index that estimates wildfire impact on the forest and post-
fire vegetation recovery using shortwave-infrared spectral bands from Sentinel-2 (centered
at 1.6 µm and 2.2 µm). A novel SAR-based index, R-VSPI was developed using polarization
channels from Sentinel-1 (center wavelength at 5 cm) for quantifying changes in fuel load
due to wildfires. The results indicate that SAR- and optical-based indices are able to reliably
identify the wildfire events with a clear deviation from undisturbed vegetation conditions.
R-VSPI and VSPI show their ability to estimate the wildfire-induced forest changes as the
orthogonal distance from a linear reference line that characterized the undisturbed forest.
Transferring the VSPI metric to Sentinel-1 (R-VSPI) provides complementary information
for the assessment of wildfire disturbance and recovery of the fuel structure in a forested
area over a longer duration than the VSPI on Sentinel-2 and the other widely used ratio-
based indices, such as the dNBR and NDVI. The input observations required for estimation
of R-VSPI and VSPI are freely available by ESA’s Copernicus program. The two satellite
missions considered in this paper provide gridded data at a spatial resolution of 10 m
(Sentinel-1; SAR) and at 20 m (Sentinel-2; optical), respectively. The Sentinel-1 C-band
SAR backscatter has proven to be sensitive to fire-induced changes in forest (eucalyptus)
vegetation. The expected launch of L-Band (1.25 GHz) SAR satellite (e.g., the NASA/ISRO
Synthetic Aperture RADAR (NISAR); [85]) and P-Band (0.43 GHz) SAR satellite (ESA’s
Biomass; [86]) with higher revisits in the near future could provide more opportunities
for the application of R-VSPI on higher SAR wavelengths that can perform large-scale
fuel load structure mapping in dense canopies due to higher canopy penetration. If
appropriately interpreted, fuel load maps produced by R-VSPI may have applications
beyond wildfire risk assessment, particularly in measuring other forest disturbances due to
drought, logging, or disease.
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