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Abstract— Incidence angle diversity of space-borne radiometer1

and radar systems operating at low microwave frequencies needs2

to be taken into consideration to accurately estimate soil mois-3

ture (SM) across spatial scales. In this study, the single channel4

algorithm (SCA) is first applied to Soil Moisture and Ocean5

Salinity (SMOS) brightness temperatures at vertical polarization6

(TBV ) to estimate SM at coarse resolution (25 km) and develop a7

land cover-specific and incidence angle (32.5◦, 42.5◦, and 52.5◦)-8

adaptive calibration of single scattering albedo (ω) and soil9

roughness (hs) parameters. These effective parameters are used10

together with fine-scale multiangular Sentinel-1 backscatter in a11

single-pass active–passive downscaling approach to estimate TBV12

at fine scale (1 km) for each SMOS incidence angle. These TBV s13

are finally inverted to obtain the corresponding high-resolution14

SM maps. Results over the Iberian Peninsula for year 2018 show15

an increasing trend of ω and a decreasing trend of hs with16

SMOS incidence angle, with almost no variability of ω across17

land cover types. The active–passive covariation parameter is18

shown to increase with SMOS incidence angle and decrease with19

Sentinel-1 incidence angle. Coarse and fine TBV maps from the20

three SMOS incidence angles show similar distributions (mean21

Manuscript received 12 November 2021; revised 12 February 2022 andAQ:1
10 May 2022; accepted 6 June 2022. This work was supported in part by
MCIN/AEI/10.13039/501100011033 under Project PID2020-114623RB-C32;AQ:2
in part by the Spanish Ministry of Science, Innovation and Universities,
through the coordinated project L-Band (MCIU/AEI/FEDER, UE): Sobre la
continuidad de las misiones satelitales de banda L. Nuevos paradigmas en
productos y aplicaciones, under Grant ESP2017-89463-C3-2-R (UPC part)
and Grant ESP2017-89463-C3-1-R (ICM part); and in part by the Unidad
de Excelencia María de Maeztu under Grant MDM-2016-0600. The work
of María Piles was supported by the Ramón y Cajal Contract under Project
RTI2018-096765-A-100 (MCIU/AEI/FEDER, UE). (Corresponding author:
Gerard Portal.)

Gerard Portal, Mercè Vall-llossera, Adriano Camps, and
Carlos López-Martínez are with the CommSensLab, Department of Signal
Theory and Communications, and the Institut d’Estudis Espacials de
Catalunya (IEEC), Universitat Politècnica de Catalunya (UPC), 08034
Barcelona, Spain (e-mail: gerard.portal@upc.edu).

María Piles is with the Image Processing Laboratory, Universitat de València
(UV), 46010 València, Spain.

Thomas Jagdhuber is with the Microwave and Radar Institute, German
Aerospace Center (DLR), 82234 Weßling, Germany, and also with the Institute
of Geography, University of Augsburg (UniA), 86159 Augsburg, Germany.

Miriam Pablos is with the Institute of Marine Sciences, Spanish National
Research Council (ICM-CSIC), 08003 Barcelona, Spain.

Narendra N. Das is with the Department of Biosystems and Agricultural
Engineering and the Department of Civil and Environmental Engineering,
Michigan State University, East Lansing, MI 48824 USA.

Dara Entekhabi is with the Department of Civil and Environmental Engi-
neering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA.

Digital Object Identifier 10.1109/TGRS.2022.3187467

differences below 0.38 K). Resulting high-resolution SM maps 22

have maximum differences in mean and standard deviation of 23

0.016 and 0.015 m3/m3, respectively, and compare well with 24

in situ measurements. Our results indicate that model-based 25

microwave approaches to estimate SM can be adequately adapted 26

to account for the incidence angle diversity of planned missions, 27

such as Copernicus Microwave Imaging Radiometer (CIMR), 28

Radar Observing System for Europe in L-band (ROSE-L), and 29

Sentinel-1 next generation. 30

Index Terms— Active–passive microwave, incidence angle, 31

radiometry, signal covariation, spatial disaggregation. 32

I. INTRODUCTION 33

OVER the last decades, L-band microwave radiometry 34

has consolidated as the optimal technology to globally 35

estimate surface soil moisture (SM) [1]–[3]. L-band (1–2 GHz) 36

is highly sensitive to SM changes due to high contrast in 37

the permittivity range (ε = 3 − 80) [4]. Moreover, at these 38

frequencies, the atmosphere can be considered nearly trans- 39

parent, and measurements are less affected by soil rough- 40

ness and vegetation attenuation than at higher frequencies 41

(e.g., X- or C-bands). Active sensors, in turn, are capable of a 42

higher spatial resolution, but since radar backscatter is highly 43

influenced by surface roughness, vegetation canopy structure, 44

and water content, they have a lower sensitivity to SM under 45

vegetated conditions. 46

Currently, there are two operational L-band missions, which 47

are devoted to globally map the Earth’s SM: the Soil Moisture 48

and Ocean Salinity (SMOS) mission, launched in November 49

2009; and the Soil Moisture Active Passive (SMAP) mis- 50

sion, launched in January 2015. The SMOS satellite carries 51

the Microwave Imaging Radiometer using Aperture Synthe- 52

sis (MIRAS), a passive microwave interferometric L-band 53

(1.41 GHz) sensor. This instrument is capable of measuring 54

multiangular (0◦–65◦) dual polarized—vertical (V) and hori- 55

zontal (H)—brightness temperatures (TB) of the globe with a 56

revisit time of three days and a spatial resolution of about 57

∼50 km [5]. The SMAP satellite includes a real aperture 58

L-band radiometer (1.41 GHz) and a high-resolution L-band 59

radar (1.26–1.29 GHz), which share a 6-m diameter coni- 60

cal scanning antenna with a surface incidence angle of 40◦. 61
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Fig. 1. (a) Classification map of the four most common land cover types over the Iberian Peninsula: croplands (CRP), savannas (SAV), grasslands (GRS),
and shrublands (SHR), adapted from MODIS IGBP. The black box marks the location of the REMEDHUS network. (b) Zoom into the region that contains
the 22 REMEDHUS validation sites. The location of each of the in situ stations is represented by a triangle: filled, for the stations used in this study; or
empty, for the rest of the stations that make up the REMEDHUS network.

Although the SMAP radar stopped transmitting in July 2015,62

its radiometer provides global measures of the Earth’s L-band63

emissivity with a footprint of about 40 km and a revisit time64

of approximately three days.65

Different SM retrieval techniques have been proposed in66

the context of these two missions. These algorithms dif-67

fer, for instance, in the TB information they use as an68

input. Some are designed to exploit one single polarization—69

single channel algorithm (SCA) with vertical or horizontal70

polarization (SCAV or SCAH) [6], while others are able71

to exploit both polarizations jointly—dual channel algorithm72

(DCA) [7] and land parameter retrieval model (LPRM) [8].73

Also, some require time series—multitemporal DCA (MT-74

DCA) [9]—and others optimize the combined use of multiple75

incidence angles—official SMOS algorithm from European76

Spatial Agency (ESA) and SMOS-IC from Institut National77

de la Recherche Agronomique (INRA) and Center d’Etudes78

Spatiales de la BIOsphère (CESBIO) [10]. As the abovemen-79

tioned algorithms, the retrieval techniques introduced in this80

study are based on the tau-omega (τ − ω) emission model,81

a zero-order approximation of the radiative transfer equation.82

This approximation has been widely used in literature and83

is currently applied for SM estimation from the SMOS and84

SMAP surface TB in their baseline algorithms [11]. Also,85

as shown by Feldman et al. [12], the zero-order approximation86

seems to be sufficient for the Iberian Peninsula, where the87

predominant IGBP land cover classes are shrublands, savanna,88

croplands, and grassland (see Fig. 1). In the τ − ω model, the89

emissivity is modeled according to the single scattering albedo90

(ω) and the vegetation optical depth (τ )—which quantifies the91

scattering and extinction energy loss in the canopy—the soil92

roughness (hs) and the soil temperature (TS), among other93

parameters [see (1)] [13]. The accuracy of these parameters is94

crucial in order to obtain the best possible SM estimates, and95

hence, several studies have been dedicated to find the optimal96

parameters’ values; in [14], Van der Schalie et al. applied the97

LPRM on SMOS observations to retrieve the optimal ω and hs98

values at three independent incidence angles (45◦, 52.5◦, and99

60◦). They obtained best results by averaging the retrievals100

from the three incidence angles, with good agreement with101

in situ over OzNet sites in Australia (R > 0.7) and with the 102

SMOS SM L3 product (R > 0.8). A similar analysis, but on a 103

global scale, was also carried out by Van der Schalie et al. [15], 104

where the resulting estimated SM showed correlations higher 105

than 0.74, in average (considering whole Australia, the Sahel, 106

and large parts of North and South America), when compared 107

against SMOS SM L3. In [16], Fernandez-Moran et al. cali- 108

brated ω and hs in the SM retrieval from SMOS observations 109

(considering all incidence angles between 20◦ and 55◦) using 110

the L-band microwave emission of the biosphere (L-MEB) 111

model. They carried out two analyses, one considering glob- 112

ally constant values of ω and hs and the other considering 113

land cover-dependent values, and reported good correlations 114

(R > 0.6) in both cases against in situ SM measurements. 115

Other relevant studies focused on the calibration of the para- 116

meters involved in the τ − ω model can be found in literature 117

(e.g., [9], [17], [18]). 118

In previous studies, the benefits of incidence angle diversity 119

on SM retrievals have been demonstrated, such as offering 120

the possibility of better constraining the retrieval in the pres- 121

ence of vegetation or of reducing the impact of radio fre- 122

quency interference (RFI) [19]. Being aware that future passive 123

microwave missions may rely on single-angle acquisition [e.g., 124

Copernicus Microwave Imaging Radiometer (CIMR)], the first 125

objective of the present study is to develop a land cover- 126

specific and incidence angle (32.5◦, 42.5◦, and 52.5◦)-adaptive 127

parametrization of ω and hs . To do this, the SCAV is used to 128

independently obtain the SM maps at 32.5◦, 42.5◦, and 52.5◦
129

to finally analyze their similarities. The second objective is to 130

assess the impact of incidence angle adaptive parametrizations 131

on active–passive TB disaggregation capabilities. 132

It is widely acknowledged that the coarse resolution of 133

SMOS and SMAP SM maps limits their applicability to 134

develop local and regional applications. Due to the strong 135

demand for satellite-based SM in regional applications, much 136

effort has been devoted to downscaling of the existing 137

coarse-resolution SM datasets to 1 km [20]–[22], hundreds of 138

meters [23] or even tens of meters [24], and to the estimation 139

of high spatial resolution SM from active microwave sensors, 140

e.g., Sentinel-1 [25]–[29]. 141
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TABLE I

SUMMARY OF THE APPLIED DATASETS IN THIS STUDY

Existing SM downscaling techniques can be classified142

according to the nature of the scaling model (e.g., machine143

learning-based [30]–[33], semi-empirical [21], and physi-144

cal [34]) and depending on the input of ancillary data145

(e.g., microwave/optical [21], [35], [36], microwave active–146

passive [37], [38], topography [39], and so on) [40]. This study147

focuses on the specific TB disaggregation technique developed148

by Das et al. [22], which blends passive and active information149

to disaggregate the SMAP observations, ultimately leading150

to high-resolution SM retrievals. This downscaling technique151

is based on the active–passive microwave covariation para-152

meter (β), modeled as a ratio of emission (radiometer) over153

backscatter (radar) loss terms [41], [42]. Then, the SCAV is154

used to retrieve the SM from the disaggregated TBV .155

The results of this study are relevant in the light of upcoming156

missions, such as the CIMR that is planned to operate at a157

constant incidence angle of 55◦, the Radar Observing System158

for Europe in L-band (ROSE-L) planned to work at 25◦–46◦
159

incidence angles or Sentinel-1 Next Generation. They would160

benefit from this land cover- and incidence angle-adaptive161

parametrization and SM retrieval technique, to obtain high-162

resolution SM maps, providing enhanced continuity to SMOS163

and SMAP L-band observations.164

The study region and the data used in this work are pre-165

sented in Section II. Section III details how: 1) the SCAV166

algorithm is applied to SMOS TB to calibrate ω and hs167

parameters. This analysis is carried out at three incidence168

angles (γ = 32.5◦, γ = 42.5◦, and γ = 52.5◦) and for four169

main land cover types (croplands, savannas, grasslands, and170

shrublands) across the Iberian Peninsula for the year 2018;171

2) the active–passive disaggregation technique proposed by172

Das et al. [22] and Jagdhuber et al. [41] is adapted to exploit173

SMOS TBV and Sentinel-1 data. The adapted algorithm was174

applied to retrieve SMOS TBV at high resolution (1 km) for175

each different angle; and 3) the SCAV is applied to retrieve 176

SM at high resolution. Note that since Sentinel-1 only mea- 177

sures VV + VH polarizations over land, only disaggregated 178

SMOS TB at vertical polarization can be obtained with the 179

downscaling approach proposed in this study (Section III-C). 180

Hence, the subsequently shown analyses focus on the verti- 181

cal polarization. The results are presented and discussed in 182

Section IV. Finally, Section V summarizes the main conclu- 183

sions and provides perspectives from this study. 184

II. TEST AREA AND DATA DESCRIPTION 185

All data used in this study cover the Iberian Peninsula 186

(34◦–45◦ N, −11◦–5◦ W) for the year 2018. The coastal 187

areas were discarded to screen out the effect of sea-land 188

contamination [43]. All the data used through the study are 189

summarized in Table I. 190

A. Iberian Peninsula Area 191

The Iberian Peninsula covers an area of 583 832 km2
192

(34◦–45◦ N, −11◦–5◦ W). Its topography has an average 193

altitude of 600 m due to the vast plateau, known as the 194

Meseta, which is surrounded by several mountain ranges 195

(Cantabrian Mountains, Pyrenees, Central System, Betic Sys- 196

tem, and Iberian System). The mountain system running from 197

west to east influences the continental climate, blocking banks 198

of moist air from the Atlantic Ocean that could temper inland 199

temperatures. 200

While a continental climate predominates in inland areas of 201

the Iberian Peninsula with very cold winters (between 0 ◦C and 202

3 ◦C) and hot summers (24 ◦C in average), in coastal areas, the 203

climate is milder, with an average annual temperature between 204

16 ◦C and 18 ◦C. 205

In terms of precipitation, three main regions can be 206

distinguished: the north and northwest region, with an 207
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annual precipitation exceeding 600 mm (occasionally reach-208

ing 2000 mm); the southeast, a semiarid region with annual209

precipitation below 300 mm; in the rest of the Peninsula, the210

annual precipitation is less than 600 mm (predominantly dry).211

The wet regions of the Peninsula (north and northwest) are212

mainly dominated by evergreen trees and grasslands, while213

at the Mediterranean areas, shrublands and xerophilic plants214

prevail, along with woodlands (holm oak, Aleppo pine, African215

palm, and Australian eucalyptus). Over the most arid areas,216

holm oaks have been replaced by thorny bushes [44].217

B. Datasets218

1) SMOS Data: Two specific SMOS Level 3 (L3) TB prod-219

ucts were produced by the Barcelona Expert Center (BEC) on220

remote sensing to be used in this study. They were obtained by221

quality filtering the operational ESA SMOS Level 1 (L1) C TB222

product, using only measurements that are not affected by any223

RFI (neither center nor tails). Resulting data were corrected by224

the geometry of the antenna plane, the Faraday rotation due to225

the ionosphere, and the atmospheric effects. Later, they were226

linearly interpolated to the selected incidence angles (32.5◦,227

42.5◦, and 52.5◦) by least squares using all observations in a228

range of ±5◦ with respect to the desired angle and gridded into229

a 25- and 12.5-km Equal-Area Scalable Earth Grid, Version230

2.0 (EASEv2) by a simple average. In the maps at 12.5 km,231

pixels with data gaps within the orbit swath were filled with232

an inverse-distance weighting interpolation of TB values at a233

distance lower than 2 pixels. The obtained daily maps contain234

the surface TB at vertical and horizontal polarization at the235

three angles.236

The BEC SMOS L3 SM product is obtained by filtering237

and binning ESA SMOS Level 2 (L2) SM, producing daily238

SM maps in a 25-km EASE2v2 grid by a weighted aver-239

age. Filtering comprises discarding grid points with failed240

retrievals (“no product” flag), affected by RFI (“probability241

of RFI” flag), without geophysical sense (“out of range”242

flag), or with a data quality index (DQX) value greater than243

0.07 m3/m3. [50].244

2) Sentinel-1 Data: Sentinel-1A was launched on April 3,245

2014, and Sentinel-1B on April 25, 2016. These satellites246

carry a C-band (5.405 GHz) synthetic aperture radar (SAR)247

operating in four modes: strip map, interferometric wide (IW)248

swath, extrawide swath, and wave mode. Sentinel-1 has multi-249

ple incidence angles (20◦–45◦) within the swath and provides250

dual polarization capability (VV + VH over land).251

This study uses data from the SMAP/Sentinel-1 L2252

Radiometer/Radar 30-Seconds Scene 3-km EASE-Grid253

Soil Moisture, Version 3 (SPL2SMAP_S) product. The254

SPL2SMAP_S product contains estimates of the land surface255

conditions obtained by combining passive SMAP ascending256

and descending half-orbit passes and active information257

from the Sentinel-1A and -1B SAR [51]. In this research,258

we employed the IW swath mode within the SPL2SMAP_S259

product of the Sentinel-1 A/B backscatter in co- and260

cross-polarization at 1-km EASEv2 grid, which was already261

preprocessed and filtered as detailed in [22].262

3) Calibration/Validation Data: The fifth generation of263

the European ReAnalysis (ERA5-land) is a dataset obtained264

through global high-resolution numerical integrations of 265

the European Centre for Medium-Range Weather Fore- 266

casts (ECMWF) land surface model driven by the downscaled 267

meteorological forcing from the ERA5 climate [52]. ERA5- 268

land describes 53 variables related to the water and energy 269

cycles over land, with global coverage at a spatial resolution of 270

9 km, providing hourly information for the period from 1981 to 271

present. In this study, we use the ERA5-land volumetric soil 272

water content at 6:00 h local time of the soil layer 1 (0–7 cm). 273

The Soil Moisture Measurements Station Network of the 274

University of Salamanca (REMEDHUS) [53] is an SM in situ 275

network located in the central semiarid area of the Duero 276

Basin, in Spain. This is a nearly flat region, where a continental 277

semiarid Mediterranean climate predominates. The land is 278

mainly cultivated with rainfed cereals, although patchy areas 279

of forest-pasture, irrigated crops, vineyards, and fallow can 280

also be found. The REMEDHUS network is composed of 281

22 stations equipped with Hydra Probes that provide hourly 282

SM measurements [54] and four automatic weather stations 283

that measure precipitation, air temperature, relative humidity, 284

wind speed, and solar radiation. In situ SM measurements are 285

performed at different soil depths, but in this study, we exclu- 286

sively use the topsoil data at 5 cm depth [49] and the daily 287

rainfall data from the weather stations. 288

4) Ancillary Data: The combined Aqua + Terra Mod- 289

erate Resolution Imaging Spectroradiometer (MODIS) land 290

cover product (MCD12Q1 version 6) provides annual land 291

cover maps with a spatial resolution of 500 m [55]. Among 292

the five different land cover classifications, this study used 293

the MODIS International Geosphere-Biosphere Program-Land 294

Cover (IGBP-LC). This classification contains 17 classes 295

based on three canopy components: above ground biomass 296

(perennial and annual), leaf longevity (evergreen and decidu- 297

ous), and leaf type (needleleaf, broadleaf, and grasses). These 298

are critical variables for seasonal climate and carbon-balance 299

modeling, carbon cycle and land energy transfer, and for 300

explaining gas exchange characteristics [56]. For the purpose 301

of this research, the IGBP-LC map was aggregated from the 302

original 500 m to 25 km using the most frequent class, and the 303

17 classes proposed by the IGBP were aggregated into the four 304

main land cover types (savannas, croplands, grasslands, and 305

shrublands) within the study area. Fig. 1 shows the resulting 306

land cover map over the Iberian Peninsula. 307

Data from morning passes of the SMAP Enhanced L2 308

Radiometer Half-Orbit 9-km EASE-Grid Soil Moisture, Ver- 309

sion 4 (SPL2SMP_E) and SPL2SMAP_S products were used 310

in this study. The SPL2SMP_E product is the result of 311

extracting the maximum information from the SMAP antenna 312

by taking advantage of the SMAP radiometer oversampling 313

to generate an enhanced radiometer-based SM product, posted 314

in a 9-km EASEv2 grid. SPL2SMAP_S product is already 315

explained in Section II-B2. These two products contain the 316

ancillary data used to estimate the SM—e.g., ω, hs , τ , Ts , and 317

vegetation water content (VWC). Here, we use τ (at nadir) 318

and TS provided in a 1- and 9-km EASEv2 grid and VWC in 319

a 1-km EASEv2 grid. 320

A map of clay fraction (CF) was also required. It is provided 321

by the National Snow and Ice Data Center (NSIDC) in a 9-km 322
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EASEv2 grid within the SMAP L1-L3 Ancillary Static Data,323

Version 1[57].324

III. METHODOLOGY325

This section is devoted to detail the data preprocessing and326

methodological approach followed in this study.327

A. Data Preprocessing and Methodology Overview328

The flowchart in Fig. 2 shows the three analyses carried329

out in this study: 1) calibration of the ω and hs parameters;330

2) downscaling of the SMOS TBV to 1 km; and 3) retrieval of331

high-resolution SMOS SM. The flowchart includes the input332

parameters used in each step and the grid pixel size to which333

all input data are expressed in order to operate with them.334

In the ω and hs calibration step, all data are aggregated to a335

25-km EASEv2 grid (see “Aggregation to LR” block in Fig. 2),336

while for the other two steps, the data are resampled to a337

1-km EASEv2 grid (see “Resampling to HR” block in Fig. 2).338

The aggregation is done by averaging the values of all the339

samples contained within each pixel of the target grid. For the340

resampling to 1 km, nearest neighbor interpolation is used.341

The next sections detail the methodology of each processing342

block shown in Fig. 2.343

B. Calibration of ω and hs344

Over the last years, a variety of SM retrieval approaches345

using L-band radiometry have been proposed (see Section I for346

details). Among these, those that use both horizontal and verti-347

cal polarizations (e.g., DCA, MT-DCA, LPRM, or SMOS-IC)348

can simultaneously retrieve SM and another parameter, usually349

τ . Furthermore, these techniques can benefit from the high350

sensitivity to SM due to the high contrast between TBH and351

TBV at higher incidence angles [14], [58]. In a previous study,352

we tested the LPRM algorithm to calibrate ω and hs parame-353

ters over the Iberian Peninsula for 2016. We obtained a very354

good performance when comparing the resulting SM maps355

against the SM observations from the REMEDHUS network,356

with correlations (R) always higher than 0.81, a bias lower357

than 0.015 m3/m3, and an unbiased root mean square error358

(ubRMSE) of about 0.04 m3/m3 (SMOS target accuracy) [59].359

Since Sentinel-1 only measures VV + VH polarizations over360

land, only disaggregated SMOS TB at vertical polarization361

can be obtained with the approach in [22], as will be detailed362

in Section III-C. For this reason, we opted for SCAV, which363

only needs TB at vertical polarization to estimate SM from364

both coarse (SMOS) and fine scale (SMOS/Sentinel-1).365

The SCA is a reliable technique [60], straightforward to366

implement and computationally fast enough for the purpose367

of this study. It allows to retrieve SM using the effec-368

tive soil temperature (Ts), the TB at one polarization, and369

the optimal ω [61] and hs values. The SCA is based on370

the τω− model [13]371

TBp = er,pTsγ + (1 − ω)Tc(1 − γ )372

+ (1 − er,p)(1 − ω)(1 − γ )Tcγ (1)373

where the subscript p refers to the polarization (vertical in374

our case), γ = e−τ/cosγ is the transmissivity, τ corresponds to375

the vegetation optical depth, γ is the SMOS incidence angle 376

(32.5◦, 42.5◦, or 52.5◦), ω denotes the single scattering albedo, 377

and Tc stands for the canopy temperature. Thermal equilib- 378

rium is assumed (Ts ≈ Tc) in the SCA, an approximation 379

already used in other microwave-based retrieval algorithms 380

[15], [16], [22]. The emissivity of a rough surface (er ) is 381

calculated as follows: 382

er,p(1) = 1 − (
(1 − Q)Rs,p(1) + Q Rs,p(2)

)
e−hs cosNr,p (γ) (2) 383

where the subscripts p(1) and p(2) are the two polarizations 384

(vertical and horizontal), Q is the polarization mixing factor, 385

Rs,p is the smooth surface reflectivity calculated using the 386

Fresnel equations, and Nr,p represents the change in the angu- 387

lar dependence of the reflectivity due to the soil roughness. The 388

polarization mixing factor is assumed very small for L-band, 389

and here, it has been set to Q = 0 to simplify the model [14], 390

[60], [62], [63]. The Fresnel equations require the dielectric 391

constant that is estimated with the Mironov mixing model [64] 392

and Nr,p is set to 2 [60]. 393

1) Multiangular Parametrization: The following steps were 394

conducted to obtain the optimized ω and hs values. 395

1) Sensitive ranges were considered for the parameters, 396

with ω varying between 0 and 0.22 (in steps of 0.02) 397

and hs between 0 and 0.2 (in steps of 0.01). Daily SM 398

was retrieved using the SCAV for each pair of ω and 399

hs values and for each low-resolution pixel within the 400

study area. In this step, the BEC SMOS L3 TB was used 401

at a 25-km grid, rather than a 12.5-km grid, due to the 402

large number of SM estimates required. 403

2) The resulting SM time series obtained for each pixel 404

of the study area was compared with the SM used as 405

reference. Four statistical metrics were considered [65]: 406

R, ubRMSE, bias, and STD. These statistics were aver- 407

aged by land-cover type (savannas, croplands, grass- 408

lands, and shrublands), and for each pair of ω and hs , 409

the optimal ω and hs values are those that provide the 410

best match, on average, of the resulting SM estimates 411

compared to the reference SM. 412

The procedure described above was carried out independently 413

for the three proposed incidence angles. At the 42.5◦ inci- 414

dence angle, ERA5-land SM was used as reference due to 415

its independence from SM estimates from remote sensing 416

sensors. Observations are not directly used in the produc- 417

tion of ERA5-land, but they may have an indirect influ- 418

ence through the atmospheric forcing used. Since a positive 419

bias of ERA-land SM (ERA5-land SM minus in situ) was 420

reported [52], the optimization of ω and hs at 42.5◦ was 421

carried out using R and ubRMSE exclusively. Furthermore, 422

the optimal ω and hs values were selected by comparing them 423

with the results obtained in previous studies that also use the 424

SCAV to retrieve SM at a similar incidence angle [60]. 425

Since there is no specifically calibrated values of SCAV 426

reported in literature for 32.5◦ and 52.5◦ angles, the procedure 427

discussed above could not be followed for these two angles. 428

Then, the optimal ω and hs values for these two angles were 429

selected using as reference the SM obtained through the SCAV 430

for the 42.5◦ incidence angle. The R, ubRMSE, bias, and 431

difference of STD were used as optimization criteria. 432
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Fig. 2. Methodology flowchart. (a) Calibration of ω and hs , (b) disaggregation of the SMOS TBv , and (c) retrieval of the SMOS high-resolution SM maps.
The orange boxes are the required input parameters for each of the three main analyses. The blue boxes are the different operations applied to the input data.
The purple boxes are the results obtained at the end of each of the three main processing blocks (dashed black blocks).

2) Low-Resolution SM and Validation of Retrieval Model433

Parametrization: Daily SM maps were obtained through the434

application of the SCAV algorithm with the optimal ω and hs 435

values to the SMOS TBV at 25 km. Time series of the three 436
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Fig. 3. Mean (a) R and (b) ubRMSE between retrieved SCAV SM at 42.5◦
incidence angle and ERA5-land SM for each possible ω and hs value and for
each land cover (savannas, croplands, grasslands, and shrublands) using all
pixels over the Iberian Peninsula.

SM data streams (32.5◦, 42.5◦, and 52.5◦) over REMEDHUS437

was obtained and compared against the SM from in situ sta-438

tions. Among all the stations available within the REMEDHUS439

network, seven were selected (F11, H13, J12, J14, K10, M9,440

and O7). They are located in a rainfed/fallow land use, which441

is the most representative land use at the SMOS spatial scales,442

at low (25 km) and high resolution (1 km) [66]. Hourly443

recorded measurements of these stations were aggregated to444

a daily [67] and spatially average within the satellite pixel,445

before using them as a benchmark to validate the different446

products.447

C. SMOS TBV Disaggregation448

The active–passive downscaling algorithm [22] proposed by449

the Jet Propulsion Laboratory (JPL) was originally developed450

to disaggregate the SMAP TBV maps. In this study, the SMAP451

TBV has been replaced by the BEC SMOS L3 TBV to adapt452

Fig. 4. Mean R, ubRMSE, bias, and difference of STD between retrieved
SCAV SM at 42.5◦ and retrieved SCAV SM at (a) 32.5◦ and (b) 52.5◦ for
each ω and hs value in savanna.

the algorithm as follows: 453

TBp,γ (HR) =
[

TBp,γ (MR)

Ts
+ β(MR) 454

·{[
σpp(HR) − σpp(MR)

] + 	(MR) 455

·[σpq(MR) − σpq(HR)
]}]

· Ts (3) 456

where MR accounts for medium resolution (12.5 km) and HR 457

for high resolution (1 km), TBp,γ (HR) is the disaggregated 458

SMOS brightness temperature at 1 km, TBp,γ (MR) corre- 459

sponds to the satellite observed single-angle SMOS brightness 460

temperature at 12.5 km, σpp(MR) and σpq(MR) denote the 461

Sentinel-1 co- and cross-polarization backscatter aggregated 462

to 12.5 km, σpp(HR) and σpq(HR) are the Sentinel-1 co- 463

and cross-polar backscatter aggregated to 1 km, and 	(MR) 464

and β(MR) are defined in the active–passive downscaling 465

algorithm [22]. The 	 parameter represents the vegetation- 466

induced heterogeneity within the MR radiometer pixel that is 467

detected by the high-resolution σpp(HR) and σpp(HR) radar 468

observations [41]. 	 is estimated as the slope of the linear 469

regression between the high-resolution σpp(HR) and σpq(HR) 470
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Fig. 5. Maps of SCAV SM averaged over time (2018) obtained at (a) 32.5◦, (b) 42.5◦, and (c) 52.5◦ using the optimal values of ω and hs presented in
Tables II and III and their respective histograms.

values contained within the domain of an MR pixel [41], [68]471

	(MR) =
[
∂σpp(HR)

∂σpq(HR)

]
MR

. (4)472

The β(MR) parameter represents the covariation between473

SMOS TBV and the Sentinel-1 backscatter (VV–VH)474

β(MR) =
TBp,γ (MR)

Ts
− (γ + (1 − ω)(1 − γ ))

σpp(MR) − 	 · σpq(MR)
. (5)475

It represents the change in emission for a unit change in476

backscatter. This study uses the snapshot approach, where β477

values are calculated for each overpass without requiring time478

series. The variables involved in the computation of β are: ω,479

τ , Ts , σ , and TBp,γ . Optimal ω values at 25 km were obtained480

through the SCAV retrieval algorithm for each incidence angle481

and for each land cover, as explained in Section III-B1. The482

use of TBp,γ (MR) at MR instead of at low resolution is chosen483

to minimize the boxing effect (the outline of the low-resolution484

pixels visible in the high-resolution maps) in the resulting dis-485

aggregated TBV (3). The rest of these variables (TS , τ , and σ)486

were provided within the SMAP product SPL2SMAP_S on a487

1-km grid. In order to have all the inputs in the same grid488

and to enable easy data handling, they were resampled into489

a 12.5-km EASEv2 grid. β was calculated with the ancillary490

data described here and its behavior was analyzed for the three491

SMOS incidence angles considered (32.5◦, 42.5◦, and 52.5◦),492

the Sentinel-1 incidence angles, and the VWC. Finally, (3) was493

applied to obtain three SMOS TBV datasets with a spatial494

resolution of 1 km, one for each incidence angle.495

D. High-Resolution SM Estimation 496

To retrieve the SM at 1 km, from the disaggregated SMOS 497

TBV (see Section III-C), the SCAV model was applied. The 498

required variables are: Ts , τ , CF, hs , ω, and TBp,γ (HR). Ts and 499

τ are provided within the SMAP product SPL2SMAP_S in a 500

1-km grid. CF is provided by the NSIDC in a 9-km grid. hs 501

and ω are obtained through the SCAV algorithm, as explained 502

in Section III-B1, in a 25-km EASEv2 grid. TBp,γ (HR) is 503

already at 1 km. In order to have all the inputs in the same 504

grid, they have been resampled into a 1-km EASEv2 grid. 505

IV. RESULTS AND DISCUSSION 506

This section is devoted to: 1) showing the optimal values of 507

ω and hs at three SMOS incidence angles (32.5◦, 42.5◦, and 508

52.5◦) for four land covers (savannas, croplands, grasslands, 509

and shrublands) and validating these parameters through the 510

retrieved SM [see Fig. 2(a)]; 2) analyzing both the resulting 511

active–passive covariation (β) values and the disaggregated 512

SMOS TBV maps at the three analyzed incidence angles [see 513

Fig. 2(b)]; and 3) showing the first high-resolution SM maps at 514

each incidence angle obtained from the disaggregated SMOS 515

TBV [see Fig. 2(c)]. 516

A. Performance of Single Channel Algorithm Applied to 517

SMOS TB 518

1) Calibration of Multiangular Model Parametrization: 519

Fig. 3 shows the mean R and ubRMSE obtained through the 520

comparison of the estimated SCAV SM at the 42.5◦ incidence 521

angle and ERA5-land SM, which is used as reference to 522

calibrate ω and hs parameters. Results are obtained indepen- 523

dently for savannas, croplands, grasslands, and shrublands. 524
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Fig. 6. (a) Retrieved SCAV SM at 32.5◦ (blue), 42.5◦ (red), and 52.5◦ (yellow) versus in situ SM from REMEDHUS. (b) Daily evolution of in situ SM
from REMEDHUS (Top; black), BEC SMOS L3 SM (Top, green), the three retrieved SCAV SM at 32.5◦ , 42.5◦, and 52.5◦, and daily rainfall (Bottom).

TABLE II

OPTIMAL ω AND hs VALUES AND MEAN R AND UBRMSE BETWEEN

RETRIEVED SCAV SM AT 42.5◦ INCIDENCE ANGLE AND ERA5-LAND
SM OBTAINED FOR FOUR LAND COVERS (SAVANNAS, CROPLANDS,

GRASSLANDS, AND SHRUBLANDS), USING ALL PIXELS OVER

THE IBERIAN PENINSULA. THE SMAP SCA ω AND hs VAL-
UES HAVE ALSO BEEN INCLUDED

As a general trend, it can be seen that R decreases as ω525

increases in all land covers. For savannas and grasslands, the526

ubRMSE decreases as ω increases, while for croplands and527

shrublands, it remains almost constant for the entire range of528

values. On the other hand, the effect of hs on the results is529

minimal, both in R and ubRMSE. Final calibration of ω and hs530

at 42.5◦ was done according to previous studies in literature,531

by comparing our obtained results (see Fig. 3) with those532

obtained with the same SM retrieval algorithm at a similar533

incidence angle [60]. Table II shows the selected optimal534

values of ω and hs at 42.5◦ for each land cover and their535

respective performance metrics. The optimal value of ω is set536

to 0.6 for all the land covers, except for shrublands, which have537

a slightly lower value of 0.4. The optimal hs fluctuates between538

0.08 and 0.15. The highest mean correlation (R) is obtained539

for grasslands and croplands (0.82 and 0.81, respectively)540

and the lowest one is received for shrublands (0.73). The541

mean ubRMSE is about 0.05 m3/m3 considering the four land542

covers.543

In order to find the optimal ω and hs values at the other544

two analyzed SMOS incidence angles (32.5◦ and 52.5◦), four545

statistics (R, ubRMSE, bias, and difference of STD) are546

computed between the retrieved SCAV SM at 42.5◦ and the547

retrieved SCAV SM at 32.5◦ and 52.5◦, independently for each 548

land cover type. Fig. 4 shows the performance metrics in the 549

savanna land cover, for the 32.5◦ [see Fig. 4(a)] and 52.5◦ [see 550

Fig. 4(b)] incidence angles. At 32.5◦, R decreases while the 551

ubRMSE and the bias increase as ω increases. Again, the effect 552

of hs on the results is low, with slightly better statistical per- 553

formance for higher values. At 52.5◦, the optimal ω values are 554

shifted to higher values, while optimal hs is shifted to lower 555

values. Note that even the highest values of STD differences 556

(∼0.015 m3/m3) are low enough to neglect this statistic when 557

choosing ωand hs values. Similar behaviors were displayed 558

for the other land covers (not shown). The optimal ω and 559

hs values at 32.5◦ and 52.5◦, together with their respective 560

statistics, are summarized in Table III. The optimal values 561

of ω range between 0.02 and 0.04, while hs is comprised 562

between 0.12 and 0.18, at 32.5◦. At 52.5◦, the optimal albedo 563

value is set to 0.12 for all four land cover regions, and hs 564

ranges from 0.01 to 0.05. Both at 32.5◦ and 52.5◦, the mean 565

R is always equal or higher than 0.9. The mean bias reaches 566

a peak of 0.016 m3/m3 at 52.5◦ for shrublands. Analyzing 567

Tables II and III, an ascending trend is revealed for ω and a 568

descending trend is found for hs , as the SMOS incidence angle 569

increases. 570

The retrieval algorithm used in this research (SCAV) was the 571

original postlaunch baseline algorithm for the SMAP mission 572

from 2015 to 2021. In the SMAP algorithm [60], hs values 573

are slightly higher (0.156, 0.108, 0.156, and 0.11 for savannas, 574

croplands, grasslands, and shrublands, respectively) than those 575

proposed in this study (see Table II). As it was already ana- 576

lyzed by Wigneron et al. [69], these hs values used in SMAP 577

have a narrower range compared to those used in the SMOS 578

baseline algorithm [70], where hs varies between 0.1 and 0.3. 579

In other global studies, hs is considered constant, as in [9], 580

where the MT-DCA was applied to Aquarius data to retrieve 581

SM, τ , and ω at L-band by assuming a constant hs of 0.13 in 582

time and space. Regarding ω, the SMAP algorithm uses a 583

value of 0.05 for croplands, grasslands, and shrublands, in line 584

with those proposed in Table II, and a slightly higher value of 585

0.08 for savannas. Moreover, a global scale study conducted by 586
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TABLE III

OPTIMAL ω AND hs VALUES AND MEAN R, UBRMSE, BIAS, AND STD DIFFERENCE BETWEEN RETRIEVED SCAV SM AT 32.5◦/52.5◦
INCIDENCE ANGLES AND RETRIEVED SCAV SM AT 42.5◦, OBTAINED FOR FOUR LAND COVERS (SAVANNAS, CROPLANDS,

GRASSLANDS, AND SHRUBLANDS)

Fig. 7. Active–passive microwave covariation parameter β along Sentinel-1 incidence angle for three VWC ranges, obtained independently at (a) 32.5◦,
(b) 42.5◦ , and (c) 52.5◦ SMOS incidence angles. The position of the circles represents the mean values, and its size the number of samples (the larger the
circle, the higher the number of samples, and vice versa). Note that due to the few densely vegetated areas available in the Iberian Peninsula, the number of
β samples for the highest VWC class (4–8 kg/m2) is very low.

Fig. 8. SMOS TBV histograms of data over the Iberian Peninsula for the year 2018, obtained independently at (a) 32.5◦ , (b) 42.5◦, and (c) 52.5◦ . In blue,
the initial SMOS TBV at 12.5 km, and in red, the disaggregated SMOS TBV at 1 km.

Van der Schalie et al. [15] applied the LPRM to SMOS obser-587

vations for optimizing ω. An optimal ω of 0.12 was found,588

invariant in space and time, and independent of the tested589

incidence angles (from 42.5◦ to 57.5◦). From Tables II and III,590

it can be seen that the retrieved ω values of this study are591

almost invariant with the IGBP-LC classes. This low sen-592

sitivity was also detected by Fernandez-Moran et al. [16],593

where a global optimal value of ω = 0.10 was selected to594

estimate SM and τ from SMOS multiangular data (from 20◦
595

to 55◦), and by Karthikeyan et al. [18] where a global fixed596

value of ω = 0.06 was assumed to estimate SM, τ , and hs597

from X-band AMSR-E observations.598

2) Validation of Retrieved Low-Resolution SM: Fig. 5 shows 599

the temporal average of the retrieved daily SM maps and 600

their respective histograms, for the year 2018, at each inci- 601

dence angle. These results were obtained by applying the 602

SCAV to SMOS TBV at 25 km with the optimal ω and 603

hs parameterizations (see Tables II and III). These maps 604

show similar spatial patterns, mean, and STD. The mean 605

ranges from 0.162 to 0.169 m3/m3 and the STD from 606

0.035 to 0.038 m3/m3. 607

Fig. 6(a) displays the agreement between the single-angle 608

SCAV SM at 32.5◦, 42.5◦, and 52.5◦ and REMEDHUS in situ 609

time series. SCAV SM shows a slope close to the 1:1 line 610
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Fig. 9. SMOS TBV maps for January 3, 2018, obtained independently at (a) 32.5◦, (b) 42.5◦, and (c) 52.5◦. At the top, the initial SMOS TBV in a grid of
12.5 km, and at the bottom, the disaggregated SMOS TBV at 1 km.

but also a clear dry bias with respect to in situ SM. This611

effect can also be seen in Fig. 6(b) (top), where the time612

series of multiangular BEC SMOS L3 SM and single-angle613

retrieved SCAV SM at 32.5◦, 42.5◦, and 52.5◦ are plotted614

and statistically compared with the in situ measurements615

using the R, ubRMSE, bias, and the STD metrics, also616

added to this figure. Course of daily precipitation acquired617

over REMEDHUS is also shown (bottom). All SCAV618

SM, retrieved at the three incidence angles independently,619

agree reasonably well between each other and show similar620

temporal patterns when compared against the BEC SMOS621

L3 SM product. They are able to capture wet up and dry622

down events. Regarding the performance of the SM retrieval623

at the three different incidence angles, R oscillates between624

0.75 (at 52.5◦) and 0.88 (at 32.5◦). The ubRMSE slightly625

increases with the increase of the incidence angle, ranging626

from 0.05 to 0.06 m3/m3. The three of them have a negative627

bias with respect to in situ SM. This bias remains almost628

constant along time, but it can turn positive after heavy rain629

events, as in March 2018. Underestimation of the SMOS630

SM with respect to in situ measurements has already been631

Fig. 10. Histograms of the high-resolution SCAV SM at 32.5◦ (blue), 42.5◦
(red), and 52.5◦ (yellow).

highlighted in previous studies [21], [36], [66], [71], the 632

so-called “dry bias.” As reported in [72], this “dry bias” could 633
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Fig. 11. (a) Retrieved high-resolution SCAV SM at 32.5◦ (blue), 42.5◦ (red), and 52.5◦ (yellow) versus in situ SM from REMEDHUS. (b) Daily evolution
of in situ SM from REMEDHUS (Top; black), the three retrieved high-resolution SCAV SM at 32.5◦, 42.5◦, and 52.5◦, and daily rainfall (Bottom).

be the result of underestimating the effective soil temperature.634

In this study, the applied soil temperature is derived from635

the National Aeronautics and Space Administration (NASA)636

Goddard Earth Observing System (GEOS)-5 models.637

A possible underestimation of the soil temperature would638

lead to an overestimation of the soil microwave emissivity,639

resulting in an underestimation of SM. Moreover, there is640

an inherent scale gap when comparing a point-scale in situ641

measurement at REMEDHUS against an area-averaged642

satellite-based SM estimation, which could also explain this643

mismatch between in situ and satellite observations.644

B. Analysis of Active–Passive Covariation and Disaggregated645

SMOS TB646

Fig. 7 shows the active–passive microwave covariation β647

between SMOS and Sentinel-1 for different Sentinel-1 inci-648

dence angle bins (from 34◦ to 44◦) and for three VWC649

ranges (0–2, 2–4, and 4–8 kg/m2). The analysis is indepen-650

dently performed for 32.5◦, 42.5◦, and 52.5◦ SMOS inci-651

dence angles. It can be observed that β values gradually and652

gently decrease with increasing Sentinel-1 incidence angle.653

This effect was also found in a previous study conducted654

by Jagdhuber et al. [41], where the active–passive covari-655

ation between SMAP (γ = 40◦) and Sentinel-1 was ana-656

lyzed. Jagdhuber et al. suggested that the dependence of the657

active–passive covariation on the Sentinel-1 incidence angle658

was increasingly masked by denser vegetation. We not only659

provided β behavior as a function of the Sentinel-1 angle but660

also in relation to different SMOS angles. The largest variation661

(sensitivity), in magnitude of β, is around d 0.7 at the 32.5◦
662

SMOS angle [see Fig. 7(a)]. β dependence with Sentinel-1663

angle is less evident for higher SMOS angles, being almost664

insensitive to Sentinel-1 angle variations. A clear trend of β665

with the SMOS incidence angle is also observed; the larger the666

Fig. 12. Number of concurrent samples of SMOS, SMAP, and Sentinel-1
for the year 2018.

SMOS angle, the closer the values are to zero, which translates 667

into a loss of backscatter sensitivity to changes in emissivity, 668

for the highest SMOS incidence angle (52.5◦). 669

The histograms of the initial SMOS TBV in a 12.5-km 670

grid and the disaggregated SMOS TBV at 1 km, obtained 671

from (3), are displayed in Fig. 8. They are obtained using the 672

information of the entire study region along the year 2018. 673

The spread of the distribution is similar for both products 674

with slightly higher differences at 32.5◦. The mean difference 675

never exceeds 0.38 K for any of the three SMOS incidence 676

angles, with an STD that is always higher for the disaggregated 677

estimations. Differences between high and low resolution can 678

be partially explained by the fact that the Sentinel-1 signal at 679

C-band, used to disaggregate the SMOS TBV , cannot penetrate 680

through dense or tall vegetation [41], [73]. Fig. 8 shows 681

that the number of samples is lower for 32.5◦ and 52.5◦
682
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Fig. 13. Retrieved SMOS SM maps for January 3, 2018, at 25 km (Top) and 1 km (Bottom), obtained independently at (a) 32.5◦, (b) 42.5◦, and (c) 52.5◦
incidence angles using the parameters presented in Tables II and III.

compared to 42.5◦. This could be explained by the shape of the683

alias-free field of view of the SMOS instrument, from which684

the incidence angles, sorted from highest to lowest spatial685

coverage, are 42.5◦, 32.5◦, and 52.5◦ [74].686

The SMOS TBV maps at low and high resolution for 32.5◦,687

42.5◦, and 52.5◦ are presented in Fig. 9 for January 3, 2018.688

Similarities in the spatial patterns can be easily detected,689

in agreement with the results of Fig. 8. From Fig. 9, it can690

also be understood that the TBV maps, both at high and low691

resolution, are highly affected by RFI in some areas with no692

information (in the south of the Iberian Peninsula), but this693

effect is slightly different for each incidence angle, being the694

steepest angle (52.5◦) the most affected. For the particular695

case of the Iberian Peninsula, this is a common effect, at696

least during the year 2018, the study period selected for this697

analysis. An RFI of about 9000 K located in Algeria could698

explain these data gaps (with a shape of RFI tails) on the699

Iberian Peninsula. The shape size of the affected area and the700

steepest angle (52.5◦) being the most affected could indicate701

that the RFI originates from a directional antenna, pointing702

toward the horizon.703

C. Analysis of High-Resolution SM Maps 704

Fig. 10 shows the histograms of the retrieved high- 705

resolution SMOS SM at three incidence angles 32.5◦, 42.5◦, 706

and 52.5◦. Comparing the results for the three angles, it can 707

be seen that the number of samples is smaller for 32.5◦ and 708

52.5◦ than for 42.5◦. Taking this into consideration, the mean 709

is similar for the three incidence angles, with a maximum 710

value of 0.177 m3/m3 at 52.5◦ and a minimum value of 711

0.161 m3/m3 at 42.5◦. The STD ranges from 0.097 m3/m3
712

at 52.5◦ to 0.112 m3/m3 at 32.5◦. When the same analysis is 713

carried out using the concurrent samples at the three incidence 714

angles (not shown), the STD is 0.109, 0.098, and 0.09 m3/m3
715

at 32.5◦, 42.5◦, and 52.5◦, respectively, and the differences 716

between the means of the high-resolution SMOS SM at these 717

angles never exceed 0.01 m3/m3. The agreement between 718

the high-resolution SCAV SM and REMEDHUS in situ time 719

series is displayed in Fig. 11. The scatter plot shows that the 720

results obtained are close to the 1:1 line and the estimates 721

with the three SMOS incidence angles are consistent (R ≥ 722

0.57, ubRMSE ≤ 0.077 m3/m3, |bias| ≤ 0.013 m3/m3, 723
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and p-value ≤ 0.01), although a larger number of samples724

would be necessary to confirm these results. Due to the725

missing synchronization between Sentinel-1, SMAP, and726

SMOS acquisition orbits (see Fig. 12), the number of samples727

is much lower at high resolution than at low resolution728

(see Figs. 6 and 11), which is a limiting factor considering729

the fast SM dynamics. To develop an operational version730

of the high-resolution SMOS SM, only simultaneously731

measurements from Sentinel-1 and SMOS will be required,732

which would improve the temporal resolution.733

Fig. 13 shows the low- (top) and high-resolution (bottom)734

SMOS SM maps for January 3, 2018, both retrieved using735

the SCAV with the parameters presented in Tables II and III.736

The high-resolution SMOS SM map at 52.5◦ is dryer than the737

maps at 32.5◦ and 42.5◦. This effect can also be seen at low738

resolution, which means it is not introduced by the single-739

acquisition disaggregation technique. Differences in SM maps740

at individual incidence angles may be due to the fact that741

one constant set of ω and hs parameters is obtained for the742

entire year of 2018. The result could potentially be improved743

by optimizing these parameters for shorter time periods, for744

example, per season, per months, or even fortnights.745

V. CONCLUSION AND PERSPECTIVES746

In this study, the effective scattering albedo (ω) and soil747

roughness (hs) described in the τ −ω radiative transfer model748

have been calibrated independently for three SMOS incidence749

angles (32.5 ± 5◦, 42.5 ± 5◦, and 52.5 ± 5◦), over the750

four main land covers (croplands, savannas, grassland, and751

shrublands) within the Iberian Peninsula, for the year 2018.752

These vegetation and soil parameters have been applied within753

the SCA at vertical polarization (SCAV) to low-resolution754

(25-km grid) SMOS TB in order to estimate low-resolution755

SM maps that have been shown to be consistent among756

them (mean differences below 0.007 m3/m3) and show good757

agreement (R ≥ 0.75 and ubRMSE ≤ 0.06 m3/m3) with758

0–5 cm ground-based measurements from the REMEDHUS759

network. A single-pass active–passive disaggregation tech-760

nique (3) has been applied, using the optimal ω and hs values,761

to SMOS and Sentinel-1 data to estimate fine-scale (1 km)762

brightness temperatures at vertical polarization (TBV ) at the763

three respective incidence angles. Finally, the SCAV is applied764

to obtain the high-resolution (1 km) SM maps for the Iberian765

Peninsula.766

Regarding the incidence angle- and land cover-adapted para-767

metrization of ω and hs , results show (see Tables II and III)768

an increasing trend of the estimated ω with increasing SMOS769

incidence angle and an opposite trend for hs . For the three770

SMOS incidence angles tested, the selection of optimal ω has771

a significant impact on the results, taking into consideration the772

R, the ubRMSE, and the bias. Instead, the optimal value of hs773

does not affect the final result as much as ω (see Figs. 3 and 4).774

Scattering albedo has shown a very low variability with the775

land cover type, ranging from a minimum value of 0.02 at776

32.5◦ to a maximum value of 0.12 at 52.5◦. Soil roughness777

ranges from a minimum value of 0.01 at 52.5◦ to a maximum778

value of 0.18 at 32.5◦, for four land cover types (savannas,779

croplands, grasslands, and shrublands).780

The SCAV algorithm has been applied to retrieve the low- 781

resolution SM maps (25-km grid) using simultaneously the 782

SMOS TBV with the optimal values of ω and hs . The resulting 783

SM maps were validated against the REMEDHUS SM in situ 784

measurements, using R, ubRMSE, and bias. Retrieved SM 785

at the different incidence angles has revealed considerable 786

agreement between them, being able to capture wet up and 787

dry down events. The best statistical performance is obtained 788

at 32.5◦ with a R = 0.88 and an ubRMSE = 0.05 m3/m3, 789

while the worst is obtained at 52.5◦ with a R = 0.75 and 790

an ubRMSE = 0.06 m3/m3. A dry bias is present for all 791

three incidence angles. This mismatch between satellite esti- 792

mations and in situ observations at REMEDHUS could be 793

explained by the inherent scale gap when comparing a point- 794

scale in situ measurement against an area-averaged satellite- 795

based SM estimation. In addition, the underestimation of SM 796

could be the result of underestimating the soil temperature 797

(derived from the NASA GEOS-5 models), which leads to an 798

overestimation of the soil microwave emissivity and, in turn, 799

in an underestimation of SM. 800

The active–passive covariation parameter (β) is a crucial 801

variable to disaggregate the SMOS TBV (3) with the single- 802

acquisition methodology applied in this study. In this way, β 803

has been retrieved individually for the three SMOS incidence 804

angles. This active–passive covariation has revealed a depen- 805

dence with the Sentinel-1 incidence angle. The β values grad- 806

ually decrease with the increase of the Sentinel-1 incidence 807

angle (see Fig. 7). This effect is less evident for larger SMOS 808

incidence angles (e.g., 52.5◦). There is also a dependence of β 809

with the SMOS incidence angle, the steeper the SMOS angle, 810

the lower the covariation values, in magnitude. This means 811

that it is less sensitive to changes in soil emissivity for higher 812

SMOS incidence angles due to the stronger effect of vegetation 813

during elongated ray path through the canopy. 814

The single-acquisition methodology allows us to merge 815

active (Sentinel-1) and passive (SMOS) observations for disag- 816

gregating the coarse-resolution SMOS TBV at γ = 32.5 ± 5◦, 817

42.5 ± 5◦, and 52.5 ± 5◦, independently. Disaggregated 818

SMOS TBV (1 km), obtained using the estimated β, and 819

optimal ω and hs values (see Tables II and III), has been 820

compared with the BEC SMOS Level 3 TBV (12.5-km grid), 821

across the Iberian Peninsula at 32.5◦, 42.5◦, and 52.5◦, inde- 822

pendently. Overall, TBV maps show similar spatial distribu- 823

tion and temporal evolution between high and low resolution 824

(see Figs. 8 and 9), for the three incidence angles studied. 825

Slightly higher differences were found at 52.5◦, but the mean 826

difference never exceeds 0.38 K. 827

Finally, the SCAV algorithm was applied to the disag- 828

gregated SMOS TBV , retrieving high-resolution (1 km) SM 829

maps at 32.5◦, 42.5◦, and 52.5◦. A comparison of these 830

high-resolution SM maps, across the Iberian Peninsula for 831

2018, exhibits similar patterns in their distributions, despite 832

the differences in the number of samples for the different 833

incidence angles. The mean difference between the three 834

incidence angles was about 0.016 m3/m3. When analyzing 835

daily SM maps, some differences can be observed in the 836

retrievals of the same day among three incidence angles (see 837

Fig. 13, bottom). These differences were not introduced by the 838
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single-acquisition disaggregation methodology because they839

were already present at low resolution (see Fig. 13, top).840

Disparities in retrieved SM maps at different incidence angles841

may be due to the fact that both ω and hs parameters were opti-842

mized for the entire year of 2018 with a unique value, instead843

of considering shorter periods (e.g., seasonal or monthly) to844

derive variable ω and hs values over time.845

Results presented in this study are intended to underline the846

relevance of developing a land cover-specific and incidence847

angle-adaptive parametrization of radiative transfer models to848

accurately estimate SM from space-borne radiometers oper-849

ating in low-frequency microwaves. In addition, we imple-850

ment and tested further a single-pass method to downscale851

SMOS TB with Sentinel-1 backscatter for any individual852

incidence angle combination (radar and radiometer). This is853

especially relevant taking into account upcoming missions,854

such as CIMR, ROSE-L Copernicus high-priority missions,855

and Sentinel-1 next generation, which offer great potential to856

estimate high-resolution SM through the synergy of active and857

passive microwave sensors.858
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