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Abstract.  

Composite materials with complex internal microstructures, such as the flax nonwoven bio-composite 

studied in this work, require advanced numerical models in order to predict their mechanical 

performance. Otherwise, the micro-structural interactions that take place between their components 

makes very difficult to obtain their mechanical properties and failure mechanisms. This paper presents 

a novel methodology that couples two homogenization formulations: a phenomenological one, the 

serial-parallel mixing theory; and a numerical multiscale procedure. The resulting methodology has a 

minimal computational cost, while it is capable to account for the different interactions that take place 

among the composite constituents. With the proposed approach, it is possible to characterize the 

mechanical response of nonwoven composites and to predict their structural failure. The methodology 

developed is applied to a flax nonwoven bio-composite manufactured and tested by the German 

Aerospace Center (DLR). The good results obtained from the simulation, when compared with the 

experimental values, allow considering the proposed procedure an excellent approach for the analysis 

of large structures made with complex microstructures, such as nonwoven biocomposites.  
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1 INTRODUCTION 

The environmental advantages in weight reduction that have been accomplished by using composite 

materials in engineering structures, from planes to ships or cars, can be overshadowed by the 

difficulties that these materials have for their disposal and recyclability, and by the large quantity of 

material that will reach its end of life (EoL) in the following years. Based on the study made by Lefeubre 

et al. [1], in 2050 the commercial aeronautical sector will have generated about 527,374 tons of CFRP 

waste globally, if nothing has been done to recycle it before then. Being aware of this problem, many 

efforts are set to find efficient procedures to recycle oil-based composites. Most of them are described 

in the review made by Karuppannan and Kärki in [2]. In their study these authors show that although 

recyclable procedures are improving, they are still far from being commercially profitable and 

completely efficient. In this scenario, the use of bio-based composite materials is an excellent 

alternative to reduce the environmental footprint of low-weight materials. 

Bio-based composites are obtained by mixing natural fibres in a matrix system, which can be also bio-

based. The interest on these materials have provided a large number of bio-materials that can be used 

as fibres, from wood [3], to hemp [4] or flax [5]. Although the mechanical performance of these 

materials is lower than the one that can be obtained with Carbon Fiber Reinforced Polymers (CFRP) or  

Glass Fiber Reinforced Polymers (GFRP), it is sufficient for the requirements of many industries and 

applications, as it is shown in the review made by Mohammed et al. in [6], or as it has been proved in 

the EU funded project Eco-Compass [7], [8]. However, in order for eco-composites to be a real 

alternative to synthetic composites, it is necessary to improve the existing knowledge about them, as 

well as to have analysis and simulation tools capable of representing their performance accurately. 

This will ensure that the new structures designed with eco-composites comply with the required 

security, functionality and quality standards. 

There are many challenges to overcome in order to predict accurately the mechanical performance of 

natural fibre composites (NFCs), and this may be the reason why most of the work conducted to 

characterize their behaviour is based on experimental measurements. Some of these challenges are 

the dispersion in the fibre properties [9], [10], the effect of fibre waviness in the composite response 
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[11], [12], or the fact that most of the composites use relatively short fibres, between 10 and 100mm, 

to produce nonwoven composites. This last challenge is pointed out in the review made by Mohammed 

et al. [6] in which the authors state that most of the applications use NCF in a mat, or nonwoven, from.  

Nonwoven composites are made with relatively short fibres, which commonly present large waviness, 

a wide distribution of fibre cross section, and a random orientation. Their complex microstructure 

makes their geometric characterization very difficult, making necessary the use of advanced 

techniques to obtain an exact reconstruction of their internal microstructure [13]. For this reason, most 

of the formulations developed to characterize these materials are based on analytical models, such as 

the one proposed by Qiu and Fan [14] which is based on the Ramberg-Osgood equations, or the model 

developed by Zhang et al. [15] which is based on the analytical response of a single fibre, either curved 

or straight. This last model is validated with the results obtained from a Representative Volume 

Element (RVE) of the nonwoven composite.  

The use of the Finite Element Method (FEM), together with multiscale strategies based on the analysis 

of RVEs, is becoming common to study the mechanical performance of composites with complex 

microstructures. However, the computational cost of these methods forces to make large 

simplifications in order to conduct the analysis, such as in the approach followed by Farukh et al. [16], 

[17] to study nonwovens. In this work fibres have been considered straight and have been modelled 

with beam elements. In other cases, the analysis is limited to the prediction of the mechanical 

properties, linear and non-linear, provided by the RVE. This is is done in the work of Naili et al. [18] for 

short fibre reinforced composites, and in the work by Greco et al. [19] in which it is evaluated the non-

linear effect produced by different micro-cracks configurations in a UD composite. To other works 

worth mentioning that use RVE analyses to obtain the non-linear performance of the material, are the 

ones of Levrero-Florencio et al. [20], [21] and Werner et al. [22], these authors use the RVE to 

characterize the non-linear performance of trabecular bone. In these studies the authors use a RVE 

obtained from a micro CT scan that does not fulfil the periodicity condition usually required in 

multiscale procedures. 
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Current work presents a novel approach that combines two homogenization procedures for the 

analysis of nonwoven biocomposites. One of the procedures is a phenomenological homogenization, 

the serial-parallel mixing theory (SP RoM) [23], which obtains the performance of the composite by 

means of the mechanical response of its constituents. This formulation is very efficient 

computationally and allows solving large structures and predicting their failure mechanism taking into 

account most composite micro-structural characteristics [24], [25]. The material parameters defined 

in this first homogenization procedure will be modified based on the results obtained from a multiscale 

numerical homogenization [26], in order to take into account some composite properties that cannot 

be taken into account by the SP RoM, such as fibre waviness. The use of a multiscale numerical 

homogenization to characterize a nonwoven composite requires reformulating the concept of RVE to 

what will be called Equivalent Representative Volume Element (ERVE), as now the material does not 

present a periodic microstructure that fulfils the scale separation condition [27], [28]. A similar 

approach has been already followed by some authors, such as the abovementioned Levrero-Florencio 

et al. [20], [21] and Werner et al. [22], as their micro-RVE does not fulfil the periodicity condition either.  

In the following are presented the formulations that will be used in this work. Afterwards it is described 

the flax nonwoven biocomposite manufactured and tested. This material is used afterwards to 

describe and exemplify the procedure developed for the analysis of nonwoven composites. Finally, the 

procedure is validated with the analysis of a 4PB test of the material. 

2 HOMOGENIZATION PROCEDURES FOR THE ANALYSIS OF COMPOSITE MATERIALS 

A homogenization procedure consists on obtaining the material properties (homogenized properties) 

from a model that accounts for the internal structure of the material. This model can be either 

numerical or analytical.  

Traditionally, composites have been characterized as orthotropic elastic materials, coupled with 

specific formulations that provide their failure onset based on specific failure criteria. Examples of such 

approaches can be found in [29]. These formulations are a basic form of a homogenization procedure, 

as they provide an average characterization of the composite performance. However, the simplicity of 
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these formulations makes necessary a detailed calibration process for each composite material 

analysed, and limits the amount of information provided by the model, as they do not have any 

information about the interaction between the composite constituents.  

In order to obtain a more detailed description of the composite performance, it is necessary to use 

more complex formulations that must account for the response of the composite constituent materials 

and their possible interactions. Following this approach, this work uses two different ones: the Serial-

Parallel mixing theory (SP RoM) [23] and a multiscale computational homogenization [26]. The first 

one couples the performance of the composite constituents by defining a set of compatibility 

equations between their constitutive laws; while the second one obtains the response of the 

composite from a numerical model representing the microstructure of the material. These two 

formulations are described in the following. As both formulations rely on the constitutive performance 

of the composite components, this section also includes a brief description of the damage law used by 

the models, as well as a mapping space anisotropy procedure used to improve the accuracy of the 

constitutive laws used.   

2.1 Serial-parallel mixing theory 

The mixing theory was initially proposed by Truesdell and Toupin [30] as a set of hypothesis for 

coupling the response of materials made with different constituents. In its original form, the main 

assumptions of the theory are that all materials contribute to the global response proportionally to 

their volumetric participation, and that they all share the same strain field. Following a similar 

approach, the inverse mixing theory is formulated imposing that all materials share the same stress 

field.  

Several authors have used the initial hypothesis defined by Truesdell and Toupin to provide new 

models to characterize composite materials. Among them it is worth to mention the efforts made by 

Sergio Oller and co-authors, who have transformed the original mixing theory into a constitutive 

equation manager, capable of providing the mechanical response of the composite from the 

constitutive performance of its constituents, in the linear and non-linear range. The different 
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developments conducted in this field are described in [31], [32]. Departing from this initial research, 

Rastellini et al. [23] proposed the so called Serial-parallel mixing theory, which is one of the 

formulations that will be used in current work. The basics of this formulation are described hereafter. 

The serial-parallel mixing theory is based on five different hypotheses:  

1. The constituent materials of the composite are subjected to the same strain in the parallel 

direction. Usually this direction corresponds to the fibre orientation.  

2. The constituent materials are subjected to the same stress in the serial direction. 

3. The response of the composite material is directly related to the volume fractions of its 

constituent materials. 

4. The phases in the composite are considered to be homogeneously distributed. 

5. The constituent materials are considered to be perfectly bonded. 

Of these hypotheses, the first two are the closing equations that provide the relation between the 

composite components. If these conditions are applied to a two-component composite, consisting of 

fibres embedded in a matrix, these equations can be written as:  

 Parallel behaviour:  �  
𝜀𝜀𝑃𝑃𝑐𝑐 = 𝜀𝜀𝑃𝑃𝑚𝑚 = 𝜀𝜀𝑃𝑃

𝑓𝑓

𝜎𝜎𝑃𝑃𝑐𝑐 = 𝑘𝑘 𝑚𝑚 𝜎𝜎𝑃𝑃𝑚𝑚 + 𝑘𝑘𝑓𝑓  𝜎𝜎𝑃𝑃
𝑓𝑓  

 Serial behaviour:  �  
𝜀𝜀𝑆𝑆𝑐𝑐 = 𝑘𝑘𝑚𝑚  𝜀𝜀𝑆𝑆𝑚𝑚 + 𝑘𝑘𝑓𝑓  𝜀𝜀𝑆𝑆

𝑓𝑓

𝜎𝜎𝑆𝑆𝑐𝑐 = 𝜎𝜎𝑆𝑆𝑚𝑚 = 𝜎𝜎𝑆𝑆
𝑓𝑓  

(1) 

Where 𝑐𝑐, 𝑚𝑚 and 𝑓𝑓 state for composite, matrix and fibre, 𝑃𝑃 and 𝑆𝑆 correspond to the parallel and serial 

direction, and 𝑘𝑘𝑖𝑖  is the volumetric participation of the component in the composite.  

The implementation of the serial-parallel mixing theory in a Finite Element code is explained in detail 

in ([23], [33]). It is based in an initial prediction of the composite constituent strains, assuming that 

they have a linear-elastic behaviour. Once knowing the strain tensor of fibre and matrix, it is possible 

to apply the constitutive model to each material to obtain their respective stress tensor, which must 

fulfil the iso-stress condition in the serial direction. If the materials have not reached their failure 

threshold stress, the elastic prediction made is correct and the iso-stress condition is fulfilled. 
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Otherwise, the initial prediction does not lead to an iso-stress condition, and it is necessary to start an 

iterative procedure until reaching a strain-stress state for both components that verifies the closing 

equation.  

The capabilities of the formulation to predict the mechanical performance of composite laminates in 

the linear and non-linear range, as well as the procedure required to obtain the material parameters 

from experimental tests, is described in [34]. There are several studies that show the capabilities of 

the formulation to predict different composite failures, such as delamination [24], [35], delamination 

due to compression [25] or open-hole failure compression [36].  

2.2 Numerical multiscale procedure 

A numerical multiscale procedure deals with the analysis of the composite structure in a two-scale 

context. In the first scale, named macroscale, the model obtains the global response of the structure. 

In this scale composites are treated as homogeneous materials. The second scale, named microscopic 

or local scale, characterizes an elemental characteristic volume in which the microscopic fields inside 

the composite are obtained. 

The basic principles of homogenization method were defined by Suquet [37] in order to obtain the 

constitutive equation for homogenized properties of a heterogeneous material. The unit cell is defined 

as a microscopic sub-region that is representative of the entire microstructure in an average sense. 

The Representative Volume Element (RVE) is employed to obtain the effective properties for the 

homogenized material because it is assumed that it must contain a sufficient number of 

heterogeneities [27], [38]. The first-order homogenization framework used in this work takes 

knowledge from the theory proposed by Zalamea and Oller [39], and by Badillo and Oller [40]. Their 

developments where further improved and extended to a tri-dimensional framework by Otero et al. 

in [26]. The homogenization technique described in [26] assumes that there is a scale separation 

between the macro and the microstructures, which means that the characteristic length of the 

microscale l must be much smaller than the length of the macroscale elements, L: l≪L [27], [28]. 
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Another basic assumption made by the theory is the periodicity of the representative volume element 

in the material microstructure [39].  

The solution of the problem at the microscale acts as an equivalent constitutive law for the macroscale, 

and it provides material stiffness and stresses from the volume average of the microscopic ones. This 

equivalent constitutive law is used in all the integration points of the macro-model in order to obtain 

the response of the structure. In case of having a non-linear behaviour of the microscopic model, it will 

lead to an iterative procedure in which the RVE must be solved for different boundary conditions until 

both scales reach equilibrium, ensuring consistency between the micro- and macroscale solutions. A 

schematic representation of a homogenization method is shown in Figure 1. With this approach, 

complex finite element models can be used to simulate the composite microstructure, taking into 

account microstructural phenomena such as fibre-matrix debonding, matrix degradation, thermal 

effects, performance of woven-type composites, etc. 

 
Figure 1. Schematic representation of a multiscale analysis. Strains (ε) in the macro-model are transformed to displacements (D) 

in the micro-model, and the resultant forces (F) in the micro-model are transformed to stresses (σ) in the macro-model 

One of the major drawbacks of numerical multiscale procedures is their computational cost, especially 

when the macro and the microstructures are defined with many details. This problem is highlighted in 

the work by Otero et al. [41], in which the cost of the numerical multiscale method was compared with 

the cost of the SP RoM. To overcome this drawback, several strategies have been proposed to minimize 

the computational cost [42], [43], although they are still expensive and cannot be used as a common 

procedure yet.  

2.2.1 Macro to micro transition 

The mathematical foundations of a multiscale analysis and its numerical implementation are fully 

described in the work of Otero et al. [26]. The basic principle used to transfer information between 
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both scales is through the definition of a micro-mechanical displacement on the RVE associated to the 

existing displacements in the macroscale:  

𝑢𝑢𝜇𝜇 = 𝑢𝑢 + 𝑤𝑤(𝑋𝑋𝜇𝜇) (2) 

being , 𝑢𝑢 and 𝑢𝑢𝜇𝜇 the displacements at the macroscale and the microscale, respectively. And 𝑤𝑤(𝑋𝑋𝜇𝜇)  

the micro-fluctuations on the RVE, which vary for each point in the microscale 𝑋𝑋𝜇𝜇.  

The relation between both scales is made through the averaging theorems [44], these state that the 

effect of the microscale over the macroscale can be obtained as the integral over a representative 

volume element. If this is applied to obtain the deformation gradient, F, it can be written:  

 𝐹𝐹(𝑋𝑋0) =
1
𝑉𝑉𝜇𝜇
� 𝐹𝐹𝜇𝜇(𝑋𝑋0,𝑋𝑋𝜇𝜇) 𝑑𝑑𝑑𝑑
𝑉𝑉𝜇𝜇

 (3) 

where 𝐹𝐹(𝑋𝑋0) is the deformation gradient of the macro-structure in the considered point 𝑋𝑋0, 𝑉𝑉𝜇𝜇 is the 

RVE volume, and 𝐹𝐹𝜇𝜇 are the deformation gradients at the different points of the RVE. Using this last 

expression together with the microscale displacements defined in equation (3), it is possible to obtain 

different sets of boundary conditions that relate the displacements of the macro- and micro-models. 

These are the following:  

i. Taylor model (or zero fluctuations): 𝑤𝑤�𝑋𝑋𝜇𝜇� = 0    ∀𝑋𝑋𝜇𝜇 ∈ 𝑉𝑉𝜇𝜇  

This model gives homogeneous deformation in the microstructural scale level. The results 

provided by this model are equivalent to those provided by the mixing theory.  

ii. Linear boundary displacements (or zero boundary fluctuations): 𝑤𝑤�𝑋𝑋𝜇𝜇� = 0  ∀𝑋𝑋𝜇𝜇 ∈ 𝜕𝜕𝑉𝑉𝜇𝜇. 

Being 𝜕𝜕𝑉𝑉𝜇𝜇 the boundary of the RVE. In this case, the deformation of the RVE boundary domain 

is fully prescribed.  

iii. Periodic boundary fluctuations: 𝑤𝑤�𝑋𝑋𝜇𝜇+� = 𝑤𝑤�𝑋𝑋𝜇𝜇−�  ∀ 𝑋𝑋𝜇𝜇 ∈ �𝜕𝜕𝑉𝑉𝜇𝜇+, 𝜕𝜕𝑉𝑉𝜇𝜇−�. 

In this case, the kinematical constraint defines a periodic displacement fluctuation on the 

different faces of the RVE. 
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iv. Minimal constraint (or uniform boundary traction): This case obtains the nontrivial solution of 

∫ 𝑤𝑤 ⊗𝑠𝑠 𝑁𝑁𝑁𝑁𝑁𝑁𝜕𝜕𝑉𝑉𝜇𝜇
= 0. In this expression 𝑁𝑁 corresponds to the normal to the undeformed 

boundary of the RVE.  

Among these four possibilities, the one most commonly used is the periodic boundary condition, 

because it generally provides an intermediate and more exact response compared to other type of 

boundary conditions, as it is described in [26], [38]. 

2.2.2 Micro to macro transition 

Once the boundary conditions that must be applied to the micro-model to characterize the material 

performance are known, it is possible to solve the Boundary Value Problem (BVP) and to obtain the 

stress state of the different elements in which the RVE is discretized. The homogenized stress tensor 

in the macroscale is obtained by means of the average theorem, as: 

𝜎𝜎(𝑋𝑋0) =
1
𝑉𝑉𝜇𝜇
� 𝜎𝜎𝜇𝜇�𝑋𝑋0,𝑋𝑋𝜇𝜇�𝑑𝑑𝑑𝑑
V𝜇𝜇

 (4) 

2.2.3 Equivalent Representative Volume Element (ERVE) 

One of the main assumptions made by multiscale procedures to define a Representative Volume 

Element (RVE) is that the microstructure of the material is periodic, and that this periodicity is 

represented in the RVE defined [27], [35]. This assumption cannot be applied to simulate materials 

with a non-periodic microstructure, such as the nonwoven eco-composites considered in this work, 

because the periodicity is inexistent in the material due to the randomness of the fibre configuration.  

This work modifies the concept of RVE to define what will be called an Equivalent Representative 

Volume Element (ERVE). An ERVE is defined as a periodic micro-model that is capable to capture the 

mechanical response of the material, with no further requirements or constrains. Therefore, it is 

possible that the microstructure defined in the micromodel do not exist in the real material or, if it 

exists, it may not be periodically repeated. However, the response obtained from the ERVE must be 

similar to the one produced by the real material. An ERVE can be understood as a mathematical model 

(based on a numerical analysis) that provides the material response, as it is done by constitutive 
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equations, but that does not replicate the exact material geometry and configuration. Figure 2 shows 

the implications of using a micro-model as an RVE or as an ERVE. In the first case, the micro-model is 

biunivocally related to a periodic material, while in the second case the requirement of the micro-

model is to be able to represent the material performance, but it does not have to correspond to a 

specific pattern in the material.  

The ERVE is defined with a geometrical periodicity in its boundaries. This is required in order to be able 

to use the multiscale formulation described in this section. 

 
Figure 2. Implications of using a micro-model as a RVE or as an ERVE 

2.3 Damage constitutive law 

In order to account for material failure, composite constituents must be characterized with a law that 

provides their elastic behaviour, and also their mechanical response after reaching their failure 

threshold. The two formulations aforementioned are capable of using any constitutive model to 

characterize the composite constituents. Among the different models available in literature, this work 

uses the Katchanov explicit isotropic damage model [45], [46]. This model has been already used with 

both formulations to characterize composite failure, providing excellent results as it is shown in [24], 

[35], [42]. 

An isotropic damage formulation is based in the introduction of a scalar internal variable, the damage 

parameter 𝑑𝑑, that considers the reduction of the effective area of the material by reducing its stiffness. 

The damage variable takes values ranged between 0 and 1, being zero when the material is not 
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damaged and one when the material is completely degraded. The damage parameter is used to 

transform the real damaged stress tensor, 𝜎𝜎, into an effective stress tensor, 𝜎𝜎0. The relation between 

the damaged stress and the strain in the material depends on the damage parameter and the elastic 

stiffness tensor ( 𝐶𝐶0 ):  

𝜎𝜎 ≡ (1 − 𝑑𝑑) 𝜎𝜎0 = (1 − 𝑑𝑑) 𝐶𝐶0: 𝜀𝜀0 (5) 

which is rewritten in indicial notation as:  

𝜎𝜎𝑖𝑖𝑖𝑖 ≡ (1 − 𝑑𝑑) 𝐶𝐶0𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  𝜀𝜀0𝑘𝑘𝑘𝑘 (6) 

The constitutive model requires the definition of a threshold law, which must provide the stress level 

at which material degradation starts, as well as the evolution of the damage parameter during the 

failure process. This law is usually written with the following expression [45]:  

𝐹𝐹(𝜎𝜎0,𝑑𝑑) = 𝑓𝑓(𝜎𝜎0) − 𝑐𝑐(𝑑𝑑) ≤ 0 (7) 

being 𝐹𝐹(𝜎𝜎0,𝑑𝑑) the function used to define the damage surface, which is divided in a function 

depending on the effective stress tensor, 𝑓𝑓(𝜎𝜎0) , and a function depending on the damage parameter, 

𝑐𝑐(𝑑𝑑). Damage starts the first time that the value of the effective stress tensor is larger than 𝑐𝑐(𝑑𝑑); and 

damage evolution is defined by the expression given to this last function.  

In current work, the damage surface is defined by the norm of the principal stresses. The variation of 

the damage parameter is obtained using the damage consistency parameter and the Kuhn-Tucker 

condition. The law used to define this evolution is exponential and depends, among other parameters, 

on the fracture energy of the material, 𝐺𝐺𝑐𝑐. When using a finite element formulation to solve the 

problem, this material parameter has to be regularized by the fracture length of the element, 𝑙𝑙𝑓𝑓, in 

order to obtain mesh independency [24], [47].  

𝑑𝑑 = 𝐺𝐺(𝑓𝑓(𝜎𝜎0)) = 1 − 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚
𝑓𝑓(𝜎𝜎0)

𝑒𝑒𝐴𝐴�1−
𝑓𝑓(𝜎𝜎0)
𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚

�;   with  𝐴𝐴 = 1
𝐺𝐺𝑐𝑐 𝐶𝐶0

𝑙𝑙𝑓𝑓 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚2 −12
 (8) 

2.4 Anisotropy using a mapping space theory  

This theory is based on the transport of all the constitutive parameters and the stress and strain states 

of the structure, from the real anisotropic space, to a fictitious isotropic space. Once all variables are 
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in the fictitious isotropic space, an isotropic constitutive model can be used to obtain the new structure 

configuration. This theory allows considering materials with high anisotropy, such as composite 

materials, using all techniques and procedures already developed for isotropic materials. 

All the anisotropy information is contained in two fourth order tensors. One of them, 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜎𝜎  , relates 

the stresses in the fictitious isotropic space (𝜎𝜎�𝑖𝑖𝑖𝑖) with the stresses in the real anisotropic space (𝜎𝜎𝑖𝑖𝑖𝑖) 

and the other one, 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜀𝜀  , does the same with the strains. The relation of both spaces for the strains 

and the stresses is described in the following equation: 

𝜎𝜎�𝑖𝑖𝑖𝑖 = 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜎𝜎  𝜎𝜎𝑘𝑘𝑘𝑘 

𝜀𝜀𝑖̅𝑖𝑖𝑖 = 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜀𝜀  𝜀𝜀𝑘𝑘𝑘𝑘 
(9) 

A representation of these transformations is displayed in Figure 3. A more detailed description of this 

methodology, its extension to large strains, and its numerical implementation can be obtained in 

references [48] and [49].  

 
Figure 3. Anisotropy using a mapping space theory. Space transformations. Real and fictitious stress and strain spaces. [48] 

3 NONWOVEN FLAX BIOCOMPOSITES 

As it has been previously stated, this work focuses on nonwoven eco-composites, as the complexity of 

their internal microstructure is perfect to test the capabilities of the proposed formulations. Of the 

different bio-based nonwoven composites available in the market, the particular case of an epoxy 

matrix with embedded flax fibres will be studied.  
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3.1 Flax non-woven samples  

The nonwoven flax samples were manufactured at the German Aerospace Centre (DLR) in 

Braunschweig, as a part of a broader experimental campaign, which is fully described in [5]. The 

nonwoven composite was produced with flax fibres that were obtained from the company INTERCOT 

in Spain, and a thermoset matrix system obtained from the two-component liquid epoxy infusion resin 

Hexion Epikote™ RIMR135 with curing agent RIMH1366. The composites were produced with the 

single line infusion (SLI) method in a Lauffer hydraulic press (500 mm × 500 mm pressing area). The SLI 

process is characterised by using the same line for vacuum generation followed by the liquid resin 

infusion. Curing time in the heated hydraulic press was 120 min at 85°C followed by deforming and 

post-curing at 100°C for 60 min in a Memmert UFP500 convection oven. After cutting, ultrasonic 

testing in water were carried out to assess the laminate quality regarding pore distribution and 

delamination. The physical properties of the composites are summarized in Table 1. 

Laminate 
Fibre Volume 
Content [%] 

Average 
Thickness [mm] 

Density 

[g/cm³] 
Void Content 

[%] 

Glass 
Transition 
Temp. [°C] 

Water 
Content 

[%] 
30Flax 29.1 3.11 1.16 7.7 82.3 1.94 

Table 1. Physical properties of the nonwoven flax composites produced.  

Figure 4a shows the raw flax fibres, Figure 4b shows these same fibres after carding. With the carding 

procedure it is possible to provide some preferred orientation to the material. Finally, Figure 4c shows 

the final nonwoven eco-composite once the resin has been infused.  

(a)     (b)     

(c)     
Figure 4. Nonwoven flax fibres in the different phases of the manufacturing process. (a) Raw flax fibres. (b) Flax fibres after 

carding proces. (c) Nonwoven flax composite after infusing the resin, cut for flexural testing. These images have been obtained 
from the work conducted by DLR in WP2 of Eco-compass project.   
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3.2 Experimental campaign 

Four-point flexural tests were carried out according to the standard DIN EN ISO 14125 (class II, l/h ≅ 

20) on a Zwick Roell universal testing machine Z005. A strain rate of 2 mm/min was used with a load 

cell of 5kN (type KAF-Z, Zwick Roell GmbH & Co KG, Germany). Strain was measured by cross-head 

displacement. Test samples were sawed to 60 mm length and 15 mm width (b0) in 0° and 90° laminate 

direction on a KKS 1300 C (MAIKO Engineering GmbH). A span-to-depth ratio of 20:1 at a laminate 

thickness (t0) of 3 mm was chosen in this study because of the limited available number of specimens. 

The relatively low span-to-depth ratio can cause shear stresses resulting in additional displacements 

and therefore a potentially lower modulus [50]. Flexural modulus (E4PB) was calculated with the secant 

method between 0.05 % and 0.25 % strain. The results obtained for the five samples tested are 

described in Table 2. The stress-strain graphs obtained are shown in Figure 5.  

# t0 

[mm] 
b0 

[mm] 
Fmax 

[N] 
Dmax 

[mm] 
εmax 

% 
σ4PB 

[MPa] 
E4PB 

[MPa] 
1 3.07 15.29 256.31 6.33 3.64 89.11 4589.54 
2 3.09 15.35 274.29 6.78 3.92 93.76 4808.43 
3 3.1 15.25 253.83 6.58 3.82 86.77 4470.80 
4 3.07 15.33 246.18 6.33 3.63 85.36 4322.54 
5 3.01 15.13 230.61 6.03 3.40 84.28 4515.47 

Average 3.07 15.27 252.24 6.41 3.68 87.86 4541.36 
Table 2. Results obtained from the experimental campaign conducted on nonwoven flax composites. The values shown in the 

table are t0: specimen thickness, b0: specimen width, Fmax: maximum force at failure, Dmax: maximum displacement at failure, εmax: 

maximum strain at failure, σ4PB: calculated stress at failure, and E4PB: calculated young modulus. 

 
Figure 5. Experimental results of 3PB flax tests. Each Probe curve corresponds to a sample tested.  
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4 COUPLING HOMOGENIZATION METHODS. ANALYSIS OF FLAX NONWOVEN COMPOSITES 

As it has been stated in the introduction, this work proposes a novel methodology to simulate the 

mechanical performance of nonwoven bio-composites. This is achieved by combining the two 

homogenization processes described in section 2 of this manuscript: the serial-parallel mixing theory 

and a numerical homogenization method. The coupling of these two formulations is based on three 

different assumptions, or hypothesis, that are defined in the following. Afterwards, this section 

illustrates how the proposed methodology can be applied. This is done with the analysis of the 

nonwoven flax biocomposite described in section 3.  

4.1 Coupling hypothesis 

The complexity of the internal microstructure of nonwoven flax eco-composites requires of a 

multiscale procedure to account for the interaction between the different composite constituents. 

However, the size of the micro-model required to represent the internal microstructure of the 

composite makes unaffordable the solution of the whole problem using only multiscale methods. For 

this reason, it is proposed to couple both formulations available, the serial-parallel mixing theory and 

the numerical multiscale procedure. This coupling is made based on three main hypotheses:  

1. The randomness in the orientation of the fibre distribution that presents the nonwoven 

composite can be captured by considering that there are different composite materials, or 

composite layers, with a preferred orientation, all of them sharing the same strains (iso-strain 

condition) 

2. Inside each one of these composite materials, the interaction between fibre and matrix is 

accounted with the serial-parallel mixing theory, assuming an iso-strain performance in the 

fibre direction and an iso-stress performance in all other directions 

3. Fibre curviness and its effect over the composite performance is accounted by modifying the 

mechanical properties of fibre and matrix materials. The modifications required are obtained 

from a numerical multiscale analysis made on an Equivalent Representative Volume Element 

(ERVE).  
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4.2 Coupon model developed 

4.2.1 Model geometry and boundary conditions 

The performance of the nonwoven flax composite has been studied by conducting four-point bending 

(4PB) tests on the material, which are defined in the standard ISO 14125:2011-05. The capacity of the 

formulation developed to characterize the material performance will be tested by reproducing this 

4PB test. The sample dimensions are shown in Figure 6a, while the test configuration and its 

dimensions are plotted in Figure 6b. These dimensions are in accordance with the dimensions reported 

from the experimental campaign (Table 2). Figure 6c shows the coupon while it is tested and the 

displacement transducer used to record the displacements during the test.  

 
(a) 

 
(b) 

 
(c) 

Figure 6. 4PB test conducted on the nonwoven flax composite. (a) Coupon dimensions. (b) Test configuration and dimensions (c) 
Photograph of the testing sample, above the sample are the elements that apply the load, below the sample is the displacement 

transducer.  

The numerical model developed to simulate the 4PB test is shown in Figure 7, where it is shown the 

geometry and the boundary conditions applied to it. The model has been loaded with an imposed 

displacement (red arrows). The finite element mesh is made with 7920 quadratic hexahedra elements.  

 
Figure 7. Numerical model developed to simulate the 4PB test conducted on the nonwoven flax composite. 

4.2.2 Materials defined in the model 

The experimental coupon is made of flax fibres embedded in an epoxy matrix. The matrix used is the 

EpikoteTM resing MGSTM RIMR135 manufactured by Hexion. Its main mechanical parameters are 
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provided by the manufacturer and are listed in Table 3. As for flax fibres, its main mechanical 

parameters have been obtained from the work conducted in references [51] and [52], due to the lack 

of data available from the manufacturer. These properties are also listed in Table 3. As for the Poisson 

value given to flax fibers, the value provided by the referred publications is close to 0.5 (0.498) [51]. 

This value has been reduced to 0.4 to avoid incompressibility problems in the numerical analysis.   

 Epikote Epoxy Flax Fibres 

Young Modulus E1 [GPa] 2.7 50 

Young Modulus E2 and E3 [GPa] 2.7 8.0 

Poisson modulus 0.36 0.40 

Tensile strength [MPa] 70 900 
Table 3. Main mechanical properties of the flax nonwoven composite constituents 

A last parameter that it is required in order to have a complete characterization of the composite 

material is the volumetric participation of fibre and matrix in the composite. For current nonwoven, 

the proportions that where measured by DLR in their experimental campaign were 29.1% of flax fibres 

and 70.9% of epoxy resin (the void content described in Table 1 has been assigned to the epoxy resin).  

Besides the material mechanical parameters, it is necessary to take into account other material 

properties such as fibre orientation and curviness. As it has been stated in the model hypothesis 

(section 4.1), fibre orientation will be accounted by defining different composite materials with 

different fibre orientations, and assuming that all of them have the same strain tensor. The composite 

stress will be obtained according to the volumetric participation of each material in the composite. 

Therefore:  

𝜀𝜀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝜀𝜀𝜃𝜃1 = 𝜀𝜀𝜃𝜃2 = ⋯ = 𝜀𝜀𝜃𝜃𝜃𝜃 
𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑘𝑘𝜃𝜃1 𝜎𝜎𝜃𝜃1 + 𝑘𝑘𝜃𝜃2 𝜎𝜎𝜃𝜃2 + ⋯+ 𝑘𝑘𝜃𝜃𝜃𝜃 𝜎𝜎𝜃𝜃𝜃𝜃 (10) 

The value 𝑛𝑛 depends on the discretization made on the angle spectra that these materials can take. In 

current simulations, the space ranging from -90º to +90º has been divided in 12 segments, with angle 

variations every 15º. The volumetric participation that has to be assigned to each angle allows 

considering the efficiency of the carding treatment done to the flax fibres before infusing the matrix. 

If the carding has been effective, there will be a larger participation of materials oriented around 0º 

than if the carding has not been effective. Following a visual inspection of the non-woven samples, this 
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work assumes a random distribution of the fibre orientation in the composite, which is defined 

assigning the same volumetric participation to all segments.  

The interaction between flax fibres and the epoxy matrix for each one of these materials is taken into 

account with the serial-parallel mixing theory, assuming an iso-strain condition in the fibre direction 

and an iso-strain condition in all other directions. This formulation provides an excellent prediction of 

the material performance when it is applied to unidirectional laminate composites, as it is proved in 

the simulations conducted in references [23]–[25], [53]. However, if this formulation is applied to 

nonwoven composites, it does not take into account the effect of fibre curviness and it predicts very 

large stiffness values, compared to the actual stiffness measured in the material. To overcome this 

limitation, this work proposes to modify the mechanical properties of fibre and matrix, based on the 

results obtained with a micro-model of the composite. With the modified properties, the  the serial 

parallel mixing theory should provide the same mechanical response than the micro-model.  

4.3 Equivalent Representative Volume Element (ERVE) of a curved flax fibre in an epoxy matrix 

This work uses an Equivalent Representative Volume Element to obtain the mechanical performance 

expected from the non-woven flax composite. The ERVE considered is the one represented in Figure 

8. This is obtained by reproducing the exact geometry of three different flax fibres existing in the actual 

material. Fibres have been selected having a preferred orientation, as this material is the one that will 

be rotated afterwards to consider the randomness in fibre direction of the composite. The number of 

fibres included in the ERVE, as well as the waviness of these fibres, have been defined in order to obtain 

an average representation of the material.  

 
Figure 8. Geometry of the Equivalent Representative Volume Element (ERVE) developed to study the mechanical performance of 

nonwoven flax composites 
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This is considered a good example of the requirements of an ERVE, and the results expected from it. 

In this analysis, the results expected from the ERVE are the effect of the length and curviness of flax 

fibres in the composite, therefore it is possible to simplify the geometry of the model to reduce its 

computational cost.   

The properties assigned to the epoxy matrix and the flax fibres of the micro-model are those defined 

in Table 3. This micro-model has been applied to a macro-model geometry which has been loaded with 

a longitudinal tensile load and a transversal tensile load, in order to obtain the material performance. 

The results obtained and the procedure followed to apply these results to the mechanical analysis of 

the 4PB test of the nonwoven flax composite are described in the following section.  

5 RESULTS OBTAINED FROM THE NUMERICAL ANALYSIS 

The first numerical analyses are made on the ERVE multiscale model, in order to obtain the equivalent 

properties that have to be assigned to the flax fibres and the epoxy matrix in the serial-parallel mixing 

theory to account for the flax curviness. With the results obtained from this first analysis it is possible 

to conduct the 4PB test described in previous section, using the serial-parallel mixing theory, in order 

to obtain the flax nonwoven composite performance. The results obtained from the different 

numerical models developed are detailed hereafter, following the same order required to conduct 

them.  

5.1 Micro-model analysis 

The Equivalent Representative Volume Element developed to analyse the mechanical performance of 

the flax-epoxy composite, accounting for fibre curviness, is the one shown in Figure 8. The multiscale 

scheme followed to obtain the performance of the micro-model is depicted in Figure 9, that shows the 

macro-structure and the RVE defined. The macro-model is defined only with three finite elements as 

its main function is to apply the loads to the micro-model and to obtain its response. The use of a larger 

model will increase substantially the computational cost and will provide the same results. Two 

different multiscale analyses have been conducted applying a monotonically increasing load to the 
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material, one with a longitudinal load, corresponding to the X axis in Figure 9, and a second one with 

a transversal load, corresponding to the Y axis. The first analysis is used to obtain the equivalent 

stiffness of flax fibres and their equivalent failure stress. The transversal load analysis has been used 

to obtain the transversal strength of the epoxy matrix material.  

 

Figure 9. Macro and micro-models used to obtain the equivalent properties of flax fibres. The coordinate system is shared by 
both models.  

 

5.1.1 Elastic longitudinal analysis 

Figure 10 shows the longitudinal stresses in the micro-model when a pure longitudinal load is applied 

to the macro model. This image shows that the maximum stresses are found in the flax fibres, which 

is an expected result, as they are substantially stiffer than the epoxy matrix. Figure 10 also shows that 

stresses are not constant along the fibre length, being larger in the sectors in which the fibre 

orientation is closer to the load direction.  

 
Figure 10. Longitudinal stresses in flax fibres and epoxy matrix under a linear elastic analysis applying a longitudinal load 
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This first analysis makes possible to obtain the longitudinal stiffness of the composite provided by the 

ERVE defined. This stiffness has a value of 𝐸𝐸𝑅𝑅𝑅𝑅𝑅𝑅 = 3741 𝑀𝑀𝑀𝑀𝑀𝑀.  

If this same elastic performance has to be reproduced with the serial-parallel mixing theory, it is 

necessary to modify the fibre elastic stiffness in such a way that, with the same volumetric participation 

of fibre and matrix, the stiffness of the composite is the one provided by the ERVE. The volumetric 

participation of matrix and fibre in the ERVE defined is, 𝑘𝑘𝑚𝑚 = 0.941 and 𝑘𝑘𝑓𝑓 = 0.059, respectively. 

Knowing that in the longitudinal direction the serial-parallel mixing theory obtains the composite 

stiffness assuming a parallel performance:  

𝐸𝐸𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑘𝑘𝑓𝑓  𝐸𝐸𝑓𝑓 + 𝑘𝑘𝑚𝑚 𝐸𝐸𝑚𝑚 (11) 

and assuming that the matrix stiffness remains equal in both models, of 𝐸𝐸𝑚𝑚 = 2700𝑀𝑀𝑀𝑀𝑀𝑀 , it is possible 

to obtain the equivalent stiffness required for flax fibres:  

𝐸𝐸𝑓𝑓 =
𝐸𝐸𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑘𝑘𝑚𝑚 𝐸𝐸𝑚𝑚

𝑘𝑘𝑓𝑓
= 20344 𝑀𝑀𝑀𝑀𝑎𝑎 (12) 

5.1.2 Non-linear longitudinal analysis 

The same model presented previously has been solved with an increasing longitudinal load using a 

damage formulation to characterize both constituent materials, fibre and matrix. The load has been 

applied with an imposed displacement in one of the sides of the macro-model. The maximum 

displacement reached by the model is 0.075mm, which corresponds to a load of 93.5N. This is shown 

in Figure 13. The five first displacement increments are of 0.01mm while the following ones are of 

0.001 in order to facilitate the convergence of the problem. The stress threshold applied to the 

materials is the one defined in Table 3. The damage parameter obtained at the end of the simulation 

is shown in Figure 11. This figure shows that most of the damage is concentrated at the tip of flax 

fibres, mainly produced by normal stresses. There is also substantial damage around the fibres 

contour, this one produced by the shear forces induced due to the different stiffness between fibres 

and matrix.  
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Figure 11. Damage parameter produced by longitudinal loads in the flax nonwoven ERVE under study 

Figure 12 shows that although it is not possible to see it properly in Figure 11, fibres have also reached 

their threshold stress when the maximum load is applied to the representative volume element.  

 
Figure 12. Damage parameter in the RVE analyzed to study the performance of the flax nonwoven composite 

These results show that the composite failure is produced when its components reach their maximum 

stress level, and that these stresses are result of a combination of micro-structural effects. The serial-

parallel mixing theory is not capable of reproducing these sort of material interactions, therefore it is 

necessary to simplify this failure mode. This is done considering that the longitudinal failure of the 

composite is produced by fibre failure, and reducing the fibre tensile strength from 900MPa to 

500MPa. With this approach, the mechanical response of the micro-model and the serial-parallel 

mixing theory is equivalent, as it is shown in Figure 13. This figure shows the force-displacement graphs 

obtained for a material sample of identical dimensions, one analysed with the multiscale model and 

the other one with the serial-parallel mixing theory. Figure 13 also shows that the serial parallel mixing 

theory model is capable to describe the softening of the material, as the response provided by this 

model comes from the combination of two damage laws, while the micro-model loses convergence 

when it reaches its stress threshold. This sudden loss of convergence is because the level of damage in 

the ERVE at this point is close to one in several elements (Figure 11). Another comparison that is worth 
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doing of these two models is their computational cost: while the serial-parallel model runs in less than 

0.4 seconds, the multiscale model has required 1h and 18minutes to run the simulation. This high 

computational cost is consequence of the large mesh required to simulate properly the ERVE, and is 

the main reason that makes unfeasible considering these sort of analysis with a pure multiscale 

procedure.  

 
Figure 13. Comparison of the mechanical performance of the multiscale analysis and the analyisis made with the serial-parallel 

mixing theory of a small coupon of flax nonwoven composite 

5.1.3 Non-linear transversal analysis 

The multiscale model has also been used to obtain the mechanical performance of the flax-epoxy ERVE 

when it is subjected to transversal loads. The load applied has been increased monotonically until 

reaching the material failure. As in the longitudinal analysis, the load has been applied by imposing a 

fixed displacement. The final displacement reach by the model is of 0.081mm, which corresponds to a 

load of 82.6N. The first five displacement increments are of 0.01mm, these are followed by five 

increments of 0.005mm and by three last increments of 0.002mm. The results obtained from this 

simulation are shown in Figure 14 in terms of the damage parameter in the composite components. 

This figure shows that the composite failure is produced by the rupture of the fibre-matrix interface, 

as a result of matrix failure. Therefore, the transversal strength of matrix material will be defined based 

on this interfacial strength. Several authors have studied experimentally this phenomena [54]–[56], 

finding out that the interfacial strength between flax fibres and an epoxy matrix is around 20 and 30 

MPa. Using these values obtained from literature, this work defines the transversal strength of the 

epoxy resin at 20 MPa.  
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Figure 14. Damage parameter produced by transversal loads in the flax nonwoven ERVE under study 

5.2 Macro-model analysis. 4PB Test of a flax nonwoven composite  

The 4PB test analysed in this section replicates the experimental campaign conducted at DLR and 

described in section 3.2. The dimensions of the sample and the loads applied are depicted in Figure 6 

and in Figure 7. The load has been applied by imposing a vertical displacement with constant 

increments of 0.1mm. As previously stated, the results obtained from the different multiscale 

simulations conducted have been used to modify the material parameters of flax fibre and epoxy 

matrix. The new values are shown in Table 4. These values are the ones that will be applied to the 

serial-parallel mixing theory model in order to characterize the mechanical response of the flax 

nonwoven composite. The different strength values shown in Table 4 for the epoxy material will be 

applied with the anisotropy using the mapping space formulation defined in section 2.4. The rest of 

the model properties, such as fibre orientation, dimensions, loads applied, etc. have been already 

described in section 4.2.  

 Epikote Epoxy Flax Fibres 

Young Modulus E1 [GPa] 2.7 20.3 

Young Modulus E2 and E3 [GPa] 2.7 8.0 

Poisson modulus 0.36 0.40 

Longitudinal strength [MPa] 70 500 

Transversal strength [MPa] 20 500 
Table 4. Modified mechanical properties for the numerical analysis of the flax nonwoven composite constituents 

The results obtained with the numerical model developed for the Four Point Bending (4PB) test 

conducted on the flax nonwoven composite are shown in the following figures. Figure 15 shows the 
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stress field in the displaced model of the tested coupon. This result shows that the 4PB test boundary 

conditions are properly applied, as the deformation and the stress field are the ones expected.  

 
Figure 15. Deformation and stresses obtained for the numerical model of the 4PB test made on flax nonwoven composite 

The serial-parallel mixing theory obtains the composite behaviour from its constituents; therefore, the 

model has information on the performance of the fibres and the resin at the different orientations 

defined. This allows obtaining a detailed description of the failure mechanisms of the specimen. This 

failure is shown by means of the damage parameter in the resin and the flax fibres in Figure 16 and 

Figure 17, respectively. In these two figures, the regions in which the boundary conditions are applied 

are not depicted because these regions have large stress concentrations that do not allow a correct 

visualization of the whole structure performance. 

Figure 16 shows the damage parameter in the epoxy resin associated to different fibre orientations, at 

the last step of the numerical analysis before failure. This figure shows that most of the matrix is 

completely damaged, with damage values above 0.9 for nearly all fibre orientations. This figure also 

shows that the resin associated to fibres at 90º have a slightly larger damage than those associated to 

0º. This is coherent with the fact that the transversal strength of the resin is defined with a lower value 

than the longitudinal strength.  
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Figure 16. Damage parameter in the resin associated to different fibre orientations at the last load step applied to the numerical 
model.  

Figure 17 shows the damage parameter in the fibres for different orientations at the last load step. In 

this case it can be seen that the fibres with larger damage are those at 0º, which are oriented following 

the direction of maximum stresses. As the fibre orientation increases towards 90º, fibre damage 

decreases and becomes zero for orientations larger than 45º. It is worth noting that having the fibres 

more aligned with the principal stresses in the structure implies having larger damage, and also implies 

to have a larger extension of fibres with damage.  

 

Figure 17. Damage parameter in the flax fibres at different fibre orientations at the last load step applied to the numerical model. 

The comparison of the results provided by the numerical model with the results obtained in the 

experimental campaign is made using the force-displacement graph. The force corresponds to the total 
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vertical load applied to the sample, and the displacement is measured at mid span. This result 

comparison is shown in Figure 18. This figure shows a complete agreement between the numerical 

and the experimental results. The initial stiffness provided by the numerical model matches perfectly 

the stiffness measured in the tested coupons. The material shows a variation of this stiffness for an 

applied force close to 100N, providing a non-linear behaviour for larger loads. The maximum load that 

can be applied to the coupon in the numerical model is around 250N (258.5N, to be exacts) which, 

again, fits in the maximum loads range provided by the experimental campaign. The failure of the 

numerical model is reached for a displacement of 6.1mm, at this point the matrix in damage is larger 

than 0.9 in most elements, as it is shown in Figure 16, and the model cannot reach convergence. It is 

also worth noting that the experimental failure is very abrupt, once the maximum load is reached, 

which corresponds to the loss of convergence reached by the numerical model.  

 
Figure 18. Force displacement graph obtained for the numerical model and the experimental test of the 4PB test made on flax 

nonwoven composite. Probe 01 to Probe 05 curves correspond to the results obtained from the experimental campaign.  

6 CONCLUSIONS 

The prediction of the mechanical performance of composites with complex microstructures, such as 

the flax nonwoven biocomposites reported in this work, can be approached by empirical formulations 

mostly based in experimental results; or can be conducted with complex simulation procedures, such 

as multiscale methods, in order to account for the different interactions that take place among their 

components. The main drawback of this last approach is the computational cost required to conduct 

the simulation. Therefore, simplified methods are needed to obtain an accurate prediction of the 

composite performance.  
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This work has presented a novel methodology that combines two different homogenization 

procedures for the analysis of nonwoven biocomposites. The analysis of the composite structure is 

conducted with the Serial-Parallel mixing theory, which uses modified material properties based on 

the results obtained from a numerical multiscale analysis. With the proposed methodology, it is 

possible to account for the complex micro-structural interactions of the composite constituents, such 

as the effect of fibre waviness or the nonwoven failure mechanisms, with an affordable computational 

cost. This feature, together with the possibility to know at each load step the current stress-strain state 

of the composite components, are some of the advantages provided by the proposed approach 

compared to other procedures that only provide the global response of the laminate.  

One of the implications of the developed procedure is that it has been necessary to modify and extent 

the concept of RVE to what has been defined as an Equivalent Representative Volume Element (ERVE). 

An ERVE is not a reduced model of a periodic material that fulfils the scale separation criteria, but 

instead is a numerical model of the material, which is capable of providing a similar mechanical 

response in terms of stiffness and failure modes. The ERVE is an equivalent model that provides the 

material response, not a real representation of the material itself. In fact, the configuration defined for 

the ERVE may not exist in the material itself.  

The procedure proposed, although it has been applied to a flax nonwoven biocomposites, can be 

applied to other composites with complex internal microstructures. When applied to the nonwoven 

biocomposite described in this work, the numerical analysis conducted has provided excellent results 

when compared with the experimental tests obtained from the manufactured samples. The agreement 

between the numerical and experimental results, not only validate the methodology proposed, but 

they have also provided a better understanding on the mechanical performance of these composites, 

which will facilitate their use in different engineering structures, improving their environmental 

footprint.  
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