MODELLIERUNG BEWEGLICHER STEUERFLÄCHEN MILITÄRISCHER KONFIGURATIONEN: EIN VERGLEICH ZWISCHEN NUMERISCHEN METHODEN UND CFD-LÖSERN

DLRK 2022 - DIABOLO-SONDERSITZUNG

Larissa B. Streher, Ralf Heinrich

Institut für Aerodynamik und Strömungstechnik – DLR, Braunschweig

Dresden, 29.09.2022

Übersicht

Motivation

- Methoden zur Steuerflächenmodellierung
 - CFD Gitter
 - Netzdeformationsalgorithmen
 - CFD Löser
 - CODA
 - TAU
- MULDICON Testfall
- Fazit und Ausblick

Motivation

Entwurf und Optimierung eines Flugzeugs

- Manövrierfähigkeit des Flugzeugs
- Steuerflächenwirksamkeit
- Scharniermomente der Steuerflächen
- Steuerflächenmodellierung
 - Hochgenaue CFD Löser
 - Methoden um Steuerflächen auszuschlagen

Methoden zur Steuerflächenmodellierung

Methoden zur Steuerflächenmodellierung Ablaufplan Steuerflächenmodellierung

- CFD Gitter
- Skript
 - Steuermodul
- Verknüpfung zwischen CFD und Netzdeformation
 - Datenverwalter
- CFD-Code
 - TAU
 - CODA
- Netzdeformationsalgorithmus
 - RBF Netzdeformation
 - Elastizitätsbasierte Netzdeformation

Methoden zur Steuerflächenmodellierung CFD Gitter

- Gittergenerierung mit kommerziellem Netzgenerator
- Mehrere Gitterblöcke / -zonen
 - Tragflächengitterblock
 - Steuerflächengitterblock
- Schnittstellen zwischen Trag- und Steuerflächen-Gitterblöcken sind Gleitränder

Methoden zur Steuerflächenmodellierung CFD Gitter

Mit überlappenden Bereichen (Chimera Gitter)

- Umständliche und mühsame Netzgenerierung
- Elemente mit ähnlicher Größe in den überlappenden Bereichen
- AutoLap (automatic overlapping region generator)

Methoden zur Steuerflächenmodellierung CFD Löser

9

Methoden zur Steuerflächenmodellierung **CFD Löser**

TAU

- Etablierter CFD-Code des DLR
- Umfassende Nutzung in der europäischen Industrie und Akademie
- Zelleckpunkt-Schema mit dualen Kontrollvolumen
- MPI-Parallelisierung
- Mehrgitterverfahren zur Beschleunigung
- Elemente 2. Ordnung
- Räumliche Diskretisierung: FVM
- Lineare Löser: SGS, LU-SGS, (GMRES)

CODA*

- Zellenzentriertes Schema
- Hybride Parallelisierung (MPI und OpenMP)
- Elemente hoher Ordnung / Hängende Knoten / hohe-Ordnungs-Schemata
- Räumliche Diskretisierung: FVM, DG, DGSEM, ADG
- Lineare Löser: GMRES, Block Jacobi, Gauss Seidel, BICGSTAB

*CODA is the computational fluid dynamic (CFD) software being developed as part of a collaboration between the French Aerospace Lab ONERA, the German Aerospace Center (DLR), Airbus, and their European research partners. CODA is jointly owned by ONERA, DLR and Airbus.

10

RBF Netzdeformation

- Verschiebungen nur f
 ür die Basispunkte berechnet
- Interpolation der Verschiebungen f
 ür alle Netzknoten durch radiale Basisfunktionen
- Sehr schnell
- Nicht immer robust
- Netzqualität nicht immer ausreichend

With overlapping regions

[1] McDaniel, David et al. "Aerodynamic control surface implementation in kestrel v2. 0." 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2011.

Without overlapping regions

Hybrider Ansatz

- RBF Netzdeformation
 - RBF Netzdeformation f
 ür den Steuerfl
 ächenausschlag
- Elastizitätsbasierte Netzdeformation
 - Lineare Gleichung der Elastizität zur lokalen Verbesserung der Netzqualität (Netzreparatur)
- Verschiebung der Knoten auf der Tragfläche zurück in die Ausgangsposition

MULDICON Testfall

- Unstrukturierte Gitter:
 - Flügel-Gitter;
 - Inneres Elevon-Gitter;
 - Äußeres Elevon-Gitter.

	X	
K		
	5	

Referenzgitter

Gepatchtes Gitter

Viabolo

	Anzahl der Freiheitsgrade		
Gitter	TAU	CODA	
Referenzgitter	18.1 M	55.4 M	
Gepatchtes Gitter	18.2 M	55.4 M	
Chimera Gitter	18.6 M	57.0 M	

- Anströmbedingungen:
 - $Ma_{\infty} = 0.4$, $Re_{\infty} = 55.8 \times 10^6$ und $\alpha = 2^\circ$.

MULDICON-Halbkonfiguration mit Innen- und Außenelevon CODA - Vergleich zwischen unterschiedliche Gitter

MULDICON-Halbkonfiguration mit Innen- und Außenelevon CODA - Vergleich zwischen unterschiedliche Gitter

MULDICON-Halbkonfiguration mit Innen- und Außenelevon CODA - Vergleich zwischen unterschiedliche Gitter

MULDICON-Halbkonfiguration mit Innen- und Außenelevon TAU - Vergleich zwischen unterschiedliche Gitter

MULDICON-Halbkonfiguration mit Innen- und Außenelevon TAU - Vergleich zwischen unterschiedliche Gitter

MULDICON-Halbkonfiguration mit Innen- und Außenelevon TAU - Vergleich zwischen unterschiedliche Gitter

24

MULDICON-Halbkonfiguration mit Innen- und Außenelevon Vergleich zwischen CODA und TAU

Gepatchtes Gitter

MULDICON-Halbkonfiguration mit Innen- und Außenelevon Vergleich zwischen CODA und TAU

Gepatchtes Gitter

MULDICON-Halbkonfiguration mit Innen- und Außenelevon Vergleich zwischen CODA und TAU

Gepatchtes Gitter

Linearer Löser CODA 20 / 60 GMRES 200 / 400 Jacobi LU TAU SGS 3 (3w++) Kumulative CPU Zeit (h) CODA 52 918 TAU 33 766 **Anzahl Prozessoren** 20 * 16 (MPI) * 4 CODA (OpenMP) = 1280TAU 4 * 64 (MPI) = 256 Zeit bis zur Lösung (h) CODA 41.34 TAU 131.90

MULDICON-Halbkonfiguration mit Innen- und Außenelevon Vergleich zwischen CODA und TAU

Gepatchtes Gitter

 $\delta_{RIB}=15^\circ$, $\delta_{ROB}=0^\circ$ $C_{_{D}}$ -2.4 -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 - CODA

MULDICON-Halbkonfiguration mit Innen- und Außenelevon Vergleich zwischen CODA und TAU

Gepatchtes Gitter

 $\delta_{RIB}=0^\circ$, $\delta_{ROB}=20^\circ$ C_{p} -2.4 -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 - CODA

MULDICON-Halbkonfiguration mit Innen- und Außenelevon Vergleich zwischen CODA und TAU – Gepatchtes Gitter

Gepatchtes Gitter

 $\delta_{RIB}=5^\circ$, $\delta_{ROB}=15^\circ$ C_{p} -2.4 -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 - CODA ···· —· TAU

DI R

MULDICON-Halbkonfiguration mit Innen- und Außenelevon Vergleich zwischen CODA und TAU – Gepatchtes Gitter

Gepatchtes Gitter

 $\delta_{RIB} = 5^{\circ}, \delta_{ROB} = 20^{\circ}$ Iters: 350 Rrho: 8.07e-7 C_p -2.4 -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 Linearer Löser - - CODA 10 CODA 60 GMRES 400 Jacobi LU 10^{-2} TAU Residuals Kumulative CPU Zeit (h) 10 CODA 85 000 TAU 10⁻⁶-**Anzahl Prozessoren** DensityResidual CODA 20 * 16 (MPI) * 4 CODA MomentumXResidual CODA 10-8 (OpenMP) = 1280MomentumYResidual CODA MomentumZResidual CODA TAU 10⁻¹⁰-Zeit bis zur Lösung (h) 66.4 CODA 10⁴ 10 TAU Iteration

MULDICON-Halbkonfiguration mit Innen- und Außenelevon Vergleich zwischen CODA und TAU – Gepatchtes Gitter

Gepatchtes Gitter

Zusammenfassung

- Modellierung von Steuerflächen kann mit zwei verschiedenen Gitteransätzen durchgeführt werden:
 - Mit überlappenden Bereiche
 - Ohne überlappende Bereiche
- Hybrider Ansatz zur Netzdeformation gewährleistet schnelle und robuste Netzdeformation.
- MULDICON-Halbkonfiguration wurde f
 ür verschiedene Kombinationen von Ausschlagwinkeln f
 ür das innere und
 äußere Elevon getestet:
 - Vergleichbare Ergebnisse wurden mit TAU und CODA erreicht.
 - CODA hat den Vorteil, über stärkere lineare Löser zu verfügen, was in der Regel zu besseren Konvergenzverläufen führt.
 - Die parallele Skalierbarkeit von CODA ist aufgrund des hybriden Parallelisierungsansatzes besser.
- Die Implementierung eines Gleitränderalgorithmus war von Anfang an eine Priorität in CODA. In TAU ist ein solcher Algorithmus erst seit Ende 2021 verfügbar.

Ausblick

- Sobald der ALE-Algorithmus in CODA verfügbar ist, wird ein Vergleich zwischen TAU und CODA für bewegliche Steuerflächen durchgeführt.
- Die mit der MULDICON-Konfiguration gewonnenen Erkenntnisse werden als Grundlage f
 ür die Untersuchung der FFD-Konfiguration mit 6 Steuerfl
 ächen verwendet.

Impressum

Thema:	DLRK 2022 Diabolo-Sondersitzung: Modellierung beweglicher Steuerflächen militärischer Konfigurationen: ein Vergleich zwischen numerischen Methoden und CFD-Lösern
Datum:	29.09.2022
Autoren:	Larissa B. Streher, Ralf Heinrich
Institut:	Institut für Aerodynamik und Strömungstechnik, Braunschweig
Bildrechte:	DLR

36

Methoden zur Steuerflächenmodellierung Gleitende Ränder in TAU

- RBF Netzdeformation bevorzugt
 - Kürzere Rechenzeit
- Mehrere Splines
 - Steuerfläche ($\Delta \neq 0$)
 - Tragfläche + Gleitende Ränder ($\Delta = 0$)
 - Gleitende Ränder ($\Delta_{normal} = 0$)
- "Blending" zwischen Splines
 - Klaffung an der Oberfläche kann auftreten

