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The solid-electrolyte interphase (SEI) substantially influences the lifetime of lithium-ion 
batteries. Nevertheless, the mechanism responsible for the long-term growth of SEI 
during storage as well as operation remains controversial.  
 
This talk discusses the reaction and transport processes relevant for SEI growth. Our 
thermodynamically consistent model for the SEI formation reaction shows that a 
transition from compact to porous is natural for self-passivating films [1]. This agrees with 
the observed dual-layer structure of SEI. However, long-term SEI growth is determined 
by charge transport through SEI. We show that electron diffusion can explain both the 
observed state-of-charge dependence and the time dependence during battery storage, 
in contrast to solvent diffusion [2]. Due to self-discharge, this dependence can even 
explain observed deviations from the typical square-root behavior in the time domain [2].  
 
We extend and validate our model for electron diffusion through SEI to model batteries 
in operation [3,4]. In this case, we find a sequence of growth regimes, i.e.., reaction-
limited, diffusion-limited, migration-limited. In micro-structure resolved 3D simulations, 
our electron diffusion model predicts, for the first time, the experimentally observed 
heterogeneity in SEI thickness throughout the porous electrode [5]. Finally, we present 
our thermodynamically consistent model for the effect of mechanics on SEI structure and 
function during continued charge and discharge of silicon electrodes [6]. 

 
 

Figure 1: Scheme of electron diffusion 
through localized states [3].  

Figure 2: SEI reaction model  
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