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Abstract

Accurately predicting aging of lithium-ion batteries would help to prolong their lifespan, but remains
a challenge owing to the complexity and interrelation of different aging mechanisms. As a result,
aging prediction often relies on empirical or data-driven approaches, which obtain their performance
from analyzing large datasets. However, these datasets are expensive to generate and the models
are agnostic of the underlying physics and thus difficult to extrapolate to new conditions. In this
article, a physical model is used to predict capacity fade caused by solid-electrolyte interphase (SEI)
growth in 62 automotive cells, aged with 28 different protocols. Three protocols parametrize the time,
current and temperature dependence of the model, the state of charge dependence results from the
anode’s open circuit voltage curve. The model validation with the remaining 25 protocols shows a high
predictivity with a root-mean squared error of 1.28%. A case study with the so-validated model shows
that the operating window, i.e. maximum and minimum state of charge, has the largest impact on SEI
growth, while the influence of the applied current is almost negligible. Thereby the presented model
is a promising approach to better understand, quantify and predict aging of lithium-ion batteries.

Keywords: lithium-ion battery, aging prediction, differential voltage analysis, solid electrolyte
interphase, physical modeling

1. Introduction

Lithium-ion batteries are the current bench-
mark technology for mobile energy storage be-
cause they combine high energy density and longevity.
Nevertheless, different aging phenomena continu-
ously decrease the usable capacity and limit the
battery’s lifetime. This is a major challenge for
battery electric vehicles (BEV), which require a
battery lifetime of about 10 years. To ensure a
certain remaining capacity in this timespan, a de-
tailed understanding and quantification of the ca-
pacity fade in lithium-ion batteries is imperative.

∗Corresponding author: arnulf.latz@dlr.de
1These authors contributed equally to this work

Two main approaches exist to predict capacity
fade in lithium-ion batteries. On the one hand,
(semi-)empirical approaches based on simplified
physical equations or data driven methods gener-
ate a precise aging quantification from large datasets
[1, 2, 3, 4, 5, 6]. However, obtaining the necessary
datasets is costly and the resulting models can
not easily be extrapolated or adapted to new cell
chemistries. On the other hand, physics-based ap-
proaches model the underlying aging phenomena
and infer equations to describe aging based on op-
erating conditions [7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17].

Most physical battery aging models rely on re-
solving solid-electrolyte interphase (SEI) growth
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as the major cause of continuous capacity fade
[18, 19, 20, 21]. The SEI is a thin layer on the
anode, which emerges in the initial battery cy-
cle from electrochemical reactions of electrolyte
molecules, electrons and lithium ions [22, 23, 24,
25, 26, 27, 28, 29]. In subsequent cycles, the SEI
shields electrolyte molecules from electrons, but
continues to grow due to a leak current through
the SEI.

During storage, the square-root-of-time (
√
t)

dependent capacity fade points to a self-limiting
kinetic behind this continuous growth process [7,
8, 10, 15, 30]. Diffusion of localized electrons,
e.g. as neutral lithium interstitial atoms [31, 32],
emerged as most likely growth limiting mecha-
nism as it best captures the experimentally ob-
served voltage dependence [33, 34, 15].

During operation, recent experiments of Attia
et al. [35] reveal that SEI growth accelerates with
increasing charging current and decreases with
increasing discharging current. We orient us on
these findings in our recent work [17] and extend
the model of Single et al. [15] for the effect of bat-
tery operation. The resulting model shows good
accordance with both, storage and operation ca-
pacity fade measurements.

In this paper, we use the long-term limit of our
model from ref. 17 to describe capacity fade of 62
automotive grade pouch cells aged with 28 differ-
ent protocols [36]. Using differential voltage anal-
ysis (DVA), we first separate capacity fade into
the three aging modes loss of active material on
positive and negative electrode and loss of active
lithium (LL), which we account to SEI growth [37,
38]. Then, three protocols and the anode open cir-
cuit voltage (OCV) curve parametrize the time,
current, temperature and state of charge (SoC)
dependence of the model, while the remaining
25 protocols validate our model predictions. Fi-
nally, post-mortem experiments with experimen-
tal coin cells built from harvested electrode ma-
terials provide further complementary validation
for the model’s assumptions.

We present the experiments and the imple-
mented model detailedly in the following Sections
2 and 3. In Section 4, we present the experimental
and theoretical results. Finally, Section 5 sum-

marizes the main findings of the work and shows
future applications and extensions.

2. Experimental

In the following section, we outline our experi-
mental methods. Subsection 2.1 concisely presents
the cell specifications and the test matrix. Fig-
ure 1 shows our methodology to separate capac-
ity fade into different aging modes and isolate the
influence of LL. During operation, we determine
LL with DVA, presented in Subsection 2.2. Post
mortem, we analyse heterogeneities using DVA as
described in Subsection 2.3.

2.1. Aging test

The aging test comprises 62 automotive grade
lithium ion pouch cells with a nominal capacity
of 43 A h and nominal voltage of 3.63 V. The cells
contain a graphite anode and a blend cathode con-
sisting of Li(Ni0.6Mn0.2Co0.2)O2 and Li(Ni1/3Mn1/3Co1/3)O2.
The aging procedure is detailedly described in ref.
36 and the aging conditions are listed in Table SI-
1.

In short, the cycling protocol consists of a charg-
ing sequence with a constant power PCH and sub-
sequent constant voltage until reaching SoCmax.
Afterwards, a dynamic EV profile discharges the
cell to SoCmin with maximum currents of up to
200 A , followed by repetition of charge sustain-
ing hybrid-EV profiles until the specified EVratio,
which is the ratio of energy throughput stem-
ming from EV and hybrid-EV driving, is met.
Real driving profiles as shown in figure SI-2 are
the basis for EV and hybrid-EV profiles which
roughly compare to the widely used WLTP pro-
files. To reveal the influence of these factors on
aging, we use a central composite design of exper-
iments. This approach varies the influencing fac-
tors around a common center point at T = 30 °C,
SoCmax = 90%, SoCmin = 28%, EVratio = 60%
and PCH = 136 W. Additionally we perform one
calendar aging test at T = 30 °C and SoCmax =
48%. Twofold measurement of each aging proto-
col and eightfold measurement of the center point
results in 28 different conditions of the 62 cells,
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detailedly described in ref. 36 and listed in Table
SI-1.

To track the capacity fade we conduct ref-
erence parameter tests (RPT) at 25 °C after ev-
ery two weeks of cycling. These tests consist of
three 1C/1C cycles and one 1C/0.1C cycle be-
tween 4.2 V and 2.5 V with CCCV charging with a
cut-off at 0.05C and CC discharging. Additionally
we measure 30 s discharge pulses with a current of
200 A at 100 %, 75 %, 50 % and 25 % SoC. For this
work we focus on the C/10 capacity fade as exem-
plarily shown in Figure 1a). In the context of the
aging test a C-rate of 1C corresponds to the cur-
rent that charges the cell within one hour based
on a nominal capacity of 43 A h. In our analy-
sis in Subsection 4.4 we base the C-rate on the
measured mean BoL capacity of 45.89 A h. The
measured capacity fade consists of an irreversible
part and a reversible part originating from lateral
flow of lithium into the anode overhang [39]. To
retrieve the bound charge in the anode overhang
and thus isolate the irreversible part, we remove
one cell for each aging condition from the aging
test after about two years and discharge to 0%
SoC. Subsequently we perform another RPT after
two to three months prior to post mortem analy-
sis.

2.2. Isolating active lithium loss

We quantify the contribution of active mate-
rial and active lithium loss on the overall capac-
ity fade with the DVA fitting algorithm described
by Fath et al. [40] based on the C/10 discharge.
The algorithm relies on changes in the cell’s volt-
age curve U0,cell = U0,cath − U0,an relative to the
begin of life (BoL), see Figure 1b). Loss of ac-
tive material on the anode and cathode side stints
the electrode potential curves U0,cath and U0,an, re-
spectively. In contrast, loss of lithium inventory,
e.g. stemming from SEI growth or lithium plat-
ing, shifts the anode’s vs. the cathode’s potential
curve [37, 38, 40].

The algorithm varies the BoL potential curves
accordingly to fit the aged dU/dQ curves and con-
sists of two parts exemplarily shown in Figure
1c). First, the algorithm varies the LL and the
loss of active material on anode and cathode side

until the peak positions match, see I in Figure
1c). Second, the algorithm fits the peak broad-
ening observed in II-III in Figure 1c) as inho-
mogeneous aging by dividing the cell into seven
parallelly connected cell segments. Each segment
shows a particular LL according to a linear dis-
tribution around the previously determined mean
LL [41, 42]. From this distribution, the overall
DVA results as weighted sum of the cell segments
inverse (dU/dQ)−1 [42, 40, 43]. Both steps are re-
peated until the root mean square error (RMSE)
between fitted and measured dU/dQ curve is min-
imal. Minimum and maximum of the fitted LL
then indicate the homogeneity of lithium distri-
bution inside the cell.

Fitting all available C/10 curves, we obtain a
distribution of lithium loss (LL) across the cell
throughout the entire course of aging, shown in
Figure 1 d). Here, the orange crosses indicate
the capacity fade resulting from LL and the or-
ange area shows the inhomogeneity of lithium loss
based on the previously fitted distribution. As
we observe significant inhomogeneity after around
two years, we also conducted post mortem exper-
iments to validate our assumptions.

2.3. Post mortem analysis

As first step of our post mortem analysis, we
uniformly discharge the cells with C/3 CCCV and
C/50 cutoff to 3 V. Then, we open the cells in a
glovebox with argon atmosphere and H2O and O2

levels below 0.1 ppm following the procedure de-
scribed by Sieg et al. [42]. To remove residues
of conducting salt, we wash anode and cathode
layers from the middle of the stack in a bath of
dimethyl carbonate (DMC) for at least three min-
utes. Afterwards, we remove active material from
one side of the electrode and cut coins with 18 mm
diameter (see Fig 1 d). From coins that are op-
posing in the original pouch cell configuration, we
assemble experimental cells using the PAT-Cell
Setup from EL-Cell with the FS-5P core cells ac-
cording to Figure 1 e). The cells contain 95 µl
of a DMC/EC electrolyte, a 220 µm thick dou-
ble layered PE-fibre / PP-membrane separator,
a metallic lithium reference electrode, and alu-
minum and copper plungers as current collectors.
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Figure 1: Evaluation of LL and homogeneity of lithium distribution. a) State of health determined by C/10 capacity
check. b) The algorithm simulates aged dU/dQ measurements by shifting the electrode balancing as a result of LL and
stinting the electrode potentials caused by loss of active material. The figure shows 10% LL and 10% active material loss
on cathode side (AMLp). c) A superposition of simulated dU/dQ curves with a linear distribution of LL can reproduce
the peak broadening in aged dU/dQ curves caused by inhomogeneous LL. d) Capacity fade due to lithium loss (crosses)
and fitted distribution indicating inhomogeneities (orange area). d-g) During post mortem analysis experimental cells
(f) are built with coins from harvested electrodes to determine local capacity loss within a layer (e). C/100 discharge
curves are further used for DVA analysis (g) to validate local LL after the end of test (d).

Lastly, each cell undergoes a formation procedure
with CC cycles between 4.2 V and 2.5 V consist-
ing of 2x ± 0.7 mA, 2x ± 1.4 mA, 2x ± 2.3 mA,
1x ± 0.7 mA.

We electrochemically test the so-formed cells
at 25 °C with a BaSyTec CTS system. Discharge
capacity and potential curves result from charg-
ing three times to 4.2V CCCV with 5 mA and
0.07 mA cutoff and subsequently CC discharging
with 0.07 mA to 2.5 V, corresponding to a C-rate
of C/100 at BoL.

3. Theory

In this subsection, we present our mathemati-
cal model to describe capacity fade during battery
operation caused by SEI growth. We start with a
half-cell cycling model followed by an SEI growth

model. Concludingly, we summarize the imple-
mented system of equations.

3.1. Half-Cell Cycling

The applied intercalation current Jint changes
the half-cell charge Qint over time according to
differential Equation 1

dQint

dt
= −Jint. (1)

Here, we use the IUPAC convention and define the
intercalation current as negative and the deinter-
calation current as positive. We obtain the over-
potential ηint from the intercalation current Jint
based on a symmetric Butler-Volmer approach

ηint =
2RT

F
sinh−1

(
Jint

2Jint,0

)
(2)
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with Faraday’s constant F , the universal gas con-
stant R and the temperature T in Kelvin. The
intercalation exchange current Jint,0 = Jint,0,0

√
c̃

depends on the reaction rate Jint,0,0 and the SoC
c̃ = Qint/Qmax with the maximum capacity Qmax

[44]. In the following we state equations to de-
scribe capacity fade resulting from SEI growth.

3.2. SEI Growth

We rely on our model developed in ref. 17
to describe SEI growth during battery operation.
From the multitude of possible reactions, we as-
sume that the SEI predominantly forms from the
reaction of lithium ions Li+, electrons e− and elec-
trolyte molecules, e.g. ethylene carbonate EC,
according to reaction 3

2Li+ + 2e− + 2EC→ Li2EDC + R. (3)

Here, Li2EDC is the commonly observed SEI com-
ponent lithium ethylene dicarbonate and R is a
gaseous residue. Assuming that lost lithium in-
ventory QLL is completely bound in the SEI with
thickness LSEI, we linearly link both quantities
with

QLL =
νSEIAF

V̄SEI
LSEI. (4)

Here, νSEI is the stoichiometric coefficient of lithium
ions in the SEI formation reaction 3, V̄SEI is the
mean molar volume of the resulting SEI compo-
nents and A denotes the active electrode surface.
Over time, the SEI grows in thickness according
to differential Equation 5

dLSEI

dt
= − V̄SEI

νSEIF
jSEI. (5)

The SEI formation current density jSEI results
from the diffusion of localized electrons, e.g. as
lithium interstitial atoms Li0 = Li+ + e−, from
the electrode to the electrolyte [31, 15, 17]. We
describe this process with the long-term limit of
our model developed in ref. 17,

jSEI = −ce
-,0De-F

LSEI

e−
FηSEI
RT . (6)

Here, ce-,0 and De- are the equilibrium concentra-
tion and the diffusivity of lithium atoms inside

the SEI. The diffusivity De- depends on the tem-
perature according to an Arrhenius kinetic

De- = De-,0e
−EA
RT (7)

with the reference diffusivity De-,0 and the acti-
vation energy EA. The overpotential ηSEI for the
formation of these lithium atoms depends on the
OCV of the anode U0 (see Figure SI-1), the in-
tercalation overpotential ηint, and the reference
chemical potential of lithium atoms µe-,0, which
we gauge to 0, according to

ηSEI = U0 + ηint. (8)

3.3. Model Summary

In the following, we summarize our set of equa-
tions to determine active lithium loss due to SEI
growth. We start with the differential equation
to determine the SoC from the applied current
profile

dc̃

dt
= −Jint(t)

Qmax

. (9)

From the SoC c̃ and the current profile Jint(t), we
then calculate the SEI formation overpotential

ηSEI = U0(c̃) +
2RT

F
sinh−1

(
Jint

2Jint,0,0
√
c̃

)
. (10)

Followingly, we determine the SEI thickness evo-
lution with the semi-analytical solution of Equa-
tion 5 and Equation 6, Equation 11

LSEI =

√
2
ce-,0De-,0V̄SEI

νSEI

∫ t

0

e
− F
RT

(
ηSEI+

EA
F

)
dt′ + L2

SEI,0.

(11)
Lastly, the active lithium loss LL results from the
SEI thickness via

LL =
νSEIAF

QmaxV̄SEI
(LSEI − LSEI,0) . (12)

Overall, the model relies on four fitting param-
eters to describe SEI growth. The diffusivity De-,0

and the initial SEI thickness LSEI,0 quantify the
calendaric SEI growth rate. The exchange cur-
rent density Jint,0,0 affects the resulting overpo-
tential and thereby describes the current depen-
dence of SEI growth. Lastly, the activation en-
ergy EA specifies the temperature dependence of
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SEI growth. Implementing the model equations 9-
11 as numerical integration with e.g. MATLABs
trapz yields results for yearlong cycling protocols
within seconds.

4. Results and Validation

In this section, we present the experimental
and theoretical results obtained from the preced-
ingly discussed experiments and model. We start
by pointing out the dominant influence of lithium
loss on capacity fade which we analyze with the
DVA. Afterwards we compare the measured lithium
loss of the test cells to our theoretical predictions
and thereby parametrize and validate our model.
Subsequently, a post mortem analysis shows the
validity of our experimental and theoretical as-
sumptions. Concludingly, we show the sensitivity
of our SEI growth model to operating patterns
and identify detrimental operating conditions.

4.1. Identifying the cause of capacity fade

Using the DVA fitting algorithm as presented
in Subsection 2.2 we quantify the contribution of
the aging modes loss of active lithium (LL) and
active material losses on anode side (AMLn) and
on cathode side (AMLp) to overall capacity loss.

Figure 2a) exemplarily shows measured and
fitted dU/dQ curves at different times for the ref-
erence cell 39. In the measured curves we observe
only slight changes in the peak positions, point-
ing to negligible active material losses [38]. In the
beginning, the peaks become sharper, which in-
dicates a more homogeneous lithium distribution
[42], possibly due to the anode overhang effect[45,
39]. After about 300 days the peaks broaden
again, pointing towards a more heterogeneous lithium
distribution due to heterogeneous aging, as we
also observe in our post mortem analysis con-
ducted after ending of test, see Section 4.3.

The results of the fitting algorithm in Figure
1b) support these observations and further show
that AMLp exists but is not limiting. The fitted
LL shows good accordance with the measured ca-
pacity loss except for a slight offset at BoL, which
we attribute to a slight mismatch in initial bal-
ancing due to inhomogeneities.

We emphasize that overall capacity loss is not
equal to the sum of LL, AMLp and AMLn. In-
stead, capacity loss stems from limitations at the
lower or upper cutoff voltage, which in turn re-
sult from changes in electrode balancing due to
the different aging modes. For example, the ag-
ing simulation with AMLp and LL in Figure 1b)
shows, that LL shifts the steep anode potential
and thus limits the lower cutoff potential, while
AMLp is not significantly limiting the lower cut-
off potential as it only slightly shifts the shallow
cathode potential.

We observe similar trends with LL being the
dominant aging factor for all cells. This allows us
to focus our modeling approach on the main aging
mechanism SEI growth as root-cause of LL and
thus to keep the model simple. However, harsher
aging conditions or different cell chemistries can
induce more severe active material losses, where
our simple approach might fall short.

4.2. Predicting lithium loss

4.2.1. Parametrization

As a first step, we use storage data to parametrize
the initial SEI thickness LSEI,0 and the diffusivity
De-(T = 30 °C), see Equation 7. In this case, we
solve Equation 11 analytically, because the SEI
overpotential ηSEI is constant in time. This leads
to the well-known

√
t-dependence of SEI growth

during battery storage [15]

LSEI =

√
2
ce-,0De-(T )V̄SEI

νSEI
e−

F
RT

U0t+ L2
SEI,0.

(13)
Figure 3 compares the remaining active lithium
inventory predicted by our model with experimen-
tal data. We see that the analytically derived

√
t

SEI growth law, Equation 13, agrees excellently
with the experimentally obtained capacity fade
curves. In the following, we thus rely on the so-
determined values for LSEI,0 and De-(T = 30 °C)
and proceed to determine the two remaining fit-
ting parameters.

Next, we parametrize the influence of charg-
ing current on SEI growth with the exchange cur-
rent Jint,0,0. For parametrization, we choose cell
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Figure 2: a) Measured and fitted DVA with increasing testing time from bottom to top. The peaks do not significantly
shift which b) Measured capacity fade QLoss in comparison to fitted loss of active lithium LL as well as active material
losses on anode side (AMLn) and cathode side (AMLp). The orange area indicates inhomogeneity of lithium loss.
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Figure 3: Comparison of experimental (orange crosses)
and simulated (blue line) capacity fade during storage at
T = 30 °C with 50% SoC.

39 from the reference cells 39-47, which were cy-
cled at the same temperature as the storage cell
and showed low variance among the eight fold
measurement. Before comparing our simulations
with experiments, we illustrate the simulated SoC
profile and the resulting SEI growth in Figure 4
a). The orange line indicates the SoC of the bat-
tery during one cycle profile, which was then re-
peated several times. For the center cells, the
SoC was mostly kept around 30% with a charg-
ing/discharging sequence to 90% in between. This
protocol largely influences the SEI growth, which
is shown in the blue curve. We observe that SEI
growth proceeds slowly in the 30% SoC phases.
During charging to 90%, the SEI growth is fastest,

followed by the storage at 90%. This accelerated
growth results from the influence of intercalation
overpotential ηint and OCV U0 on the SEI over-
potential ηSEI according to Equation 8, which is
in line with previous capacity fade measurements
[33, 34, 35].

Figure 4b) compares the average lithium loss
in the center point cells with the simulated ca-
pacity fade. The distribution of LL (orange area)
exhibits a hourglass shape. In the first 150 days
lithium distribution becomes more homogeneous,
possibly due to the anode overhang effect. Af-
ter about 300 days lithium distribution becomes
increasingly inhomogeneous due to heterogeneous
aging, as we also observe in our post mortem anal-
ysis conducted after ending of test, see Section
4.3.

Overall, our mathematical SEI model agrees
well with the experiments, especially in the homo-
geneous area between 200 and 400 days. However,
between 0 and 100 days, we observe a deviation of
experiment and simulation, primarily because the
experimental active lithium inventory starts be-
low 100%. We attribute this offset to experimen-
tal uncertainties, as the BoL electrode potentials
that were used as basis for DVA fitting were mea-
sured well after test start. Hence the BoL cell can
stem from a different production batch and thus
show different initial lithium distribution result-
ing e.g. from the reversible anode overhang effect
[45, 39]. The kinks in the simulation profile result
from the modular build-up of our simulation con-
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a) b) c)

Figure 4: a) SEI growth simulation for the current profile of the reference cell 39 (see Table SI-1), which was continuously
repeated in the aging protocol. The blue curve shows the SEI growth during the cycle based on an initial SEI thickness
LSEI,0 = 3.9 nm, the orange curve shows the SoC. Comparison of experimental (orange crosses) and simulated (blue line)
fade of active lithium inventory for b) the reference cell 39 cycled with the protocol listed in Table SI-1 at T = 30 °C
and c) the high temperature cell 19 which were cycled with a distinct current profile, see Table SI-1 at T = 50 °C. The
orange areas indicate heterogeneity within the cell as measured by DVA.

sisting of storage, cycle-profile and RPT phases.
As each of these phases shows a different aging
behaviour, we observe kinks between the profiles.
After 800 days the active lithium inventory re-
mains nearly constant in our simulation, because
the battery is stored at a low SoC.

The intercalation reaction rate Jint,0,0 is not
exclusive to our SEI model, but also a parame-
ter in the commonly used Doyle-Fuller-Newman
battery model [46]. This enables a comparison of
our value jint,0,0 = Jint,0,0/A = 0.09 A m−2 with
values found in literature. Sauer and cowork-
ers [47, 48] derived values ranging from 0.7 A m−2

to 7 A m−2 from electrochemical impedance spec-
troscopy (EIS). However, the determination of jint,0,0
is ambiguous as the electrode active surface area
A is not easily attainable. As a consequence, Ng
et al. [49] determine the exchange current of a
50 A h cell with galvanostatic intermittent titra-
tion technique (GITT) to be around 10 A, which
is comparable to our value of Jint,0,0 = 21 A for a
46 A h cell.

Building up on this parametrization, we next
determine the dependence of SEI growth on tem-
perature by fitting the diffusivity De-(T = 50 °C)
to the high temperature cells cycled at T = 50 °C.
The parameters De-,0 as well as EA then result
from the Arrhenius Equation 7 and the diffusiv-
ity De-(T = 30 °C), which we previously deter-
mined from storage data, see Figure 3. In Fig-
ure 4c), we again observe the hourglass shape of

heterogeneity with a minimum around 200-400
days. Compared to the previous cell, the het-
erogeneity is even more pronounced in the long
term and spans up to 10% at around 800 days.
Our model shows good accordance to the aver-
age experimental values, but deviates in the long
term. As we also observe the highest heterogene-
ity in this case, we account the long term devi-
ation between simulation and experiment to ad-
ditional thermal effects, which are not captured
by our simple SEI growth model. These effects
could comprise thermal SEI degradation, lithium
plating or electrolyte dry out.

4.2.2. Validation

In this section, we validate our aging model
with the remaining 25 protocols, which were not
used for parametrization. Figure 5 summarizes
the validation results in a scatterplot, which com-
pares the simulated and the experimentally mea-
sured lithium loss. The complete results of our
aging simulations are listed in Figure SI-4. The
points are colored according to the operating tem-
perature of the cells, which ranged from 10 °C to
40 °C. In general, we observe a good accordance
of simulation and experiments, which also reflects
in the low root-mean-square error of RMSE =
1.28%. This underlines the outstanding global
predicitivity of our model, which we obtained al-
ready after parametrizing the model with only
three aging protocols.
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Figure 5: Scatterplot of the simulated active lithium loss
LLsim vs. the experimentally measured active lithium loss
LLexp

However, we observe a systematic deviation
of our simulated results from the experiments for
temperatures below T = 20 °C as well as high
aging states with more than 10% lithium loss.
We attribute this deviation to increased lithium
plating at low temperatures as well as the large
heterogeneity observed for these cells. Also the
mentioned offset of measured LL at beginning of
test amplifies the deviation. Followingly, we fur-
ther validate these assumptions with post mortem
analysis.

4.3. Post Mortem Validation

In Figure 6, we exemplarily illustrate the model
predictions for three cells cycled with different
protocols at different temperatures and compare
them to the measured local LL from experimental
cells prepared as part of the post mortem analysis.

Visually, we already suspect an accelerated
degradation focused to the center of the electrode
from the anode photographs of the three cells in
Figure 6 due to the intensified blue coloring. Ad-
ditionally cell 37 and 51 also exhibit shiny metal-
lic grey spots that we attribute to lithium plating.
Experimental cell measurement of particular an-
ode areas allow to further evaluate heterogeneous
capacity fading. For this purpose, we separate the
electrode area into edge (�), mid(4) and center

(©) as indicated in Figure 1. Local LL of the re-
spective areas are shown as points at the end of
life in the bottom part plots of Figure 6.

We observe that especially the center shows
the highest LL and thus drives inhomogeneity of
lithium distribution for all three cells. In contrast,
the edge and mid areas age more homogeneously
and our model nicely accords to this experimental
LL for the moderately aged cells shown in Figure
6 d) and e). However, we see a large deviation to
the fitted mean LL for the more harshly aged cell
51, Figure 6 f). We attribute this model deviation
to increased aging due to lithium plating in this
case, as is also evident from the photograph in
Figure 6 c). To further increase our model accu-
racy for these cases, inhomogeneous SEI growth
and lithium plating should be considered in future
works.

4.4. Identifying detrimental conditions

In this section, we conduct a sensitivity anal-
ysis to unravel particularly detrimental operating
patterns. Subsequently, we study the impact of
different, simplified real-life motivated user pro-
files on aging in a case study.

4.4.1. Sensitivity analysis

Figure 7a) shows the influence of current Jint,
SoC c̃ and temperature T on aging compared to
a central point, which is stored (Jint = 0) with
SoC = 50% at T = 35 °C. We observe that the
influence of electrochemistry, i.e. applied cur-
rent and SoC exceeds the influence of tempera-
ture. In particular, we observe the highest SEI
current JSEI for charging at a rate of 1C. This in-
fluence arises from the intercalation overpotential
ηint, which increases the SEI overpotential ηSEI
(Equation 8) and thereby accelerates SEI growth.
During discharging, in contrast, increasing the C-
Rate has the adverse effect and decelerates the
SEI growth until it is nearly suppressed at dis-
charging with 1C. This is in good accordance with
recent experiments of Attia et al. [35], who showed
this asymmetry in SEI growth between charging
and discharging and thus motivated our model
extension in reference [17].
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Figure 6: a-c) Photographs of anode electrode layer taken from the stack and respective local capacities of experimental
cells in colored relation to BoL. Photographs reveal a moderate aging over the entire electrode for Cell 39 and severe
aging and plating mainly focused to the center of the electrode for Cells 37 and 51. d-f) Measured and simulated loss of
lithium inventory for the three exemplary cells. Orange indicates the experimental results consisting of an average active
lithium inventory (cross) and inhomogeneity (orange area). The blue line shows the simulated loss of active lithium
caused by SEI-growth. Markers show the active lithium loss fitted to the local three electrode cells.

However, the shown influence of applied cur-
rent on degradation is misleading, because the
applied current also affects the cycle time. To
emphasize this relationship, we also plot the nor-
malized degradation rate J̄SEI = JSEI · tcycle/1 h/
as dashed yellow line in Figure 7a). This rate
compares the mean cumulated SEI growth within
one cycle. We observe three main effects: First,
the influence of charging current on degradation
is not as severe as we would expect solely from
the yellow graph. Second, the degradation per
cycle diverges for Jint → 0, because the long cycle
times increase the calendaric aging. Third, the
opposing effects of current and cycle time on the
degradation rate lead to an optimum at around
C/3. To further analyse the complex interrela-
tion of charging current and cycle time, we con-
duct a case study with different charging profiles

in Subsection 4.4.2.
Another major contribution to SEI growth arises

from the state of charge. We observe in Figure
7a) that the SEI current closely follows the an-
ode OCV-curve (see Figure SI-1), in line with the
experimental results of Keil et al. [33, 34] and
the model of Single et al. [15]. This dependence
causes cells stored at 60% SoC to age nearly four
times as fast as cells stored at 50% SoC, while
storage at 80% leads to a similar capacity fade as
storage at 60%.

This trend also reflects in the depth of dis-
charge DoD = SoCmax − SoCmin, which we ana-
lyze in the following. Figure 7b) plots the remain-
ing active lithium inventory after cycling for two
years with Jint = ±1C, depending on the DoD. We
simulate two different approaches; The blue curve
shows a DoD variation around a mean SoC=50%,
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Figure 7: a) Sensitivity analysis of the influence of cur-
rent, SoC and temperature on the SEI growth rate. The
blue cross indicates the center point Jint = 0, T = 35 °C,
SoC = 50% around which we vary one factor at a time.
Orange indicates the influence of the SoC, yellow the influ-
ence of the charging/discharging current and purple the in-
fluence of the temperature. The dashed yellow line shows
the normalized degradation rate J̄SEI = JSEI · tcycle/1 h.
b) Sensitivity analysis of the depth of discharge influence
(maximum SoC - minimum SoC) on the active lithium loss
after cycling with 1C for two years. The blue curve shows
the active lithium loss for DoD variation around a mean
SoC=50% whereas the red curve shows for the effect of
DoD variation from a maximum SoC=100%.

while the orange curve varies the DoD with a fixed
maximum SoC=100%.

The blue curve shows that increasing the DoD
around a mean SoC causes accelerated aging up
to a plateau of 91% active lithium inventory at
50% DoD. This dependence results from the SoC-
dependence of aging, see Figure 7a). In the regime
of 0-50% DoD, the battery experiences increasing
share of SoCs larger than 60%, which according
to Figure 7a) increases aging. In the regime of 50-
100% this trend is balanced by the decreased ag-

ing for SoCs below 20% leading to the observable
plateau. In comparable experiments, Ecker et al.
[50] and Hoog et al. [51] observed an approxi-
mately linear dependency of capacity degradation
with increasing DoD when cycling NMC/graphite
cells around a mean SoC of 50%. Contradictory
Sarasketa-Zabala et al. [52] showed a more com-
plex dependency for LFP/graphite cells with the
highest capacity fade between 10% and 50% DoD
and lower capacity fade at very high and very
small DoD, again while cycling around a mean
SoC of 50%.

The orange curve shows that for cycling around
a fixed maximum SoC of 100%, increasing the
DoD results in slower aging. Again, this trend
originates from the influence of SoC on aging, de-
picted in Figure 7a). A systematic DoD variation
from 100% maximum SoC is not reported as often
in literature, but results from Rechkemmer et al.
[53] for LiMn2O hint to accelerated degradation at
high DoD which is in contrast to our predictions
based on anode SoC. Also Laresgoiti et al. [54]
derive an exponential acceleration of SEI-growth
with increasing DoD from their SEI cracking ap-
proach as the particles undergo greater volume
change. Benavente-Araoz et al. [55] on the other
hand observed a significantly higher degradation
for cycling between 65-95% SoC compared to 20-
95 % which is qualitatively in line with the SoC
dependence as predicted in our model.

Summing up the depth of discharge depen-
dence of aging predicted by our model compared
to literature [50, 51, 52, 53, 54, 55], we at most
partially reproduce the experimentally observed
trends. Accordingly, the influence of DoD on ag-
ing arises not only from a shift of the anode OCV,
but also from additional effects. For example, the
DoD affects particle volume changes and thus may
cause SEI fracture or loss of electrical contact of
individual particles. To capture these effects and
increase our model predictivity in this respect, ex-
tending the present simplistic SEI model for me-
chanics seems promising [56, 57].

4.4.2. Case Study

We now apply our model to study battery ag-
ing in different, real-life motivated battery user
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a)
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StanRobert

Alfred

C/8
1C C/3

Figure 8: Aging results for different exemplary battery use
cases at a temperature T = 20 °C. a) State of charge over
the course of a working week. During the working days,
the battery is discharged twofold with C/10 for 10% SoC
in each case. Different colors indicate different charging
behaviours. Blue: Standard behaviour with charging once
the SoC goes beyond 40% SoC. Red: Range anxiety with
charging once the SoC is below 100%. Yellow: Aging op-
timization with charging once the SoC is below 20% SoC
and recharging up to 50% SoC. The standard charging pro-
tocol charges with C/8, C/3 is colored brighter and 1C the
brightest. b) Battery aging after applying the user profile
of a) continuously for three years.

profiles. We consider three electric vehicle enthu-
siasts: standard driver Stan (blue), range anxious
Robert (red) and aging optimizer Alfred (yellow),
who travel 50 km to work back and forth every
working day. All three drive steadily at 50 km h−1

and for simplicity discharge their EV with a range
of 500 km constantly at C/10 for one hour at a
constant temperature of 20 °C. Figure 8a) shows
the SoC during each working week for the three
drivers. Stan starts his working week with a fully
charged battery and charges at home once the

SoC is below 40%. Robert also starts his week
with a fully charged battery, but charges every
time his battery falls below 100%. Alfred care-
fully read the papers of Keil et al. [33, 34] and
thus starts at 50% and recharges only if the SoC
is below 20%. At the end of each working week, all
three recharge their EV to their initial SoC and
don’t move their EVs over the weekend. They
all try different charging rates, starting from the
standard charging rate C/8 shown in the darkest
color, over the brighter C/3, up to the brightest
1C. In the course of one week, all three drive the
same range and thus also have the same charge
throughput.

In Figure 8b), we show the loss of cyclable
lithium after three years for each driver. We clearly
see that range anxious Robert’s EV shows the
highest capacity loss of 10.4%, closely followed by
standard driver Stan with 9.2%. In contrast, ag-
ing optimizer Alfred only loses 3.6% of his EV’s
starting capacity. The different charging rates,
colored in brighter colors, hardly affect the bat-
tery aging and cause only an increase about 0.2%
to 9.4% from C/8 to 1C for standard driver Stan.

We best comprehend the different aging char-
acteristics with the sensitivity analysis of our model
shown in Figure 7a). Range anxious Robert and
standard driver Stan operate their batteries mostly
at high SoCs, contrary to aging optimizer Alfred.
Following the red curve in Figure 7a), we see that
Robert and Stan are thus mostly on the highest
graphite stage, which exhibits nearly the fourfold
degradation rate compared to the second graphite
stage on which Alfred mostly operates his battery.
This is the main cause of accelerated aging that
we see in Figure 8b).

Surprisingly, the charging current plays only a
minor role, although according to the yellow line
in Figure 7a) it should have the largest impact
on the degradation rate. However, because the
charging time shortens with increasing current,
this dependence is misleading as we also showed
with the dashed yellow line in Figure 7a). The
presented user-profiles further enrich this analysis
and show that degradation depends rather on the
charge throughput than the applied charging rate.
However, our simplistic model only considers SEI
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growth as aging mechanism. For lithium plating
we would expect a major effect of fast charging
rates on aging.

Summarizing the findings of our experimen-
tally validated aging model, we predict that bat-
tery aging depends mainly on the operating win-
dow, i.e. maximum and minimum SoC. Charging
current and temperature, in contrast, have only a
minor influence.

However, our predictions are based on a ho-
mogeneous SEI growth model with some inherent
shortcomings. First of all, DVA and post mortem
analysis reveal heterogeneous aging within the cells.
Implementing our model in three-dimensional ther-
mal and electrochemical battery models will help
to resolve heterogeneous SEI growth [58, 59, 60].
Furthermore, we observe excessive lithium plat-
ing in the cell center, which results presumably
from thermal hotspots [61]. Extending our model
for a plating kinetic will not only help to pre-
dict these heterogeneities, but also increase our
model predictivity for low temperatures. In the
long-term, the locally strong aging will eventually
cause ”sudden death” of specific cell areas due
to electrolyte dry-out. Coupling our SEI-growth
model to the percolation model of Kupper et al.
[62] is a promising approach to capture this ef-
fect. Lastly, DVA reveals an OCV-curve change
over time, which will also affect the aging kinetics.
Future works can rely on our SEI growth model
and refine it for these secondary aging modes to
further increase the model predictivity.

5. Conclusion

We applied an electrochemical SEI growth model
[17] to predict active lithium loss in 62 automotive
grade batteries cycled with 28 different protocols
[36]. The simplicity of our model allows us to to
parametrize the state of charge, time, current and
temperature dependence of the model with only
three protocols and the open circuit voltage curve
of the anode. The validation with the remaining
25 protocols shows remarkable accordance of pre-
dicted and measured active lithium loss with a
global root-mean-squared error of 1.28%. Thus,
our methodology reduces the set of experiments

to parametrize a global aging prediction.
For the first time, our so-validated model quan-

titatively predicts how operating conditions affect
battery lifetime. Along three exemplary use cases,
we show that the battery operating window, i.e.
minimum and maximum state of charge, mainly
drives aging. In contrast, temperature and cur-
rent play only a minor role. These insights help
in deriving battery design and usage recommen-
dations to prolong lifetime.

Future works can further refine and extend
our model for several effects. In particular, post
mortem analysis of aged cells with differential volt-
age analysis reveal lithium plating and heteroge-
neous aging inside the cells. Extending the model
for lithium plating is straightforward, because we
assume lithium atom mediated SEI growth. To
resolve heterogeneous aging, implementing our model
in three-dimensional cell simulations is a promis-
ing approach [58, 59, 60].
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Sauer, Cycle and calendar life study of a
graphite—LiNi1/3Mn 1/3Co1/3O2 Li-ion high
energy system. Part A: Full cell characterization,

13



Journal of Power Sources 239 (2013) 572–583.
doi:10.1016/j.jpowsour.2013.03.045.
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