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Abstract We propose three novel solvers for estimat-
ing the relative pose of a multi-camera system from
affine correspondences (ACs). A new constraint is de-
rived interpreting the relationship of ACs and the gen-
eralized camera model. Using the constraint, we demon-
strate efficient solvers for two types of motions. Consid-
ering that the cameras undergo planar motion, we pro-
pose a minimal solution using a single AC and a solver
with two ACs to overcome the degenerate case. Also, we
propose a minimal solution using two ACs (a minimal
number of one AC and one point correspondence) with
known vertical direction, e.g., from an IMU. Since the
proposed methods require significantly fewer correspon-
dences than state-of-the-art algorithms, they can be ef-
ficiently used within RANSAC for outlier removal and
initial motion estimation. The solvers are tested both
on synthetic data and on three real-world scenes. It is
shown that the accuracy of the estimated poses is su-
perior to the state-of-the-art techniques. Source code is
released at https://github.com/jizhaox/relative_
pose_gcam_affine.

Keywords Relative pose estimation, Multi-camera
system, Affine correspondence, Minimal solver

1 Introduction

Relative pose estimation from two views of a cam-
era, or a multi-camera system is regarded as a funda-
mental problem in computer vision (Clipp et al. 2008;
Hartley & Zisserman 2003; Scaramuzza & Fraundor-
fer 2011; Schönberger & Frahm 2016; Zhao et al. 2020)
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Fig. 1 An affine correspondence in a multi-camera system. It
relates two perspective cameras Ci and Cj across two consec-
utive frames, where Ci and Cj can be the same or different
cameras. The local affine transformation Ak relates the in-
finitesimal patches around correspondence (xk, x′

k).

which plays an important role in simultaneous localiza-
tion and mapping (SLAM) and structure-from-motion
(SfM). Thus, improving the accuracy, efficiency and ro-
bustness of relative pose estimation algorithms is al-
ways an important research topic (Agarwal et al. 2017;
Barath et al. 2020; Eichhardt & Barath 2020; Guan
et al. 2018; Lee et al. 2014; Li et al. 2020; Ventura et al.
2015). Motivated by the fact that multi-camera systems
are available in self-driving cars, micro aerial vehicles or
AR headsets, this paper investigates the problem of es-
timating the relative pose of multi-camera systems from
affine correspondences (ACs), see Fig. 1.

Since a multi-camera system contains multiple in-
dividual cameras connected by being fixed to a single
rigid body, it has the advantage of large field-of-view
and high accuracy (Fragoso et al. 2020; Sweeney et al.
2015a). The main difference of a multi-camera system
and a standard pinhole camera is the absence of a sin-
gle projection center (Pless 2003). Due to the differ-
ent camera model, the relative pose estimation prob-
lem of multi-camera systems (Stewénius et al. 2005)
is different from the monocular cameras (Guan et al.
2020, 2021c; Nistér 2004), resulting in different equa-
tions. In order to remove outlier matches, most of the
state-of-the-art SLAM and SfM pipelines using a multi-
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camera system (Häne et al. 2017; Heng et al. 2019)
apply the relative pose estimation algorithms repeat-
edly in a robust estimation framework, e.g. the Ran-
dom Sample Consensus (RANSAC) (Fischler & Bolles
1981). The outlier removal process has to be efficient
since it has a large impact on the total run-time of
the applied the SLAM and SfM pipeline. The compu-
tational complexity and, thus, the processing time of
the RANSAC procedure depends exponentially on the
number of points required for the relative pose estima-
tion of multi-camera system.

Therefore, exploring the minimal solutions for rela-
tive pose estimation of multi-camera system is of sig-
nificant importance and has received sustained atten-
tion (Clipp et al. 2008; Kim et al. 2009; Kneip et al.
2016; Li et al. 2008; Lim et al. 2010; Stewénius et al.
2005; Ventura et al. 2015). The idea of deriving min-
imal solutions for relative pose estimation of multi-
camera systems ranges back to the work of Stewénius
et al. with the 6-point method (Stewénius et al. 2005).
Other classical works have been subsequently proposed,
such as the 17-point linear method (Li et al. 2008) and
techniques based on iterative optimization (Kneip & Li
2014). The minimal number of necessary points can be
further reduced by taking additional motion constraints
into account (Lee et al. 2013) or exploiting the measure-
ments from other sensors, like an inertial measurement
unit (IMU) (Lee et al. 2014; Liu et al. 2017; Martyu-
shev & Li 2020; Sweeney et al. 2014, 2015b). Typically,
the assumption of planar motion or considering known
vertical direction are common for self-driving cars and
ground robots (Choi & Kim 2018; Guan et al. 2020; Ha-
jder & Barath 2020; Li et al. 2020; Saurer et al. 2016),
which makes the outlier removal more efficient and nu-
merically more stable.

All previously mentioned relative pose solvers es-
timate the pose parameters from a set of point corre-
spondences (PCs), e.g., coming from SIFT (Lowe 2004)
or SURF (Bay et al. 2008) detectors. Due to contain-
ing more information about the underlying surface ge-
ometry than PCs, ACs enable to estimate the pose
from fewer correspondences. The ACs can be estab-
lished by applying the traditional affine-covariant fea-
ture detectors (Mikolajczyk & Schmid 2002) or view-
synthesizing approaches, such as ASIFT (Morel & Yu
2009), MODS (Mishkin et al. 2015), and Hes-Aff-
Net (Mishkin et al. 2018). An AC yields three inde-
pendent constraints on the epipolar geometry estima-
tion (Barath & Hajder 2018; Bentolila & Francos 2014;
Raposo & Barreto 2016). These geometric constraints
are the basis for relative pose estimation in two-view
geometry. In this paper, we focus on the relative pose
estimation of a multi-camera system from ACs, instead
of PCs. We propose three novel minimal solutions for
the relative pose estimation of a multi-camera system.
The contributions of this paper are:

– A new constraint that interprets the relationship of
ACs and the generalized camera model is derived
under general motion. This constraint can be used
in special cases of multi-camera motion, e.g., planar
motion and known vertical direction.

– When the motion is planar (i.e., the body to which
the cameras are fixed moves on a plane; 3DOF), a
single AC is sufficient to recover the planar motion
of a multi-camera system. In order to deal with the
degenerate case of the 1AC solver, we also propose
a new method to estimate the relative pose from
two ACs. The point-based solver (Lee et al. 2013)
requires at least two PCs and requires the Acker-
mann motion model to hold.

– A third solver is proposed for the case when the
vertical direction is known (4DOF), e.g., from an
IMU attached to the multi-camera system. We show
that two ACs are enough to recover the relative
pose. In contrast, the point-based solver requires
four PCs (Lee et al. 2014; Sweeney et al. 2014).

This work is the extension of our previous conference
paper (Guan et al. 2021b). The main differences are:
discussion of degenerate cases, additional comparisons
and real-world experiments, and more detailed deriva-
tions.

2 Related Work

Due to the absence of a single center of projection,
the camera model of multi-camera systems is differ-
ent from the standard pinhole camera. Pless proposed
to express the light rays using Plücker coordinates of
lines and derived the generalized camera model which
has become a standard representation for the multi-
camera systems (Pless 2003). Stewénius et al. proposed
the first minimal solution to estimate the relative pose
of a multi-camera system from 6 PCs, which produces
up to 64 solutions (Stewénius et al. 2005). Li et al. pro-
vided several linear solvers to compute the relative pose,
among which the most commonly used one requires 17
PCs (Li et al. 2008). Kneip et al. proposed an itera-
tive approach for the relative pose estimation based on
eigenvalue minimization (Kneip & Li 2014). Ventura et
al. used the first-order approximation of the rotation
to simplify the problem and estimated the relative pose
from 6 PCs (Ventura et al. 2015). By considering addi-
tional motion constraints or using additional informa-
tion provided by an IMU, the number of required PCs
can be further reduced. Lee et al. presented a minimal
solution with two PCs for the ego-motion estimation
of a multi-camera system, constraining the relative mo-
tion by the Ackermann motion model (Lee et al. 2013).
In addition, a variety of algorithms have been proposed
when a common direction of the multi-camera system is
known, i.e. an IMU provides the roll and pitch angles of
the multi-camera system. The relative pose estimation
with known vertical direction requires a minimal num-
ber of 4 PCs (Lee et al. 2014; Liu et al. 2017; Sweeney
et al. 2014).

Exploiting the additional affine parameters besides
the image coordinates has been recently proposed for
the relative pose estimation of monocular cameras,
which reduces the number of required points signifi-
cantly. Bentolila et al. estimated the fundamental ma-
trix from three ACs (Bentolila & Francos 2014). Ra-
poso et al. computed homography and essential matrix
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Table 1 Relative pose solvers for multi-camera systems.

Solver Motion Feature Point #

Li et.al. (2008) 6DOF PCs 17
Kneip et.al. (2014) 6DOF PCs 8

Stewenius et.al. (2005) 6DOF PCs 6
Ventura et.al. (2015) 6DOF PCs 6
Alyousefi et.al. (2020) 6DOF ACs 6

Lee et.al. (2014)
4DOF PCs 4Sweeney et.al. (2014)

Liu et.al. (2017)
Guan et.al. (2021) 6DOF ACs 2
Lee et.al. (2013) 2DOF PCs 2
1AC plane 3DOF ACs 1
2AC plane 3DOF ACs 2

2AC vertical 4DOF ACs 2

using two ACs (Raposo & Barreto 2016). Barath et al.
derived the constraints between the local affine trans-
formation and the essential matrix and recovered the
essential matrix from two ACs (Barath & Hajder 2018).
Hajder et al. (Hajder & Barath 2020) and Guan et
al. (Guan et al. 2020, 2021c) proposed several minimal
solutions for relative pose from a single AC under the
planar motion assumption or with the knowledge of a
vertical direction. The above mentioned works are only
suitable for the monocular perspective cameras which
is different from the camera model of multi-camera sys-
tems. For multi-camera systems, Alyousefi and Ventura
recently proposed a linear solver to estimate the relative
pose using 6 ACs (Alyousefi & Ventura 2020). Guan et
al. estimated the relative pose from 2 ACs by utiliz-
ing the first-order rotation approximation (Guan et al.
2021a). The above relative pose estimation algorithms
are derived from the same geometric constraints of AC
observations. The main difference of the algorithms is
the different modeling and equation solving methods.
In this paper, we focus on the minimal number of ACs
to estimate the relative pose of a multi-camera system.
Table 1 shows a summary of the relative pose solvers
for multi-camera systems, including the DOF of the
motion, feature types and number of points required.
Since the proposed methods require the fewest corre-
spondences, they can be more efficiently used within
RANSAC for outlier removal and initial motion esti-
mation in comparison with state-of-the-art methods.

3 Geometric Constraints from ACs

A multi-camera system is made up of multiple perspec-
tive cameras, as shown in Fig. 1. An AC in a multi-
camera system relates two perspective cameras Ci and
Cj across two consecutive frames, where Ci and Cj can
be the same or different cameras. The extrinsic param-
eters of cameras Ci and Cj expressed in a multi-camera
reference frame are represented as (Ri, ti) and (Rj , tj),
respectively. Rotation matrices Ri and Rj represent
relative rotations to the multi-camera reference frame.
Translation vectors ti and tj represent relative transla-
tions to the multi-camera reference frame.

An AC consists of a point pair and a 2×2 local
affine transformation. Let us denote the k-th AC be-

tween consecutive frames as (xk,x
′
k,Ak), where xk and

x′
k are the homogeneous image coordinates of the k-th

feature point, which are captured by the camera Ci in
the first frame and the camera Cj in the second frame,
respectively. Ak is the related local affine transforma-
tion, which maps the infinitesimally close vicinity of xk

to that of x′
k (Barath 2018).

For general motion, there is a 3DOF relative rota-
tion R and a 3DOF relative translation t between two
reference frames. Rotation R using Cayley parameter-
ization and translation t can be written as:

R =
1

1 + q2x + q2y + q2z
.1 + q2x − q2y − q2z 2qxqy − 2qz 2qy + 2qxqz

2qxqy + 2qz 1− q2x + q2y − q2z 2qyqz − 2qx
2qxqz − 2qy 2qx + 2qyqz 1− q2x − q2y + q2z

 ,

(1)

t = [tx ty tz]
T
, (2)

where [1, qx, qy, qz]
T is a homogeneous quaternion vec-

tor. Note that 180 degree rotations are prohibited when
using the Cayley parameterization, but this is a rare
case for consecutive frames.

3.1 Generalized Epipolar Constraint

We give a brief description of the generalized cam-
era model (GCM) (Pless 2003). The image coordinates
(pk,p

′
k) expressed in the multi-camera reference frame

are written as

pk = Rixk, p′
k = Rjx

′
k. (3)

The unit direction of rays (uk,u
′
k) expressed in the

multi-camera reference frame are given as: uk =
pk/∥pk∥, u′

k = p′
k/∥p′

k∥. The 6-dimensional Plücker
coordinates corresponding to the rays are denoted as

lk = [uT
k , (ti × uk)

T]T, l′k = [u′
k
T
, (tj × u′

k)
T]T. The

symbol × represents the cross product. The generalized
epipolar constraint is written as (Pless 2003)

l′Tk

[
[t]×R, R
R, 0

]
lk = 0, (4)

where lk and l′k are the Plücker coordinates of a line
correspondence between two consecutive frames. The
symbol [t]× represents the skew-symmetric matrix of
the translation t.

3.2 Affine Transformation Constraint

We denote the transition matrix between the camera
coordinate system Ci in the first frame and the camera
coordinate system Cj in the second frame as (Rij , tij),
which is represented as:[
Rij tij
0 1

]
=

[
Rj tj
0 1

]−1 [R t
0 1

] [
Ri ti
0 1

]
=

[
RT

j RRi RT
j (Rti + t− tj)

0 1

]
.

(5)
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Essential matrix Ek of the two consecutive frames is

Ek = [tij ]×Rij = RT
j [Ritij ]×RRi, (6)

where [Ritij ]× = R[ti]×R
T + [t]× − [tj ]×. The rela-

tionship of essential matrix Ek and local affine trans-
formationAk is formulated as follows (Barath & Hajder
2018):

(ET
k x

′
k)(1:2) = −(ÂT

kEkxk)(1:2), (7)

where ET
k x

′
k and Ekxk denote the epipolar lines in their

implicit form in the frames of cameras Ci and Cj . Sub-
scripts 1 and 2 represent the first and second equations
of the equation system, respectively. Âk is a 3× 3 ma-
trix, which can be written as:

Âk =
[
Ak 0
0 0

]
.

By substituting Eq. (6) into Eq. (7), we obtain:

(RT
i R

T[Ritij ]
T
×Rjx

′
k)(1:2)

= −(ÂT
kR

T
j [Ritij ]×RRixk)(1:2).

(8)

Based on Eq. (3), the above equation is reformulated
and expanded as follows:

(RT
i ([ti]×R

T +RT[t]× −RT[tj ]×)p
′
k)(1:2) =

(ÂT
kR

T
j (R[ti]× + [t]×R− [tj ]×R)pk)(1:2).

(9)

Eq. (9) interprets the new epipolar constraints
which a local affine transformation implies on cameras
Ci and Cj in two consecutive frames. It can be seen
that an AC yields three independent constraints from
Eqs. (4) and (9). When an AC in a multi-camera system
relates the same perspective camera across two con-
secutive frames, i.e., Ci and Cj are the same camera
(Ri = Rj , ti = tj), the constraints of Eqs. (4) and (9)
still hold.

For each AC (xk,x
′
k,Ak), we get three polynomials

for six unknowns {qx, qy, qz, tx, ty, tz} based on Eqs. (4)
and (9). After separating qx, qy, qz from tx, ty, tz, we
arrive at equation system

1

1 + q2x + q2y + q2z

[
M11 M12 M13 M14
M21 M22 M23 M24
M31 M32 M33 M34

]
︸ ︷︷ ︸

M(qx,qy,qz)

txty
tz
1

 = 0, (10)

where the elements of the coefficient matrix
M(qx, qy, qz) are formed by the polynomial coeffi-
cients and three unknown variables qx, qy, qz. All the
elements are quadratic polynomials with three variables
qx, qy, qz. Note that the multiple 1/(1 + q2x + q2y + q2z) is
not simply omitted in this paper. As we will see later,
the multiple can be used to reduce the polynomial
degree and improve the efficiency of the solution.

Equation (10) imposes three independent con-
straints on six unknowns {qx, qy, qz, tx, ty, tz}. Moti-
vated by scenarios like self-driving cars, ground robots
or AR headsets, we investigate relevant special cases
of multi-camera motion, i.e., planar motion and mo-
tion with known vertical direction, see Figs. 2 and 4.
The constraint equations Eq. (10) can be used in spe-

cial cases of multi-camera motion. We show that two
special cases can be efficiently solved with ACs.

4 Relative Pose under Planar Motion

Fig. 2 Relative pose estimation under planar motion in top-
view. There are three unknowns: yaw angle θ, translation di-
rection ϕ and translation distance ρ.

When assuming that the body, to which the cam-
era system is rigidly fixed, moves on a planar surface
(as visualized in Fig. 2), there are only a y-axis rotation
and 2D translation between reference frames. Similar to
Eqs. (1) and (2), the rotation R = Ry and the transla-
tion t from the first frame to the second frame is written
as:

Ry =
1

1 + q2y

1− q2y 0 −2qy
0 1 + q2y 0
2qy 0 1− q2y

 ,

t = [tx 0 tz]
T
.

(11)

where qy = tan( θ2 ), tx = ρ sin (ϕ), tz = −ρ cos (ϕ),
ρ is the distance between two multi-camera reference
frames.

4.1 Solver for Planar Motion

By substituting Eq. (11) into Eqs. (4) and (9), we get
an equation system of three polynomials for three un-
knowns qy, tx and tz. Since an AC generally provides
three independent constraints for relative pose, a sin-
gle AC is sufficient to recover the planar motion of a
multi-camera system. After separating qy from tx, tz,
the three independent constraints from an AC form ma-
trix equation:

1

1 + q2y

[
M11 M12 M13
M21 M22 M23
M31 M32 M33

]
︸ ︷︷ ︸

M(qy)

[
tx
tz
1

]
= 0, (12)

where the elements of the coefficient matrix M(qy) are
formed by the polynomial coefficients and one unknown
variable qy. All the elements are quadratic polynomi-
als with variable qy. Since M(qy) is a square matrix,
Eq. (12) has a non-trivial solution only if the deter-
minant of M(qy)/(1 + q2y) vanishes. The expansion of
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Fig. 3 Degenerate case under planar motion.

det(M(qy)/(1 + q2y)) = 0 gives a 4-degree univariate
polynomial as follows:

quot(
6∑

i=0

wiq
i
y, q

2
y + 1) = 0, (13)

where quot(a, b) means calculating the quotient of a di-
vided by b. w0, . . . , w6 are formed by the Plücker coordi-
nates of a line correspondence and the matrix elements
of an affine transformation between the corresponding
feature points.

Note that the coefficients are divided by q2y + 1
which reduces the polynomial degree and improves the
efficiency of the solution. The univariate polynomial
Eq. (13) leads to an explicit analytic solution with a
maximum of 4 real roots. Once the solutions for qy are
found, the remaining unknowns tx and tz are solved by
substituting qy into M(qy) and solving the linear sys-
tem via calculating its null vector. Finally, the rotation
matrix Ry is recovered from Eq. (11).

4.2 Degenerate Case

In this section, we show that the solver using a single
AC has a degenerate case under planar motion, i.e.,
when the distances between the motion plane and op-
tical centers of the cameras are equal.

Degenerate condition: Consider a multi-camera
system which is under planar motion. Assume the fol-
lowing three conditions are satisfied. (1) The rotation
axis is the y-axis, and the translation is on xz-plane. (2)
There is a single AC across camera Ci in the first frame
and camera Cj in the second frame (Ci and Cj can be
the same or different cameras). (3) The optical centers
of cameras Ci and Cj have the same y-coordinate. Then
this case is degenerate. Specifically, the rotation can be
correctly recovered, while neither the translation direc-
tion nor the translation scale can be estimated.

Interpretation: Fig. 3 illustrates the degenerate case
under planar motion. Note that the multi-camera ref-
erence frame is established in the multi-camera system,
not in a certain camera coordinate system. Our inter-
pretation is based on the following observation: whether
a case is degenerate does not depend on which rela-
tive pose estimation solver is used for recovering (R, t).
Based on this point, we construct a new relative pose
estimation solver which is different from the proposed
solver in Section 4.1.

(i) Since the multi-camera system is rotated around
the y-axis, camera Ci in the first frame and camera Cj

in the second frame are under motion with known ro-
tation axis. For the relative pose estimation problem
of monocular cameras with known rotation axis, it has
been proven that a single AC is sufficient to estimate
the relative rotation and translation (only known up to
scale) between Ci and Cj (Guan et al. 2020). This is
a minimal solver since one AC provides 3 independent
constraints and there are three unknowns (one unknown
for rotation, two unknowns for translation by exclud-
ing scale-ambiguity). Denote the recovered rotation and
translation between Ci and Cj as (R′, t′), where t′ is
a unit vector. The scale of the translation vector can-
not be recovered at this moment. Denote the unknown
translation scale as λ.

(ii) From Fig. 3, we have[
R t
0 1

]
=

[
Rj tj
0 1

] [
R′ λt′
0 1

] [
Ri ti
0 1

]−1

=
[
RjR

′RT
i λRjt

′ + tj −RjR
′RT

i ti
0 1

]
.

(14)

From Eq. (14), we have

R = RjR
′RT

i , (15)

t = λRjt
′ + tj −RjR

′RT
i ti. (16)

From Eq. (15), the rotation R between the first frame
and the second frame of the multi-camera system can
be recovered. From Eq. (16), we have

λ(Rjt
′)− t+ (tj −Rti) = 0. (17)

In Eq. (17), note that t = [tx, 0, tz]
T due to the planar

motion assumption. Thus this linear equation system
has 3 unknowns {λ, tx, tz} and 3 equations. Usually, the
unknowns can be uniquely determined by solving this
equation system. However, if the second entry of Rjt

′

is zero, three unknowns {λ, tx, tz} cannot be uniquely
computed. In other words, the translation direction and
the translation scale cannot be determined. This is a
degenerate case.

(iii) Finally, we exploit the geometric meaning of
the degenerate case, i.e., the second entry of Rjt

′ is
zero. Denote the normalized vector originated from Ci

to Cj as v. Since v represents the normalized transla-
tion vector between Ci and Cj , the coordinates of v in
reference of camera Cj is t′. Further, the coordinates
of v in the second frame is Rjt

′. The second entry of
Rjt

′ being zero means that the endpoints of v have the
same y-coordinate in the second frame, which is the
condition (3) in the degenerate condition.

This degenerate case might happen in the self-
driving scenario, leading to the situation when neither
the translation direction, nor its scale can be estimated
from a single AC. For example, when a multi-camera
system undergoes planar motion and a single AC is cap-
tured by the same camera over two consecutive frames,
this case is degenerate. To overcome this issue, we use
two ACs. For example, the first and second constraints
of the first AC, and the first constraint of the second
AC are selected as the three equations to be solved in
the three unknowns, just as Eq. (12). Note that the
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steps of the solver remain the same, except for the code
constructing coefficient matrix M(qy).

5 Relative Pose with Known Vertical Direction

Fig. 4 Relative pose estimation with known vertical direc-
tion. There are four unknowns: a y-axis rotation Ry and 3D
translation t̃ = [t̃x, t̃y , t̃z]T.

In this section a minimal solution using two ACs (at
least one AC and one PC) is proposed for relative mo-
tion estimation for multi-camera systems with known
vertical direction, see Fig. 4. In this case, an IMU is
coupled with the multi-camera system and the relative
rotation between the IMU and the reference frame is
known. The IMU provides the known roll and pitch an-
gles for the multi-camera reference frame.

5.1 Apply Roll and Pitch Angles

Based on the roll and pitch angles provided by the
IMU, the multi-camera reference frame can be aligned
with the measured vertical direction, such that the X-
Z-plane of the aligned reference frame is parallel to the
ground plane and the y-axis is parallel to the vertical
direction. Let us denote the rotation matrices from the
roll and pitch angles of the two corresponding multi-
camera reference frames as Rimu and R′

imu. Take the
composition of the rotation matrix Rimu for an exam-
ple. Rotation matrix Rimu for aligning the reference
frame can be computed as follows:

Rimu = RpRr

=

[
1 0 0
0 cos(θp) sin(θp)
0 − sin(θp) cos(θp)

][
cos(θr) sin(θr) 0
− sin(θr) cos(θr) 0

0 0 1

]
,

where θr and θp are roll and pitch angles provided by
the IMU, respectively.

There are only a y-axis rotation R = Ry and 3D

translation t̃ = [t̃x, t̃y, t̃z]
T to be estimated between the

aligned multi-camera reference frames. By leveraging
IMU measurement, the transition matrix between two
reference frames can be represented as follows:[
R t
0 1

]
=

[
R′

imu 0
0 1

]−1
[
Ry t̃
0 1

] [
Rimu 0
0 1

]
. (18)

From Eq. (18), the relative pose between two reference
frames can be written as:

R = (R′
imu)

TRyRimu, (19)

t = (R′
imu)

Tt̃. (20)

5.2 Geometric Constraints with Known Vertical
Direction

In this case, we show that the geometric constraints in
Section 3 can be generalized to the multi-camera motion
with known vertical direction. By substituting Eq. (19)
into Eq. (4), the generalized epipolar constraint with
known vertical direction is written as([

R′
imu 0
0 R′

imu

]
l′k

)T

︸ ︷︷ ︸
l̃′k

[[
t̃
]
×Ry Ry

Ry 0

]

([
Rimu 0
0 Rimu

]
lk

)
︸ ︷︷ ︸

l̃k

= 0,

(21)

where l̃k ↔ l̃′k are the corresponding Plücker coordi-
nates of line correspondences expressed in the aligned
multi-camera reference frame.

Next, we derive the affine transformation constraint
with known vertical direction. Substituting Eq. (18)
into Eq. (5) yields[
Rij tij
0 1

]
=

([
R′

imu 0
0 1

] [
Rj tj
0 1

])−1

[
Ry t̃
0 1

]([
Rimu 0
0 1

] [
Ri ti
0 1

])
.

(22)

We denote that[
R̃imu t̃imu
0 1

]
=

[
Rimu 0
0 1

] [
Ri ti
0 1

]
,[

R̃′
imu t̃′imu
0 1

]
=

[
R′

imu 0
0 1

] [
Rj tj
0 1

]
.

(23)

By substituting Eq. (23) into Eq. (22), we obtain[
Rij tij
0 1

]
=

[
(R̃′

imu)
TRyR̃imu (R̃′

imu)
T(Ry t̃imu + t̃− t̃′imu)

0 1

]
.

(24)

It can be seen that Eq. (24) has a similar composi-
tion to Eq. (5). Similar to Eq. (9), the affine transfor-
mation constraint with known vertical direction can be
directly given as

(R̃T
imu([t̃imu]×R

T
y +RT

y [t̃]× −RT
y [t̃

′
imu]×)p̃

′
k)(1:2) =

(ÂT
k (R̃

′
imu)

T(Ry[t̃imu]× + [t̃]×Ry − [t̃′imu]×Ry)p̃ij)(1:2)

(25)

where p̃k = R̃imuxk and p̃′
k = R̃′

imux
′
k are the image

coordinates expressed in the aligned multi-camera ref-
erence frame.
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5.3 Solver for Motion with Known Vertical Direction

Based on Eqs. (21) and (25), we get an equation sys-
tem of three polynomials for four unknowns qy, t̃x, t̃y
and t̃z. Recall that there are three independent con-
straints provided by one AC. Thus, one more equation
is required which can be taken from a second AC. In
principle, one arbitrary equation can be chosen from
Eqs. (21) and (25), for example, three constraints of
the first AC, and the first constraint of the second AC,
i.e., four constraints provided by one AC and one PC,
are stacked into 4 equations in 4 unknowns:

1

1 + q2y

M̃11 M̃12 M̃13 M̃14

M̃21 M̃22 M̃23 M̃24

M̃31 M̃32 M̃33 M̃34

M̃41 M̃42 M̃43 M̃44


︸ ︷︷ ︸

M̃(qy)

t̃xt̃y
t̃z
1

 = 0, (26)

where the elements of the coefficient matrix M̃(qy)
are formed by the polynomial coefficients and one un-
known variable qy. All the elements are quadratic poly-

nomials with variable qy. Since M̃(qy)/(1 + q2y) is a
square matrix, Eq. (26) has a non-trivial solution only if

det(M̃(qy)/(1+q2y)) = 0. The expansion of the determi-
nant equation gives a 6-degree univariate polynomial:

quot(
8∑

i=0

wiq
i
y, q

2
y + 1) = 0, (27)

where w̃0, . . . , w̃8 are formed by the Plücker coordinates
of two line correspondences and the matrix elements of
two affine transformations between the corresponding
feature points.

This univariate polynomial leads to a maximum of
6 solutions. Equation (27) can be efficiently solved by
the companion matrix method (Cox et al. 2013) or
Sturm bracketing method (Nistér 2004). Once qy has
been obtained, rotation matrix Ry is recovered from
Eq. (11). For the relative pose between two multi-
camera reference frames, the rotation matrix R is re-
covered from Eq. (19) and the translation is computed
by t = (R′

imu)
Tt̃ based on Eq. (20).

6 Experiments

In this section, we conduct extensive experiments on
both synthetic and real-world data to evaluate the per-
formance of the proposed methods. Our solvers are
compared with state-of-the-art techniques.

For relative pose estimation under planar motion,
the solvers using one AC and two ACs proposed
in Section 4 are referred to as 1AC plane method
and 2AC plane method, respectively. The accuracy
of 1AC plane and 2AC plane are compared with the
methods 17pt-Li (Li et al. 2008), 8pt-Kneip (Kneip
& Li 2014), 6pt-Stewénius (Stewénius et al. 2005),
2pt-Lee (Lee et al. 2013) and 6AC-Ventura (Alyousefi
& Ventura 2020).

For relative pose estimation with known ver-
tical direction, the solver proposed in Section 5

is referred to as 2AC vertical method. We com-
pare the accuracy of 2AC vertical with the meth-
ods 17pt-Li (Li et al. 2008), 8pt-Kneip (Kneip &
Li 2014), 6pt-Stewénius (Stewénius et al. 2005),
6pt-Ventura (Ventura et al. 2015), 4pt-Lee (Lee
et al. 2014), 4pt-Sweeney (Sweeney et al. 2014),
4pt-Liu (Liu et al. 2017), 6AC-Ventura (Alyousefi &
Ventura 2020) and 2AC-Guan (Guan et al. 2021a).

In the experiments, all the solvers are integrated
within RANSAC to reject outliers. For the point-based
solvers, only the point coordinates of ACs are used. The
relative pose which produces the highest number of in-
liers is chosen. The confidence of RANSAC is set to 0.99
and an inlier threshold angle is set to 0.1◦ by following
the definition in OpenGV (Kneip & Furgale 2014). We
also show the feasibility of our methods on the KITTI
dataset (Geiger et al. 2013), nuScenes dataset (Caesar
et al. 2020) and EuRoc MAV dataset (Burri et al. 2016).
These experiment demonstrates that our methods are
well suited for visual odometry in real scenarios.

6.1 Efficiency Comparison

The runtimes of the solvers are evaluated on an In-
tel(R) Core(TM) i7-7800X 3.50GHz. All algorithms are
implemented in C++. Methods 17pt-Li, 8pt-Kneip
and 6pt-Stewenius are provided in the OpenGV
library (Kneip & Furgale 2014). We implemented
the methods 4pt-Lee, 2pt-Lee and 2AC-Guan. For
methods 6pt-Ventura, 4pt-Sweeney, 4pt-Liu and
6AC-Ventura, we used their publicly available imple-
mentations from GitHub. The average, over 10,000
runs, processing times of the solvers are shown in
Table 2. The runtimes of the methods 4pt-Liu,
1AC plane and 2AC plane are the lowest, because these
methods solve the 4-degree polynomial equation. The
methods 2pt-Lee and 2AC vertical which solves the
6-degree polynomial equation also requires low compu-
tation time.

6.2 Numerical Stability

Figure 5 reports the numerical stability of the solvers
in the noise-free case. The procedure is repeated
10,000 times. The empirical probability density func-
tions (vertical axis) are plotted as the function of
the log10 estimated errors (horizontal axis). Meth-
ods 1AC plane, 2AC plane, 2AC vertical, 17pt-Li,
4pt-Lee, 4pt-Sweeney, 2pt-Lee and 6AC-Ventura are
numerically stable. The 4pt-Sweeney method has a
small peak, both in the rotation and translation error
curves, around 10−2. The corresponding density of the
small peak is about 0.02. The 8pt-Kneip method based
on iterative optimization is susceptible to falling into
local minima. Due to the use of first-order approxima-
tion of the relative rotation, the methods 6pt-Ventura,
4pt-Liu and 2AC-Guan inevitably has greater than zero
error in the noise-free case.
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Table 2 Run-time comparison of relative pose estimation algorithms (unit: µs).

Methods 17pt-Li 8pt-Kneip 6pt-St. 6pt-Ven. 4pt-Lee 4pt-Sw. 4pt-Liu 2pt-Lee 6AC-Ven. 2AC-Guan 1AC plane 2AC plane 2AC vertical

Timings 43.3 102.0 3275.4 29.8 26.5 22.2 3.7 5.3 38.1 28.6 3.6 3.6 17.8

17pt-Li 8pt-Kneip 6pt-Stewenius 6pt-Ventura

4pt-Lee 4pt-Sweeney 4pt-Liu 2pt-Lee 6AC-Ventura

2AC-Guan 1AC plane 2AC plane 2AC vertical
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Fig. 5 Probability density functions over estimation errors
in the noise-free case (10 000 runs). The horizontal axis
represents the log10 errors and the vertical axis represents
the density. Plot (a) reports the rotation error. Plot (b) re-
ports the translation error. The proposed 1AC plane method,
2AC plane method and 2AC vertical are compared against
17pt-Li (Li et al. 2008), 8pt-Kneip (Kneip & Li 2014),
6pt-Stewénius (Stewénius et al. 2005), 6pt-Ventura (Ven-
tura et al. 2015), 4pt-Lee (Lee et al. 2014), 4pt-Sweeney

(Sweeney et al. 2014), 4pt-Liu (Liu et al. 2017), 2pt-Lee (Lee
et al. 2013), 6AC-Ventura (Alyousefi & Ventura 2020) and
2AC-Guan (Guan et al. 2021a).

6.3 Experiments on Synthetic Data

We made a simulated 2-camera rig system by following
the KITTI autonomous driving platform. The baseline
length between two simulated cameras is set to 1 me-
ter and the cameras are installed at different altitudes.
The multi-camera reference frame is set at the center of

the camera rig and the translation between two multi-
camera reference frames is 3 meters. The resolution of
the cameras is 640 × 480 pixels and the focal lengths
are 400 pixels. The principal points are set to the image
center (320, 240).

The synthetic scene is composed of a ground plane
and 50 random planes. All 3D planes are randomly gen-
erated within the range of -5 to 5 meters (along axes
X and Y), and 10 to 20 meters (Z-axis direction), that
are expressed in the respective axis of the multi-camera
reference frame. The equation of 3D plane can be rep-
resented as AX + BY + CZ + D = 0. The normal
vector to the 3D plane is given by N = [A,B,C]T . For
a ground plane, the corresponding normal vector is set
to [0, 1, 0]T , which is consistent with the Y-axis direc-
tion of the multi-camera reference frame. For 50 ran-
dom planes, the corresponding normal vectors are ran-
domly generated. Then, we choose a random 3D point
(X0, Y0, Z0) in the range of the synthetic scene. Finally,
the parameter D can be computed based on the nor-
mal vector and the chosen 3D point. Thus, by the above
procedure, the ground plane and 50 random planes can
be randomly generated in the synthetic scene.

We choose 50 ACs from the ground plane and an
AC from each random plane randomly, thus, having a
total of 100 ACs. For each AC, a random 3D point from
a 3D plane (X0, Y0, Z0) is reprojected onto two cameras
to get the image point pair (xk,x

′
k). The corresponding

affine transformation (Ak) is obtained by the following
procedure. First, four sampled image points are chosen
as the vertices of a square in the 2D image plane of
the first frame, where the center of the square is the
point coordinates of AC. The side length of the square
W is set as 20 or 40 pixels. A larger side length causes
smaller noise of affine transformation. The four sampled
image point in the first frame can be computed as fol-
lows: (xk+[−W/2, −W/2]T ,xk+[W/2, −W/2]T ,xk+
[−W/2, W/2]T ,xk + [W/2, W/2]T ). Second, the four
corresponding sampled image points in the second
frame are directly calculated by the ground truth ho-
mography. Third, four sampled point pairs are contam-
inated by Gaussian noise, which is similar to the noise
added to the coordinates of image point pair. Fourth,
the noisy homography matrix is estimated using the
four sampled point pairs. The noisy affine transforma-
tion is the first-order approximation of the noisy ho-
mography matrix. The implied noisy local affine frame
is then calculated via projective geometry. This can be
seen as perturbing the 3D plane centered on the ob-
served 3D point. This procedure enables an indirect but
geometrically interpretable way of adding noise to the
affine transformation (Barath & Kukelova 2019).

A total of 1000 trials are carried out in the syn-
thetic experiment. In each test, 100 ACs are generated
randomly. The ACs for the methods are selected ran-
domly and the error is measured on the relative pose
which produces the most inliers within the RANSAC
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Fig. 6 Rotation and translation error under planar motion. (a–c): varying image noise under perfect planar motion. (d–f):
varying planar motion noise and fixed 0.5 pixel std. image noise.

scheme. This also allows us to select the best candi-
date from multiple solutions by counting their inliers
in a RANSAC-like procedure. The median of errors are
used to assess the rotation and translation error. The
rotation error is computed as the angular difference be-
tween the ground truth rotation and the estimated ro-
tation: εR = arccos((trace(RgtR

T)− 1)/2), where Rgt

and R are the ground truth and estimated rotation
matrices. Following the definition in (Lee et al. 2014;
Quan & Lan 1999), the translation error is defined as:
εt = 2 ∥(tgt − t)∥ /(∥tgt∥ + ∥t∥), where tgt and t are
the ground truth and estimated translations. Due to
the limited display range of the figures, some curves
with large errors are invisible or partially invisible.

6.3.1 Planar Motion Estimation

In this scenario, the planar motion of the multi-camera
system is described by (θ, ϕ), see Fig. 2. The magni-
tudes of both angles ranges from −10◦ to 10◦. Sup-
pose we are given Gaussian image noise with a stan-
dard deviation ranging from 0 to 1 pixel. Fig. 6(a–
c) shows the performance of the proposed 1AC plane
and 2AC plane methods against image noise. Since
the noise magnitude of affine transformation is influ-
enced by the support region of sampled points, the
AC-based methods have better performance with larger
support region at the same magnitude of image noise.
It can be seen that 2AC plane performs better than

0 0.2 0.4 0.6 0.8 1

Outlier ratio

10
0

10
2

10
4

10
6

10
8

10
10

N
u

m
b

e
r
 o

f 
it

e
r
a

ti
o

n
s

17pt

8pt

6AC / 6pt

4pt

2AC / 2pt

1AC

Fig. 7 Comparison of the RANSAC iteration number for 99%
of success probability.

the other compared methods under perfect planar mo-
tion, even though the size of the square is 20 pixels.
The 1AC plane method performs better than the PC-
based methods and the 6AC-Ventura method in rota-
tion estimation, but has worse performance in transla-
tion estimation. Since the planar motion of the multi-
camera system does not satisfy the Ackermann motion
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assumption, the 2pt Lee method has large errors and
its error curves are out of the display range. As shown
later in Section 6.3.3, the 2pt Lee method performs
well when the Ackermann motion holds. In Fig. 6(c),
we plot the translation direction error as an additional
evaluation. It is interesting to see that when the side
length of the square is 40 pixels, the 1AC plane method
performs better than the PC-based methods and the
6AC-Ventura method in translation direction estima-
tion.

We also evaluate the accuracy of the proposed meth-
ods 1AC plane and 2AC plane for increasing planar
motion noise. To test such noise, we added a small ran-
domly generated X-axis, Z-axis rotation and a YZ-plane
translation (Choi & Kim 2018) to the motion of the
multi-camera system. The magnitude of non-planar mo-
tion noise ranges from 0◦ to 1◦ and the standard devia-
tion of the image noise is set to 0.5 pixel. Figures 6(d–
f) show the performance of the proposed 1AC plane
method and 2AC plane method against planar motion
noise. Methods 17pt-Li, 8pt-Kneip, 6pt-Stewénius
and 6AC-Ventura deal with the 6DOF motion case and,
thus they are not affected by the noise in the planarity
assumption. The 2pt Lee method does not have an ob-
vious trend with non-planar motion noise levels, be-
cause the accuracy of this method mainly depends on
whether the Ackermann motion assumption is well ful-
filled. It can be seen that the rotation accuracy of the
2AC plane method performs better than comparative
methods when the planar motion noise is less than 0.2◦.
Since the estimation accuracy of translation direction of
the 2AC plane method in Fig. 6(f) performs satisfac-
tory, the main reason for poor performance of trans-
lation estimation is that the metric scale estimation
is sensitive to the planar motion noise. In comparison
with the 2AC plane method, the 1AC plane method
has similar performance in rotation estimation, but per-
forms poorly in translation estimation. The translation
accuracy decreases significantly with the increase of the
planar motion noise.

In addition to efficiency and numerical stability,
another important factor for a solver is the minimal
number of required image points. The iteration num-
ber N of RANSAC can be computed by N = log(1 −
p)/ log(1− (1− ϵ)s), where s is the number of minimal
image points, ϵ is the outlier ratio, and p is the suc-
cess probability. For a probability of success p = 99%,
the RANSAC iterations needed with respect to the out-
lier ratio needed are shown in Figure 7. It can be seen
that the iteration number of the RANSAC estimator
increases exponentially with respect to the number of
image points needed. For example, in a percentage of
outliers ϵ = 50%, when the solvers require 1, 2, 4, 6,
8 and 17 points, the RANSAC estimator need 7, 16,
71, 292, 1177 and 603607 iterations, respectively. The
proposed 1AC plane method which only uses a single
AC requires the lowest number of RANSAC iterations.
Since the proposed 2AC plane method need two ACs,
the iteration number of RANSAC is also low in com-
parison to PC-based methods. Thus, our solvers can be
used efficiently for detecting a correct inlier set when
integrating them into the RANSAC framework.
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Fig. 8 Rotation and translation error with varying planar
motion noise. The image noise is fixed at 0.5 pixel and the
outlier ratio is set to 50%.

We evaluate the performance of the proposed
1AC plane method and 2AC plane method for outlier
detection in presence of outliers. The outlier ratio is set
to 50%. The other configurations of this synthetic ex-
periment are set as same as using in Figure 6(d–f). Fig-
ure 8 shows the performance of the proposed methods
against planar motion noise. It is interesting to see that
the 1AC plane method recovers more than 50% inliers
and requires fewer number of RANSAC iterations, even
though it performs poorly in translation estimation as
shown in Figure 6(e–f). Thus, the 1AC plane method
has the advantage of detecting a correct inlier set ef-
ficiently, which can then be used for accurate motion
estimation with non-linear optimization.

6.3.2 Motion with Known Vertical Direction

In this set of experiments, the translation direction of
two multi-camera reference frames is chosen to produce
either forward, sideways or random motions. The sec-
ond reference frame is rotated around three axes ran-
domly with angles ranging from −10◦ to 10◦. Assuming
known roll and pitch angles, the multi-camera reference
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Fig. 9 Rotation and translation error under random motion with known vertical direction. Upper row: rotation error. Bottom
row: translation error. (a,d): varying image noise. (b,e) and (c,f): varying IMU angle noise and fixed 0.5 pixel std. image noise.

frame is aligned with the vertical direction. Figs. 9(a)
and (d) show the performance of 2AC vertical against
image noise with perfect IMU data under random mo-
tion. The proposed method is robust to image noise and
performs better than the other methods. The iterative
optimization in 8pt-Kneip is prone to falling into lo-
cal minima. Since the methods 6pt-Ventura, 4pt-Liu
and 2AC-Guan use the first-order approximation of the
relative rotation, the error of these methods is not zero
even for image noise-free input.

Figs. 9(b,e) and (c,f) show the performance of
2AC vertical against IMU noise in the random mo-
tion case, while the standard deviation of the image
noise is fixed at 0.5 pixel. Note that the methods
17pt-Li, 8pt-Kneip, 6pt-Stewénius, 6pt-Ventura,
6AC-Ventura and 2AC-Guan are not influenced by IMU
noise, because these methods do not use the known
vertical direction as a prior. The methods 4pt-Lee,
4pt-Sweeney and 4pt-Liu use the known vertical di-
rection as a prior. It is interesting to see that the pro-
posed method outperforms the comparative methods in
the random motion case, even though the IMU noise is
around 0.4◦.

Figure 10 shows the performance of the proposed
2AC vertical under forward motion. It can be seen
that 2AC vertical outperforms the comparative meth-
ods against image noise and provides comparable accu-
racy for increasing IMU noise, even though the size of
the square is 20 pixels. Figure 11 shows the performance
of the proposed 2AC vertical under sideways motion.
The results demonstrate that when the side length of

the square is 40 pixels, the 2AC vertical performs ba-
sically better than all compared methods against image
noise and achieves comparable performance for increas-
ing noise on the IMU data.

6.3.3 Ackermann Motion Case

In this scenario, we evaluate the accuracy of the
proposed methods 1AC plane and 2AC plane under
Ackermann motion. The relative motion of the multi-
camera system is constrained by the Ackermann mo-
tion model (Scaramuzza et al. 2009), which is described
by a rotation angle and a translation distance. Specif-
ically, the multi-camera system moves along circular
trajectories about the instantaneous center of rotation
and the translation direction satisfies the circular mo-
tion constraint. The magnitude of the rotation angle
ranges from −10◦ to 10◦. The other configurations of
this synthetic experiment are set as same as using in
Figure 6. This scenario is suitable for the methods with
Ackermann motion assumption, such as 2pt-Lee. Sup-
pose we are given Gaussian image noise with a stan-
dard deviation ranging from 0 to 1.0 pixel. Fig. 12(a–
c) shows the performance of the proposed 1AC plane
and 2AC plane methods against image noise under per-
fect Ackermann Motion. When the Ackermann motion
assumption is well fulfilled, the 2pt Lee outperforms
the other methods in rotation estimation and transla-
tion direction estimation. The methods 2AC plane and
2pt Lee have similar performance in translation esti-
mation. Moreover, it can be seen that 2AC plane per-
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Fig. 10 Rotation and translation error under forward motion with known vertical direction. Upper row: rotation error. Bottom
row: translation error. (a,d): varying image noise. (b,e) and (c,f): varying IMU angle noise and fixed 0.5 pixel std. image noise.

forms better than the comparative methods which do
not constrain the relative motion by the Ackermann
motion model.

We also evaluate the accuracy of the proposed
methods 1AC plane and 2AC plane for increasing non-
Ackermann motion noise. To test such noise, we added
a small randomly generated angle error to the transla-
tion direction of the multi-camera system in XZ-plane.
The relative motion of the multi-camera system is devi-
ating from Ackermann motion, but still satisfying pla-
nar motion. The magnitude of non-Ackermann motion
noise ranges from 0◦ to 1◦ and the standard deviation of
the image noise is set to 0.5 pixel. Figures 12(d–f) show
the performance of the proposed 1AC plane method
and 2AC planemethod against non-Ackermann motion
noise. Methods 17pt-Li, 8pt-Kneip, 6pt-Stewénius,
6AC-Ventura, 1AC plane and 2AC plane deal with the
planar motion case and, thus they are not affected
by non-Ackermann motion noise. The accuracy of the
2pt Lee method decreases significantly with the in-
crease of the non-Ackermann motion noise. It can be
seen that the 2AC plane method performs better than
comparative methods when the non-Ackermann mo-
tion noise is more than 0.4◦. In comparison with the
2AC plane method, the 1AC plane method has simi-
lar performance in rotation estimation, but performs
poorly in translation estimation.
6.3.4 Small Rotation Case

In this scenario, we evaluate the accuracy of the
proposed 2AC vertical method under small rotation

motion. The rotation angles between two multi-camera
reference frames are kept constant at 1◦ (Ventura et al.
2015). The translation direction of two multi-camera
reference frames is chosen to produce random motion.
The other configurations of this synthetic experiment
are set as same as using in Figure 9. Since the rela-
tive rotation between two consecutive frames is small,
several methods with first-order approximation to rel-
ative rotation are suitable, such as 6pt-Ventura (Ven-
tura et al. 2015), 4pt-Liu (Liu et al. 2017) and
2AC-Guan (Guan et al. 2021a). Assuming known roll
and pitch angles, the multi-camera reference frame is
aligned with the vertical direction.

Figs. 13(a) and (d) show the performance of
2AC vertical against image noise with perfect IMU
data under small rotation motion. It can be seen that
the proposed 2AC vertical method performs better
than the other methods. The methods 6pt-Ventura,
4pt-Liu and 2AC-Guan achieve good performance when
the small rotation motion assumption is well ful-
filled. Figs. 13(b,e) and (c,f) show the performance
of 2AC vertical against IMU noise under small ro-
tation motion, while the standard deviation of the im-
age noise is fixed at 0.5 pixel. The results demonstrate
that when the side length of the square is 40 pixels, the
2AC vertical basically outperforms the comparative
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Fig. 11 Rotation and translation error under sideways motion with known vertical direction. Upper row: rotation error.
Bottom row: translation error. (a,d): varying image noise. (b,e) and (c,f): varying IMU angle noise and fixed 0.5 pixel std.
image noise.

methods, even though the IMU noise is around 0.2◦.

6.3.5 Using PCs converted from ACs

In this set of experiments, we evaluate the performance
of PC-based solvers using the PCs converted from ACs.
Three generated PCs include an image point pair of AC
and two hallucinated image point pairs calculated by
the local affine transformation. Since local affine trans-
formations are defined as the partial derivative, w.r.t.
the image directions, of the related homography, they
are valid only infinitesimally close to the image coordi-
nates of AC. Thereby, one AC can only provide three
approximate PCs – the error is not zero even for noise-
free input (Barath & Hajder 2018). Three approximate
PCs converted from one AC can be computed as fol-
lows (Barath et al. 2020): (xk,xk+[w, 0]T ,xk+[0, w]T )
and (x′

k,x
′
k +Ak[w, 0]

T ,x′
k +Ak[0, w]

T ), where w de-
termines the distribution area of the generated PCs. To
evaluate the performance of PC-based solvers with dif-
ferent distribution area, w is set to 1, 5 and 10 pixels,
respectively.

Take relative pose estimation with known vertical
direction for an example. A total of 1000 trials are
carried out in the synthetic experiment. In each test,
100 ACs are generated randomly with 40*40 support
region. In the RANSAC loop, six ACs and two ACs
are selected randomly for the 6AC-Venturamethod and
the proposed 2AC vertical method, respectively. The
hallucinated PCs converted from a minimal number of

ACs are used as input for the PC-based solvers. Thus,
6, 3 and 2 ACs are selected randomly for the 17pt-Li
solver (Li et al. 2008), the 8pt-Kneip solver (Kneip & Li
2014), and the solvers 6pt-Stewénius (Stewénius et al.
2005), 6pt-Ventura (Ventura et al. 2015), 4pt-Lee
(Lee et al. 2014), 4pt-Sweeney (Sweeney et al. 2014)
and 4pt-Liu (Liu et al. 2017), respectively. Note that
the hallucinated PCs converted from ACs are only used
for hypothesis generation, and the inlier set is found by
evaluating the image point pairs of ACs. The solution
which produces the highest number of inliers is chosen.
The other configurations of this synthetic experiment
are set as same as using in Figure 9.

Figure 14 shows the performance of the PC-based
solvers against image noise in the random motion case.
The estimation results using the image point pairs of
ACs are represented by solid lines. The estimation re-
sults using the hallucinated PCs generated with differ-
ent distribution area are represented by dashed line (w
= 1 pixel), dash-dotted line (w = 5 pixels) and dotted
line (w = 10 pixels), respectively. We have the follow-
ing observations. (1) The PC-based solvers using the
hallucinated PCs perform worse than using the image
point pairs of AC. Because the conversion error between
each AC and three PCs is newly introduced. It can be
seen that the estimation error of PC-based solvers using
the hallucinated PCs is not zero even for image noise-
free input. Moreover, the hallucinated PCs generated by
each AC are near each other which may be a degenerate
case for the PC-based solvers. The error curves of the
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Fig. 12 Rotation and translation error under Ackermann motion. (a–c): varying image noise under perfect Ackermann motion.
(d–f): varying non-Ackermann motion noise and fixed 0.5 pixel std. image noise.

6pt-Ventura method are out of the display range when
the hallucinated PCs is used. (2) The performance of
PC-based solvers is influenced by the different distribu-
tion area of hallucinated PCs. Since a smaller distribu-
tion area causes smaller conversion error between ACs
and PCs, the PC-based solvers have better performance
with smaller distribution area. (3) The performance of
the proposed 2AC vertical method is best. Because
the AC-based solvers use the relationship between local
affine transformations and epipolar lines, i.e., Eq. (9).
This is a strictly satisfied constraint and does not result
in any error for noise-free input. In addition, the 2AC
verticalmethod is robust to image noise and performs
better than the methods 6AC-Ventura and 2AC-Guan.

6.4 Experiments on Real Data

To demonstrate the suitability of our methods in real
scenarios, we validate the performance of the pro-
posed solvers on three public datasets. The KITTI
dataset (Geiger et al. 2013) and the nuScenes
dataset (Caesar et al. 2020) are collected on an
autonomous driving environment. The EuRoc MAV
dataset (Burri et al. 2016) are collected on an un-
manned aerial vehicle environment. We compare our
solvers against state-of-the-art techniques in these two
popular modern robot applications.

6.4.1 Experiments on KITTI Dataset

We test the performance of our methods on the KITTI
dataset (Geiger et al. 2013) that consists of succes-
sive video frames from a forward facing stereo camera.
The ground truth pose is provided from the built-in
GPS/IMU units. We ignore the overlap in their fields
of view and treat it as a general multi-camera sys-
tem. The sequences labeled from 0 to 10, which have
ground truth, are used for the evaluation. Therefore, the
methods were tested on a total of 23000 image pairs.
The ACs between consecutive frames in each camera
are established by applying the ASIFT (Morel & Yu
2009) detector. The extraction of ACs can also be sped
up by MSER (Matas et al. 2004), GPU acceleration,
or approximating ACs from SIFT features for subse-
quent video frames. The ACs across the two cameras
are not matched and the metric scale is not estimated
as the movement between consecutive frames is small.
Besides, integrating the acceleration over time from an
IMU is more suitable for recovering the scale (Nützi
et al. 2011). All the solvers have been integrated into a
RANSAC scheme.

The proposed methods 2AC plane and 2AC
vertical are compared against 17pt-Li (Li
et al. 2008), 8pt-Kneip (Kneip & Li 2014),
6pt-Stewénius (Stewénius et al. 2005),
6pt-Ventura (Ventura et al. 2015), 4pt-Lee (Lee
et al. 2014), 4pt-Sweeney (Sweeney et al. 2014),
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Fig. 13 Rotation and translation error under small rotation motion. Upper row: rotation error. Bottom row: translation error.
(a,d): varying image noise. (b,e) and (c,f): varying IMU angle noise and fixed 0.5 pixel std. image noise.

Table 3 Rotation and translation error on KITTI sequences (unit: degree).

Seq. 17pt-Li 8pt-Kneip 6pt-St. 6pt-Ven. 4pt-Lee 4pt-Sw. 4pt-Liu 2pt-Lee 6AC-Ven. 2AC-Guan 2AC plane 2AC vertical

εR

00 0.139 0.130 0.229 0.125 0.065 0.050 0.066 0.301 0.142 0.118 0.280 0.031
01 0.158 0.171 0.762 0.178 0.137 0.125 0.105 0.189 0.146 0.140 0.168 0.025
02 0.123 0.126 0.186 0.248 0.057 0.044 0.057 0.254 0.121 0.208 0.213 0.030
03 0.115 0.108 0.265 0.210 0.064 0.069 0.062 0.261 0.113 0.172 0.238 0.037
04 0.099 0.116 0.202 0.212 0.050 0.051 0.045 0.131 0.100 0.098 0.116 0.020
05 0.119 0.112 0.199 0.157 0.054 0.052 0.056 0.199 0.116 0.122 0.185 0.022
06 0.116 0.118 0.168 0.168 0.053 0.092 0.056 0.145 0.115 0.111 0.137 0.023
07 0.119 0.112 0.245 0.188 0.058 0.065 0.054 0.202 0.137 0.141 0.173 0.023
08 0.116 0.111 0.196 0.166 0.051 0.046 0.053 0.225 0.108 0.146 0.203 0.024
09 0.133 0.125 0.179 0.274 0.056 0.046 0.058 0.234 0.124 0.169 0.189 0.027
10 0.127 0.115 0.201 0.195 0.052 0.040 0.058 0.265 0.203 0.174 0.223 0.025

εt

00 2.412 2.400 4.007 2.272 2.469 2.190 2.519 2.746 2.499 2.133 2.243 1.738
01 5.231 4.102 41.19 4.217 4.782 11.91 3.781 2.179 3.654 3.012 2.486 1.428
02 1.740 1.739 2.508 2.422 1.825 1.579 1.821 2.506 1.702 1.891 1.975 1.558
03 2.744 2.805 6.191 4.208 3.116 3.712 3.258 2.065 2.731 2.571 1.849 1.888
04 1.560 1.746 3.619 2.966 1.564 1.708 1.635 2.385 1.725 1.892 1.768 1.228
05 2.289 2.281 4.155 3.013 2.337 2.544 2.406 2.735 2.273 2.279 2.354 1.532
06 2.071 1.862 2.739 2.675 1.757 2.721 1.760 2.543 1.956 1.978 2.247 1.303
07 3.002 3.029 6.397 4.354 2.810 4.554 3.048 3.105 2.892 2.601 2.902 1.820
08 2.386 2.349 3.909 2.537 2.433 2.422 2.457 3.200 2.344 2.572 2.569 1.911
09 1.977 1.806 2.592 2.947 1.838 1.656 1.793 2.673 1.876 1.901 1.997 1.440
10 1.889 1.893 2.781 2.659 1.932 1.658 1.888 2.955 2.057 2.230 2.296 1.586

Table 4 Runtime of RANSAC averaged over KITTI sequences combined with different solvers (unit: s).

Methods 17pt-Li 8pt-Kneip 6pt-St. 6pt-Ven. 4pt-Lee 4pt-Sw. 4pt-Liu 2pt-Lee 6AC-Ven. 2AC-Guan 2AC plane 2AC vertical

Mean time 52.82 10.36 79.76 5.71 0.85 0.63 0.45 0.11 6.83 0.59 0.07 0.09
Standard deviation 2.62 1.59 4.52 0.73 0.093 0.057 0.058 0.014 0.61 0.067 0.0071 0.0086
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Fig. 14 Rotation and translation error with varying image
noise under random motion with known vertical direction.
Solid line indicates using image point pairs of ACs. Dashed
line, dash-dotted line and dotted line indicate using the hallu-
cinated PCs, which are generated with different distribution
area w = 1, 5, 10 pixels, respectively.

4pt-Liu (Liu et al. 2017), 2pt-Lee (Lee et al.
2013), 6AC-Ventura (Alyousefi & Ventura 2020) and
2AC-Guan (Guan et al. 2021a). Since the KITTI dataset
is captured by a stereo rig with both cameras having
the same altitude, that is a degenerate case for the
1AC plane method, it is not performed in the experi-
ment. For the 2AC plane method, the results are also
compared to the ground truth of the 6DOF relative
pose, even though this method only estimates two
angles (θ, ϕ) with the plane motion assumption. For
the 2AC vertical method, the roll and pitch angles
obtained from the GPS/IMU units are used to align
the multi-camera reference frame with the vertical
direction (Guan et al. 2020; Li et al. 2020; Saurer et al.
2016). To ensure the fairness of the experiment, the
roll and pitch angles are also provided for the methods
4pt-Lee (Lee et al. 2014), 4pt-Sweeney (Sweeney
et al. 2014) and 4pt-Liu (Liu et al. 2017), which use

the known vertical direction as a prior. Table 3 shows
the results of the rotation and translation estimation.
The median error for each individual sequence is used
to evaluate the estimation accuracy. The runtime of
RANSAC averaged over KITTI sequences combined
with different solvers is shown in Table 4. The reported
runtimes include the robust relative pose estimation
without feature extraction, i.e., recovering the relative
pose by RANSAC combined with a minimal solver.

The proposed 2AC vertical method offers the
best overall performance among all the methods. The
6pt-Stewénius method performs poorly on sequence
01, because this sequence is a highway with few track-
able close objects, and this method always fails to se-
lect the best candidate from multiple solutions under
forward motion in the RANSAC scheme. Besides, it is
interesting to see that the translation accuracy of the
2AC plane method basically outperforms the methods
6pt-Stewénius and 6pt-Ventura, even though the pla-
nar motion assumption does not fit the KITTI dataset
well. Because the KITTI dataset has obvious ups and
downs, which will affect the accuracy of relative pose es-
timation under the planar motion assumption. We also
show the empirical cumulative error distributions for
KITTI sequence 00. These values are calculated from
the same values which were used for creating Table 3.
Figure 15 shows the proposed 2AC vertical method
offers the best overall performance in comparison to
state-of-the-art methods.

To visualize the comparison results, the estimated
trajectory for sequence 00 is plotted in Fig. 16. We
are directly concatenating frame-to-frame relative pose
measurements without any post-refinement. The tra-
jectory for 2AC vertical is compared with the two
best performing comparison methods in sequence 00
based on Table 3: 2AC-Guan in 6DOF motion case and
4pt-Sweeney in 4DOF motion case. Since all methods
were not able to estimate the scale correctly, in partic-
ular for the many straight parts of the trajectory, the
ground truth scale is used to plot the trajectories. Then
the trajectories are aligned with the ground truth and
the color along the trajectory encodes the absolute tra-
jectory error (ATE) (Sturm et al. 2012). Even though
all trajectories have a significant accumulation of drift,
it can still be seen that the 2AC vertical method has
the smallest ATE among the compared trajectories.
Due to the benefits of computational efficiency, both
the 2AC plane method and the 2AC vertical method
are quite suitable for finding a correct inlier set, which
is then used for accurate motion estimation in visual
odometry.

6.4.2 Experiments on nuScenes Dataset

We also test the performance of our methods on
the nuScenes dataset (Caesar et al. 2020), which
consists of consecutive keyframes from 6 cameras.
All the keyframes of Part 1 are used for the eval-
uation and there are 3376 images in total. The
ground truth pose is provided from a lidar map-
based localization scheme. Similar to the experi-
ments on KITTI dataset, the ACs between consecutive
keyframes in each camera are established by applying
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Fig. 15 Empirical cumulative error distributions for KITTI sequence 00. (a) reports the rotation error. (b) reports the transla-
tion error. The proposed 2AC plane method and 2AC vertical are compared against 17pt-Li (Li et al. 2008), 8pt-Kneip (Kneip
& Li 2014), 6pt-Stewénius (Stewénius et al. 2005), 6pt-Ventura (Ventura et al. 2015), 4pt-Lee (Lee et al. 2014), 4pt-Sweeney
(Sweeney et al. 2014), 4pt-Liu (Liu et al. 2017), 2pt-Lee (Lee et al. 2013), 6AC-Ventura (Alyousefi & Ventura 2020) and
2AC-Guan (Guan et al. 2021a).
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Fig. 16 Estimated trajectories without any post-refinement. The relative pose measurements between consecutive frames are
directly concatenated. The colorful curves are the trajectories estimated by 2AC-Guan (Guan et al. 2021a), 4pt-Sweeney (Sweeney
et al. 2014) and 2AC vertical. Black curves with stars are the ground truth trajectories. Best viewed in color.

Table 5 Rotation and translation error on nuScenes sequences (unit: degree).

Part 17pt-Li 8pt-Kneip 6pt-St. 6pt-Ven. 4pt-Lee 4pt-Sw. 4pt-Liu 2pt-Lee 6AC-Ven. 2AC-Guan 2AC plane 2AC vertical

εR 01 0.161 0.156 0.203 0.179 0.083 0.078 0.108 0.371 0.143 0.127 0.344 0.057
εt 01 2.680 2.407 2.764 2.521 1.780 1.659 1.941 2.327 2.366 2.195 2.284 1.469

the ASIFT (Morel & Yu 2009) detector. The proposed
methods 2AC plane and 2AC vertical are compared
against 17pt-Li (Li et al. 2008), 8pt-Kneip (Kneip
& Li 2014), 6pt-Stewénius (Stewénius et al. 2005),
6pt-Ventura (Ventura et al. 2015), 4pt-Lee (Lee
et al. 2014), 4pt-Sweeney (Sweeney et al. 2014),
4pt-Liu (Liu et al. 2017), 2pt-Lee (Lee et al.
2013), 6AC-Ventura (Alyousefi & Ventura 2020) and
2AC-Guan (Guan et al. 2021a). All solvers are used
within RANSAC.

Table 5 shows the results of the rotation and trans-
lation estimation for the Part1 of nuScenes dataset.
The median error is used to evaluate the estimation ac-
curacy. It can be seen that the proposed 2AC vertical

method offers the best performance among all the meth-
ods. This experiment also demonstrates that both pla-
nar motion and known vertical direction assumptions
are met in practical self-driving situations.

6.4.3 Experiments on EuRoC Dataset

We further evaluate the performance of the proposed
solvers in an unmanned aerial vehicle environment. The
EuRoC MAV dataset (Burri et al. 2016) is used for the
evaluation in this experiment, which is collected with a
stereo camera mounted on a micro aerial vehicle. The
ground truth pose is provided from the nonlinear least-
squares batch solution over the Leica position and IMU
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Table 6 Rotation and translation error on EuRoC sequences (unit: degree).

Seq. 17pt-Li 8pt-Kneip 6pt-St. 6pt-Ven. 4pt-Lee 4pt-Sw. 4pt-Liu 6AC-Ven. 2AC-Guan 2AC vertical

εR

MH01 0.113 0.109 0.124 0.623 0.030 0.027 0.029 0.106 0.443 0.022
MH02 0.106 0.112 0.144 0.636 0.022 0.027 0.022 0.102 0.394 0.020
MH03 0.137 0.148 0.181 0.835 0.039 0.040 0.052 0.133 0.561 0.034
MH04 0.154 0.170 0.175 0.745 0.043 0.041 0.045 0.165 0.806 0.033
MH05 0.167 0.158 0.179 0.852 0.038 0.040 0.035 0.176 0.718 0.029

εt

MH01 2.928 2.865 3.555 7.348 1.947 2.170 2.075 2.858 4.682 1.792
MH02 2.494 2.553 2.908 6.339 1.573 1.786 1.707 2.483 4.045 1.489
MH03 2.412 2.276 3.068 5.104 2.177 1.787 1.977 2.075 3.728 1.675
MH02 2.950 3.127 5.531 6.369 2.261 2.098 2.591 2.966 5.945 1.949
MH03 3.071 2.753 4.275 7.971 1.957 2.130 2.004 2.904 5.034 1.751

measurements. The sequences labeled from MH01 to
MH05, which are collected in a large industrial machine
hall, are used for performance comparison. Since the in-
dustrial environment is unstructured and cluttered, it
renders these sequences challenging to process. Consid-
ering that the movement between consecutive frames
is small, we choose the part of image pairs for relative
pose estimation by an amount of one out of every four
images. Besides, we crop the image pairs with insuffi-
cient motion in this experiment. Therefore, the methods
were tested on a total of 3000 image pairs.

Since the Ackermann motion assumption and the
planar motion assumption do not fit the EuRoC
MAV dataset, the methods 2pt-Lee, 1AC plane and
2AC plane are not performed in the experiment.
The 2AC vertical method are compared against
17pt-Li (Li et al. 2008), 8pt-Kneip (Kneip &
Li 2014), 6pt-Stewénius (Stewénius et al. 2005),
6pt-Ventura (Ventura et al. 2015), 4pt-Lee (Lee
et al. 2014), 4pt-Sweeney (Sweeney et al. 2014),
4pt-Liu (Liu et al. 2017), 6AC-Ventura (Alyousefi
& Ventura 2020) and 2AC-Guan (Guan et al. 2021a).
Similar to the experiments on KITTI dataset, all the
solvers have been integrated into a RANSAC scheme.
The ACs between consecutive frames in each camera
are established by applying the ASIFT (Morel & Yu
2009) detector. Table 6 shows the results of the rota-
tion and translation estimation for EuRoC sequences.
The median error for each individual sequence is used
to evaluate the estimation accuracy. The proposed 2AC
vertical method offers the best performance among
all the methods. This experiment demonstrates that the
2AC verticalmethod is well suited for relative pose es-
timation in the unmanned aerial vehicle environment.

7 Conclusion

By exploiting the geometric constraints which inter-
prets the relationship of ACs and the generalized cam-
era model, we have proposed three solutions for the rel-
ative pose estimation of a multi-camera system. Under
the planar motion assumption, we present two solvers
to recover the relative pose of a multi-camera system,
including a minimal solver using a single AC and a
solver based on two ACs. In addition, a minimal solu-
tion with two ACs is proposed to solve for the relative
pose of the multi-camera system with known vertical
direction. Both planar motion and known vertical direc-
tion assumptions are realistic in popular modern robot

applications. We evaluate the proposed solvers on syn-
thetic data and three real image sequence datasets. The
experimental results clearly showed that the proposed
methods provide better efficiency and accuracy for rel-
ative pose estimation in comparison to state-of-the-art
methods.
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