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Abstract: A turbo compressor was investigated to ensure the operational reliability of the charging
of fuel cell systems. This study investigated air-lubricated herringbone bearings to support the
high-speed rotating shaft. For reliable operation of the rotor bearing system, stable operation in
the whole speed range (up to 120 krpm), as well as low lift-off speed, is an important issue. Some
publications containing guidelines for an optimized design in terms of stability and lift-off behavior
date back to the 1970s, with some simplifying assumptions (such as narrow groove theory and small
eccentricity analysis). Many publications have addressed the calculations, as well as the optimization
of herringbone-grooved bearings; however, general design guidelines are still missing in the view of
the authors. Although the investigations related to bearings for the support of a lightweight rotor
for a special compressor of a fuel cell unit, this study could also indicate favorable bearing designs
for other high-speed applications. Here, the compressible Reynolds equation was solved in the
whole solution domain using a conservative finite difference scheme, and the corresponding bearing
characteristics were determined. In a perturbation analysis, the linearized dynamic coefficients of
the herringbone bearing are calculated. To compare the suitability and performance of the various
herringbone-grooved bearing designs, especially at high speed, the simple model of a Jeffcott rotor
airborne with two identical herringbone-grooved journal bearings (HGJBs) was used. The geometrical
parameters of the HGJBs were varied, and their effects on bearing characteristics and stability were
evaluated. Recommendations concerning favorable geometrical bearing parameters for a sufficiently
high stability threshold speed and reasonable low lift-off speed were the result of the parameter study.

Keywords: aerodynamic bearings; herringbone-grooved journal bearing; stability threshold;
lift-off speed

1. Introduction

Aerodynamic or gas-lubricated bearings are applicable for the support of high-speed
rotating shafts due to the low friction in the gas-lubricated film gap and the absence of
contaminants in the lubricant. In general, foil bearings, segmented spring bearings, or
spiral grooved bearings can be used. Spiral grooved bearings exhibited high load capacity;
thus, spiral grooved bearings were the subject of the investigations. Herringbone-grooved
journal bearings (HGJBs) generate a pressure field in the lubricating gap between the
rotating shaft and the sleeve due to the pumping effect of the inclined grooves, as shown
in Figure 1. Therefore, HGJBs always generate a pressure-build up depending on the
speed, even for a concentric shaft position in the bearing sleeve, which differs from the
performance of a plain journal bearing.

Consequently, herringbone-grooved bearings exhibit a higher stability threshold than
plain journal bearings due to higher direct film stiffness for low shaft eccentricity. How-
ever, the bearing geometry has to be optimized to ensure the dynamic stability of rotor
bearing systems for high-speed applications. The geometrical parameters to be opti-
mized are the groove inclination angle, α, the groove depth ratio, tg/c, the groove width
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ratio, bg/(bg + bl), the dam length ratio, Ld/L (with L = Lg1 + Lg2 + Ld), and the number of
grooves, k, as depicted in Figure 2.
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The static and dynamic performance of those gas-lubricated bearings can be described
by the corresponding bearing characteristics, such as load capacity, frictional force, and
stiffness and damping coefficients of the lubricating film. These values are determined
based on the pressure distribution and perturbed pressure distribution in the bearing. This
requires the solution of the (nonlinear) Reynolds equation, such as by applying the finite
difference method or the finite element method. For shaft vibrations with small vibration
amplitudes compared with the clearance, a small-perturbation analysis can be applied to
compute the linearized stiffness and damping coefficients of the lubricating gap by solving
the first-order perturbation equations. For discretizing the solution domain, a rather fine
grid is required to describe the spiral groove geometry. As investigations on the effect of
the number of grooves on bearing characteristics have shown, bearing characteristics are
only subject to small changes from changes in the groove number, provided the groove
number is fairly high, i.e., 16 grooves or higher [1].

In this case, the effect of groove number on the bearing characteristics can be neglected
and the so-called narrow groove theory (NGT) can be applied as an approximation. The
pressure distribution over the groove–land region is approximated using linear functions
for the pressure distribution over the groove and land in the circumferential direction.

This theory originated from Whipple [2] regarding the spiral-grooved thrust bear-
ing. On that basis, Vohr and Pan [3] extended the theory toward spiral-grooved journal
bearings. To solve the equations, Vohr and Chow [4] presented the small-eccentricity
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perturbation theory to calculate the pressure distribution using a Runge–Kutta method.
Cunningham et al. [5] measured the load capacity, bearing stiffness, and displacement
angles of herringbone bearings. As could have been expected, the agreement between
measurement and small-eccentricity analysis is quite good for low eccentricity, up to
ε = e/c = 0.3 (with eccentricity e and clearance c), and for a rather low compressibility
number Λ.

Fleming [6] extended the small perturbation theory to account for an additional
aerostatic pressure generated by orifices. Cunningham et al. [7] measured the static per-
formance characteristics of herringbone-grooved gas bearings, such as the load capacity,
eccentricity, attitude angles of the shaft, and power loss. The maximum load capacity was
measured for a herringbone bearing with α = 30◦, 20 grooves, c ≈ 10.7 µm, tg = 14.7 µm,
and hmax/hmin ≈ 2.35.

By balancing the mass streams in the circumferential and axial directions and by assuming
averaged, linear pressure gradients on the groove and land, Pan and Malanoski [8] derived a
corresponding Reynolds equation for a herringbone journal bearing with an infinite number
of grooves and investigated the bearing stability through small perturbation analysis.

Fleming and Hamrock [9] presented an optimization procedure concerning the geo-
metrical bearing parameters for maximum bearing stability based on the small eccentricity
analysis conducted by Vohr and Chow [4]. For a length-to-diameter ratio L/D = 1, they
found an optimum film thickness ratio H = (tg + c)/c between 2.25 and 2.77 and an inclina-
tion angle α between 24.2◦and 36.2◦, depending on the speed. For the following quantities,
only intervals are given for the optimum groove width ratio (between 0.48 and 0.6) and
optimum groove length ratio (between 0.904 and 1).

Bonneau and Absi [1] investigated a herringbone bearing with four grooves by solving
the Reynolds equation (linearized with the Newton–Raphson procedure) through FEM.
Bearing characteristics were calculated for a grooved shaft against a smooth sleeve as well
as for a smooth shaft against a grooved sleeve. For different values of groove depth, groove
inclination angle, and the number of grooves, the stiffness coefficients and the load capacity
of the bearing are presented. Faria [10,11] applied FEM and the Galerkin-weighted residual
method for solving the Reynolds equation and the corresponding perturbed differential
equation to calculate the performance characteristics of the same herringbone-grooved
bearing. The results of this high-order FEM agree well with the data obtained by Bonneau
and Absi for the considered herringbone bearing.

Jang and Yoon [12] derived the Reynolds equation for both cases of smooth shafts
running in grooved sleeves and grooved shafts running in smooth sleeves. The frictional
power loss was significantly higher for smooth shafts running in grooved sleeves than in
the case of grooved shafts in smooth sleeves.

Stanev, Wardle, and Corbett [13] used the calculations derived by D. P. Fleming [6]
and extended them to hybrid herringbone-grooved bearings with an additional pressure
build-up through orifices.

Here, only publications that focused on the optimization of the herringbone-grooved
bearing concerning lift-off and stability behavior were considered.

Zirkelback and San Andres [14] calculated the bearing characteristics with FEM and
investigated the effect of geometrical bearing parameters on the dynamic coefficients and
the stability of the bearing.

Yoshimoto, Miyatake, Nagata [15], and Tomioka and Miyanaga [16] show that flexible
sleeve support can significantly improve stability. Tomioka and Miyanaga [16] presented
stability charts for HGJBs with varied parameters of external spring coefficients and external
damping ratios.

Schiffmann [17] performed a Pareto optimization procedure for bearing parameters
concerning stability. Combinations of bearing parameters are given herein, resulting in a
highly stable operational domain for the bearing.
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Fujita [18] shows that a higher L/D ratio contributes to improved stability and that a
higher film thickness ratio H = (tg + c)/c≈ 3 is more favorable than lower values of H. It has
also been stated that a groove inclination angle of 30◦ is preferable for high bearing stability.

Miyanaga and Tomioka [19] considered the centrifugal effects and investigated the
effect of the groove depth ratio, tg/c, and groove width ratio, bg/(bg + bl), on the bearing
stability for different values of dimensionless rotor mass. They show that a groove width
ratio bg/(bg + bl) between 0.3 and 0.5 and groove depth ratio (tg + c)/c between 1.5 and 2
resulted in a high stability threshold speed, which exhibited a maximum in the mentioned
parameter ranges.

Guenat and Schiffmann [20] performed a multi-objective optimization of the bearing
parameters for maximum stability, which generated a safety margin so manufacturing
uncertainties did not significantly affect the stability. Depending on the film–thickness
ratio, optimum values of groove width ratio, groove inclination angle, groove depth, and
groove length ratio were identified [20].

Iseli et al. [21] evaluated the static and dynamic properties of spiral-grooved gas
journal bearings as well as the critical rotor mass by using the NGT and the FEM. For
the technically important case of rotating grooves, they made a time-periodic approach
(finite groove approach) to eliminate the computationally expensive time dependency. For
higher eccentricities ε > 0.4 and compressibility number Λ > 5 the deviations of critical
mass calculated according to NGT and with FEM become significant, especially for a small
number of grooves.

Iseli and Schiffmann [22] optimized the geometrical parameters of the herringbone-
grooved gas bearing for maximum load capacity and maximum stability for four different
rotor designs. They calculated the critical mass and critical transverse moment of inertia
for each rotor-bearing system with a full time-integrated transient analysis and compared
the results with those obtained with a linearized method by using linearized bearing coeffi-
cients. The linearized method underpredicts the critical mass and the critical transverse
inertia moment with a deviation of less than 7% compared to the transient analysis [22].
The deviation of the unbalance response between the linearized method and the transient
analysis is less than 6% for maximum amplitudes of ε < 0.5 and less than 8% for amplitudes
ε < 0.7 [22].

The objective of this work was to optimize the bearing parameters of the aerodynamic
herringbone-grooved bearing for application in the air compressor of a fuel cell in terms
of load capacity and system damping to achieve low lift-off speed and a high stability
threshold speed.

2. Analysis

Two methods are mainly applied to numerically calculate the pressure distribution
in aerodynamic herringbone-grooved bearings [17]. One method consists of solving the
discretized Reynolds equation by applying a finite element or finite difference method and
using a grid mesh with a film thickness distribution reflecting the real groove geometry.
This requires a corresponding fine mesh to accurately describe the real spiral groove
pattern. Another method based on the assumption of an infinitely high number of grooves
is the so-called narrow groove theory (NGT), which does not require a fine mesh for the
solution with the finite difference method; therefore, it is expected to be much faster and
rapidly converging when iterating the shaft position (ε-γ-iteration) and calculating the
corresponding pressure profile in the bearing. With this approach, the circumferential
saw-toothed pressure profile is locally approximated by a linear pressure distribution
over the groove and land region, which corresponds to the real distribution for an infinite
number of grooves and is a good approximation for a fairly high number of grooves.

The time for calculating the pressure distribution with the conservative finite difference
method and the resulting bearing characteristics is also quite reasonable with a fully
developed model which describes the real groove geometry almost exactly through the
use of an appropriate computational grid and is, therefore, superior to the NGT-model. In
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addition, the effect of the groove number can be investigated, which is not possible with the
NGT. Especially for low numbers of grooves in herringbone bearings, the narrow groove
theory does not seem to be sufficiently accurate.

2.1. Stationary Reynolds Equation

The Reynolds equation for gas lubricants, considering the velocities of both bearing
surfaces in journal bearings, is as follows [23,24]:

∂

∂x

(
ρh3

η

∂p
∂x

)
+

∂

∂z

(
ρh3

η

∂p
∂z

)
= 6

∂

∂x
(ρhU0) + 12

∂(ρh)
∂t

; U0 = U1 + U2 (1)

Laminar flow and ideal gas behavior are assumed here. Laminar flow is valid as long
as there are no flow instabilities, which is true as long as Ta < Tac so that Taylor vortices are
not likely to occur [25]. This condition is true for:

Ta < Tac ≈ 41.1 with Ta = Re ·
√

c
R

and Re =
ρ · R ·ω · c

η
(2)

So, turbulence effects are negligible if the local Reynolds number in the grid points
of the solution domain is below the critical Reynolds number Rec (corresponding to the
critical Taylor number Tac ≈ 41.1 [25]). The Reynolds number—with the actual bearing
parameters (R = 0.0125 m and c = 12 µm) and operational parameters—is about one-tenth
of Rec.

Rec = Tac ·
√

R
c
≈ 1326.5 (3)

Furthermore, slip flow is not considered, because the actual Knudsen number, Kn = λ/h,
is certainly below the critical value Knc = 0.01 for air at an operating temperature not higher
than 400 K (with mean free path λ ≤ 0.10 µm) [26] and for clearance of c = 12 µm; thus, the
Reynolds Equation (1) can be regarded as valid as long as these conditions are fulfilled.

The Reynolds Equation (1) can be applied to both cases of grooved journals against
smooth sleeves and smooth journals against grooved sleeves. The x coordinate axis is fixed
to the stationary part; therefore, the Reynolds equation shown above applies to herringbone-
grooved bearings with (stationary) grooves in the sleeve with U2 =ω·R; U1 = 0 (Figure 3).
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For manufacturing reasons, grooves are commonly positioned on the rotating shaft.
As described by Jang and Yoon [27] the “film thickness changes as the grooved journal
rotates [ . . . ]. Introducing the assumption that the grooved journal is stationary and the
sleeve is rotating in the opposite direction, the rate of change of the fluid film can easily
be treated numerically” [27] p. 298. In this case, the surface velocities become U2 = 0,
U1 = −ω·R.

Introducing θ for the circumferential angular coordinate, Z = z/R for the dimen-
sionless axial coordinate, H = h/c as the dimensionless gap height, and P = p/pa as the
dimensionless pressure (also assuming ideal gas behavior and a laminar gas film [28]), the
Reynolds equation [23] becomes:

∂

∂θ

(
P ·H3 · ∂P

∂θ

)
+

∂

∂Z

(
P ·H3 · ∂P

∂Z

)
= Λ · ∂

∂θ
(P ·H) + 2 ·Λs ·

∂

∂Φ
(P ·H) (4)
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compressibility number Λ = 6ηU0 R
pa·c2 ; U0 = U1 + U2;

squeeze number Λs =
6ηνR2

pa c2 (ν: excitation frequency);
dimensionless axial coordinate Z = z/R;
dimensionless time coordinate Φ = ν·t (ν: excitation frequency).
The boundary conditions are as follows:

P(θ, Z = ±L/D) = 1
P(θ+ 2π, Z) = P(θ, Z)

In both cases—grooves stationary on the sleeve or grooves on the rotating shaft—were
considered in the publication by Jang and Yoon [27], but only the latter case was treated in
this study for practical reasons because the grooves are easier to manufacture on the shaft
rather than on the sleeve. The Reynolds equation is an elliptic differential equation and is
nonlinear due to the compressibility effect.

For linearization, the Newton–Raphson method is applied. The Reynolds equation is
then numerically solved by applying the conservative finite difference method. To this end,
the entire solution domain was discretized with a 2D model (shown in Figure 4) and the
Reynolds equation was solved to calculate the pressure profile for stationary operation.
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2.2. Perturbation Analysis

The dynamic coefficients, i.e., the stiffness and damping coefficients, can be calculated
by performing a small perturbation analysis if the vibration amplitudes are small compared
with the minimum film thickness. For completeness of the report, the basic approach is
presented subsequently.

Accounting for small deviations in eccentricity ∆ε and displacement angle ∆γ, the
film thickness H becomes [28] (for definitions of x, y, and γ, see Figure 1):

H = H0 − ∆ε · cos(θ− ∆γ)
= H0 − x · cos θ− y · sin θ = H0 + H1 · x + H2 · y; H1 = − cos θ; H2 = − sin θ

(5)

Here, H0 denotes the stationary dimensionless gap height, and H1·x and H2·y denote
its perturbations. For synchronous vibrations of the shaft, x and y represent the real parts
x = Re

{
x̃ · eiΦ} and y = Re

{
ỹ · eiΦ}, respectively, x′ = i · x and y′ = i · y represent the
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corresponding displacement speed of the shaft. The corresponding perturbed pressure can
also be written according to the linearized Taylor approach [28]:

P = P0 +
(

∂P
∂x

)
st
· x +

(
∂P
∂y

)
st
· y +

(
∂P
∂x′

)
st
· x′ +

(
∂P
∂y′

)
st
· y′

= P0 + P0
1 · x + P0

2 · y + P∗1 · x′ + P∗2 · y′
= P0 + P1 · x + P2 · y; P1 = P0

1 + i · P∗1 ; P2 = P0
2 + i · P∗2

(6)

The resulting partial differential equations for the zeroth-order pressure and film
thickness perturbations are the ordinary Reynolds equation, presented above, and the
differential equation for the first-order perturbations [28]:

∂
∂θ

(
H3

0 · ∂
∂θ (P0Pk)

)
+ ∂

∂Z

(
H3

0 · ∂
∂Z (P0Pk)

)
−Λ ·

(
∂

∂θ (H0Pk) + 2 · (H0Pk) · i
)

= − 3
2 ·

∂
∂θ

(
H2

0 ·Hk · ∂
∂θ

(
P2

0

))
− 3

2 ·
∂

∂Z

(
H2

0 ·Hk · ∂
∂Z

(
P2

0

))
+ Λ ·

(
∂

∂θ (P0Hk) + 2P0Hk · i
)

;
k = 1, 2

(7)

2.3. Stability Analysis

The dynamic characteristics of the rotor-bearing system are affected by the stiffness
and damping coefficients of the bearing. The (rigid) airborne Jeffcott rotor in two identical
bearings was taken as a basis and the first two natural frequencies and the correspond-
ing damping of the natural vibrations were calculated herein, as presented in Figure 5.
Although the assumptions concerning the rotor model (symmetrical rotor, neglect of gy-
roscopic effects) are very restrictive, the suitability of different bearing designs can be
evaluated regarding the stability threshold and compared with each other. The stability
threshold for the real rotor-bearing system can differ considerably from the values evalu-
ated for the symmetrical Jeffcott rotor-bearing system. This model is nonetheless a helpful
means to find optimized geometrical bearing parameters concerning bearing stability.
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Nontrivial solutions can be found, provided that the system determinant vanishes: 

Figure 5. Model of an airborne rotor for linear stability considerations.

The direct stiffness of aerodynamic bearings is much lower than the bending stiffness
of a rotor; therefore, the rotor can be assumed to be rigid. Thus, it is sufficient to take the
resulting bearing stiffness and damping coefficients, kik and cik, respectively, and the rotor
mass, msh, as a basis for the stability analysis [28].

The shaft motion equations have been derived from the force balance between the
inertia, spring, and damping forces on one hand, and the resulting external force on the
other hand. Here, the following definitions are introduced [28]:

ω2
0 =

g
c ; ρ = ρ∗

c ; X = xsh
c ; Y =

ysh
c ; φ = ωt

and
Kik =

kik · c
paLD

; Cik =
ωcikc
paLD

; F =
mshg

2paLD

with gravity, g, unbalance radius, ρ*, ambient pressure, pa, stiffness coefficient, kik, and
damping coefficient, cik, of the lubricating film.
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The equations of motion in x- and y-directions for unbalanced excitation with angular
velocity,ω, are [28]:

F ·
(
ω
ω0

)2
·

..
X + Cxx ·

.
X + Cxy ·

.
Y + Kxx · X + Kxy · Y = F ·

(
ω
ω0

)2
· ρ · cosφ

F ·
(
ω
ω0

)2
·

..
Y + Cyx ·

.
X + Cyy ·

.
Y + Kyx · X + Kyy · Y = F ·

(
ω
ω0

)2
· ρ · sinφ

(8)

Here, the angular velocity, ω0 =
√

g/c (with c representing the radial clearance of
the bearing), is introduced to define the dimensionless quantity, ω/ω0. To calculate the
natural frequencies and the system damping, only the homogeneous equations (right-hand
side set equal to zero, see equations above) are used. Harmonic motion is assumed with:

X = X̂ · eλ·φ, Y = Ŷ · eλ·φ with the eigenvalue λ = − u
ω

+ i · v
ω

The complex eigenvalue λi consists of the real part−Ui =−ui/ω, with Ui representing
the dimensionless damping and the imaginary part, Vi = vi/ω the dimensionless natural
frequencyωei

*/ω. The homogeneous equations of motion can be expressed in matrix form:F ·
(
ω
ω0

)2
· λ2

+ Cxx · λ + Kxx Cxy · λ + Kxy

Cyx · λ + Kyx F ·
(
ω
ω0

)2
· λ2

+ Cyy · λ + Kyy

 ·
X̂

Ŷ

 =

0

0

 (9)

Nontrivial solutions can be found, provided that the system determinant vanishes:∣∣∣∣∣∣∣
F ·
(
ω
ω0

)2
· λ2

+ Cxx · λ + Kxx Cxy · λ + Kxy

Cyx · λ + Kyx F ·
(
ω
ω0

)2
· λ2

+ Cyy · λ + Kyy

∣∣∣∣∣∣∣ = 0 (10)

This results in a quartic equation; thus, four eigenvalues λi can be determined. By
solving the characteristic equation, the frequencyωei

* = vi and the damping ui of the two
natural oscillations of the system are obtained for a given speed.

The system damping, Di, is then calculated, inserting the value, ui, and the corre-
sponding value, vi [28]:

Di =
ui/vi√

1 + (ui/vi)
2

(11)

In the following the minimum system damping DS is calculated by inserting the
minimum value ui and the corresponding value vi.

System damping ordinarily decreases with increased rotor speed [28]. When the
system damping vanishes, the stability threshold speed is reached with an onset of strong
subsynchronous vibrations.

3. Results

After verification with data presented in the literature, an optimization procedure was
performed and the corresponding results regarding lift-off speed and stability threshold
are presented. Herein, ambient pressure, pa = 0.1 bar, was always assumed.

3.1. Verification

The following investigations refer to a symmetrical herringbone bearing, as depicted
in Figures 1 and 2. The load capacity of a herringbone-grooved bearing (with a smooth
rotating shaft and a grooved sleeve) was calculated for different dimensionless eccentricities,
ε = e/c. The results match well with the data of Faria [11] for the compressibility number
Λ = 15.3 and—for moderate shaft eccentricities up to ε = 0.5—also for Λ = 100; for Λ = 100
and eccentricities above ε = 0.5, the agreement is still satisfactory, as shown in Figure 6.
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The direct stiffness coefficients, calculated by Bonneau and Absi for an HGJB with 

four grooves, agree quite well with our results, depicted in Figure 7. 

Figure 6. Load capacity of a herringbone bearing (α = 30◦, bg/(bg + bl) = 0.5; Lg/L = 1; tg/c = 1.4;
c = 10 µm, 4 grooves in the sleeve, smooth shaft): numerical results obtained by Faria (data from [11],
symbols) and this study’s results (lines).

The direct stiffness coefficients, calculated by Bonneau and Absi for an HGJB with
four grooves, agree quite well with our results, depicted in Figure 7.
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this study’s results (lines).

The stiffness coefficients of the radial spiral groove bearing (D = 0.04 m; L = 0.04 m;
c = 10 µm; tg = 14 µm; α = 30◦ ; bg = 0.5; kg = 4) calculated by Faria with FEM [10] are in
satisfactory agreement with our values, depicted in Figure 8.
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3.2. Variation in Bearing Parameters

The geometrical bearing parameters were varied to develop a favorable design for
achieving a low lift-off speed and high stability threshold speed. Lift-off speed is reached
during start-up when the rotor is no longer operating in the mixed friction region but
is airborne by the lubricant. The stability threshold speed is defined by the rotor speed
causing the system damping to become zero. System damping decreases with increasing
speed, showing a diminishing low value or even zero at the stability threshold speed.
For stable operation, the stability threshold speed should be significantly higher than the
maximum operating speed, which, in our case, is nmax = 120 krpm for application in a
compressor for a fuel cell.

The bearing geometry, as well as the operating parameters (bearing load and speed),
have a considerable impact on the bearing characteristics. The parameters to be optimized
regarding lift-off speed and stability threshold speed are the groove inclination angle, α,
the circumferential groove width ratio bg = bg/

(
bg + bl

)
, the dam length ratio Ld/L, the

clearance c, the groove depth tg, and the number of grooves k. The ratio of bearing length
to diameter was kept constant at L/D = 1 and the bearing radius was R = 0.0125 m.

3.2.1. Effect of Bearing Parameters on Lift-Off Speed

The minimum film thickness, hmin, is a measure of pressure build-up in the aerody-
namic bearing. For a certain load, the minimum film thickness is expected to be higher
for optimized spiral groove patterns, producing higher pressures for a certain film gap
height. As can be seen in Figure 9, the spiral groove patterns with low groove inclination
angles operate at a higher film thickness than those with a higher groove inclination angle.
It can be concluded that spiral groove patterns with low groove inclination angles have an
advantage over higher inclination angles in terms of lift-off speed.
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Figure 9. Minimum film thickness in the herringbone bearing for various groove inclination angles
(tg = 17.5 µm; c = 12 µm; bg = 0.5; Ld/L = 0.02; 20 grooves; F = 10 N).

Figure 10 shows that the groove width ratio, bg, hardly affects the minimum film
thickness, hmin, in the range 0.3 ≤ bg ≤ 0.6. The dam length ratio, Ld/L, has only a slight
effect on the minimum film thickness (Figure 11), whereas the groove inclination angle
has a much greater impact on the pressure build-up, which is higher for low values of
α (α = 20◦) than for α = 40◦ at rotor speeds below 25,000 rpm.
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Figure 10. Effect of the groove width ratio on the minimum film thickness in herringbone bearings
(tg = 17.5 µm; c = 12 µm; α = 30◦; Ld/L = 0.02; 20 grooves; F = 10 N).
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(tg = 17.5 µm; c = 12 µm; bg = 0.5; 20 grooves; F = 10 N; Ld/L = 0 . . . 0.10).

3.2.2. Effect of Bearing Parameters on the Stability Threshold

The geometrical parameters of the symmetrical herringbone bearing include the
groove inclination angle, α, the groove width ratio, bg, the dam length ratio, Ld/L, the
groove depth ratio, tg/c, and the number of grooves, k. The groove depth ratio, tg/c, was
kept constant with tg/c =1.45, which is nearby the optimum value of 1.54 for Λ = 10 and
2.0 for Λ = 20 (after [9]) in terms of stability.

The bearing load was kept constant at F = 2 N, which corresponds to the stationary
bearing load due to the rotor weight of the specific application in the fuel cell compressor
according to the requirements in the Ariel project. The influence of the bearing param-
eters on the system damping DS was investigated for the maximum operating speed of
n = 120 krpm.

From Figures 12–16, it can be observed that the system damping, DS, increases with
the grove inclination angle, α, at least in the range 30◦ ≤ α ≤ 40◦ for bg = 0.5, reaching
even higher values at α = 45◦ and bg = 0.4 for 0.0 ≤ Ld/L ≤ 0.08. Nearly the same has been
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found for Ld/L = 0.1, except for the fact that here the maximum DS is reached for α = 45◦

and bg = 0.5, as demonstrated in Figure 17.
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Figure 12. Effect of the groove inclination angle and groove width ratio on the system damping of a
Jeffcott rotor with HGJBs (Ld/L = 0.0; c = 12 µm; tg = 17.5 µm; 20 grooves; F = 2 N; n = 120 krpm).
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Jeffcott rotor with HGJBs (Ld/L = 0.1; c = 12 µm; tg = 17.5 µm; 20 grooves; F = 2 N; n = 120 krpm).

In Figure 18, the strong effect of the groove inclination angle, α, on the system damping
is visible, showing a maximum value at α = 40◦ (for Ld/L ≤ 0.06) or at α = 45◦ (for
0.08 ≤ Ld/L ≤ 0.1), respectively. The effect of Ld/L itself on the system damping is quite
low, showing a relative maximum at Ld/L = 0.02 for α < 40◦, as depicted in Figure 18. In
contrast, the effect of the groove depth ratio, tg/c, on the system damping is rather strong
(Figure 19), exhibiting maximum system damping for high Λ-values at tg/c = 1.46.
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Figure 19. Effect of the groove depth ratio, tg/c, and compressibility number on the system damping
of a Jeffcott rotor with HGJBs (bg = 0.5; α = 40◦; Ld/L = 0.02; 20 grooves; F = 2 N).

The number of grooves significantly affects the system damping only at Λ-values
above Λ = 15. As can be seen in Figure 20, the system damping tends to be higher for a
lower groove number, k, as long as k ≥ 10 for a bearing load of F = 2 N.
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The system damping, DS, is not only affected by the compressibility number, but also
by the bearing load, as shown in Figure 21 for HGJBs with the geometrical parameters
presented herein and 15 grooves. At Λ ≈ 17.5 system damping is positive for values of
the specific bearing load lower than F = 0.128. The substitution of HGJBs with 25 grooves
would result in positive system damping only for the specific bearing load F = 0.032 at
Λ ≈ 17.5, as shown in Figure 22. However, the system damping is very low in these cases;
thus, external damping is recommended to stabilize the rotor-bearing system.
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4. Conclusions

The application of aerodynamic HGJBs in high-speed machines, such as fuel cell
compressors, requires operational safety in the complete operational range. This means
that stable operation must be ensured even at maximum operating speed; a low lift-off
speed is also required in the low-speed range to avoid excessive wear during start-up
and shutdown.

Both optimization targets—lift-off speed and stability threshold speed—lead to dif-
ferent “optimum” bearing designs because good lift-off behavior is realized with a low
groove inclination angle (at about 20◦), whereas stability can only be achieved with higher
groove inclination angles (α = 40◦).

The stable operation must always be ensured (representing a necessary condition);
therefore, the focus of the optimization procedure was on optimizing the parameters for
optimum stability, which was performed for the Jeffcott-rotor model in two identical HGJBs
using positive system damping as a criterion.
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To estimate the dynamic behavior of the real rotor-bearing system, the real rotor
geometry has to be considered, with its real mass distribution and the inertia moments of
the impellers, among other factors. The approach in this paper used linearized dynamic
coefficients, which are useful for estimating the stability threshold speed. However, the
rotor bearing behavior is nonlinear for operational points, where subsynchronous vibrations
and larger vibration amplitudes occur. In this case, a transient analysis must be carried out
to achieve a realistic simulation of rotor bearing performance.

Analysis of the transient behavior of the rotor bearing system will, therefore, be the
focus of a follow-up project, which should also focus on the effects of external damping and
aerostatic pressure supply (as an auxiliary lift-off device) on the stability of the system. Spe-
cial attention will also be paid to real gas effects [29], because depending on the operating
condition, the state of the lubricant in the air compressor of a fuel cell may be close to the
saturation line. For other applications (with different geometrical bearing parameters and
operational parameters), turbulence or rarefaction effects could become prevalent as well.

The present study was limited to the optimization of the geometrical parameters of a
conventional herringbone-grooved bearing. Enhanced grooves or arc-shaped grooves have
already been the subject of recent studies conducted by several researchers maximizing the
load capacity and/or stability threshold of the bearing.
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Nomenclature

bg, bl Groove width, land width (m)
bg Groove width ratio bg = bg/

(
bg + bl

)
c Clearance (m)
cik Damping coefficient of the lubricating film (Ns/m)
Cik Dimensionless damping coefficients Cik =ω·cik·c/(paLD)
D Bearing diameter (m)
D* Damping ratio
DS System damping
e Eccentricity (m)
F Force (N)
F Dimensionless force F = F/(paLD)
G Gravity constant (m/s2)
H Film thickness (m)
H Dimensionless film thickness
kik Stiffness coefficients of the lubricating film (N/m)
Kik Dimensionless stiffness coefficients Kik = kik·c/(paLD)
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Kn Knudsen number Kn = λ/h
L, Ld, Ll Bearing length (m), dam length (m), land length (m)
N Speed (rpm)
p, pa Pressure, ambient pressure (Pa)
P = p/pa Dimensionless pressure
R Rotor radius (m)
Re Reynolds number Re = ρωRc/η
t Time coordinate (s)
Ta Taylor number Ta = Re·

√
c/R

tg Groove depth (m)
x,y,z Coordinates (m)
Z Dimensionless axial coordinate Z = z/R
α Groove inclination angle
γ Displacement angle of the shaft
γik Dimensionless stiffness coefficients (from the literature)
ε Dimensionless eccentricity ε = e/c
η Dynamic viscosity (Pa·s)
θ Angular coordinate (rad)
λ Mean free path (m)
λ (Complex) eigenvalue
ν Excitation frequency (s−1)
Λ Compressibility number
ρ Density of gaseous lubricant (kg/m3)
ρ* Eccentricity of the center of gravity (m)
σ Squeeze number
ω Angular shaft velocity (rad/s)
Subscripts
a Ambient
d Dam
g Groove
l Land
min, max Minimum, maximum
sh Shaft
sl Sleeve
S System
0 Stationary quantity
ε Perturbed quantity
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