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Abstract—The simulation of quantum systems currently con-
stitutes one of the most promising applications of quantum
computers. However, the integration of more general partial
differential equations (PDEs) for models of classical systems
that are not governed by the laws of quantum mechanics
remains a fundamental challenge. Current approaches such as
the Variational Quantum Linear Solver (VQLS) method can
accumulate large errors and the associated quantum circuits are
difficult to optimize. A recent method based on the Feynmann-
Kitaev formalism of quantum dynamics has been put forth,
where the full evolution of the system can be retrieved after
a single optimization of an appropriate cost function. This
spacetime formulation alleviates the accumulation of errors, but
its application is restricted to quantum systems only. In this work,
we introduce an extension of this formalism applicable to the
non-unitary dynamics of classical systems including for example,
the modeling of diffusive transport or heat transfer. In addition,
we demonstrate how PDEs with non-linear elements can also be
integrated to incorporate turbulent phenomena.

Index Terms—quantum simulation, partial differential equa-
tions, Feynman–Kitaev Hamiltonian

I. INTRODUCTION

Quantum computers are a promising tool with immediate
applications in physics and chemistry [1]. Apart from elec-
tronic structure calculations of molecular systems, there is a
growing interest across many industries in developing quantum
algorithms for the integration of partial differential equations
(PDEs) and other applications where a very large number
of parameters is involved. Solving a PDE using a classical
computer is typically carried out via numerical integration,
where an initial state is propagated iteratively via infinitesimal
time steps. When translating such a methodology into a

variational quantum algorithm, an optimisation problem has to
be solved for every timestep, and errors associated to the noisy
nature of quantum processors quickly accumulate, restricting
evolution to very short time intervals. Such a procedure can be
readily implemented using the the well established Variational
Quantum Linear Solver (VQLS) method that is able to solve
the corresponding linear system of equations of the PDE in
question.

Instead of propagating the initial state via a sequence of
infinitesimal steps, a spacetime formulation of the original
problem in a larger grid can directly provide the full time
evolution of the system of interest and circumvent the accu-
mulation errors associated with iterative approaches. We have
applied VQLS to such a spacetime formulation of the PDE
and found that the quantum circuits that minimise this global
cost function are very hard to optimise, and we may well
be facing a barren plateau problem where the cost function
presents vanishing gradients when randomly sampled [3].

Following this spacetime approach, a recent method based
on the Feynmann-Kitaev formalism of quantum dynamics
has been put forth, where the full evolution of the system
can be retrieved after a single optimization of a well-defined
cost function [4]. This spacetime formulation alleviates the
accumulation of errors, but its application is restricted to
quantum systems only.

In this work, we introduce an extension of the Feynman–
Kitaev formalism that is tailored to the integration of ar-
bitrary PDE and provide proof-of-principle calculations that
demonstrate that fundamental processes such as diffusion and
turbulence can be well-reproduced within this framework.



These simulations constitute our first attempt to develop a
quantum solver toolbox that is able to bring the power of
quantum computing to a wider range of industries that rely
on the integration of PDEs with non-linearities, such as the
transport of ions in electrochemistry [2] or the aerodynamics
of a wind turbine in mechanical engineering.

II. METHOD

A. Feynman–Kitaev Hamiltonian

The time evolution of a unitary, norm-conserving quantum
system described by the Hamiltonian ĤS can be directly
obtained as the ground-state of an expanded Hamiltonian
that incorporates a clock quantum register [4]. The so-called
Feynmann–Kitaev Hamiltonian is then given by

Ĉ = Ĉ0 +
1

2

(
Ĉ1 − Ĉ2

)
, (1)

with

Ĉ0 =
[
Î − |ψ(0)〉 〈ψ(0)|

]
⊗ |0〉〈0|, (2a)

Ĉ1 =

n−1∑
i=0

Î ⊗ |i〉〈i|+ Î ⊗ |i+ 1〉〈i+ 1|, (2b)

Ĉ2 =

n−1∑
i=0

Û(dt)⊗ |i+ 1〉〈i|+ Û†(dt)⊗ |i〉〈i+ 1|, (2c)

where Ĉ0 enforces an specific initial state, and Ĉ1 and Ĉ2

guarantee that time evolution is governed by the propagator
Û(dt) = e−iĤS dt. The operator Ĉ can then be interpreted as
a cost function whose minimum corresponds to the history
state, a coherent superposition

∑
t |ψ(t)〉 ⊗ |t〉 in the joint

System-Clock Hilbert space from which the time evolution of
the system |ψ(t)〉 can be readily extracted. This minimization
can be carried out using the standard variational quantum
eigensolver method (VQE) where a parametrized quantum
circuit is measured and optimized in an iterative manner.

B. Non-unitary time evolution with non-linearities

The validity of the formalism described above is sustained
on the one hand in the conservation of quantum probabilities,
and secondly, on the linearity of the quantum operations
that are available in the quantum processor, i.e. the method
is valid for systems that are governed by the Schrödinger
equation i~∂ψ∂t = ĤSψ, on the condition that ĤS is Hermitian.
Therefore, the method as it was published before is not suitable
for the simulation of dissipative quantum systems and more
importantly, it cannot be applied to classical systems whose
evolution is governed by arbitrary PDEs that may contain non-
linear elements.

We extend the Feynman–Kitaev method to deal with non-
unitary time evolution, and demonstrate how important pro-
cesses such as diffusive behaviour can be accommodated in
this framework. We are preparing a follow-up publication to
describe the details of our method.

III. RESULTS

Firstly, we demonstrate the validity of such methodology to
non-unitary systems to a simple model of diffusion, which
constitutes an integral part of any mathematical model of
charge transport in electrochemistry. Secondly, we turn our
attention to the Burgers’ equation equation [5], which consti-
tutes a canonical model for the study of turbulent phenomena
and PDEs with non-linear elements. These equations can be
formally expressed as

∂c

∂t
= α

∂2c

∂x2
+ β c

∂c

∂x
. (3)

When the coefficient β = 0, the solution of the corresponding
diffusion equation is shown in Figure 1, where c is the concen-
tration of some ionic species in a liquid, and α = 0.1 cm2/s is
the diffusion constant. For this simulation, we have employed
a statevector simulator from the IBM Qiskit toolkit with 2
time qubits (4 time steps) and 4 spatial qubits (16 spatial
points). Notice how the resulting dynamics of the optimized
quantum circuits overlap on the one hand with those obtained
after an exact diagonalization of our adapted Feymann–Kitaev
Hamiltonian, and secondly, with the dynamics resulting from
a simple numerical integration of the associated PDE.

<latexit sha1_base64="55fnBNJOgVfgd/SehTj/eu3AH4A="></latexit>

x [cm]

Fig. 1. Results from the diffusion equation with 2 time qubits (4 time steps)
and 4 spatial qubits (16 spatial points), for t = 0 (blue), t = dt (orange),
t = 2dt (green), and t = 3dt (red), with dt = 0.25 s.

Finally, we incorporate the non-linear term in Eq. (3) with
β = −0.1 cm2/(mol s). We performed this simulation with 3
spatial qubits (8 spatial points) as shown in Figure 2 on the
same statevector simulator and compared it with a numerical
integration of the equation.
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