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Abstract: Reducing the weight of electric conductors is an important task in the design of future
electric air and ground vehicles. Fully electric aircraft, where high electric energies have to be
distributed over significant distances, are a prime example. Multifunctional composite materials
with both adequate structural and electrical properties are a promising approach to substituting
conventional monofunctional components and achieving considerable mass reductions. In this paper,
a hybrid multifunctional glass-fiber-reinforced composite containing quasi-endless aluminum fibers
with a diameter of 45 µm is proposed for electric energy transfer. In addition to characterizing the
material’s behavior under static and fatigue loads, combined electrical-mechanical tests are conducted
to prove the material’s capability of carrying electric current. Light microscopy, thermal imaging and
potentiometry-based resistance characterization are used to investigate the damage behavior. It is
found that a volume fraction of about 10% work-hardened aluminum fibers does not affect the static
fiber-parallel material properties significantly. Under transverse loading, however, the tensile strength
is found to decrease by 17% due to the weak bonding of the aluminum fibers. The fiber-parallel fatigue
strength of the multifunctional laminate containing work-hardened aluminum fibers is comparable to
that of the reference material. In contrast, the integration of soft-annealed aluminum fibers decreases
the tensile strength (−10%) and fatigue life (−21%). Concerning the electrical properties, electrical
resistance is nearly unchanged until specimen rupture under quasi-static tensile loads, whereas
under cyclic loading, it increases up to 60% within the last third of the fatigue life. Furthermore, the
material’s capability of carrying currents up to 0.32 A/mm2 (current density of 4.5 A/mm2 in the
aluminum phase) is proven. Under combined electrical-mechanical loads, a notable reduction in the
fatigue life (−20%) is found at low fatigue loads, which is attributed to ohmic specimen heating. To
the best knowledge of the authors, this is the first study on the electrical and mechanical material
properties and damage behavior of glass-fiber-reinforced composites containing aluminum fibers
tested under combined electrical-mechanical loads.

Keywords: multifunctional materials; fiber-reinforced plastics; aluminum fibers; fine wire; structural
energy transfer; integrated cables; combined electrical-mechanical loads; electro-mobility; electric aircraft

1. Introduction

With electric propulsion evolving into a key technology for future transport vehicles,
extensive efforts to decrease the electrical system weight are underway, especially in the
aerospace sector, where mass is a main design driver. Reaching beyond optimization on the
component level, holistic approaches, such as the concept of multifunctionality, have gained
increasing attention within the last two decades. Multifunctional energy storing composite
materials, for example, are seen as an opportunity to realize competitive electric road
vehicles and energy-saving future aircrafts [1–3]. In addition to energy storage, the transfer
of high electric energies is also an issue. An illustrative example is given by Warwick [4] for
the case of a fully electric regional jet: distributing 1 MW over a distance of 46 m requires
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about 900 kg of cable when the system voltage is 540 V. The primary approach to decrease
the cable mass, of course, is to increase the operating voltage. At a voltage of 2000 V, the
cable mass can be reduced to 200 kg [4]. Although this approach might be viable for the
main power transmission lines of electric propulsion systems, it does not apply to the
tremendous amount of electric wiring of today’s state-of-the-art airliners. With metallic
fuselage structures replaced by carbon-fiber-reinforced composite structures, the so-called
Electrical Structure Network (ESN), a conductive network of more than 6000 (A350 XWB)
conductive components, became necessary in order to ensure the proper functioning of the
electrical aircraft systems [5–7]. For a 300-seat electric aircraft, Gohardani et al. [8] estimate
the total mass of the cables to be 30% of the mass of the electrical system (Figure 1a).
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16] or laminates of carbon-fiber-reinforced plastics with sheets of steel [17] or titanium 
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conductive tracks of copper foil/mesh [20,21], steel foil [22,23] or steel wire [24]. These 
delimited meso-scaled metallic interlayers, however, have been observed to weaken the 
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Figure 1. (a) Electrical system weight of an electric 300-seater aircraft, according to Gohardani et al. [8];
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transferring energy from storage to electrical consumers.

By rethinking the use of conventional electric cables, significant mass savings may be
realized by using multifunctional conductive structural materials, as illustrated in Figure 1b.
Electric conductive carbon-fiber-reinforced composites based on nano-scaled matrix mod-
ifications or coated fibers have been examined comprehensively for different types of
application (power transfer, lightning protection, damage monitoring) [8–13]. However,
with carbon having a rather high electrical resistivity of about 3.5× 10−5 Ωm, and the
polymer matrix being an insulator

(
� 1010 Ωm

)
, the resulting composite conductivities

are much lower than those of metallic conductors, such as copper (1.68× 10−8 Ωm).
An obvious approach that may be used to significantly improve conductivity is to use

hybrid composite materials containing a metallic phase. Fiber metal laminates (FMLs) consist
of thin metal layers bonded with layers of fiber-reinforced polymer composites. Various types
of FMLs, such as the well-known glass-reinforced aluminum (GLARE) [14–16] or laminates
of carbon-fiber-reinforced plastics with sheets of steel [17] or titanium [18], have been
developed. In the first place, these materials are known for their exceptional damage
tolerance behavior, corrosion and fire resistance. However, electrical conductivity only
plays a subordinate role. The large-area integration of copper mesh and expanded foils
is the standard lightning strike protection strategy for today’s composite aircrafts [19]. A
more targeted approach to supplying electrical consumers is to embed conductive tracks of
copper foil/mesh [20,21], steel foil [22,23] or steel wire [24]. These delimited meso-scaled
metallic interlayers, however, have been observed to weaken the composite locally [23,25].

The micro-scaled integration of very thin continuous metal fibers (superfine wire,
diameter < 100 µm) into single plies is a more elaborate approach. According to Hanne-
mann et al. [26], a rather high-volume fraction of 20% steel fibers is required to provide an
eightfold increase in conductivity compared to conventional CFRPs. So-called SFRPs (steel-
fiber-reinforced plastics), however, suffer from significant mass increases (specific mass of
steel: 7.8 g/cm3, carbon: 1.6 g/cm3). This also holds true for most other metallic conductors.



Materials 2022, 15, 6257 3 of 31

To avoid undesired density increases associated with most metal conductors, a hybrid
composite containing glass fibers and aluminum fibers is proposed and investigated in
this study. In the first step, several approaches to metal fiber integration are presented and
discussed. The material configuration chosen in this study is manufactured by winding
unidirectional aluminum fiber prepregs, which are then combined with a unidirectional
glass fiber plain weave fabric. In addition to characterizing the mechanical properties of the
reference GFRP and three configurations with aluminum fibers, the material performance is
also assessed for combined electrical and mechanical loads, applying different measurement
and monitoring techniques such as microscopy, potentiometry and thermography.

The main objectives of this work are to:

• Assess the mechanical performance of the multifunctional material for static and
fatigue loads;

• Prove that the material can carry technically relevant electrical currents without the
mechanical properties being affected;

• Gain an understanding of the damage mechanisms under mechanical and combined
electrical/mechanical loads;

• Discuss the material’s capabilities and potential for technical applications.

2. Approach: Aluminum-Fiber-Glass-Fiber-Reinforced Plastic (AlFGFRP)

Reinforcing conventional epoxy matrix materials with both glass and aluminum fibers
is proposed in order to obtain an electrically conductive light-weight material, referred to as
AlFGFRP. Although the combination of GFRP and fibrous aluminum is challenging in many
regards (e.g. fabrication, providing interfacial bonding, compatibility of the constituents,
the effect of non-elastic material deformation and the difficult electrical contacting), it
is promising in view of the mechanical compatibility of the constituents and electrical
properties. In contrast to the number of studies investigating SFRPs (containing fibrous
steel), hardly any publications on hybrid aluminum fiber composites can be found in
literature. In fact, only one study on GABGRP (glass-aluminum-banana-glass-reinforced
plastic) [27], made of GFRP, banana fibers and some sort of relatively thick aluminum
lattice, can be found. This material exhibited better strength and impact resistance than a
benchmark GFRP; however, its electrical conductivity was not investigated.

2.1. Constituent Properties and Compatibility

The use of thin aluminum fibers to add electrical conductivity to a GFRP material
is interesting for several reasons. While conductive SFRPs lose their lightweight design
potential with increasing steel content, this is less the case when using aluminum fibers
due to their much lower density (2.7 g/cm3 instead of 7.8 g/cm3). Furthermore, with
an electrical conductivity (3.83× 107 S/m) of about 65% that of copper (5.96× 107 S/m),
aluminum is a much better conductor than most ferrous metals, such as heat-treatable steel
(1.45× 106 S/m). A correlation of the electrical conductivities with the mass densities is
depicted in Figure 2a. As indicated by the plot, aluminum and magnesium both provide
low densities and high conductivities.

Magnesium, however, is an inferior candidate due to flammability issues associated
with thin magnesium products, its lower mechanical properties, and the lack of fiber
or fine-wire-wrought materials. An overview of representative mechanical properties
of aluminum, E-glass and epoxy materials is summarized in Table 1. All values are
reference values representing the material class. Concerning the elastic moduli, the E-
glass and aluminum have quite similar properties. Their failure behavior and strength,
however, differ substantially. In contrast to GFRP, which practically exhibits a linear elastic
stress–strain behavior until rupture (loaded parallel to the fibers), aluminum shows a
pronounced elastic-plastic behavior above its elastic limit. This, of course, depends on the
aluminum alloy and the heat treatment. As the maximum linear-elastic strains of aluminum
(max 0.7%) are much smaller than those of E-glass (3–4%), the stress–strain compatibility
of both materials is limited. In fact, deforming a hybrid composite material above the elastic
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limit of the aluminum is assumed to cause irreversible plastic deformation of the aluminum
fibers and permanent internal stresses after unloading. Repeated loading and unloading
may initiate interfacial debonding of the aluminum fibers due to interfacial shear stresses.
Consequently, adding oriented quasi-endless aluminum fibers is assumed to diminish
the allowable strain range. However, the impact on the overall composite behavior and
resulting properties is difficult to predict and is therefore investigated experimentally.
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Figure 2. (a) Electrical conductivities and densities of carbon and metal fiber candidates [28,29];
(b) different approaches to metal fiber integration.

Table 1. Typical mechanical and electrical properties of aluminum (pure/alloys), E-glass and epoxy
matrix [30–33].

Property Unit Aluminum E-Glass Epoxy Matrix

Elastic modulus GPa 68–72 50–80 2.75–4.1
Shear modulus GPa 25–28 20–25 1.2–1.5
Poisson’s ratio - 0.35 0.2 0.2–0.35
Yield strength MPa 17–480 - -

Yield strain % 0.03–0.7 - -
Tensile strength MPa 45–538 3450–3790 40–90

Max. tensile strain % 2–60 3–4.8 3–7
CTE * 1/K 25 × 10−6 5 × 10−6 50 × 10−6–80 × 10−6

Electrical resistivity Ωm 2.82 × 10−8–8.2 × 10−8 1015 >1010

Density g/cm3 2.6–2.7 2.54–2.6 1.2–1.3

* Coefficient of thermal expansion.

Since the longitudinal coefficient of thermal extension of aluminum (25 × 10−6 1/K)
is about five times higher than that of E-glass fibers (5 × 10−6 1/K), temperature-induced
internal stresses are likely to arise. This applies to both hot curing during manufacturing,
as well as later temperature exposure during service. In contrast to the hybridization of
carbon-fiber-reinforced plastics, electrochemical compatibility is not an issue when using
glass fibers.

In addition to mechanical compatibility, both the geometric properties (diameters)
of the aluminum fibers and the fiber distribution can affect the resulting properties of
the composite with a given aluminum content. Concerning the fiber diameter, the inte-
gration of aluminum fibers with diameters similar to those of the glass fibers is assumed
to be advantageous with respect to local homogeneity and the resulting strain field on
the micro scale. This also holds true for fiber distribution on the scale of the single ply.
Figure 2b illustrates five different methods of wire conductor integration, ranging from
local ply-substitution (locally clustered aluminum fibers), over-distributed strands and
thick and thin aluminum fiber interlayers to homogeneous hybrid plies. With increasing
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homogeneity, the geometrical compatibility and resulting composite strength are assumed
to increase. Unfortunately, increased efforts related to manufacturing and electrical contact-
ing are expected as well. Thus, within this work, an interlayer approach using multiple
unidirectional aluminum fiber interlayers is investigated. This type of integration allows
for a greater homogeneous fiber distribution than, for example, strand-based approaches.
Furthermore, the aluminum fiber interlayers, with a thickness of about one wire diame-
ter, can be contacted more conveniently than, for example, hybrid single plies with both
aluminum and non-conducting glass fibers.

2.2. Properties of the Unidirectional AlFGFRP

Fundamental properties such as the elastic modulus, mass density or electrical con-
ductivity of unidirectional composites can be estimated analytically by means of the rule
of mixture approaches [29,32,33]. Homogenized properties of the idealized composite are
modelled assuming either a parallel connection of the constituents (fiber-parallel direction)
or a series connection (transverse direction), and by taking into account their individual
properties (Xi) and volume fractions (ϕi, ∑i ϕi = 1). Equation (1) holds true for the fiber-
parallel elastic modulus (E11), the electrical resistivity (r11) and, not depending on the
fiber-orientation, the density (ρ):

X = ∑
i

Xi·ϕi (1)

Concerning the fiber transverse direction, only the modulus is of relevance, as the
transverse electrical conductivity is dominated by the insulating epoxy matrix and glass
fibers, with the aluminum fibers not interconnected under idealized conditions. The
effective transverse modulus, E22, of the three-phase composite can be approximated by
Equation (2):

E22 =

(
∑

i

ϕi
E2,i

)−1

(2)

To account for the lateral contraction of the matrix restrained by the much stiffer fibers,
an increased matrix modulus Em = Em

(
1− ν2

m
)−1 is used.

Figure 3a,b depicts the predicted elastic moduli, density and electrical resistivity of
the unidirectional AlFGFRP and SFRP configurations. For a technically relevant total fiber
volume fraction of φf = 0.6, the metal fiber fraction varied from φmf = 0.0 (reference FRP) to
φmf = 0.6 (only metal fibers). All results were normalized to the properties of the reference
FRP. The input constituent properties are given in Table 2. Comparing the impact of the
metal fiber integration on both material systems (AlFGFRP and SFRP) revealed significant
differences. Concerning the fiber-parallel stiffness, replacing the glass fibers with aluminum
fibers caused only minor stiffness decreases (about 10% for φf = φmf = 0.6) due to the
similar elastic properties of the constituents. Substituting the carbon fibers with steel fibers,
in contrast, caused significant stiffness decreases (about 25% for φf = φmf = 0.6). The
situation was different for the transverse direction. While steel integration resulted in a
stiffening due to the low transverse modulus of the carbon fibers, aluminum integration did
not cause noticeable changes in E22. Concerning the density, the impacts on the composite
density were negligible when adding aluminum to the GFRP. Adding steel, in contrast,
caused the density to increase by a factor close to 3.5 for φf = φmf = 0.6.

Apart from the undesired density increases and stiffness reductions, metal integration
may reduce the composite strengths. Accordingly, the metal content should be as low
as possible, but as high as necessary, with respect to the electrical properties. For an
SFRP, Hannemann et al. [26] identified steel fiber volume contents between 10% and 20%
as a reasonable compromise. However, the density almost doubles from CFRP to SFRP
containing 20% steel. In the case of the AlFGFRP (Figure 3b), volume fractions ranging
between 5% and 10% seem to be reasonable. In this study, an aluminum volume fraction of
10% was chosen.
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Table 2. Properties of the constituent materials.

Property Unit E-Glass Fiber Carbon Fiber Aluminum Steel Epoxy

Elastic modulus in fiber direction, E1,i GPa 78,000 240,000 70,000 176,000 3300
Elastic modulus transverse to fibers, E2,i GPa 78,000 24,000 70,000 176,000 3300

Poisson′s ratio, υ - - - - - 0.38
Electrical resistivity, r1,i Ωm 1 × 1014 1.6 × 10−5 5.26 × 10−8 6.97 × 10−7 1 × 1013

Density, ρi g/cm3 2.6 1.77 2.64 7.95 1.2

3. Materials and Methods

In the following section, the laminate and specimen fabrication methods are described,
along with a summary of the important information on the used wrought materials and
composite constituents. Concerning the mechanical test program, a brief overview of the
standard test methods and a more detailed depiction of the combined load setup (electrical
and mechanical load) are provided. Additionally, the measurement techniques used for the
condition/damage monitoring are outlined.

3.1. Aluminum-Fiber-Reinforced GFRP (AlFGFRP)

Based on the material concept depicted in Section 2, a hybrid polymer composite
containing E-glass fibers and aluminum fibers was fabricated by means of a specifically
designed fabrication method. Aluminum fibers were integrated as pre-impregnated inter-
layers, as this is a convenient way of handling large amounts of fine wire and of realizing
a rather homogeneous distribution that is not strand-based. In addition, this also has
advantages for the electrical contacting.

3.1.1. Fabrication Method

A fine wire-winding machine was specifically designed and set up for the fabrication of
the unidirectional aluminum single plies. Due to the low rupture load of the wire (between
0.5 N and 2.0 N depending on the diameter, alloy and state of annealing), automated
processing is challenging, including unspooling, wire surface preparation and cleaning,
placement and winding. A schematic of the wire processing is depicted in Figure 4. After
the wire is pulled from the spool, its surface is mechanically abraded using a two-step
corundum bath. In the next step, the wire is cleaned using alcohol. Residual alcohol on
the wire is stripped off mechanically and actively vaporized. The placement of the wire
on the winding plate (length 350 m, width 220 mm) is realized by means of a placement



Materials 2022, 15, 6257 7 of 31

head. The maximum winding speed is 120 rpm (average pulling speed of 1.4 m/s), with a
transverse axis speed of 0.1 mm per revolution.
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Figure 4. Fine wire-winding machine.

The main steps of the AlFGFRP fabrication method are depicted in Figure 5. The first
step is fine-wire winding. The resulting single plies can either be continuous or segmented
(as shown in Figure 5), forming discrete electric tracks. After the winding process, a resin
film is molded onto the aluminum single layer. As both sides of the winding plate are used,
two prepreg sheets can be produced at one time. The prepreg sheets are then stacked with
dry fabrics and, if needed, an additional resin film. The final layup is then impregnated
and cured by means of autoclave-based resin film infusion (180 ◦C, 3 h, 300 kPa pressure).
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3.1.2. Composite Constituents and Configurations

Two different laminate layups, a GFRP reference laminate and an AlFGFRP layup
made from glass fabric (G), resin film (R) and combined aluminum-fiber resin film (AR),
were investigated. The stacking sequences were [G/R/G]4 for the reference laminate and
[G/AR/G]4 for the AlFGFRP. In both layups, all plies were oriented under 0◦ with the warp
threads and the aluminum fibers parallel to the x-axis of the laminate. The y-direction de-
notes the direction of the transverse weft threads. Regarding the AlFGFRP layup, different
aluminum wires and spacings were used, depending on the experimental objective.

Concerning the constituents, an unreinforced epoxy resin film, MTM44-1 (200 g/m2,
Solvay, Brussels, Belgium), was used for impregnating the unidirectional (warp-reinforced)
E-glass plain weave fabrics (220 g/m2, chain EC9-68 × 5, weft EC7-22, finish GI6224).
For the AlFGFRP materials, three different types of wires were used. A work-hardened
(H18) 5019 super fine wire with a diameter of 45 µm (J.G. Dahmen GmbH & Co., KG,
Iserlohn, Germany) was used for the main static and fatigue experiments. This wire has a
rather linear stress–strain relationship, with rupture occurring right after the elastic limit
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is passed. Additionally, a soft-annealed variant (with a much lower yield limit) was used
for investigating the effects of plasticity. In the pre-tests, the stress–strain behavior of both
wires was characterized by applying the single-fiber tension cardboard method (ASTM
D 3379–75 [34]). As the wires inevitably undergo heat treatment (and potential softening)
during autoclave processing, the properties of the delivery states are not representative.
Thus, a replacement heat treatment (180 ◦C, 3 h) was conducted prior to the single wire
testing. The single wire strengths and strains are summarized in Table 3. Furthermore, a soft-
annealed aluminum alloy 5019 fine wire (Gutmann Aluminium Draht GmbH, Weißenburg
in Bayern, Germany) with a diameter of 80 µm was used to assess the effects of the
wire diameter and spacing by means of transverse tensile tests. Sample cross-section
micrographs of all three laminate configurations are depicted in Figure 6.

Table 3. Properties of the EN AW-5019 wires after heat treatment (180 ◦C, 3 h).

As-Supplied
Condition

Yield Strength
MPa

Tensile Strength
MPa

Elastic Limit
%

Failure Strain
%

Cold-worked - 511 0.62 0.81
Soft-annealed 164 279 0.19 8.92
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(b) AlGFRP-1, containing work-hardened wire; (c) AlFGFRP-2 (work-hardened) and, equivalently,
AlFGFRP-3 (soft-annealed).

3.1.3. Test Specimens

Three different types of specimens, as depicted in Figure 7, were fabricated. Con-
cerning the characterization of both the reference laminate and the AlFGFRP laminates,
transverse (90◦) tension specimens (Figure 7a) and longitudinal (0◦) tension specimens
(Figure 7b) were fabricated according to DIN EN ISO 527-5 [35]. However, due to the
limiting dimensions of the winding plate, slight changes to the tab and gauge lengths had
to be made. For the combined electrical-mechanical tests, a specimen containing electrical
contacts was designed (Figure 7c). While the gauge length was equal to the standard length,
end tabs were longer and much thicker (6 mm tab laminate thickness) due to the electrical
contacts. The connection wire was a solid copper wire, AWG 12 (3.31 mm2), with a current
rating of 20 A. Soldered 4 mm banana gold connectors were used for connecting the speci-
mens to the power electronics. Wire entries were sealed with high-temperature-resistant
silicone for the insulation and to keep the wire in place in the case of soldering point failure.
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3.2. Electrical Resistance Measurement

The electrical resistances were determined using a Potentiostat/Galvanostat Model
263A (four-probe method, Princeton Applied Research, Oak Ridge, TN, USA). Potentiody-
namic scans were performed in the case of the single wire and the mechanically unloaded
multifunctional material. For the single wire, the voltage was swept between −0.01 V
and 0.01 V (1 mV/s) with respect to the open circuit. For the multifunctional material, the
voltage range was from −0.25 V to 0.25 V at a rate of 10 mV/s. The mean slope of the V-I
graph gives the electrical resistance. During the mechanical tests of the multifunctional
material, potentiostatic measurements were conducted at a pre-set potential of 0.25 V and
with a sampling rate of 200 1/s. The electrical resistance was calculated using Ohm’s Law.

3.3. Thermography

A high-performance thermal camera (Model X8503sc, FLIR, Wilsonville, OR, USA)
with a sensor resolution of 1280 × 1024 pixels2 was used during the mechanical, electrical
and combined tests. Concerning the mechanical fatigue tests, the camera was used primar-
ily for damage monitoring and to reveal differences in the heating and damage behavior of
the GFRP reference laminate and the AlFGFRP materials. Furthermore, the current-induced
heating of the mechanically unloaded AlFGFRP was investigated. During the combined
electrical-mechanical tests, the temperature was monitored to reveal heating effects related
to the damage of the electrical conductors and final specimen failure. A 10 ◦C to 90 ◦C
calibration interval was used. During the fatigue tests, single images were captured to
reduce the amount of data. The capturing rate was 10/s , 1/s and 0.01/s depending on
the test duration.

3.4. Static and Fatigue Testing

The static and fatigue testing was conducted using a servo-hydraulic testing machine
(Model 810, MTS, Eden Prairie, MN, USA) with a load capacity of 100 kN. Depending on
the laminate configuration, different measurement and damage monitoring techniques
were applied. For the static material characterization, longitudinal and transverse tensile
tests were conducted according to DIN EN ISO 527-5 [35] for both the reference GFRP and
the AlFGFRP configurations. During these tests, strain gauge measurements and video
microscopy were conducted. In the case of the electric conductive material, additional
potentiostatic measurements were conducted to determine the resistance. During the
tension–tension fatigue tests (R = 0.1), the self-heating of the specimens was investigated
by means of thermography. An overview of the test set-up showing the measurement
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techniques is depicted in Figure 8. The tests were conducted with a load frequency of 1 Hz,
except for the lowest load level (2 Hz).
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For the damage monitoring, the dynamic modulus Edyn,x was calculated from the
cyclic force and strain maxima and minima (tip–tip modulus, Equation (3)). Furthermore,
the hysteretic loss energy (Equation (4)) was calculated for each load cycle, represented by
the surface enclosed by the loading and unloading curves in the stress–strain diagram. The
relative loss energy (Uloss/Uloading) was used as the comparative measure for the energy
dissipation due to the composite damage and non-elastic material deformation of the
metallic phase.

Edyn,x =
σmax − σmin

εmax − εmin
(3)

Uloss = Uloading −Uunloading (4)

For the statistical evaluation of the of obtained SN data, a linear relationship between
the logarithm of the stress (S) and cycles to failure (N) was used (Equation (5)). In addition,
95% prediction limits N±P% (Equation (6)) were determined, according to Schneider and
Maddox [36]:

log N = log A−m logS (5)

log N±P% = (log A + m log S)± tσ̂

√√√√√√1 +
1
n
+

(
log S− log S

)2

∑n
i=1

(
log Si − log S

)2 (6)

3.5. Combined Electrical and Mechanical Testing

The aim of this unique test series was to investigate the impact of the electric current
on the mechanical (quasi-static and fatigue) behavior of the AlFGFRP material. Therefore,
the contacted specimen type was used to complete the electric circuit, depicted in Figure 9a.
The circuit consisted of a DC power supply (3 V–14 V, 40 A, Model 1692, B+K Precision,
Yorba Linda, CA, USA) and a parallel connection of six switchable power resistors (4 Ω
each). This setup was created to study the current-carrying capability of the material. The
voltage, as well as the total resistance, were adjusted to obtain the desired current passing
through the specimen. Figure 9b shows a clamped specimen with the electrical wiring.

As temperature is known to affect the fatigue life of FRP materials [37,38], the control
of the specimen’s heating is an important matter. In the case of the AlFGFRP material,
with its mismatch between the thermal expansion coefficients of the constituents, the
temperature effects were assumed to be even more critical. On the one hand, to assess the
potential detrimental effects of the electric current, ohmic heating should be avoided or,
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at least, kept low by limiting the current. On the other hand, the current passing through
the material must be relevant and representative of technical applications. Although the
heating of conventionally isolated cables is tolerable up to 70 ◦C [39], this temperature is
considered too high to avoid temperature effects in AlFGFRP laminates. Instead, a much
lower temperature limit of 40 ◦C was defined. The specimen surface temperature was
monitored by means of thermography.
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3.6. Simplistic Electrical Resistance Model

Assuming several idealizations concerning the laminate architecture and physical
properties, a simplistic model is proposed for estimating the effective electrical resistance,
resistance degradation and ohmic heating. Concerning the architecture of the AlFGFRP
laminate, it is assumed that the aluminum fibers are straight, parallelly aligned and not
interconnected in the transverse direction. The total electrical resistance of a laminate unit
cell can thus be idealized as the parallel connection of a discrete number of equal ohmic
resistors. Each ohmic resistor RG,i represents a single conductor of a given diameter dR,
length lR and resistivity rR,. In the case of the contacted specimen type (Figure 7c), two
different regions (G: gauge region, and T: tab region) must be differentiated, as illustrated
in Figure 10. While the total electrical resistance is assumed to be temperature- and strain-
dependent in the gauge section (RG(ϑ, ε)), only the influence of the temperature must be
considered in the tabbed region (RT(ϑ)). Furthermore, two additional resistors representing
the two crimping connections (RCC = const.) and the two copper connection wires (RCW(T))
are considered. Wire ruptures in the specimen gauge length due to mechanical loading are
accounted for by reducing the number of parallel resistors (m).
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The total resistance, according to the equivalent resistance model, can thus be calcu-
lated by means of Equation (7). The model yields reasonable results as long as all conductors
are intact. In the case of damage, however, the analytical model overestimates the decreases
in the resistance, since conductor interruptions are, to some extent, compensated by the
existence of transverse interconnections.

RS(ϑ, ε) =
RG(ϑ, ε) + RT(ϑ)

n
+ RCC(ϑ) + RCW(ϑ) (7)
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The resistance change of a single mechanically stressed cylindrical fiber is approxi-
mated by incorporating the longitudinal wire elongation and a change in the diameter due
to the Poisson effect (ν = 0.35 for aluminum). The resistance of the elongated conductor is:

R(ε) = ρ
l0(1 + ε)

π
(

d0
2 (1− νε)

)2 (8)

Concerning the temperature dependency, the ohmic resistance at a discrete temper-
ature [ϑ] = ◦C is approximated by means of the following linear relationship and the
temperature coefficient β, [β] = 1/K [40]:

R(ϑ) = R0(1 + β(ϑ− ϑ0)), with β = 3.77× 10−3 (9)

The equilibrium temperature due to the ohmic heating of the gauge section is approxi-
mated by means of Equation (10) [41]. As the voltage drop over the gauge section could
not be measured in the experiments, the power is calculated using the measured current
and a theoretical gauge resistance RG/m. AG denotes the surface area of the gauge section
and α is the heat transfer coefficient for the passive convection ([α] = W/(m2K)):

∆ϑ =
Iconst

2·R
αAG

with 5 ≤ α ≤ 15 (10)

4. Results
4.1. Tensile Properties

Quasi-static tensile tests were conducted for all four laminate configurations. Thereby,
the reference laminate GFRP and the AlFGFRP-2 configuration (work-hardened) were
tested under longitudinal and transverse tension. AlFGFRP-3 (soft-annealed) was only
tested in the fiber-parallel direction, as the annealing was assumed to primarily affect
the longitudinal laminate properties. In contrast, the diameter of the aluminum fibers
was assumed to be important for the transverse properties. Therefore, AlFGFRP-1 (work-
hardened, 80 µm) and AlFGFRP-2 (work-hardened, 45 µm), both containing the same
aluminum volume fraction, were tested under transverse tension to reveal the impacts of
the metal fiber diameter. Three specimens were tested for each laminate configuration and
load direction.

Figure 11a depicts the stress–strain curves for the longitudinal elongation and lateral
contraction. All specimens of a configuration are marked by similar colors. The cross-
shaped markers indicate the average stress and strain at rupture of a configuration. For the
fiber-parallel direction, the stress–strain curves of the GFRP and the two configurations
with the thin metal fibers (45 µm) are quite linear across the full range of the strain until final
failure (subscript: f). The GFRP reference laminate fails at an average longitudinal stress of
σGFRP

x,f = 1246 MPa (εGFRP
x,f = 2.76%). AlFGFRP-2 (work-hardened) shows a 4% lower aver-

age failure stress of σAlFGFRP-2
x,f = 1197 MPa. The failure strain (εAlFGFRP-2

x,f = 2.85%) is higher
by a factor of 1.03. In the case of the configuration containing the soft-annealed aluminum
fibers (AlFGFRP-3), the failure stress is reduced by about 10% (σAlFGFRP-3

x,f = 1124 MPa) com-
pared to the reference laminate. In both cases, the strength reduction is due to the aluminum
fibers having lower tensile strengths (Table 3) than the glass fibers (cf. representative values,
given in Table 1). The failure strain does not change (εAlFGFRP

x,f = 2.76%). Standard devia-
tions are lower than 2% for all longitudinal stress/strain results. The elastic modulus of the
configuration containing the work-hardened wire (AlFGFRP-2) (EAlFGFRP-2

x = 47,735 MPa)
is slightly higher than the modulus of the GFRP reference (EGFRP

x = 47,211 MPa). Notably,
this is not in line with the analytical estimations (Figure 3), predicting a slight stiffness
decrease of less than 2% for a metal volume content of 10%. However, as the standard
deviations are about 1.5%, and as the analytical calculation does not take into account the
transverse warp fibers, geometrical imperfections and manufacturing effects, these results
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are considered reasonable. In contrast, in the case of the soft-annealed wire (AlFGFRP-3), a
10% modulus reduction was found (EAlFRC-3

x = 43,279 MPa). The averaged stress–strain
curves are depicted in Figure 11b for strains of up to 1.2%. In this graph, differences in the
stress–strain behavior can be observed. In the case of the work-hardened aluminum fiber,
the stress–strain curves are non-linear and diverge from the reference curve at strains above
approximately 0.65%. For the soft-annealed wire, curves start to diverge much earlier, at
strains above 0.17%. This is assumed to result from the elastoplastic deformation of the
aluminum fibers when exceeding the elastic limit. The elastic limits (0.62% and 0.19%)
identified by the single wire tension pre-tests (Table 3) support this explanation. Higher
non-linearity caused by elasto-plastic deformation may also be an explanation for the low
elastic-modulus, which is based on the 0.05% to 0.25% strain range. A summary of the most
important quantitative results is given in Table 4.
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Table 4. Results of the longitudinal tensile tests.

Material
Configuration

Thickness
t/mm

Width
w/mm

Modulus
Ex/mm

Strength
σx,f/MPa

Failure Strain
εx,f/%

GFRP 1.12 ± 0.020 25.02 ± 0.01 47,211 ± 640 1246 ± 18 2.76 ± 0.02
AlFGFRP-2 1.26 ± 0.020 25.05 ± 0.01 47,735 ± 253 1197 ± 19 2.85 ± 0.05
AlFGFRP-3 1.25 ± 0.003 25.05 ± 0.03 43,279 ± 86 1124 ± 18 2.75 ± 0.04

The stress–strain curves of the transverse tensile tests are depicted in Figure 12a,b.
Due to the low fraction of transverse glass fibers, the transverse deformation behavior
is much more matrix-dependent and, thus, less linear-elastic. These results indicate that
the diameter of the metal fiber is important for the transverse laminate properties. It
was assumed that a thin metal fiber would not affect the strength as much as a thick one
due to its better geometrical compatibility. In fact, the AlFGFRP-3 containing the 45 µm
aluminum fiber had 83% the transverse tensile strength of the GFRP reference laminate,
whereas for the thicker wire (AlFGFRP-1, 80 µm), the transverse strength was lower (78%
of the reference strength). However, in both cases, the strength was significantly degraded,
presumably due to weak matrix–aluminum fiber interface bonding. Strains at rupture and
elastic moduli were less affected. The results are summarized in Table 5.
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Table 5. Results of the transverse tensile tests.

Material
Configuration

Thickness
t/mm

Width
w/mm

Modulus
Ey/mm

Strength
σy,f/MPa

Failure Strain
εy,f/%

GFRP 1.13 ± 0.02 25.05 ± 0.02 19,489 ± 449 94.6 ± 2.19 0.56 ± 0.005
AlFGFRP-1 1.36 ± 0.002 25.08 ± 0.02 16,820 ± 435 73.8 ± 0.9 0.52 ± 0.03
AlFGFRP-3 1.30 ± 0.01 25.05 ± 0.03 17,609 ± 294 78.61 ± 1.34 0.52 ± 0.01

4.2. Fatigue Behavior

In this section, the experimental results of the fatigue tests (tension-tension, R = 0.1)
are presented. Fatigue tests were conducted for the longitudinal (fiber-parallel) direction
only, focusing on the potential impacts of the elasto-plastic deformation behavior of the
aluminum. The tests were conducted at four different load levels with cyclic maximum
loads of 80% (997 MPa), 60% (748 MPa), 50% (623 MPa) and 30% (374 MPa) of the quasi-
static longitudinal strength of the reference laminate (1264 MPa). Due to the limited number
of available specimens, only one to two specimens per load level could be tested.

Figure 13a depicts the SN curves (linear-log) of the GFRP reference (black) and the
AlFGFRP-2 (work-hardened) laminates. Both curves are very close to each other, with their
95% prediction bands nearly matching. Due to the small number of specimens tested, the
load-level-specific differences in fatigue life cannot be discussed. However, concerning
all the specimens, an average fatigue life reduction of 6.5% was found for the AlFGFRP-2,
which is in line with the results of the quasi-static tests. Overall, the integration of the
work-hardened wire did not cause significant fatigue life reductions. In the case of the
soft-annealed wire, the fatigue life reductions were found to be more distinct, as depicted in
Figure 13b. On average, the fatigue life changed by about −18.6% compared to the material
containing the work-hardened wire and −21% compared to the reference GFRP. Higher
fatigue life reductions were assumed to be caused by the increased plastic deformation
and residual elongation of the aluminum wires, resulting in internal stresses and the
pronounced initiation of local micro-scale interfacial debonding, e.g., in the vicinity of
aluminum fiber ruptures. It is worth pointing out that even the reference material had a
surprisingly poor fatigue performance. Even at the lowest load amplitude of 30% of the
static tensile strength, the fatigue life was limited to about 20,000 cycles. This is rather
untypical for quasi-unidirectional E-glass/epoxy GFRP materials and much below the
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expected values. Most GFRP materials of this kind reach 1 million or more cycles when
tested at similar load levels. The analysis of the damage behavior (Section 4.3) indicated
that the autoclave processing and the resulting high compaction may have caused this poor
fatigue performance.
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Figure 13. SN curves with regression and prediction bands: (a) comparison of the AlFGFRP contain-
ing work-hardened aluminum (AlFGFRP-2) with the GFRP reference laminate; (b) SN curve com-
parison revealing the impact of the wire condition, work-hardened (AlFGFRP-2) and soft-annealed
(AlFGFRP-3).

Based on the cyclic force and displacement data, the dynamic modulus was calculated
using Equation (3). The normalized dynamic modulus is plotted against the normalized
cycle number for all three material configurations in Figure 14a–c. Due to the mainly
unidirectional fiber orientation (0◦), no significant degradation of stiffness occurred until
the sudden final failure. This is typical for fiber-dominated material orientations. However,
even though the stiffness of the glass fibers does not change under cyclic loading, a slight
stiffness degradation resulted from setting effects, matrix micro-damages and the change
in the transverse contraction behavior. Overall, the degradation behavior of the AlFGFRP-2
did not exhibit significant differences. However, a slight increase in the stiffness during
the first 10% of the fatigue life was observed. During the second half of the fatigue life,
the stiffness degradation seemed to be slightly more pronounced in all the specimens.
The observed initial stiffening effect followed by the stiffness degradation became more
apparent in the case of the third configuration containing the soft-annealed wire. Stiffness
increases about 4% during the first 10% to 20% of the fatigue life, in the case of the lowest
load level. It seems that the stiffening effect increased with decreasing load level. With
damage related degradation lower than or equal to the initial stiffening, the final rupture
was still observed to occur at elevated stiffness levels. As the stiffening effect was more
distinct in the case of the soft-annealed wire, this behavior was assumed to be caused by
the plastic deformation of the aluminum under cyclic loading.

Hysteretic loss is another indicator of irreversible deformation processes due to plas-
ticity or fatigue damage of the composite. The relative loss energy is plotted against the
normalized cycle number in Figure 15a–c. The relative dissipated energy increased with
the cyclic load amplitude. Compared to the reference material, the relative loss energy was
found to increase due to the metal fiber integration. While about 3% of the introduced strain
energy was dissipated at the highest load level in the case of the reference GFRP, the relative
loss increased to about 5% for AlFGFRP-2 and 6% for AlFGFRP-3. This tendency can also
be seen in the heating curves, showing a change in the specimen surface temperature with
increasing cycle number (Figure 16a–c). It should be noted that the heating behavior of the
reference specimen tested at the highest load level did not correspond with the plotted loss
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energy. A reason for this effect could not be ascertained. Nevertheless, overall, the heating
curves are in accord with the loss energy curves.
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All three data sets (dynamic modulus, relative loss energy and temperature change) in-
dicate the presence of plastic deformation, damage of the aluminum fibers and, potentially,
induced/related micro-scale damages of the matrix or fiber–matrix interfaces.

4.3. Damage Mechanisms

To gain an understanding of the damage mechanisms and their development under
both types of loading, microscopy was conducted in situ (during testing), as well as post-
failure. Since the damage mechanisms of the pure GFRP laminate were hardly visible, due
to its optical properties, only the AlFGFRP material was examined in detail by microscopy.

Under static loads, the AlFGFRP laminates showed initiation and accumulation of
matrix cracks (inter-fiber cracks, IFF) only in the transversely oriented weft tows. The
micrographs in Figure 17a–c depict reflected light in situ micrographs at relative strains
of approximately 50%, 75% and 99% of the strain to rupture, respectively. The damage
accumulation at the crossings of the warp and weft was observed to trigger the final
failure. Originating from these crossing points, longitudinal splitting and subsequent fiber
failure resulted in the specimens’ overall disintegration due to abrupt energy release. In
situ microscopy did not provide evidence of aluminum fiber breakage before the final
specimen rupture. Encircled transverse damages (red) were identified as inter-fiber cracks
accumulating in the weft tow.
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Figure 17. Representative micrograph sequence (reflected light in situ microscopy of the specimen
surface), illustrating the occurrence of transverse inter-fiber cracking (IFF) and fiber-fracture (FF) in
the AlFGFRP material under static loading. The images refer to 50% (a), 75% (b) and 99% (c) of the
strain to rupture.

In the cyclic tests, inter-fiber cracking in the weft tow (Figure 18a–c) was identified
to be the first and most widespread damage mechanism. However, before the occurrence
of fiber ruptures and final failure, local delamination of the weft tows (Figure 18c–f) was
observed. Delamination (yellow-shaded) initiated at a discrete matrix crack. With an
increasing number of cycles, the delaminated area grew in two directions, over the width
of the weft (load direction) and along the weft direction (transverse to the load). With
delamination reaching the area between the 0◦ warp tows, accelerated longitudinal splitting
commenced, followed by fiber bundle failure (FF) and specimen rupture. Again, no failure
of the aluminum fibers could be ascertained in the in-situ micrographs.

Apart from the damage mechanisms, the microscope images also show that the
aluminum fibers, which were straight and evenly spaced before autoclave curing, were
bunched together and wavy afterwards. This is partly a consequence of the higher tem-
perature expansion of the aluminum compared with the glass fibers. Waviness and, in
particular, bundle formation also result from the relocation of the aluminum fibers into
the spaces between the warp threads during autoclave processing. Improvements to the
aluminum fiber distribution could be achieved in the future, if necessary, by selecting a
finer glass fabric or a prepreg.
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states after 0% (a), 25% (b), 50% (c), 75% (d), 90% (e) and 99% (f) of the cycles to failure.

To further investigate the micro-damage features, additional post-failure microscopy
was conducted for selected fatigue specimens. Sample micrographs are depicted in
Figure 19. The micrograph Figure 19a shows the aluminum fibers exposed through me-
chanical preparation (grinding, polishing). The aluminum fibers appear to be undam-
aged; however, weft-internal inter-fiber cracks, as identified earlier by in situ microscopy
(cf. Figure 18a–c), can be seen. In Figure 19b, apparent aluminum fiber ruptures can be
seen. As the aluminum fiber bundle was not exposed by mechanical preparation and was
still located below the polished surface, we can rule out the possibility that the damage
was caused by the preparation of the micrograph. The overview image in Figure 19c again
reveals that aluminum fiber ruptures primarily occurred in the vicinity of the crossing weft
tow. Ruptures of aluminum fibers lying below the grinding plane (right detail picture) and
ruptures of exposed aluminum fibers (left detail picture) can be seen.

Although thorough microscopy was conducted, only a relatively small number of
aluminum fiber ruptures could be identified for the following potential reasons. Firstly,
ruptures might have been difficult to identify due to the waviness of the aluminum fibers,
their optical properties (high reflectance) and potential crack closure due to the plastic
deformation of the aluminum. Secondly, the fatigue behavior of the aluminum fibers
may have been better than anticipated due to, e.g., thermal softening associated with the
autoclave processing, fiber waviness and supporting effects of the matrix enclosing the
fibers. Thirdly, the fatigue strength of the GFRP phase might have been too similar to that
of the aluminum fibers, so that they did not show pronounced failure, especially in the
form of visible cracks. In fact, the fatigue performance of the GFRP laminate was very
low (Section 4.2), and this can also be assumed to hold true for the GFRP phase in the
AlFGFRP laminate. Overall, the fatigue life seems to crucially depend on the fatigue of
the warp and weft tow crossings. While these crossings are known to be weak zones,
high compaction forces during autoclave processing may have aggravated this condition,
causing excessive local weakening. Unfortunately, neither SN curves of the GFRP material
nor of the aluminum alloy, especially in the form of fine wires, could be found in the
literature for comparison.
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4.4. Electrical Resistance

The contacted AlFGFRP-2 (work-hardened aluminum fibers) specimens, as depicted in
Figure 7c, were tested under static and fatigue loads to investigate the effect of mechanical
loading on their electrical resistance. It should be mentioned at this juncture that the efforts
made to manufacture this type of specimen were considerable. Hence, only 12 contacted
specimens were available for all the resistance and electric load tests.

In the first step, the electrical resistance of a single aluminum fiber was characterized.
Therefore, potentiostatic and potentiodynamic analyses of 280 mm long fiber segments
were conducted to gain characteristic current versus voltage curves. The electric resistance
was then calculated by means of Ohm’s law (potentiostatic data) and by means of linear
regression analysis (potentiodynamic data), both giving identical resistances of 10.89 Ω.
Taking the lengths and cross-section area into account, the average electrical resistivity was
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determined to be 6.1845 × 10−8 Ωm, which is in good agreement with values provided in
the technical literature, for the EN AW-5019 alloy (5.26 × 10−8 Ωm to 6.67 × 10−8 Ωm).

In the second step, the electrical resistance of the unstressed contacted specimens was
characterized. The results are summarized in Figure 20. Two specimens with an unusually
high electrical resistance, presumably due to poor contacting of the aluminum fibers, were
declared invalid and discarded. The absolute resistances of all other specimens ranged
from 0.034 Ω to 0.134 Ω, with an average value of 0.083 Ω ± 0.036 Ω. The high standard
deviation was assumed to result from the varying contacting quality of the crimping
connections. By comparison, the theoretical specimen resistance, considering an idealized
parallel connection of approximately 1500 aluminum fibers with a length of 280 mm,
resulted in a calculated electric specimen resistance of 0.0073 Ω plus about 0.00152 Ω for
the AWG12 copper connector wires. Accordingly, the experimentally determined resistance
was about ten times higher than the theoretical one, which was assumed to result from the
crimping connections and influences, such as the surface oxidation of the aluminum and
possible resin infiltration.
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Concerning the impact of quasi-static loads on the electrical resistance, Figure 21a,b
depicts both the stress–strain curve and the changes in the normalized resistance derived
from a continuous potentiostatic measurement (with a sampling frequency of 200 Hz).
It can be seen that the resistance does not change significantly over a wide range of the
longitudinal tensile strain until the catastrophic failure of the specimen at the ultimate
strain (2.75%). Figure 21b reveals that, except for the steeper initial climb, the measured
resistance increases nearly linearly until reaching a strain of 2.25%. This increase in the
resistance is a direct consequence of the longitudinal strain, as can be shown by means of
the simplistic model (Section 3.6). Substituting Equation (8) into Equation (7), and using
the aluminum fiber properties (Poisson’s ratio, resistivity, length, diameter), the number of
aluminum fibers per specimen yields the thick dashed straight line (strain effect). Shifting
this curve upwards (strain effect plus offset) reveals that the slopes of both the experimental
and analytically calculated resistance increases are in good agreement. This suggests that
the majority of aluminum fibers remained intact over a wide range of strain.

Neglecting the strain-related resistance increase, the impact of the aluminum fiber
ruptures on both the gauge length resistance and overall specimen resistance (including
tabs and connection wires) is assessed by means of Equation (7) and plotted in Figure 21c.
The unknown resistance of the crimp connection (RCC) was adjusted so that the analytical
initial specimen resistance (Equation (7)) matched the initial experimentally measured
value. The curve corresponding to the resistance of the entire specimen suggests that
about 5% of the conductive fibers ruptured at εx = 2.0%. Shortly before the final failure, at
εx = 2.5%, about 20% to 25% of the aluminum fibers ruptured, again assuming the validity
of all the simplifications.
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fatigue life, the average change of cycles to failure of AlFGFRP-2 (work-hardened alumi-
num) was only about −6.5% compared to the reference GFRP laminate. Microscopic in-
vestigations of the damage mechanisms revealed the occurrence of aluminum fiber rup-
tures; however, their identification was only possible post-rupture. The resultant normal-
ized resistance curves (one specimen per load level) are plotted against the normalized 
fatigue life in Figure 22a. For the three load levels shown, the resistance remains nearly 
unchanged up to about 40% of the fatigue life. Then, a region of minor resistance increase 
can be observed up to 70%  of the fatigue life. Afterwards, the resistance increases 

Figure 21. Exemplary resistance increase of a single specimen (potentiostatic measurements) during
a quasi-static tension test (a), comparison with the estimated resistance increase due to strain (b),
analytically calculated resistance increase due to the gradual rupture of the parallel non-touching
aluminum fibers, according to Equation (7) (c).

While the specimen conductivity did not degrade significantly under quasi-static loads,
fatigue loading was observed to have a more detrimental effect. Concerning the fatigue life,
the average change of cycles to failure of AlFGFRP-2 (work-hardened aluminum) was only
about −6.5% compared to the reference GFRP laminate. Microscopic investigations of the
damage mechanisms revealed the occurrence of aluminum fiber ruptures; however, their
identification was only possible post-rupture. The resultant normalized resistance curves
(one specimen per load level) are plotted against the normalized fatigue life in Figure 22a.
For the three load levels shown, the resistance remains nearly unchanged up to about 40%
of the fatigue life. Then, a region of minor resistance increase can be observed up to 70% of
the fatigue life. Afterwards, the resistance increases progressively for all three load levels.
The resistance behaves similarly for the high and medium load levels, exhibiting increases
of about 20% before the final failure. For the low load level, however, the resistance increase
is more progressive and distinct. Before the loss of conductivity due to the final failure,
the resistance increases to about 60%. Again, the simplified model in Equation (7) can be
used to estimate the number of broken conductors (Figure 22b). In the case of the high and
medium load levels, the model yields a fraction of interrupted aluminum fibers of about
65%, while for the low load level, about 85% of the aluminum fibers are assumed to have
failed due to the fatigue loading.
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4.5. Electrical Load

For one specimen, electrical load tests were conducted to investigate the current-
carrying capacity and heating behavior of the contacted AlFGFRP-2 specimens. Electrical
currents of up to 26 A were applied, using the electrical circuit shown in Figure 9a, with
RS representing the total ohmic resistance of the contacted specimen (Equation (7)). The
supply voltage, as well as the system resistance, were adjusted to obtain the desired current
passing through the specimen. Thermographic imaging was employed for the temperature
monitoring. Figure 23a shows sample images of a specimen carrying currents ranging
between 2 A and 18 A. The images reveal the imperfect contacting of the aluminum fibers,
indicated by local heating in the end tab regions. End tab heating was found to be more
critical than the heating of the gauge section laminate. At a current of 26 A, local heating
caused desoldering of the copper wires. Considering the heating behavior in the gauge
section, some specimens showed a non-uniform temperature distribution. In the case of
the sample specimen (Figure 23a), a temperature difference of about 5 ◦C can be seen
between the left and right specimen edges. With the aluminum fiber distribution being
relatively homogeneous (except for the local waviness), non-uniform heating indicates
a non-uniform current distribution. This most likely stems from non-uniform crimping
connections in combination with missing (or lower) transverse interconnection of the
conductors compared to a conventional cable wire.
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The temperature increases linearly with the loss power in the gauge section. The experi-
mental temperatures and calculations correlate well for a thermal heat transfer coefficient 𝛼 = 11 W/(m²K) and passive convection (literature: 5 ≤ 𝛼 ≤ 15). 
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Due to the small number of available contacted specimens, only a single quasi-static 
test was conducted. The results are depicted in Figure 24. Figure 24a shows the surface 
temperature distribution at a current of 5 A without mechanical load (left), and at the 
moment of the catastrophic specimen rupture (right). The left image reveals that the spec-
imen temperature distribution is rather homogeneous, except for slightly elevated tem-
peratures in the vicinity of the strain gauge. The initial average surface temperature is 26.8 °C. Along with the increasing strain (Figure 24b), a slight decrease in the surface tem-
perature can be observed. The cause of this behavior could not be ascertained. With the 
ambient temperature being constant throughout the test, it might be a result of strain-
related changes in the heat transfer or heat emissivity. A steep increase in temperature can 

Figure 23. (a) Thermographic pictures of a current-carrying specimen; (b) measured surface rela-
tive temperature (gauge section mean temperature) plotted against the current; (c) measured and
calculated temperature plotted against the gauge section loss power.

The equilibrium temperature in the relative mean gauge section (yellow box) is plotted
against the electric current in Figure 23b, suggesting a quadratic relationship. The grey-
shaded region represents the standard deviation of the temperature in the gauge section.
Additionally, the temperature increase was calculated iteratively by means of Equation (10),
starting with the theoretical gauge section resistance at room temperature. The temperature
increases linearly with the loss power in the gauge section. The experimental temperatures
and calculations correlate well for a thermal heat transfer coefficient α = 11 W/

(
m2K

)
and

passive convection (literature: 5 ≤ α ≤ 15).
The investigation of the ohmic heating behavior also helped to identify a suitable

current for the combined electro-mechanical tests. With both the ohmic heating and
autonomous heating contributing to an increase in the specimen temperature, the current
should be controlled carefully in order to prevent specimen overheating. A current of 10 A
was identified to be suitable for all the specimens and load levels.
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4.6. Combined Mechanical and Electrical Load

Similar to the investigations of the electrical resistance (Section 4.4), quasi-static and
fatigue tests were conducted using the electrically contacted specimens (AlFGFRP-2).
However, this time, a pre-set direct current was applied to investigate the effect of the
electrical load on the specimens’ mechanical behavior. The voltage was kept below 12 V for
safety reasons. The test set-up depicted in Figure 9 was used to apply the electrical loads.
With the specimen resistance being much lower than the system resistance, damage-related
current decreases were low and could easily be compensated by manually increasing the
supply voltage. Thus, the tests were conducted using a quasi-constant current.

Due to the small number of available contacted specimens, only a single quasi-static
test was conducted. The results are depicted in Figure 24. Figure 24a shows the surface
temperature distribution at a current of 5 A without mechanical load (left), and at the
moment of the catastrophic specimen rupture (right). The left image reveals that the
specimen temperature distribution is rather homogeneous, except for slightly elevated
temperatures in the vicinity of the strain gauge. The initial average surface temperature
is 26.8 ◦C. Along with the increasing strain (Figure 24b), a slight decrease in the surface
temperature can be observed. The cause of this behavior could not be ascertained. With the
ambient temperature being constant throughout the test, it might be a result of strain-related
changes in the heat transfer or heat emissivity. A steep increase in temperature can be seen at
the moment of specimen rupture. This is in accordance with the measured abrupt increase in
the specimen resistance and is also a result of fracture surfaces, revealing the specimen’s core
temperature. The comparison of the stress–strain curves of the current-carrying and solely
mechanically loaded specimens reveals slight differences. The stress–strain curve of the
current-carrying specimen becomes more non-linear at strains above 1.5%, and the strain at
rupture εAlFGFRP-2,curr

x,f = 2.97% is slightly higher compared to εAlFGFRP-2
x,f = 2.85%, which is

assumed to be a consequence of the specimen’s temperature. In contrast, hardly any impact
on the tensile strengths (σAlFGFRP-2,curr

x,f = 1163 MPa compared to σAlFGFRP-2
x,f = 1197 MPa)

was observed.
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Figure 24. Combined tensile test with electrical load: (a) thermographic images of a mechanically
unloaded specimen carrying a current of 5 A (left) and at the moment of final rupture (right); (b) stress–
strain results and surface relative temperature of the current- and non-current carrying specimen.

As the electric specimen resistance undergoes a more distinct degradation under cyclic
loads, we set our focus on combined electric and fatigue testing (R = 0.1). In this unique
test series, five contacted specimens were tested at three load levels, according to Section 4.2.
The results in terms of the SN curves are plotted in Figure 25, along with the previous
results from Figure 13a. A comparison of the SN curves reveals a rising difference towards
lower load levels. While there is hardly any influence on the fatigue life at the high load
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level (−1.4%), the cycles to failure changed by about −12% at the medium load level. At
the low load level, the fatigue life changed by −22% compared to the solely mechanically
loaded specimen.
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The investigation of the stiffness degradation (Figure 26a) and specimen heating
(Figure 26b,c) revealed further differences. With the stiffness being constant over large parts
of the fatigue life, overall degradation behavior was similar to that of the sole fatigue load.
This was true for the high and the medium load levels. However, for the low load level, the
stiffness degradation was much more distinct during the last 20% of the fatigue life. In fact,
both specimens tested at the low load level exhibited a gradual loss of stiffness between
80% and 90% of the cycles to failure. Then, during the last 5% of the fatigue life, the stiffness
dropped suddenly to 70% of the initial value. Stiffness reductions were observed to occur
simultaneously with longitudinal splitting. This damage mechanism was also observed
under sole mechanical loading (shortly before final failure); however, it seemed to occur
earlier under combined mechanical and electrical loads. In consequence, the final specimen
rupture was less abrupt, showing less distinctive specimen disintegration.
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Similar to the stiffness degradation results, hardly any differences in the heating
behavior could be seen at the high and the medium load level. Figure 26b shows the change
in the average surface temperature over the normalized number of cycles. Additionally,
Figure 26c depicts the temperature differences between specimens tested under mechanical
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and combined electrical-mechanical loads. While the temperature differences are negligible
at the high and the medium load levels, the specimen heating is more distinct at the low
load level. In fact, with the electric load, the average surface temperatures rose up to 10 ◦C
higher before the final failure.

While the surface temperature distributions were rather homogeneous under the
solely mechanical fatigue loads, distinct temperature gradients were observed under the
electric loads (Figure 23) and also under the combined electrical-mechanical loads. Figure 27
shows a series of thermographic images taken during fatigue testing at the high load level.
The first image shows the temperature distribution caused only by the electric load. The
image reveals two roughly 8 mm-broad bands near the free edges, which are about 6 ◦C
warmer (36 ◦C) than the specimen middle region (30 ◦C). This inhomogeneous distribution
of the surface temperature persists throughout the fatigue life, even though the overall
specimen temperature increases due to the autonomous and damage-related heating. The
resulting temperatures of around 40 ◦C (at 75% of the cycles to failure) are higher, as
desired; however, they are sufficiently below the glass transition temperature of the hot
curing epoxy system. An interesting phenomenon can be observed in Figure 28, showing
the temperature distributions at the low load level (374 MPa) and 10 A current. Again, the
initial temperature distribution due to ohmic heating is inhomogeneous. Additionally, with
a difference of 6 ◦C between the edge bands (the right band is warmer), the temperature
distribution is not symmetric. Strain- and damage-related heating plays a subordinate
role at this load level, and no significant rise in the overall specimen temperature can be
seen throughout the fatigue life (compared to the results in Figure 16b). However, over the
specimen life cycle, an interesting shift in the high temperature zones can be seen. While
the right edge band is warmer in the beginning, a decrease in temperature can be seen from
n/N = 0.25 (45 ◦C) to n/N = 0.5 (41 ◦C). Simultaneously, the temperature of the left band
increases (to 39 ◦C) compared to the initial state (n/N = 0, 36 ◦C). At n/N = 0.95, both
bands show a similar temperature of about 42 ◦C. Then, shortly before the final failure at
n/N = 0.99, the right band abruptly cools down to below 40 ◦C, and longitudinal splitting
(elliptic marker) along the former left boundary of the temperature band occurs, followed
by the catastrophic specimen rupture. With the accumulation of damage and, especially,
with the occurrence of local plasticity and aluminum fiber ruptures being unknown, an
explanation for the temperature shift phenomenon is speculative. As mentioned before,
the inhomogeneity of the initial temperature redistribution is most likely caused by the
improper contacting of the aluminum fibers. Hotter regions indicate higher local currents
due to a better contacting/lower resistance. Likewise, local decreases in the temperature
are most likely caused by local damage-induced resistance increases. As a consequence, the
current increases in the intact or less damaged part of the cross-section. This explanation
for the high temperature zone shift is supported by the fact that the final failure-inducing
longitudinal splitting occurs directly along the cooled-down edge band.
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4.7. Comparison to Conventional Aluminum Cables

Typical aluminum cables, such as those used in automotive applications, are made
from 1000 series aluminum alloy, such as EN AW-1370 or similar, with an electrical con-
ductivity of about 62% of copper or a maximum resistivity (soft condition) of about
2.8 × 10−8 Ωm [42–45]. The experimentally determined resistivity of EN AW-5019 al-
loy fibers is about 120% lower (6.1845 × 10−8 Ωm) (Section 4.4). However, their tensile
strength is about five times higher (511 MPa) (Table 3). As stated above (Section 4.4), the
experimentally obtained electric resistivities of the contacted specimens were much lower
than the analytical estimations due to the contacting issues.

The current rating of conventional aluminum cables depends primarily on the con-
ductor diameter. For a comparison with the multifunctional material, a regression analysis
of the current rating data of single-core-XLPE-insulated aluminum cables [46] and an ex-
trapolation to cross-sections smaller than 4 mm2 was conducted. The current ratings and
resulting current densities are plotted against the cross-section in Figure 29. The effective
aluminum cross-section of the AlFGFRP specimens was about 2.4 mm2. With the current
set to 10 A in the combined electrical-mechanical tests, and a resulting current density in
the aluminum of about 4.5 A/mm2, the current load was similar to the current capacity of
a conventional cable. Considering the full multifunctional material, the average current
density was about 320 mA/mm2.
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5. Discussion

The main objective of this work was to ascertain whether a multifunctional material
can carry technically relevant electrical currents without its mechanical properties being
affected. This requirement is of fundamental importance with respect to technical applica-
tions. Although several studies have investigated multifunctional composites containing
fibrous metals, knowledge of fibrous aluminum-based composites and, especially, of their
behavior under combined electrical-mechanical loads is rare to non-existent.

Combined electrical-mechanical fatigue tests, including microscopy, potentiometry
and thermography, were conducted to investigate the electrical, mechanical and combined
performance of a multifunctional aluminum-fiber-reinforced GFRP material containing
10 vol.% of work-hardened aluminum fibers with a diameter of 0.045 mm. The results of
the combined tests indicate that there were no significant fatigue life reductions at high
and medium load levels when carrying a current of 10 A (current density of 4.5 A/mm2

in the aluminum), which corresponds to the current rating of conventional aluminum
cables. Consequently, the current itself does not affect the mechanical behavior. A notable
reduction in the fatigue life (−20%) at the low load level (30%UTS) can be attributed to the
ohmic heating of the specimen. In fact, temperature is known to be an important variable
influencing the fatigue behavior [37,38]. Additionally, temperature induced stresses due
to the non-matching thermal expansion coefficients of aluminum and glass fibers may
also have detrimental effects; however, this requires further investigation beyond the
scope of the present work. While the lack of compatibility of the thermal expansion
coefficients cannot be adjusted for the given constituents, the ohmic specimen heating can
be improved by better electrical contacting and the realization of a more homogeneous
temperature distribution.

Under sole quasi-static tension loading, the resistance of the specimens remained al-
most unchanged until specimen rupture. Thereby, the resistance increase due to mechanical
strain was negligible, which has also been reported by Pototzky [23] for different sheet
metals. The observation that the electrical resistance did not undergo notable changes, even
at strains greater than the rupture strain of the free single aluminum wire, could not be
clarified. It stands to reason that the rupture strain of the fibers increased due to thermal
softening (during autoclave processing), which is a known phenomenon of work-hardened
AlMg alloys [47]. Further reasons for the observed behavior may be the waviness of the
aluminum fibers and their cross-contacting. Positive effects of thermal residual stresses
are unlikely, since these would equate to tensile stresses in the aluminum. Wang et al. [48],
for example, reported a reduction in the yield point of GLARE caused by thermal residual
tensile stresses in the aluminum. At high, medium and low fatigue load levels, the electrical
resistance increased progressively in the last 30% of the fatigue life, which is a consequence
of aluminum fiber ruptures. It is known that plastic deformation also leads to resistance
increases, but only to a small extent [49].

A comparison with the experimental results of the GFRP reference material reveals
that metal fiber integration affected neither the fiber-parallel tensile strength nor the fatigue
strength significantly. Similar results were reported by Hannemann et al. [50] for a steel-
fiber-reinforced CFRP material under quasi-static loading. In a later publication, it was
also shown that the fatigue life was not significantly affected [51]. In contrast, the static
transverse strength decreased significantly (−17%) due to the inadequate bonding of the
aluminum fibers to the polymer matrix. The bonding of aluminum requires a thorough
physical and chemical surface treatment due to the formation of weak natural oxide
layers [52,53]. Therefore, the inline surface preparation of the thin metal fibers should
be improved as far as possible, for example, by including a chemical surface treatment.
Nevertheless, aluminum bond strength apparently was sufficient to not cause significant
fatigue life reductions compared to the reference laminate. The results also demonstrate
the importance of geometrical and mechanical compatibility. Concerning the geometry
of the aluminum fibers, the integration of thinner fibers led to a higher transverse tensile
strength. In contrast to the initially work-hardened wire, the soft-annealed wire was less
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compatible with the stress–strain behavior of the glass fibers. The plastic deformation of
the aluminum, indicated by higher hysteretic losses, led to the lower static and fatigue
strength of the composite.

Our important finding that the integration of work-hardened aluminum did not cause
significant fatigue life reductions must be taken with caution, however, as the fatigue
strength of the GFRP base laminate was comparatively low (c.p. [54]). The latter requires
verification for the specific laminate fabrication processes used herein in contrast with other
GFRP materials. Of course, the same holds true for the impact of the electrical current on
the fatigue behavior.

From a technical point of view, the contacting of thin aluminum fibers is a central
problem to be solved, especially in the case of finer fiber integration approaches, such as
homogeneous hybrid single plies. This is equally true for relatively simple test specimens
and for contacting solutions for the power and signal transfer in multifunctional lightweight
structures [23,55]. The improvement of the contacting, along with the improvement of the
fiber–matrix bonding, is thus central task for further investigations.

Overall, the present pioneering experimental results of the mechanical and electrical
properties appear to be promising, especially in view of the non-ideal material architecture
and specimen fabrication. Discounting the undesired temperature influence, the multifunc-
tional material is capable of carrying technically relevant currents. In contrast to steel-based
composites, the integration of aluminum fibers into GFRP does not cause an increase in
density. Mass savings through the elimination of conventional cables depend significantly
on the application and even more on the required cable cross-sections. Therefore, mass
savings cannot be estimated indiscriminately nor on the basis of this initial research.

6. Conclusions

A multifunctional aluminum fiber-glass-fiber-reinforced polymer (AlFGFRP) pro-
posed as a replacement for conventional electric conductors in future electric vehicles was
investigated experimentally to assess its mechanical, electrical and combined material
behaviors. Sophisticated monitoring methods (potentiometry, thermography, microscopy)
were applied to investigate the damage of the composite and, especially, the conductive
aluminum reinforcement.

The main conclusions of this work are as follows:

• The integration of a small amount (10 vol.%) of work-hardened aluminum fibers into
a unidirectional GFRP material does not significantly affect the tensile strength and
fatigue strength in the fiber-parallel direction.

• The transverse strength is reduced significantly (−17%) due to the inadequate bonding
of the aluminum fibers, revealing the need for improved surface treatments.

• The electrical conductivity is widely maintained until the specimen rupture under
static loads, whereas it decreases under cyclic loading within the last third of the
fatigue life due to the fatigue of the aluminum fibers.

• Technical relevant currents (320 mA/mm2) can be carried; however, the fatigue life is
reduced at low load levels due to temperature effects stemming from the inhomoge-
neous ohmic heating.

• The contacting of thin aluminum fibers is a central problem to be solved, especially in
the case of finer fiber integration approaches, such as homogeneous hybrid single plies.

In addition to solving the aluminum fiber contacting and bonding, there are several
fundamental questions that need to be answered in future investigations. As a first step,
due to the limited number of specimens tested and the unusual low fatigue strength of the
base GFRP composite, further GFRP materials and more homogeneous aluminum fiber
distributions should be investigated. Thus far, proof of the current-carrying capability
is limited to low voltages. However, for many technical applications, such as electric
propulsion, a high-voltage energy transfer is more appropriate. Therefore, the impacts of
both high currents and high voltages should be studied. The damage behavior is assumed
to be more complex at high voltages due to potential arcing at the fiber interruptions and/or
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between plies. Future engineering challenges will involve aspects of industrial fabrication,
the design of durable and reliable contactors and their integration in electrical systems, not
forgetting the numerous questions concerning safety and repairability.
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