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Abstract—Automatic label generation systems, which are ca-
pable to generate huge amounts of labels with limited human
efforts, enjoy lots of potential in the deep learning era. These
easy-to-come-by labels inevitably bear label noises due to a lack
of human supervision and can bias model training to some
inferior solutions. However, models can still learn some plausible
features, before they start to overfit on noisy patterns. Inspired
by this phenomenon, we propose a new Peaks fusion assisted
EArly-Stopping (PEAS) approach for imagery segmentation with
noisy labels, which is mainly composed of two parts. First, a
fitting based early-stopping criterion is used to detect the turning
phase from which models are about to mimic noise details.
After that, a peaks fusion strategy is applied to select reliable
models in the detection zone to generate final fusion results. Here,
validation accuracies are utilized as indicators in model selection.
The proposed method was evaluated on New York City dataset
whose labels were automatically collected by a rule-based label
generation system, thus noisy to some extent due to a lack of
human supervision. The experimental results showed that the
proposed PEAS method can achieve both promising statistical
and visual results when trained with noisy labels.

Index Terms—deep learning, semantic segmentation, noisy
labels, early stopping

I. INTRODUCTION

Land cover information is critical for various real applica-
tions such as urban planning [1], natural disaster monitoring
[7], and so on [2]. Specifically, nearly real-time generation
of such information would further benefit many of these
applications, thereby essential for digital twins construction.
Traditional field survey based land cover mapping methods
are generally laborious, time-consuming, and expensive, hard
to meet the demand. Fortunately, due to the rapid development
of remote sensing and machine learning (deep learning in par-
ticular) techniques, we are able to access as well as cope with
massive amounts of remote sensing data, making it possible to
yield land cover maps from a large scale in a real-time manner
[6]. However, obtaining a sufficient number of labeled data for
model training is challenging, since they mainly rely on costly
human annotations like visual interpretation and in-situ field
surveys.

To address this problem, researchers seek to find solu-
tions by developing automatic labeling tools. For example,
Albrecht et al. [8] designed an automatic label generation
system named AutoGeoLabel. With some high-quality data
e.g. LiDAR (Light Detection And Ranging) data in hand, this
system can easily distinguish different kinds of ground objects
based on simple rules following daily common sense. One

Fig. 1: Test accuracies (mIoUs) versus training time (epochs)
obtained by training with rule-based noisy labels.

of the biggest advantages in this process is to spare human
efforts, realizing automatic and near real-time label collection.
In spite of the convenience and speed, these rule-based labels
inevitably bear some noises, threatening to bias the model
training [9].

As mentioned in [4], deep classification networks are capa-
ble of modeling noisy labels, yet they tend to first learn sim-
ple/common features, and then start to mimic noisy patterns
as training proceeds. In this case, the model performance gets
improved merely at the initial stage, and gradually decreases
due to an overfitting to noisy labels. This phenomenon termed
as memorization effect has also been reported on segmentation
tasks [10]. Here we plot test mIoUs (mean Intersection over
Union) by the model learned from rule-based noisy labels as
a function of training time in Fig. 1. As illustrated, models
themselves have the competence of ”filtering” some label
noises, likely to achieve better segmentation results than the
quality of original noisy labels. Thus, a question naturally
comes up: can we find out the models which outperform the
others during the training process?

With this question in mind, in this paper, we further explore
the potential of rule-based noisy labels for overhead imagery
segmentation. We show the memorization effect from both
statistical and visual perspectives along with some other as-
pects of model learning behaviors. Based on these observations
and inspired by [10], we propose a Peaks fusion assisted



(a) Optical image (b) Ground truth (c) Noisy labels

Fig. 2: One example of data triple used in this work. In (b)
and (c), green, yellow, and dark blue represent trees, buildings,
and background/others, respectively.

TABLE I: Quality assessment of rule-based noisy labels,
where the uncertainty marked in brackets was estimated ac-
cording to sets of 200 patches randomly picked. The overall
of IoU and precision correspond to mIoU (mean Intersection
of Union) and OA (Overall Accuracy), respectively.

class trees buildings background Overall
IoU 0.49(1) 0.46(2) 0.70(1) 0.55(1)

precision 0.60(1) 0.66(1) 0.93(1) 0.77(1)

EArly-Stopping (PEAS) approach to cope with the overfitting
problem on rule-based noisy labels. First, a parametric curve
fitting strategy is exploited aimed at determining the early-
stopping point before models begin to memorize noise details.
Next, a peaks fusion method using validation accuracies as
indicators is included to improve the robustness of such
early stopping strategy. The experiments show that our PEAS
method can effectively prevent the models from falling into
traps of noisy labels.

The rest of the paper is organized as follows. Sec. II
describes the data we used in this work along with a short
introduction of how the rule-based noisy labels were gener-
ated. After that, the proposed PEAS method is elaborated in
Sec. III, followed by experimental results and conclusions in
Secs. IV and V.

II. DATASET

The dataset used in this work is the 2017 New York City
(NYC) dataset collected over the southwest area of New York
City in the year of 2017. This dataset consists of three kinds of
data, that is, multispectral orthophotos serving as model inputs,
ground truth labels for model evaluation, and rule-based noisy
labels collected from LiDAR data for model training. We
first briefly introduce the automatic label generation system
- AutoGeoLabel in Sec. II-A, and then summarize the dataset
details in Sec. II-B.

A. Rule-based noisy label generation

LiDAR data contains rich information of land surface.
However, handling 3D point cloud data is out of reach for
many people due to the complexity of data characteristics and
techniques. To avoid manipulation of 3-D data, AutoGeoLabel
system rasterized the raw LiDAR data into a series of 2-D

statistical feature layers using a sliding circle of 1.5m diameter.
Within each circle, some basic statistics are calculated in
terms of each quantity including elevation, counts of reflected
pulses, and reflected pulse intensity. After that, noisy labels for
trees and buildings were generated via combinations of binary
classification formulas defined according to some simple rules.
For instance, trees are expected to reflect the laser pulse
multiple times leading to a high variation of counts, while
rooftops of buildings are mostly flat with a near-zero standard
deviation value of elevations. More technical details can be
found in [8].

B. NYC dataset

The details of the three parts of the data are listed below:
• Multispectral orthophotos were obtained from the Na-

tional Agriculture Imagery Program (NAIP) [12]. Each
image patch contains 4 bands including near-infrared
(NIR), red (R), green (G), and blue (B), with a spatial
resolution of 1 meter.

• Ground-truth labels were gathered on basis of the 2017
LiDAR data with the aid of other data sources like
vector GIS datasets [11]. This land cover layer originally
contains 8 classes in total. To coordinate with the labeling
system of rule-based noisy labels, only two classes, i.e.,
trees and buildings are considered. The rest 6 classes are
merged into a general class - background/others. Such
accurate land cover information is difficult to acquire
in reality. Here we only use them for model evaluation
purposes.

• Rule-based noisy labels were generated from LiDAR
data via AutoGeoLabel system (cf. Sec. II-A). The used
LiDAR data was collected from the project funded
by Federal Disaster Recovery Community Development
Block Grant (“CDBG-DR”) for disaster recovery and
resiliency initiatives of Superstorm Sandy [5]. The res-
olution of the 3-D point cloud data is approx. 10 points
per square meter. One example of the automatically gen-
erated labels is shown in Fig. 2c, along with a statistical
evaluation in Table. I.

To feed to model, all the data was clipped into small patches
of 256×256 pixels. Ultimately, there are totally 6650 patch
triples composed of orthophotos, ground truth maps, and noisy
label maps.

III. METHODOLOGY

In this section, we present the details of the proposed PEAS
method.

A. Early-stopping criterion

As mentioned above, similar memorization effects initially
found on classification tasks also happen on segmentation
tasks. The whole learning process thus can be divided into
two stages, namely, the early learning stage and the noise
pattern memorization stage. Noisy labels begin to explicitly
undermine the model performance when the training process
enters the latter stage. Therefore, detecting the turning point



Fig. 3: Training and test accuracies (mIoU) versus training
time (epoch), where the dashed green box indicates the
transition phase from early learning stage to noise pattern
memorization stage. Within the box, test accuracies start to
decrease, while the growth of training accuracies gets slow.
For better visual effects, curves shown here were smoothed
using Savitzky-Golay filter with a window size of 3.

between two stages is crucial for early-stopping criterion
design.

Inspired by [10], we utilize a fitting strategy to locate the
endpoint of the first early learning stage. As shown in Fig. 3,
when the model performance starts to degrade in test mIoUs
(between model predictions and ground truth on test set), the
growth of training mIoUs (between model predictions and
noisy labels on training set) correspondingly slows down.
Thus, we can promptly stop the training by setting a watchdog
on the growth rate of training mIoUs. To this end, at the n-th
epoch, we employ the least squares to fit the n training mIoUs
at hand onto the following exponential parametric function
with a, b, c being fitting parameters:

f(x) = a · (1− e−b·xc

), (1)

the gradient of which, related to growth rate, is

f ′(x) = abc · e−b·xc

· xc−1, (2)

where 0 < a ≤ 1 decides the magnitude of f(x), 0 < c < 1
with c − 1 < 0 ensures f ′(x) monotonically decreases, and
b > 0 controls the curvature of the fitting line. In the fitting, the
independent variable x = 1, · · · , n is the epoch indexes, while
the dependent variable f(x) is the corresponding training
mIoUs at each epoch. After fitting, we can measure the
deceleration by comparing the gradients of each epoch to that
of the first one (also the biggest one) by

g(x) =
q − f ′(x)

q
(3)

Fig. 4: Validation and test accuracies (mIoU) versus training
time (epoch). Left: averaged results from 5 repeated experi-
ments with different random splits of training and test samples.
Right: zoomed landscapes in the transition phase from 3
single repeated experiments out of 5. In order to keep original
tendencies of statistics, no smoothing filter was applied.

with the constant of q = f ′(1) = abc ·e−b. The early stopping
is triggered when

e =

n∑
x=1

sgn
[
g(x)

]
< n (4)

with

sgn
[
g(x)

]
=

{
1 if g(x) < r,

0 otherwise,
(5)

where r is the predefined threshold of deceleration. Should the
training terminates once Eq. (4) is true. In this case, e is the
detected endpoint of early learning stage (it might be equal to
or a bit smaller than the early-stopping point n), around which
the peaks fusion strategy described later is applied. Otherwise,
training continues.

Here we apply the fitting strategy to training mIoUs instead
of class-wise training IoUs as claimed in [10]. The reasons
are twofold. First, the aim of this work is early stopping.
Relatively speaking, mIoUs give a better overall assessment of
model performance on each class, which is more compatible
to our goal. Next, training mIoUs read analogous functions as
IoUs in [10] as illustrated in Fig. 3.

B. Peaks fusion strategy

Although the early-stopping strategy in Sec. III-A can avoid
networks from overfitting to noisy patterns to some extent, it
cannot guarantee the selected model fully explores the poten-
tial of noisy labels within the training process. As observed in
Fig. 4, model performances fluctuate severely in the transition
phase. The early-stopping criterion can only roughly identify
the range where the best models might sit. To address this
problem, we design a peaks fusion strategy to improve the
robustness of this early-stopping method. Peaks here indicates
that we select reliable candidates for model prediction fusion



TABLE II: Test accuracies obtained by different single models or fusion strategies, where our proposed PEAS method (tested
with two m, i.e., the number of selected candidates/Cand. for fusion) is marked in bold, and the best and the 2nd best results
are highlighted in red and blue colors, respectively. Specifically, 2b + 1 = m listed in Fusion part corresponds to the cases
where all the models in the buffer zone are used for fusion. Single model includes three cases where models are fully trained
on noisy labels, derived from the endpoints detected by our early-stopping criterion, and best-performed in terms of test mIoU
during the training.

Test IoUsbuffer radius (b) buffer size (2b+ 1) #selected Cand. (m) Trees Buildings Others mIoU
1 3 3 0.519(19) 0.570(18) 0.713(08) 0.601(12)
2 5 5 0.531(18) 0.582(13) 0.717(05) 0.610(10)
5 11 11 0.539(12) 0.588(10) 0.719(02) 0.615(05)
10 21 21 0.542(12) 0.594(11) 0.721(03) 0.619(07)
10 21 3 0.555(18) 0.592(13) 0.725(06) 0.624(11)

Fusion

10 21 5 0.551(16) 0.601(15) 0.726(05) 0.626(10)
Fully trained on noisy labels 0.490(08) 0.451(19) 0.696(09) 0.545(11)

Detected by early-stopping criterion 0.527(28) 0.560(39) 0.712(09) 0.600(21)Single model
Best during training 0.567(11) 0.591(07) 0.723(05) 0.627(08)

via the ”peaks” in validation mIoU landscapes. Note that
validation mIoUs are calculated between predictions and noisy
labels on validation set, since no ground truth labels are
available during the training.

To select model candidates, a buffer zone is required. Let b
denote the radius of the buffer zone centered on e. Then all
the models falling into the buffer zone [e − b, e + b] would
be considered as choosing candidates. In this case, the real
early-stopping point is supposed to be e+ b instead of e.

To finalize the predictions, a straightforward way is to
average all the softmax outputs from 2b + 1 candidates.
However, there are two drawbacks. To ensure the inclusion
of enough well-performed models within the buffer zone, b
cannot be set too small. The test time will greatly increase as
b becomes larger. Moreover, those badly-performed candidates
very likely impose negative impacts on the final fusion results.
In this work, we select models guided by validation mIoUs.
As can be seen from Fig. 4, the fluctuation tendencies of
validation mIoUs (w.r.t. noisy labels) and test mIoUs (w.r.t.
ground truth) are similar to each other in early learning stage.
Our assumption is that severe fluctuations are mainly caused
by clear structure information adjustment. Thus, mIoUs w.r.t.
both ground truth and noisy labels would be affected. So we
select m models associated with m peaks validation mIoUs
within the buffer zone as follows,

F = argsorti(Vi, order=descend)[: m], (6)

where Vi is the validation mIoU at the i-th epoch with i =
{e − b, · · · , e + b}, F is the model index set recording the
selected model candidates for fusion.

The final fusion results are derived from averaged predicted
probabilities softmaxF on softmax outputs by models in F ,
that is,

softmaxF =
1

m
·
∑
i∈F

softmaxi. (7)

TABLE III: Test accuracies obtained from different replays
with buffer radius b = 10, number of selected candidates from
the buffer zone m = 5, where detect indicates from which
epochs models are derived. Also, statistics in red and blue are
the best and the 2nd best results in each replay.

Test IoUsReplay
(detect)

Cand.
(detect) Trees Buildings Others mIoU

Best
(detect)

36 0.536 0.577 0.720 0.611
28 0.571 0.553 0.723 0.615
38 0.530 0.543 0.715 0.596
34 0.513 0.591 0.718 0.607
33 0.526 0.576 0.719 0.607

1
(30)

PEAS 0.542 0.596 0.725 0.621

0.626
(21)

37 0.569 0.590 0.724 0.627
36 0.514 0.601 0.719 0.611
39 0.582 0.533 0.726 0.613
34 0.517 0.566 0.715 0.599
26 0.554 0.588 0.724 0.622

2
(30)

PEAS 0.564 0.618 0.732 0.638

0.627
(37)

40 0.584 0.604 0.730 0.639
35 0.585 0.565 0.721 0.624
37 0.525 0.546 0.709 0.593
41 0.557 0.569 0.722 0.616
31 0.555 0.580 0.717 0.618

3
(32)

PEAS 0.576 0.611 0.730 0.639

0.639
(40)

44 0.531 0.554 0.718 0.601
37 0.525 0.523 0.710 0.586
43 0.540 0.552 0.718 0.603
48 0.514 0.521 0.705 0.580
39 0.546 0.516 0.706 0.589

4
(38)

PEAS 0.541 0.574 0.722 0.612

0.623
(22)

41 0.520 0.563 0.707 0.597
37 0.507 0.565 0.706 0.593
33 0.547 0.567 0.717 0.610
35 0.497 0.579 0.706 0.594
28 0.549 0.593 0.716 0.619

5
(31)

PEAS 0.532 0.606 0.718 0.619

0.619
(28)

IV. EXPERIMENTS

In this section, ahead of describing detailed experimental
results in Sec. IV-B, we first present our settings in Sec. IV-A
for reproduction purposes.



(a) Optical image (b) Ground truth (c) Fully trained model (d) Best single model (e) Proposed PEAS

(f) Candidate 1 (g) Candidate 2 (h) Candidate 3 (i) Candidate 4 (j) Candidate 5

Fig. 5: Examples of segmentation maps along with corresponding optical image and ground truth. Specifically, (f)-(j) are maps
produced by 5 candidate models used to generate final fusion prediction shown in (e).

A. Settings

The settings are summarized as follows:
• Network architecture: We utilized the vanilla U-Net

[3] as our segmentation model, which is composed of
4 downsampling modules and 4 upsampling modules in
sequence. In each down/upsampling module, the combi-
nation of a convolutional layer with kernel size of 3, a
batch normalization layer, and a ReLU layer is repeated
twice after down/upsampling.

• Training and test sets: The whole dataset (6650 image
triples in total) was randomly split into two subsets
with 5600 for training and 1050 for test. In the training
set, 10% samples were further selected as the validation
set. To measure the uncertainty, the random split was
repeated 5 times to retrain the model. Hereinafter, the
uncertainty is shown in brackets, and the results obtained
with different splits are denoted as Replay 1-5.

• Training: Adam optimizer is adopted in our experiments
with an initial learning rate of 1e-3 and a weight decay of
1e-8. The batch size is set to 50. The loss is a joint one of
the cross entropy loss and the dice loss for optimization.
Also, we continue the training till 100 epochs after
successfully detecting the early-stopping point, in order
to obtain the well-trained models on noisy labels for
comparison.

• PEAS settings: The early stopping threshold r is set
to 0.97 via cross validation. The buffer radius and the
number of selected candidates are empirically set to 10
and 5, respectively.

B. Results

First, TABLE II lists the test accuracies calculated on
ground truth data averaged from 5 replays. Except for PEAS,
results obtained by fusion without peaks selection, and some
single models are also presented in TABLE II. Notice that

”Best during training” refers to the highest test mIoUs among
all the epochs. Such model is nearly impossible to identify
in practice. We include those results for comparison purposes
only, since it can give us a rough overview about the potential
of models purely trained with noisy labels. It can be found
from TABLE II that our proposed method can get comparable
results to what the best model can achieve during the training.
Without early stopping, model would finally overfit to noisy
patterns resulting in inferior performances. Without peaks
fusion strategy, the models solely detected by early stopping
criterion are unstable, featured with high standard deviations.
Moreover, fusing all the models lying within the buffer zone
would only lead to marginal improvement in comparison
to early-stopping criterion detected models yet with more
computation required. But they fail to outperform PEAS partly
due to the negative effects of some badly-performed fusion
candidates.

Then, TABLE III gives a more detailed overview of the
peaks fusion strategy in each replay. Similar to what we
can concluded from TABLE II, in each replay, the proposed
method can get close and sometimes even better results
compared to the best single model results during the training.
Two facts contribute to this phenomenon. In all the replays,
the peaks selection strategy is able to filter out some extremely
badly-performed models within the buffer zone, avoiding them
greatly biasing the fusion process. Besides, fusion from mul-
tiple models can boost the robustness of model performance.

Finally, Fig. 5 shows an example of generated segmentation
maps, from which we can conclude that the proposed method
is capable to yield satisfying visual results by gathering
information from multiple candidate models, while the map
by the fully trained model is grandly hurt by noise patterns.
It means that early stopping strategy is crucial to avoid model
from overfitting to label noises.



V. CONCLUSION

This work proposed a new peaks fusion assisted early-
stopping (termed as PEAS) strategy to fully exploit the poten-
tial of noisy labels by the rule-based automatic label generation
system for overhead imagery segmentation. We found that the
memorization effect also happens on segmentation tasks when
the labels of training data are contaminated by noises. But
the learning process starts to slow down when model begins
to memorize noise details. Therefore, a fitting based early
stopping criterion is designed to dynamically terminate the
training. Besides, to reduce the negative effects of fluctuation
during the training, a peaks fusion strategy is used to assist
the early stopping method, which enhances the robustness of
the proposed approach by selecting a few relatively reliable
models to make final decisions. Our experiments verified the
effectiveness of the proposed method. In the future, we plan
to design some noise cleaning strategies on basis of early
learning results to further improve model performance trained
with noisy labels.
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