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Abstract—The nonparametric phase curvature algorithm
(PCA) is commonly used to estimate residual motion error in
stripmap SAR. The algorithm is capable of estimating second and
higher order errors, as well as high frequency errors. However,
its dependence on dominant scatterers restricts its application
to a wide variety of scenes. Such a limitation is encountered
in focusing a polarimetric L-band SAR dataset collected from
an agricultural field. The lack of dominant scatterers in the
scene results in inaccurate error estimation when PCA is applied
directly. Another autofocus scheme, the Multi-aperture Mapdrift
(MAM), is used first to eliminate the low order motion errors.
This improves the focusing quality of the existing targets. The
enhanced point targets are then suitable for PCA to remove the
remaining higher order motion errors. The novel MAM-PCA
combination significantly improves the image contrast compared
to that obtained from the approaches applied separately. Point
target based comparison of MAM, PCA and MAM-PCA show
that the proposed technique improves the overall quality of the
target profile.

Index Terms—Stripmap, synthetic aperture radar (SAR), mo-
tion compensation (MOCO), autofocus, multi-aperture mapdrift
(MAM), phase curvature algorithm (PCA).

I. INTRODUCTION

Airborne synthetic aperture radar (SAR) data usually require
motion compensation (MOCO) before image formation in
order to achieve its system-defined resolution. In practice,
SAR systems that are equipped with highly accurate inertial
navigation sensors (INS) for measuring the platform position
to at least λ

8 precision [1] can simply rely on the sensor data
for MOCO. Otherwise, a data-driven autofocus algorithm is
required to eliminate the residual error [2].

For stripmap SAR, nonparametric phase curvature autofocus
(PCA) is commonly used [3]. As a slightly modified version
of the phase gradient autofocus (PGA), PCA offers estimation
of both low and high frequency motion errors, including
quadratic and higher orders [4]. However, similar to PGA,
PCA relies on dominant scatterers in the SAR scene for the
estimation process [5]. This makes the algorithm redundant
for the scenes where dominant scatterers are scarce such as
agricultural fields.

A viable autofocus option for such rural landscapes is the
parametric mapdrift autofocus (MD). The algorithm does not
depend on point-like targets. Distributed objects, i.e. trees,
crops can rather be used for its estimation process [6]. As
MD based estimation is limited only to the quadratic error,
an advanced version known as the multi-aperture mapdrift

(MAM) is proposed by Calloway et al. [6]. Here, MAM
can reliably estimate high order errors that vary slowly. As
the frequency of the error increases, the estimation becomes
unreliable. Moreover, high order error estimation requires the
aperture to be divided into large number of subapertures,
which reduces the energy and resolution per sub-image [7].
Hence, MAM is ineffective in estimating high frequency and
high order errors.

In order to estimate high order motion error with scarce
targets in rural scenes, this work combines both the PCA
and MAM. Combination of parametric and nonparametric
autofocus can be found in the existing literature. Notably,
MD and PGA are cascaded by Jin et al. [4] to compensate
the residual range cell migration (RCM) in squint SAR.
MAM, weighted PGA and contrast-optimization (CO) based
autofocus are combined to compensate the residual RCM,
along-track velocity and range-dependent phase error [7]. The
MD-based approach is used to estimate unknown linear error
in sub-aperture based PGA and extract residual RCM [8].
Modifications are made to PCA to improve its error estimation
using Kalman filter [9] and extracting prominent points in the
scene and applying adaptive window on them [3]. Weighted
PCA is proposed to take the range-dependent nature of the
phase error into account [2]. None of the above works combine
MAM with PCA to improve the image quality first.

Due to the complementarity of the two algorithms, this work
chooses to combine them. MAM is used to estimate the low
frequency and low (up to third) order errors and PCA is used
to estimate the low frequency higher order (greater than third)
and high frequency components. The MAM method achieves
sufficient enhancement of targets to allow PCA to work, thus
estimating a larger range of errors than either method is
individually capable of. Details of the novel MAM-PCA are
given in Section II along with the overviews on MAM and
PCA. Experimental results are discussed in Section III, which
is followed by the conclusion.

II. COMBINATION OF MAM AND PCA
A. MAM

An extension of the traditional MD, MAM is designed to
estimate motion errors of order quadratic or higher [6]. It
divides the entire aperture into a number of sub-apertures
commensurate with the error order and estimates the error
coefficients for each sub-aperture. The estimated coefficients
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are used to formulate the phase error over the full aperture.
The azimuth phase error for flight duration T can be given as,

φe(t) =

N∑
n=2

ant
n, −T

2
≤ t ≤ T

2
, (1)

where an represents the coefficient of the error polynomial.
The aperture is divided into a number of nonoverlapping

subsections equal to the highest error order N to be estimated.
The error for each sub-aperture n can then be represented as
the windowed version of (1) as [8],

φe,n(t) = φe(t) rect

(
t− nTn
Tn

)
, (2)

where Tn is the subaperture duration.
A crucial consideration while dividing the subaperture is

that it has to be small enough to approximate the phase error to
be linear. Therefore, it is sensible to measure only a linear drift
caused by φe,n(t) within the sub-image. The drift is measured
by correlating the image pairs and computing the correlation
peak shift from the middle of the correlation index.

The linear shift between image pairs u and v can be asso-
ciated with the error coefficient using the following relation:

δu,v =

N∑
n=2

nan(t
n−1
u − tn−1

v ). (3)

A matrix inversion is performed to estimate an from (3). The
estimated an is then used to model the phase error using,

φ̂e(t) =

N∑
n=2

ânt
n. (4)

With the approach above, MAM can reliably estimate the
motion error of quadratic or higher in order. However, the
reliability is limited to low-frequency motion error only, as the
linear approximation is not valid when the error frequency is
high [6]. The other disadvantage of MAM is that if higher or-
der error is to be estimated, the sub-aperture number increases
proportionately. More sub-apertures mean lower resolution and
less energy for each of them [7]. The measured drift becomes
unreliable as a consequence. This limits the reliability of
MAM in estimating high frequency error and very high order
errors. Sinusoidal models instead of the polynomial model in
(4) can improve high frequency error estimation. However,
large sub-aperture division cannot be avoided even in that case.

B. PCA

The PCA algorithm is an adaptation of PGA for stripmap
SAR [2]. It inherits the basic PGA assumptions, i.e. the phase
error is range-invariant and dominant scatterers are abundant
in the scene [10]. The first assumption enables using the
maximum-likelihood (ML) estimator to combine the phase
error estimates obtained from different range bins and the
latter allows inclusion of multiple range bins in the estimation
process. Similar to PGA, it starts by selecting the brightest
pixels in the scene and windowing them. The windowed
image is then decompressed and deramped to obtain the

range compressed data. Using the deramped data, the phase
difference among the neighbouring pixels is computed and
summed over the range bins. The angle of this expression is
the estimated phase curvature. The ML estimator for PCA is
[2],

ˆ̈
φe(l) = ∠

K∑
k=1

gk,l−∆l(g
∗
k,l)

2g(k,l+∆l), (5)

where g is the deramped signal and k and l are the range and
azimuth bins, respectively.

The curvature in (5) is then double integrated to obtain
the phase error estimate. Unknown bias and linear terms
are removed via line fitting the estimated phase error. The
flowchart in Fig. 1b outlines the steps for the PCA.

As the autofocus relies on the dominant scatterers only to
estimate phase error, ideally the error of any order (equal or
higher than quadratic) and frequency retained by the target
should be captured by PCA. However, dominant targets should
be abundant (at multiple range bins across the swath) and they
should be free from any other defocusing than the azimuth
phase error. It also requires high SNR for the scene similar
to PGA [4]. Therefore before applying PCA, the quantity and
quality of the targets need to be ensured.

C. Combined MAM-PCA autofocus

As MAM can estimate low order errors and PCA can
estimate high order and high frequency errors using dominant
scatterers, we propose combining these two approaches to
estimate errors of different orders and frequency for the scenes
that have sparse dominant scatterers. The flowchart of the
combined approach is shown in Fig. 1. It largely preserves
the inherent structure of each algorithm and cascades them
to utilize their individual merits. In MAM, the sub-images
are oversampled to obtain the drifts at sub-pixel level. The
low order and low frequency blurring components (second and
third) are estimated by this block in Fig. 1a. Coarse motion
compensated images are decompressed using the technique
proposed by Wahl et al. [5] and the MAM estimated residual
error is compensated via phase multiplication with it. When
the root mean square (rms) error exceeds a threshold eMAM,th

the algorithm stops, assuming no further low order error is
present. Then the PCA block in Fig. 1b estimates any higher
order errors. The range-independent version of the PCA is
used as the target scene that does not contain abundance of
targets. The computed phase curvature is unwrapped to recover
the integer multiples of 2π and then double integrated to
estimate the remaining phase error. The MAM corrected image
is deramped and compensated for the PCA estimated error via
phase multiplication. A stopping criterion ePCA,th is set for
this block as well. An RMS error of less than π

4 can generally
be set as the stopping criterion [11].

III. EXPERIMENTAL RESULTS

In order to validate the performance of MAM-PCA autofo-
cus, data from a Polarimetric L-band SAR (PLIS) are used.
The parameters are in Table I. Along with radiometers, PLIS
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(a) MAM Block (b) PCA Block

Fig. 1: MAM-PCA based autofocus

system is deployed to validate NASA’s soil moisture active
passive (SMAP) mission [12]. In this trial, agricultural fields
are the scenes of interest. The radar is flown in a light aircraft,
making it more susceptible to large flight path deviations.
Notably, a maximum of 20m deviation in the translational
path is recorded as shown in Fig. 2. Position measurement
accuracy of the INS is 1.5m [13], which is far from meeting
the λ

8 accuracy requirement. The position update rate for the
sensor is approximately 60 times lower than the radar’s data
rate. Thus autofocus is necessary to improve the focusing.

TABLE I: PLIS parameters

Centre frequency 1.26GHz
Range bandwidth 30MHz

Azimuth beamwidth 51deg
Azimuth resolution 0.57m

PRF 625Hz
Nominal velocity 76.4m/s

Swath width 2.2 km

A definite error order is not known to parameterize a model.
But intuitively it can be said from the translational deviation in
Fig. 2 that the residual error may have higher (than quadratic)
order and fast varying (> 1

aperture time ) components. PCA can
be particularly suitable for such problems. Due to the lack of
good quality point-like targets in the scene, PCA cannot be
applied directly, however. Therefore, MAM is applied to the
scene first. A third order MAM is chosen as target blurring
occurs due to the errors of up to cubic [6]. This enhances
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Fig. 2: LOS error extracted using INS data

the image by sharpening the point-like features. The enhanced
point-like features are then used to estimate the residual error
of order higher than cubic using the PCA. Two good quality
targets are used for the PCA estimation. Only a single iteration
is performed for each block as the error converged after that.

The difference in the estimated error and their usefulness
in improving the images are evident in Fig. 3. A coarse
motion compensated and MD corrected image in Fig. 3a
is utilized in this work. A third order MAM is applied
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to this scene. Improvements, compared to the original, are
particularly noticeable from rectangles A and B in Fig. 3b.
Here, MAM improves the mainlobe of the point-like features
in with slight increase in the sidelobes. This is due to the
residual error of higher order present in the original scene that
could not be parameterized in MAM without prior knowledge.
Compensating the errors by applying the nonparametric PCA
directly to the original scene blurs it further as the targets
used for its estimation were not of good quality. This effect
can be seen in Fig. 3c. In contrast, significant improvements
are obtained using the MAM-PCA as apparent in Fig. 3d.
By retaining the enhanced mainlobe feature from MAM, the
combined approach allows a proper execution of PCA. As
the latter is not limited to any error order, it improves the
image quality by suppressing the sidelobes that originated
from higher order errors. Standard deviation intensity contrast
function given by Berizzi et al. [14] are computed for the
scenes. While the MAM and PCA corrected scene contrasts
are 20.85 and 18.53, respectively, MAM-PCA corrected scene
is 29.42.

A point-like feature at range 674m is extracted and com-
pared in Fig. 4. It can be seen that both MD and MAM
improves the mainlobe of the target by compensating the
quadratic and cubic errors respectively. On the other hand,
PCA alone improves the sidelobe relatively as it used blurred
targets for the estimation process. When combined, the benefit
of both the approaches is availed and the overall PSF of the
target is improved. PSF parameters for the target obtained from
the four approaches are given in Table II.

The proposed technique can be made suitable to higher
frequency (than L-band) SAR systems as well where the
severity of motion error is worse [7]. Increasing the order
of MAM and using the weighted version of PCA [2] will
enable MAM-PCA to handle severe errors that are also range-
dependent.

TABLE II: Comparison among MD, MAM, PCA and MAM-PCA

Approach 3dB width [m] PSLR [dB] ISLR [dB]
MD 1.46 - 4.90 -14.70

MAM 0.91 -1.82 -7.26
PCA 1.98 -6.97 -20.22

MAM - PCA 0.91 -9.12 -12.12

IV. CONCLUSION

Stripmap SAR scenes affected with a combination of low
and high order and frequency errors can ideally be compen-
sated with nonparametric PCA autofocus. However, if the
scene does not provide sufficient dominant scatterers, PCA
cannot be applied directly. Correcting the image with paramet-
ric MAM in these cases can make PCA application possible
by sharpening the existing point-like features. In this work, a
combined MAM-PCA autofocus is used to improve the image
contrast significantly. Comparison of the three approaches is
made. It is found that the combined approach can improve the
overall PSF quality.
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(d) MAM-PCA corrected scene

Fig. 3: Agricultural scene improvement via MAM-PCA
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Fig. 4: PSF improvement via MAM-PCA approach
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