Spatially-explicit Uncertainty of Remote Sensing Coastal Biodiversity Products using a scalable cloud-based framework in the Google Earth Engine

Spyros Christofilakos

German Aerospace Center (DLR) Remote Sensing Technology Institute (IMF) Department of Photogrammetry and Image Analysis

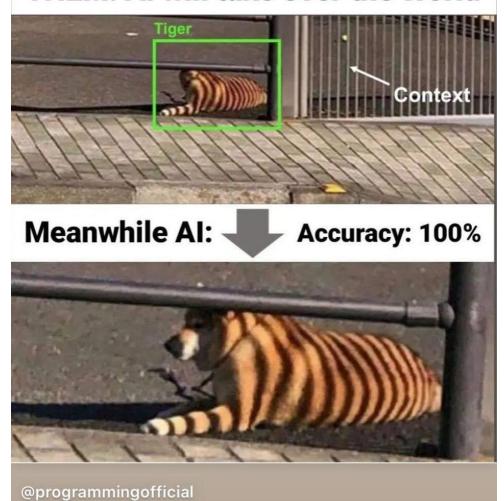
Spyridon.christofilakos@dlr.de

11.10.2022

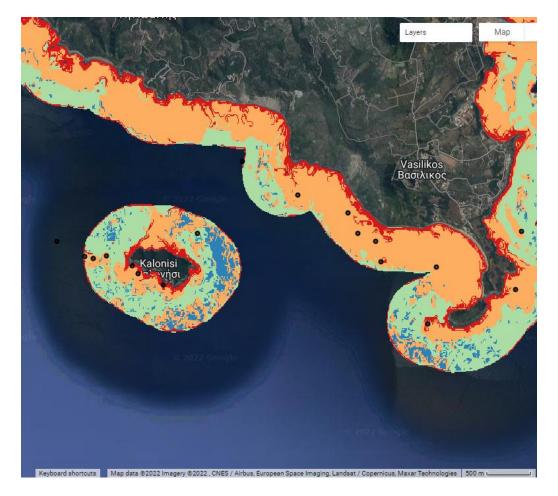
DAAAD Deutscher Akademischer Austausch Diens German Academic Exchange Service

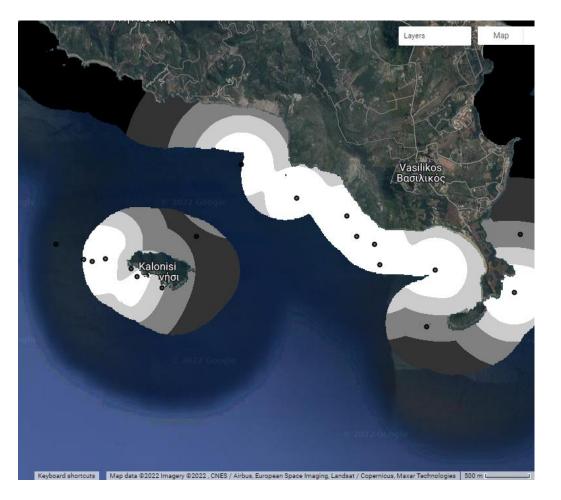
Deutsches Zentrum für Luft- und Raumfahrt German Aerospace Center

ECOSYSTEM SERVICES EMPOWERING PEOPLE AND SOCIETIES IN TIMES OF CRISES

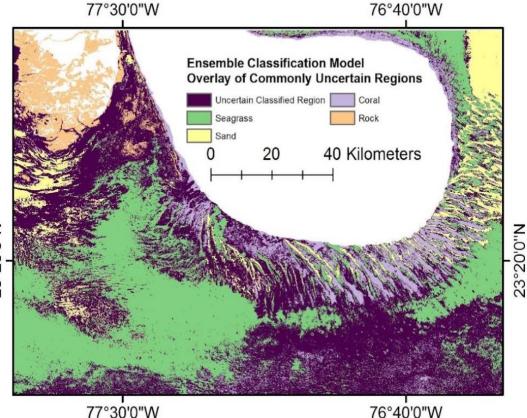

HAROKOPIO UNIVERSITY GEOGRAPHY DEPARTMENT

GLOBAL


ARRASS


more

How accurate is a classification, spatially? THEM: AI will take over the World


How accurate is a classification, spatially? Accuracy assessment is spatially bound

• Develop a semi-automated workflow to estimate the spatially explicit uncertainty of classification and regression procedures that take place in coastal ecosystems

- Develop a semi-automated workflow to estimate the spatially explicit uncertainty of classification and regression procedures that take place in coastal ecosystems
- 1) Highlight the uncertain areas

- Develop a semi-automated workflow to estimate the spatially explicit uncertainty of classification and regression procedures that take place in coastal ecosystems
- 1) Highlight the uncertain areas
- 2) Acquire training data from uncertain/certain areas and re-train the

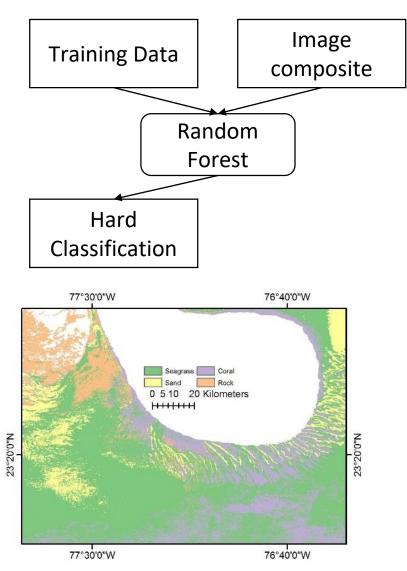
model

- Develop a semi-automated workflow to estimate the spatially explicit uncertainty of classification and regression procedures that take place in coastal ecosystems
- 1) Highlight the uncertain areas
- 2) Acquire training data from uncertain/certain areas and re-train the model
- Be able to tell how accurate is the classification/regression spatially (EU Habitats Directive)

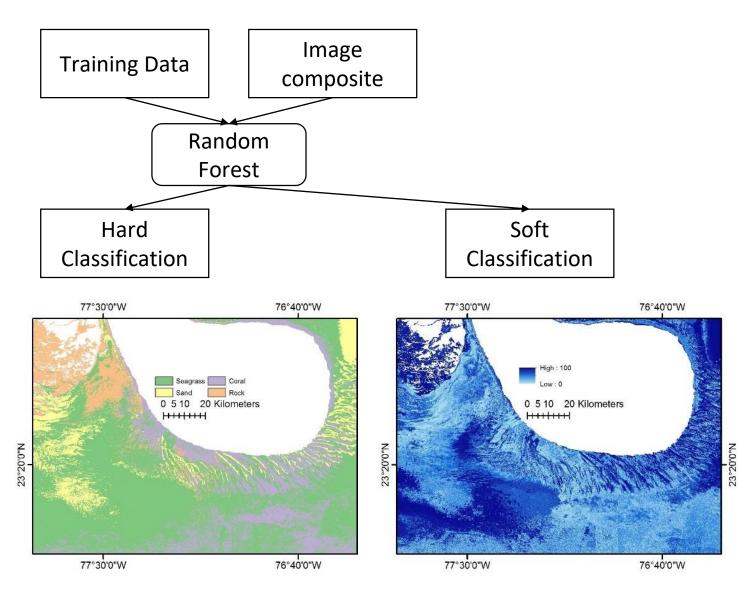
Study Areas

CLASSIFICATION

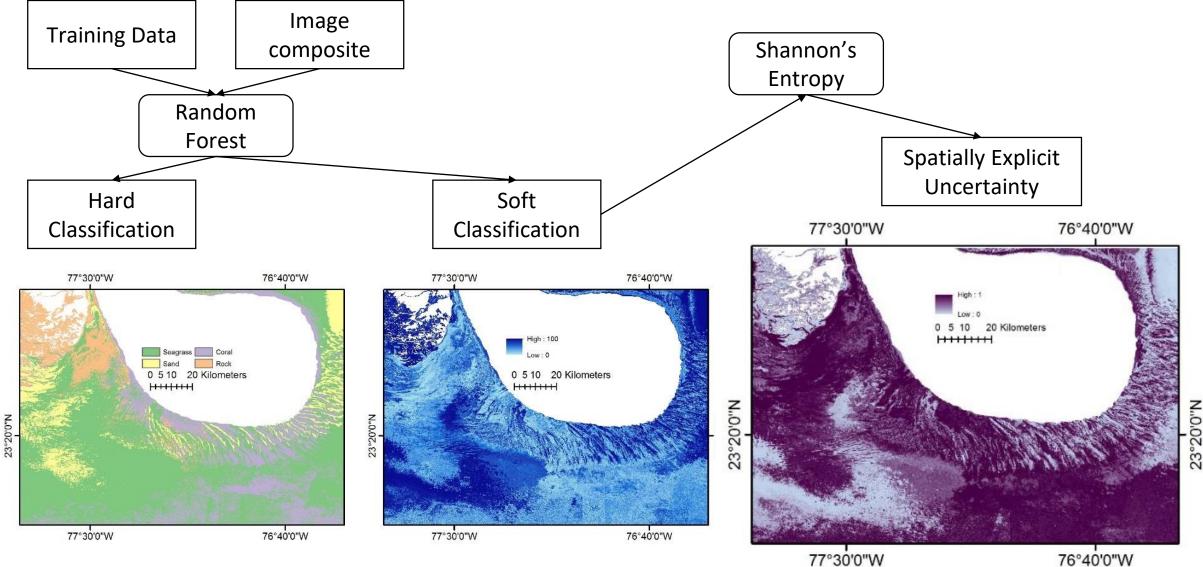
Task: Benthic Habitat Classification Case study: Bahamas, Satellite Data: Four years timeseries of Sentinel2, lvl 2a data Validation Points: 300 per class Training Points: 1000 per Class (Allen Coral Atlas)



REGRESSION

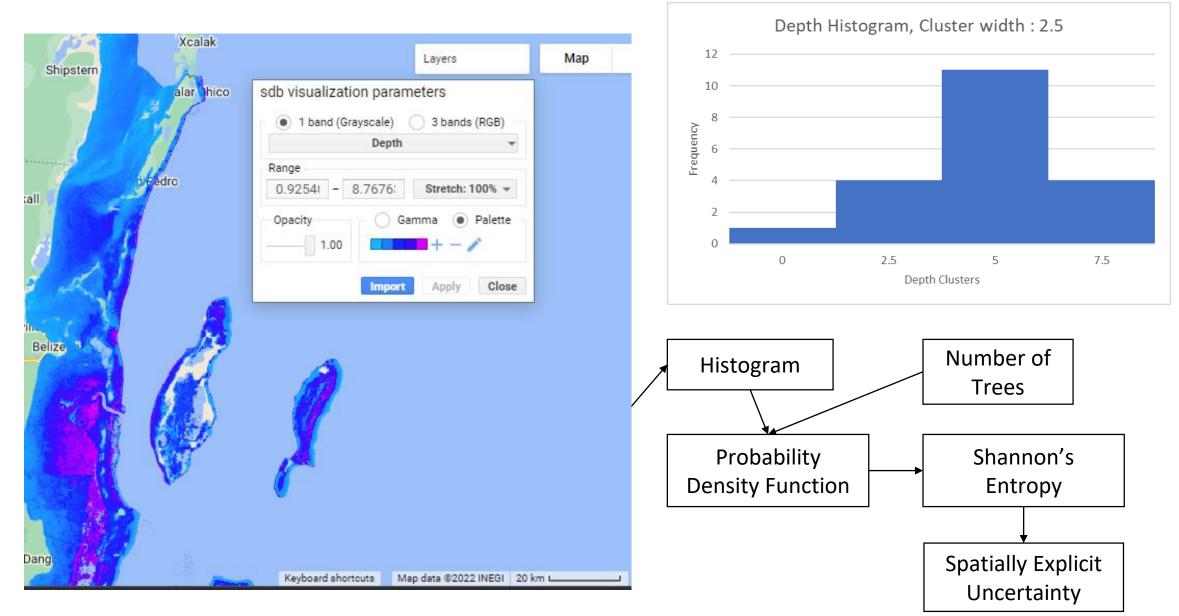

Task: Satellite Derived Bathymetry Case study: Belize (Central America), Quirimbas (Mozambique) Satellite Data Two years timeseries of Sentinel2, lvl 2a data Validation Points: 800 (777 after rescaling) Training

Blume, Alina (2021) Development of cloud-native and scalable algorithms to estimate seagrass composition and related carbon stocks in support of the Nationally Determined Contributions of the Paris Agreement. Master's, University of Aachen. (<u>https://elib.dlr.de/148787/</u>) N. Marc Thomas et all., (2020).**SPACE-BORNE CLOUD-NATIVE SATELLITE-DERIVED BATHYMETRY (SDB) MODELS USING ICESat-2 and SENTINEL-2** https://doi.org/10.1002/essoar.10504452.2


Uncertainty in Benthic Habitat Classification

Uncertainty in Benthic Habitat Classification

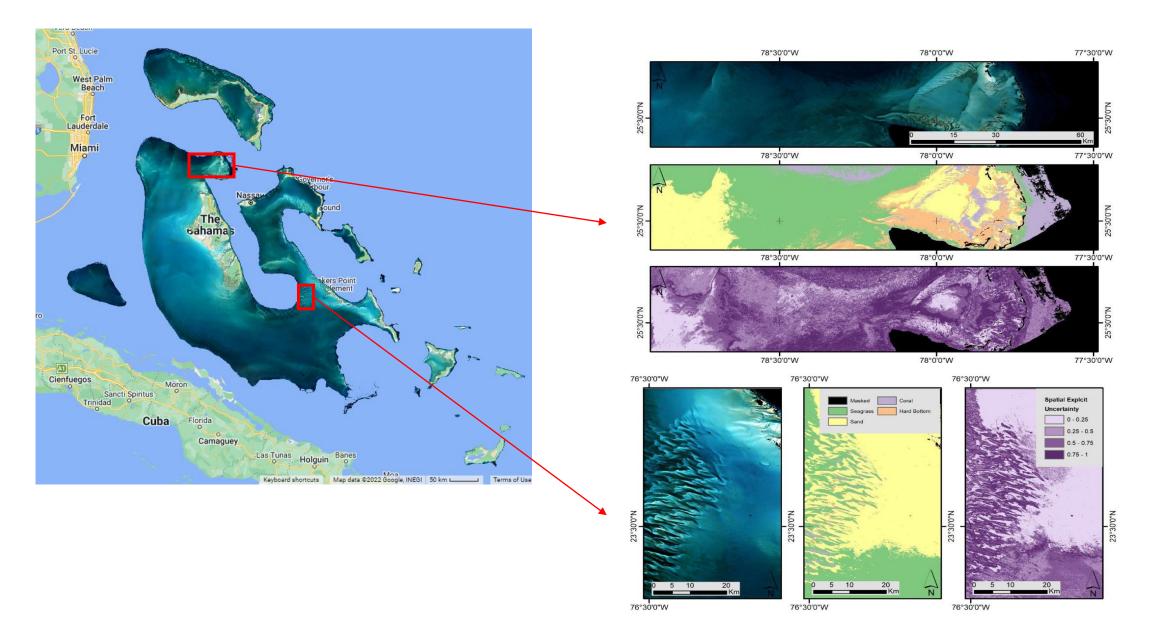
Uncertainty in Benthic Habitat Classification


77°30'0"W

Uncertainty in Satellite Derived Bathymetry

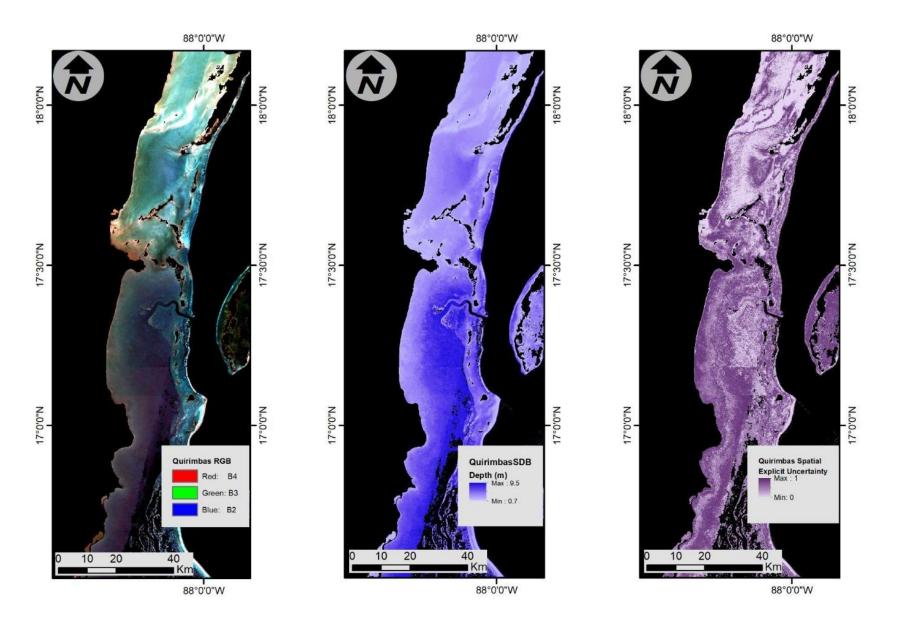
Bathymetry regression with Random Forest classifier of 20 trees

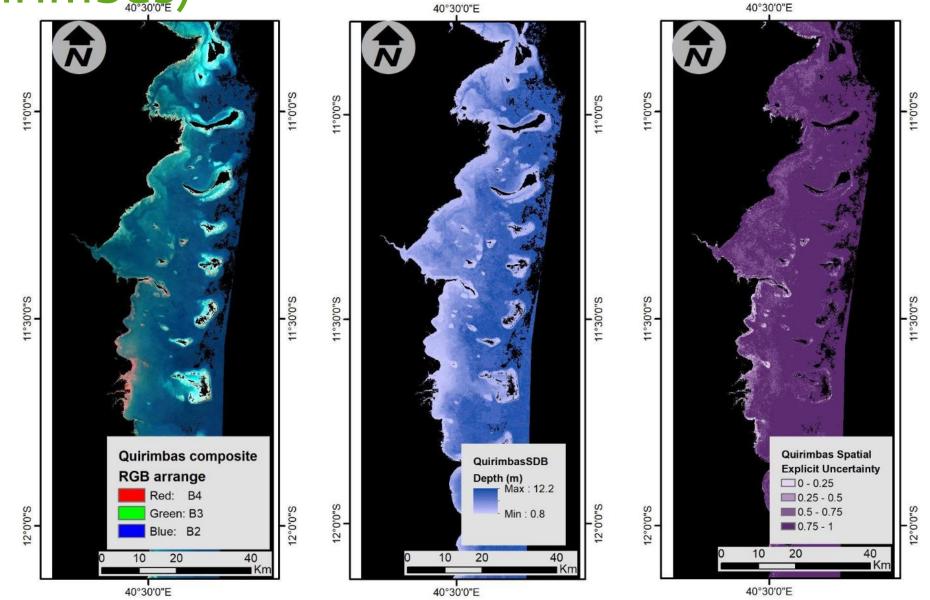
Shipstern	Xcalak		Layers	Map	
	alar hico S	db visualization pa	rameters		
		1 band (Grayscale)			
1			pth	-	
	edro	Range			
all		0.92541 - 8.767	6: Stretch: 100%	*	
		Opacity) Gamma 💿 Palet	te	
14		1.00	+-/		
a de la		Imp	ort Apply Clo	ise	
	4				
in-					
Belize	107	4			
1 7 V					
	1000	. .			
	Ner	1			
States 1	V				
C A					
Dang Contract					
20, , 4	Promotion (Keyboard shortcuts	Map data ©2022 INEG	20 km L	


Uncertainty in Satellite Derived Bathymetry

Results: Accuracy Assessment in Classification

OBIA			
	Initial Classification	Retrained from Uncertain Areas It(0.25)	Accuracy Gain
Overall Accuracy	57.83%	62.08%	4.25%
User's Accuracy	53.82%	60.30%	6.48%
Producer's Accuracy	54.00%	67.33%	13.33%


Results: Uncertainty in Classification


Results: Accuracy Assessment in Regression

QUIRIMBAS				BELIZE			
model	Initial Regression	Retrained from Uncertain Areas lt(0.25)	Accuracy Gain	model	Initial Regression	Retrained from Uncertain Areas lt(0.25)	Accuracy Gain
MeanSqr Error	2.6328	2.1955	0.4373	MeanSqr Error	1.2306	1.1479	0.0827
r_sqr	0.6289	0.6162	0.0127	r_sqr	0.6104	0.6026	0.0078

Results: Uncerainty in Regression (Belize)

Results: Uncerainty in Regression (Quirimbas)

Takeaways and Next Steps

• Spatially Explicit Uncertainty shows promise to improve the remote sensing products and especially marine habitat classifications

Takeaways and Next Steps

- Spatially Explicit Uncertainty shows promise to improve the remote sensing products and especially marine habitat classifications
- In turn, better maps could support more effective policy making, field data collection and real world impact

Takeaways and Next Steps

- Spatially Explicit Uncertainty shows promise to improve the remote sensing products and especially marine habitat classifications
- In turn, better maps could support more effective policy making, field data collection and real world impact

• Use of Spatially Explicit Uncertainty for a data driven data creation workflow for modelling instead of using field data

Thank you for your time!

email: <u>spyridon.christofilakos@dlr.de</u> linkdn: Spyros Christofilakos

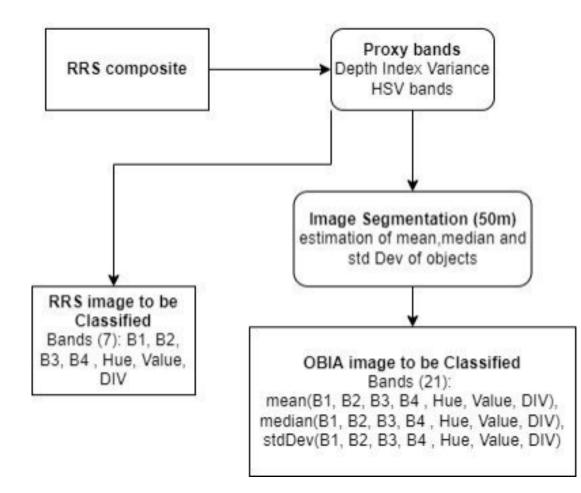
GLOBAL SEAGRASS WATCH serverless is more

Dimos Traganos Project Manager

Avi Putri Pertiwi Research Scientist

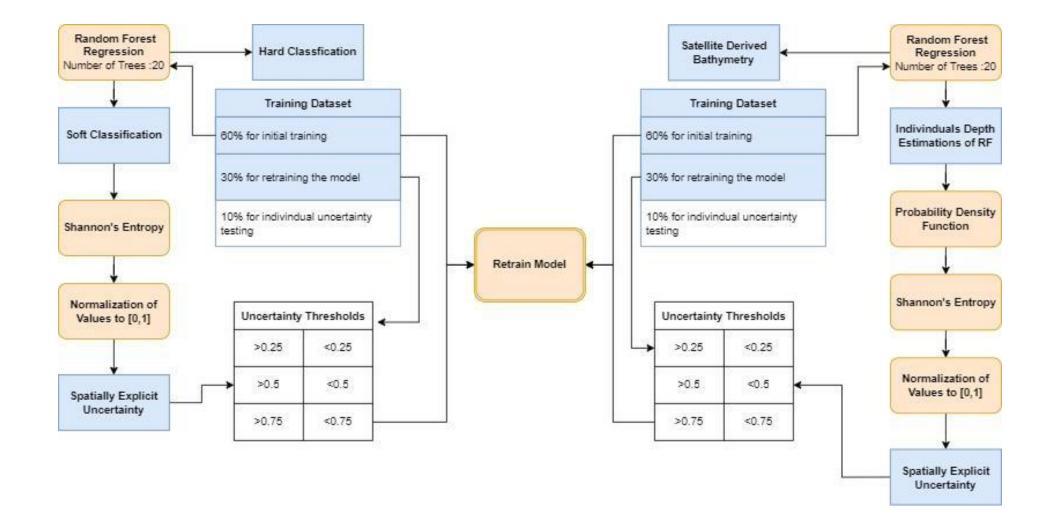
Benjamin Lee PhD candidate

Spyros Christofilakos PhD candidate


Shannon's Entropy (Predicted Entropy)

- 1) Possible outcome: Head , Tails
- 2) Probabilities of the outcome: P(H)= 50%
 P(T)=50%
- 3) Shannon's Entropy

$$E(x) = -\sum_{i=1}^{N} P(x_i) * \log_2 P(x_i)$$



Data Pre-processing

Training Dataset						
60%	for initial training					
30%	for retraining the model					
10%	for indivindual uncertainty					

Data Processing

Results: Accuracy Assessment in Classification

OBIA	lt: Less than	gt: Greater than						
model	Retrained from Uncertain Areas It(0.25)	Initial Classificatio n	Retrained from Uncertain Areas lt(0.5)	Retrained from Uncertain Areas It(0.75)	Retrained from Uncertain Areas gt(0.25)	Retrained from Uncertain Areas gt(0.5)	Retrained from Uncertain Areas gt(0.75)	Classificati on with 90% of Data
Overall Accuracy	62.08%	57.83%	60.92%	58.83%	59.58%	60.42%	58.83%	59.17%
	Percentage Gain	4.25%	1.17%	3.25%	2.50%	1.67%	3.25%	2.92%
User's Accuracy	60.30%	53.82%	58.86%	55.56%	53.94%	56.01%	57.19%	56.37%
	Percentage Gain	6.48%	1.44%	4.74%	6.36%	4.29%	3.11%	3.93%
Producer's Accuracy	67.33%	54.00%	62.00%	61.67%	61.67%	59.00%	61.67%	59.00%
	Percentage Gain	13.33%	5.33%	5.67%	5.67%	8.33%	5.67%	8.33%

Results: Accuracy Assessment in Classification

RGB	lt: Less than	gt: Greater than						
model	Retrained from Uncertain Areas It(0.5)	Initial Classification	Retrained from Uncertain Areas It(0.25)	Retrained from Uncertain Areas It(0.75)	Retrained from Uncertain Areas gt(0.25)	Retrained from Uncertain Areas gt(0.5)	Retrained from Uncertain Areas gt(0.75)	Classificati on with 90% of Data
Overall Accuracy	59.33%	56.92%	56.75%	56.83%	57.17%	57.67%	58.25%	57.25%
	Percentage Gain	2.42%	2.58%	2.50%	2.17%	1.67%	1.08%	2.08%
User's Accuracy	48.35%	44.62%	45.08%	44.44%	45.28%	46.73%	47.73%	47.19%
	Percentage Gain	3.74%	3.27%	3.91%	3.07%	1.62%	0.62%	1.16%
Producer's Accuracy	58.67%	48.33%	47.33%	48.00%	46.33%	50.00%	49.00%	47.67%
	Percentage Gain	10.33%	11.33%	10.67%	12.33%	8.67%	9.67%	11.00%