
Model Checking Message Delivery Times in SpaceWire Networks
Andrii Kovalov

German Aerospace Center (DLR)
Institute for Software Technology

Braunschweig, Germany
Andrii.Kovalov@dlr.de

Girish Patil
German Aerospace Center (DLR)
Institute for Software Technology

Braunschweig, Germany

Vishav Bansal
German Aerospace Center (DLR)
Institute for Software Technology

Braunschweig, Germany

Andreas Gerndt
German Aerospace Center (DLR)
Institute for Software Technology

Braunschweig, Germany
University of Bremen
Bremen, Germany

Andreas.Gerndt@dlr.de

ABSTRACT
This paper presents amodel checking framework inUppaal for find-
ing worst-case message delivery times for periodic and event-driven
message flows in a SpaceWire networkwith wormhole switching. In
particular, we focus on segmentation of large messages into smaller
packets. We present a collection of timed automata for SpaceWire
links and network messages, that capture message segmentation
and wormhole blocking.

We evaluate our approach on a realistic example network with
4 routers and 16 message flows, two of which are large messages
that need to be segmented. Our model can be used to determine
the bounds on the possible segment size, and how this size affects
the worst-case message delivery times. Model checking time for
these experiments ranges from several minutes to several hours,
and we further investigate how it depends on the number of flows,
the segmentation size, and the message periods.

CCS CONCEPTS
• Networks → Network performance modeling; • Software
and its engineering→Model checking; • Computing method-
ologies → Model verification and validation.

KEYWORDS
Model checking, Uppaal, SpaceWire

ACM Reference Format:
Andrii Kovalov, Girish Patil, Vishav Bansal, and Andreas Gerndt. 2022.
Model CheckingMessageDelivery Times in SpaceWireNetworks. InACM/IEEE
25th International Conference on Model Driven Engineering Languages and
Systems (MODELS ’22 Companion), October 23–28, 2022, Montreal, QC, Canada.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3550356.3561546

MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9467-3/22/10.
https://doi.org/10.1145/3550356.3561546

1 INTRODUCTION
SpaceWire is a serial communication network designed for space
applications [6]. The project ‘Scalable On-board Computing for
Space Avionics’ (ScOSA) [13] at the German Aerospace Center
(DLR) aims to provide a scalable and reliable on-board processing
platform, and uses SpaceWire as the primary network technology.

SpaceWire networks consist of nodes, point-to-point links, and
routers. It uses the wormhole switching mechanism, which means
every packet first blocks all the required ports in the routers along
its path (creates a ‘wormhole’), and then the packet content is
transmitted along this path with a low latency. The approach does
not require packet buffering, and supports arbitrary packet size.
However, if a packet needs to be sent to an output port which
is already in use, it is blocked until the port becomes available.
This can lead to cascades of blocking, and potentially to deadlocks.
SpaceWire protects from this by port time-outs: when a packet is
stuck for too long, it is dropped.

Due to this blocking, transmission of large packets can cause
other packets to be delayed or dropped. In ScOSA this problem is
solved by splitting large messages into smaller segments, which are
sent as separate SpaceWire packets. This functionality is provided
by the SpaceWire-IPC protocol [15] at the transport layer. As a
result, instead of a large message blocking the channel for a long
time, the channel is blocked multiple times for a short duration.
This enables other concurrent messages to pass through.

However, segmentation comes at a cost. First, there is some
overhead in the overall message size, since every segment requires
a header. Second, for each segment there is additional processing
time in the sender, the receiver, and in the switches along the path.
Therefore, determining the optimal size of a segment is an important
practical question in the design of a ScOSA system.

In this paper we present a method to model the network and mes-
sage flows as timed automata, and use the Uppaal model checker
[1] to check properties such as deadlock freedom and the worst-case
message delivery times considering segmentation. Such a model
allows system engineers to explore different design options, such
as different segment sizes or a different task-node mapping, and
better understand their consequences.

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://orcid.org/0000-0002-8923-9936
https://orcid.org/0000-0002-5549-8542
https://orcid.org/0000-0002-5658-3984
https://orcid.org/0000-0002-0409-8573
https://doi.org/10.1145/3550356.3561546
https://doi.org/10.1145/3550356.3561546
https://creativecommons.org/licenses/by/4.0/


MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Andrii Kovalov, Girish Patil, Vishav Bansal, and Andreas Gerndt

The remainder of the paper is structured as follows. We review
the related work in Section 2, introduce our modeling framework
in Section 3, evaluate our approach on a realistic network example
in Section 4, and conclude the paper in Section 5.

2 RELATEDWORK
Model checking can be applied to different aspects of SpaceWire
networks. There is some research on verifying low-level SpaceWire
mechanisms such as link initialization and error detection [14] [4].

As for analyzing network traffic, [7] shows a SpaceWire model in
Uppaal that can be used to check worst-case message transmission
times. The model is evaluated on an example with 4 nodes and 9
message flows. The results are also compared with network calculus
and recursive analysis, and model checking is shown to provide
better bounds.

On the analytical methods side, [5] shows a method of delay
estimation in networks with wormhole routing, where the traffic is
described by statistical parameters.

For the SpaceWire protocol, earlier work on calculating worst-
case delivery times has been performed using recursive compu-
tation [8] and network calculus [9], and a comparison of these
methods has been shown for an industrial application [10].

One of the inspirations for our work is [3], which presents a
framework for schedulability analysis using Uppaal. Although it
is not directly related to networking, there are parallels with our
domain. In SpaceWire, a message blocks links for exclusive use
in a similar way to a task claiming resources in a schedulability
problem.

3 SYSTEM MODEL
Our system model consists of timed automata for network links,
processing tasks, and messages. The goal is to capture SpaceWire
network message passing, especially wormhole switching and seg-
mentation of large messages.

3.1 Link Model
SpaceWire links are full-duplex and bi-directional, so the traffic
in one direction does not interfere with the traffic in the opposite
direction. Therefore, every physical link can be modeled as two
unidirectional links.

Our link model is shown in Fig. 1. A link can be used by one
message at a time, and maintains a FIFO queue of messages that
are waiting to use it. The queue is based on the train gate Uppaal
example as described in [3].

The SpaceWire standard does not specify, in which order the
blocked packets must be served. It just states that arbitration should
be fair, e.g. each message should eventually be served. We decided
on a FIFO queue for the simplicity of modeling. SpaceWire hardware
can use other arbitration mechanisms, e.g. round-robin.

Every link has an id passed as a template parameter. A link starts
in a free state with an empty queue and waits for a signal request
[id][message]? from a message that needs to use it. On receiving
this request, the message identifier is added to the queue. If the link
is free, it sends a grant[id][message]! signal to the first message,
which grants this message exclusive access to the link. After the

1 // Link template parameter

2 const link_id id

3

4 // Project declarations

5 const int L = 18; // number of links

6 typedef int[0,L-1] link_id;

7

8 const int N = 25; // number of messages

9 typedef int[0,N-1] message_id;

10

11 urgent chan request[L][N], grant[L][N];

12 chan release[L];

13

14

15 // Link template declarations

16

17 message_id q[N]; // queue of waiting messages

18 int[0,N] len; // current length of the queue

19

20 // Put a message at the end of the queue

21 void enqueue(message_id message) {

22 q[len++] = message;

23 }

24

25 // Remove the first message in the queue

26 void dequeue() {

27 int i = 0;

28 len -= 1;

29 while (i < len)

30 {

31 q[i] = q[i + 1];

32 i++;

33 }

34 q[i] = 0;

35 }

36

37 // Get the first message in the queue

38 message_id front() {

39 return q[0];

40 }

Figure 1: Uppaal template for a link (above) and the corre-
sponding declarations (below).



Model Checking Message Delivery Times in SpaceWire Networks MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

Figure 2: Uppaal template for a periodic task.

Figure 3: Uppaal template for a pipeline task.

Figure 4: Uppaal template for a sink task.

message has finished transmitting, it sends a release[id]! signal,
and the next message in the queue can be served.

3.2 Task Model
Tasks are sending and receiving messages in the system. Our model
consists of three types of tasks - periodic tasks, pipeline tasks and
sink tasks.

Periodic tasks (Fig. 2) send an out_message periodically with
the given period and offset.

Pipeline tasks (Fig. 3) wait for an in_message, then wait for
execution_time, and send an out_message. This template can be
extended to handle multiple input and output messages.

Sink tasks (Fig. 4) just consume an in_message without any
additional logic.

In reality, tasks run on processing nodes and compete for pro-
cessing time. Scheduling of task execution on nodes depends on the
tasking implementation and the operating system, and it is beyond
the scope of this paper. Our model assumes that all tasks are always
ready to execute.

3.3 Message Model
Messages in the network are modeled as timed automata as illus-
trated in Fig. 5. This model captures the segmentation of large
messages, the blocking of network links along the message path,
and the transmission delay. The template shown in Fig. 5 assumes
a path of three hops, but it can be adjusted to any number of hops.

The same template is used for both large and small messages,
and the segmentation is based on the payload size.

The timed automaton starts in the idle state, and waits for a
send[id]? signal from the task that needs to send this message.
Then the payload is either split into segments, if it is greater than
the configured segment size, or sent as one message.

The request[link][id]! and grant[link][id]? transitions
capture the wormhole routing as specified in the section 5.6.8.7
of the SpaceWire standard [6]. When every link on the message
path is acquired, the automaton enters the transmission state for
the duration, which is defined based on the packet size and the
configured SpaceWire bandwidth.

When the transmission is finished, the receiver of the message
is notified with a receive[id]! signal, and all the claimed links
are released.

Note that a message can only receive the send[id]? signal when
it is in the idle state. Therefore, if the next instance of a message is
ready to be sent while the previous is still being processed, the send
signal will not synchronize, causing a deadlock. In a real network,
the second message would be queued after the first one. However,
this scenario potentially indicates a network congestion issue, so it
is useful to detect it.

Our model introduces several assumptions:
• SpaceWire data rate is taken from [2] to be 100 Mbit/s (or 80
ns per byte)

• constant delay is 100 µs. This is based on our experiments
with sending a SpaceWire packet over two routers

• every small message has a header of 15 bytes, and a segment
of a large message has a header of 22 bytes (SpaceWire-IPC
implementation detail).

These values are are not essential to our model, and can be
changed as necessary. One Uppaal time unit is taken to be 1 µs,
but it can be set to an arbitrary number of nanoseconds with the
variable TIME_UNIT_NS.

3.4 Properties of Interest
With a system model consisting of links, tasks and messages, we
can verify a number of properties.

The most basic property is the deadlock freedom: A[] not
deadlock. Some possible reasons for a deadlock are:

• a misconfigured model (e.g. a message without a receiving
task, or claiming a non-existent link)

• a situation when a message is being transmitted, and its
sender task is ready to send the next instance of this message

• a deadlock in the SpaceWire network, when several messages
cannot proceed because they need to use already blocked
links. This can happen in a ring topology with circular rout-
ing.

Secondly, we can check the upper bounds on message delivery
times with sup{Message.transmission}: Message.timer for
a property of interest. This gives us the maximal value of message
timer (which is reset when the message is sent) when it is in the
transmission state. For periodic tasks, a more efficient equivalent
property is sup{Message.transmission}: SenderTask.timer,
which does not use the message timer clock.

Additionally, there can be application-specific properties. For
example, in a ScOSA system, the fault detection mechanism uses
heartbeat and acknowledgement messages. We can check that the



MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Andrii Kovalov, Girish Patil, Vishav Bansal, and Andreas Gerndt

1 // Message template parameters

2 const message_id id, const int payload_size, const link_id link1, const link_id link2, const link_id link3

3

4 // Declarations

5 clock timer, sending;

6 int delay;

7 chan send[N], receive[N];

8

9 const int TIME_UNIT_NS = 1000; // One Uppaal time unit is 1000 ns (1 `s)

10

11 const int transmission_overhead_time = 100000 / TIME_UNIT_NS;

12 const int segment_header_size = 22;

13 const int small_message_header_size = 15;

14

15 const int segment_size = 10000; // Segment payload size, bytes

16 int[0, segment_size] message_size;

17 int[0, payload_size] payload_left;

18

19 const int header_size = payload_size <= segment_size ? small_message_header_size : segment_header_size;

20

21 int transmission_time(int packet_size) {

22 // 80 ns transmission time per byte

23 return transmission_overhead_time + (packet_size * 80 / TIME_UNIT_NS);

24 }

Figure 5: Uppaal template for a message (above) and its declarations (below).

acknowledgement is always received before the next heartbeat:
A[] TaskHB.sending imply MessageAck.idle. If this property
is violated, a node can be wrongly considered failed due to a heart-
beat or an acknowledgement message being delayed by other traffic.
Furthermore, we can check the worst-case round trip time of a

heartbeat and an acknowledgement with the following property:
sup{SinkAck.received}: TaskHB.timer.



Model Checking Message Delivery Times in SpaceWire Networks MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

Table 1: ATON tasks and their parameters. Estimated periods
of the message-triggered tasks are shown in brackets.

Task Execution Period [ms] Message
time [ms] size [B]

IMU 0.01 10 70
Altimeter 0.01 80 22
Cameras 0.01 50 1048614
Star tracker emulator 0.1 (10) 74
Feature tracker 20 (50) 15728
Undistortions 52 200 1048614
Crater navigations 696 700 146
Navigation filter 1 (10) 350
Flight controller 2 (10) 18
Evaluation module 1 (10) -

4 EVALUATION
We evaluate our modeling framework on the ATON (Autonomous
Terrain-based Optical Navigation) project [11]. In 4.1 we introduce
the ATON system, then in 4.2 we verify different ATON configu-
rations, and in 4.3 we discuss the scalability of our model, and the
impact of certain parameters on the verification time.

4.1 ATON System
ATON is a DLR project taken as an example of a system of a realistic
size. Fig. 6 reproduces its task graph and two possible configurations
for a network of 4 nodes [12]. All the tasks are either periodic or
triggered by an incoming message from another task. The details
of the tasks are given in Table 1.

The 4-node ScOSA network, on which these tasks are running,
is shown in Fig. 7. In addition to the application tasks and messages,
there is a failure detection mechanism, which sends heartbeat and
acknowledgement messages. Node N0 (the Master node) periodi-
cally sends heartbeats to all other nodes, and node N1 (an Observer)
sends additional heartbeats to the Master. The size of heartbeats
and acknowledgements is 16 bytes and 24 bytes respectively, and
the period of heartbeats is taken to be 100ms.

4.2 Checking ATON Configurations
The goal of our model checking experiments is to verify that the
configurations shown in Fig. 6 can run on the SpaceWire network
in Fig. 7 such that all messages are delivered in time (within the task
period), and to find an appropriate segment size for this system.

We are mainly focusing on the ‘traffic minimization’ configu-
ration (Fig. 6, bottom left). Since we are interested in the network
communication, we only model tasks that communicate over the
network.

The complete network traffic in this configuration consists of
8 failure detection messages and 8 application messages, two of
which are large (from Undistortion to Crater Navigation), as shown
in Fig. 8.

To run these experiments, we constructed an ATON model of
the templates described in Section 3. The full model is shown in Fig.
9 and is a composition of 61 state machines: 18 unidirectional links,
16 messages, 11 periodic tasks, 5 pipeline tasks, and 11 sink tasks.

The scenario which we are modeling is following. The system
starts in the initial state (without any traffic), then periodic tasks
start producing messages, which are then sent through links, possi-
bly triggering other messages, and this continues indefinitely.

Although task execution time and message transfer duration are
deterministic in our model, there is nondeterminism when multiple
messages enter the network simultaneously, competing for links.
In such cases one message is forwarded, and the others are blocked,
causing downstream effects. This often arises when multiple tasks
are triggered by the same periodic event.

We then use a model checker to traverse the whole tree of possi-
ble executions of the model, to prove or disprove its certain proper-
ties.

4.2.1 Bounds on segment size. We ran a series of experiments
which showed that the lower bound on segment size is between
1 kB and 2 kB. The configuration with 1 kB segments failed the
deadlock check because a large message U1 could not be completely
transmitted within its period. The reason for this is the constant
transmission overhead for every segment.

The upper bound on the segment size lies between 29 kB and
30 kB. For segments of 30 kB and more we identified the following
problematic scenario. When the high frequency messages from
Navigation Filter (NF1, NF2, NF3) appear in the network, there are
messages HB1 and Ack0 already queued on the path N0 - R0 - R1 -
N1. Each of these two messages has to wait for a large segment of
U2 on a link R1 - N1. Furthermore, there is also a large segment of
U1 in the queue, blocking the link N0 - R0. Then, when Navigation
Filter messages can finally be sent, they are competing with each
other on the link N0 - R0, and the first of these messages, NF1, has
to wait for another U2 segment on the link R1 - N1. In this scenario,
the Navigation Filter messages have to wait for 4 large message
segments. If the size of each segment is 30 kB or more, the total
waiting time exceeds the period of these messages, thereby causing
a deadlock in the model.

4.2.2 Effect of segment size on message delivery times. The segment
size significantly affects message delivery times. Figures 10 and
11 show worst-case message delivery times for small and large
messages respectively for 10kB, 5kB and 3kB segments.

Changing the segment size from 10 kB to 5 kB decreases the
worst-case delivery time approximately by half for many small
messages. For the tasks that are not directly competing for links
with large messages, the segment size has no effect (HB0, Ack1,
Ack3, CN1, CN2). Further decreasing the segment size to 3 kB seems
to have only marginal benefit for small tasks (and for HB1 even
increases the time), but substantially increases the delivery times
of large messages. Therefore, for this configuration, segment size
of 5 kB appears to be a good choice.

Interestingly, the worst-case round trip times for a heartbeat
followed by its acknowledgement is in all cases better than the sum
of their individual worst-case times.

4.2.3 Checking the ‘load balancing’ configuration. We also checked
the ‘load balancing’ configuration (Fig. 6, bottom right), and it turns
out to be invalid for our SpaceWire network. In this configuration
the Camera 2 task sends large messages with high frequency to the
task Undistortion 2. This message flow alone exceeds the bandwidth



MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Andrii Kovalov, Girish Patil, Vishav Bansal, and Andreas Gerndt

Altimeter

Camera 1

Camera 2

IMU

Undistortion2
Crater 

navigation 2

Star tracker 
emulator

Navigation 
filter

Flight 
controller

Evaluation 
module

Undistortion1
Crater 

navigation 1

Feature 
tracker

Crater nav. 1

Crater nav. 2

Camera 2
Undistortion 2
Fl. controller

IMU
ST emulator
Nav. filter
Eval. module

Altimeter
Camera 1
Undistortion 1
F. tracker

Objective: load balancing
Total traffic 30 MB/s

Objective: traffic minimization
Total traffic 10 MB/s

Crater nav. 1

Crater nav. 2

Altimeter
ST emulator
Undistortion 2
Nav. filter
Eval. module

IMU
Camera 1
Camera 2

Undistortion 1
F. tracker
Fl. controller

Figure 6: ATON task graph and two possible configurations for a 4-node network [12].

N0 (Master) R0 N1 (Observer)R1

N2 (Worker) R2 N3 (Worker)R3

Figure 7: A network with 4 nodes and 4 routers for the ATON
example.

N0 N1

N2 N3

HB1, Ack0, NF1

HB0, Ack1, CN2

HB2,
NF2

Ack2,
FLC

HB3,
NF3,
U1

Ack3,
CN1

U2

Figure 8: Network flows for the ATON ‘traffic minimization’
configuration. NF1, NF2, NF3 - messages from Navigation
Filter to Crater Navigation 2, Flight Controller, Crater Navi-
gation 1 respectively. Large messages (from Undistortion 1
and 2) are shown bold.

of the link. A solution would be to move Camera 2 and Undistortion
2 to the same node, which makes the configuration similar to the
previous one.

4.3 Verification Time Sensitivity and Scalability
In this subsection we investigate how verification time depends on
the number of message flows in the system, the segment size, and

the heartbeat period. We used the same network configuration with
4 nodes and 16 message flows, and the property we are checking
here is deadlock freedom. In most cases a deadlock check takes
approximately the same time as a worst-case delivery time check
for one message. All runs were made on a laptop with a 3GHz
processor and 32 GB RAM using uppaal64-4.1.25-5. The time
measurements are taken from the ‘CPU user time used’ report in
verifyta.

Figure 12 shows that the verification time grows exponentially
with the number of message flows, which is typical in model check-
ing. The two large messages (U1 and U2) do not seem to particularly
increase the verification time. Slight spikes occur when introducing
a new period into the system (CN1, NF1). Configurations of 12
messages (including large) were checked in about 10 seconds, and
checking all 16 messages took about 3 minutes.

We also investigated how changing the segment size and the
heartbeat affects the verification time. Figure 13 (left) shows the
effect of the segment size. Configurations with smaller segments
take longer to verify because there are more segments that can
interleave with the other messages in the network. Besides, for
smaller segments the whole large message transfer time increases,
and may overlap with more messages.

Figure 13 (right) shows the effect of the heartbeat periods on
the verification time. Smaller periods tend to take more time to
verify, especially 10 ms, which took 16 hours to check. This can be
explained by the fact that shorter periods produce more possibilities
for interactions with other messages. However, one message period
itself should be not as important as the combination of periods and
offsets of all messages in the system.



Model Checking Message Delivery Times in SpaceWire Networks MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

Figure 9: Complete model of the ATON ‘traffic minimization’ configuration composed of 61 Uppaal state machines.

RT
0

RT
1

RT
2

RT
3

HB
0

HB
1

HB
2

HB
3

Ac
k0

Ac
k1

Ac
k2

Ac
k3 NF

1
NF
2

NF
3

FL
C

CN
1

CN
2

0

1

2

3

4

W
or
st
-c
as
e
de
liv

er
y
tim

e
[m

s]

10kB 5kB 3kB

Figure 10:Worst-case delivery times for small tasks. RT - worst-case round trip duration of a heartbeat and an acknowledgement.

U1 U2
0

50

100

W
or
st
-c
as
e
de
liv

er
y
tim

e
[m

s]

10kB 5kB 3kB

Figure 11: Worst-case delivery times for large tasks.

5 CONCLUSION AND FUTUREWORK
We presented a model checking framework for the Uppaal model
checker that allows modeling of an arbitrary SpaceWire network,
in which periodic and event-driven tasks exchange messages. In
particular, we focused on the segmentation of large messages into
smaller packets. Our evaluation shows that our model can be used
to detect problematic scenarios, and check system properties such
as worst-case message delivery times.

We evaluated our approach on an example system with 4 nodes,
4 routers, and 16 message flows, in which we identified bounds on
possible segment sizes, and the influence of the segment size on
the worst-case delivery times. Verification time in our experiments
ranged from several minutes to several hours for different scenarios,
which indicates that our approach can be applied to small real-world
systems.

In the future we plan to compare the results obtained by model
checking to the behavior of the actual system running on the



MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Andrii Kovalov, Girish Patil, Vishav Bansal, and Andreas Gerndt

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
10−2

10−1

100

101

102

All HB and Ack

U1
U2

CN1 CN2

NF1 NF3

NF2 + FLC

Number of message flows

Ve
rifi

ca
tio

n
tim

e
[s
]

Figure 12: Scaling of the verification time with the number message flows in the system (segment size is 10kB, heartbeat period
is 100ms).

2 4 6 8 10 12 14 16
0

20

40

60

80

2
Segment size [kB]

Ve
rifi

ca
tio

n
tim

e
[m

in
]

20 40 60 80 100
0

500

1,000

10

60

Heartbeat period [ms]

Ve
rifi

ca
tio

n
tim

e
[m

in
]

Figure 13: Verification time for different segment sizes (left) and different heartbeat periods (right).

SpaceWire network. Additionally, we would like to experiment
with adding jitter to the model. This would make it closer to the
real system, presumably at the cost of increased verification time.
Other potential directions for future work are incorporating task
scheduling, and a comparison with analytical methods such as
network calculus.

REFERENCES
[1] Johan Bengtsson, Kim Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi.

1996. UPPAAL — a tool suite for automatic verification of real-time systems. In
Hybrid Systems III, Rajeev Alur, Thomas A. Henzinger, and Eduardo D. Sontag
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 232–243. https://doi.org/
10.1007/BFb0020949

[2] Kai Borchers, Daniel Lüdtke, Görschwin Fey, and Sergio Montenegro. 2018.
Time-Triggered Data Transfers over SpaceWire for Distributed Systems, In
IEEE Aerospace Conference. IEEE Aerospace Conference Proceedings, 1–11.
https://doi.org/10.1109/AERO.2018.8396435

[3] Alexandre David, Jacob Illum, Kim G. Larsen, and Arne Skou. 2009. Model-based
Framework for Schedulability Analysis Using Uppaal 4.1.

[4] Ling Ling Dong, Yong Guan, Xiao Juan Li, Zhi Ping Shi, Jie Zhang, and Wei
Hua. 2013. Model Checking for SpaceWire Error Detection Module. In Industrial
Instrumentation and Control Systems (Applied Mechanics and Materials, Vol. 241).
Trans Tech Publications Ltd, 3020–3025. https://doi.org/10.4028/www.scientific.
net/AMM.241-244.3020

[5] Jeffrey T. Draper and Joydeep Ghosh. 1994. A Comprehensive Analytical Model
for Wormhole Routing in Multicomputer Systems. J. Parallel and Distrib. Comput.

23, 2 (1994), 202–214. https://doi.org/10.1006/jpdc.1994.1132
[6] ECSS-E-ST-50-12C Rev.1. 2019. Space engineering - SpaceWire - Links, nodes,

routers and networks. Standard. European Cooperation for Space Standardization.
[7] Jérôme Ermont and Christian Fraboul. 2013. Modeling a Spacewire architecture

using Timed Automata to compute worst-case end-to-end delays. In Proceedings
of 2013 IEEE 18th Conference on Emerging Technologies & Factory Automation,
ETFA 2013, Cagliari, Italy, September 10-13, 2013, Carla Seatzu (Ed.). IEEE, 1–4.
https://doi.org/10.1109/ETFA.2013.6648072

[8] Thomas Ferrandiz, Fabrice Frances, and Christian Fraboul. 2009. A method
of computation for worst-case delay analysis on SpaceWire networks. In IEEE
Fourth International Symposium on Industrial Embedded Systems, SIES 2009, Ecole
Polytechnique Federale de Lausanne, Switzerland, July 8-10, 2009. IEEE, 19–27.
https://doi.org/10.1109/SIES.2009.5196187

[9] Thomas Ferrandiz, Fabrice Frances, and Christian Fraboul. 2011. Using Network
Calculus to compute end-to-end delays in SpaceWire networks. SIGBED Rev. 8, 3
(2011), 44–47. https://doi.org/10.1145/2038617.2038627

[10] Thomas Ferrandiz, Fabrice Frances, and Christian Fraboul. 2012. A sensitivity
analysis of two worst-case delay computation methods for SpaceWire networks.
In 24th Euromicro Conference on Real-Time Systems, ECRTS 2012, Pisa, Italy, July
11-13, 2012, Robert Davis (Ed.). IEEE Computer Society, 47–56. https://doi.org/
10.1109/ECRTS.2012.35

[11] Tobias Franz, Daniel Lüdtke, Olaf Maibaum, and Andreas Gerndt. 2016. Model-
Based Software Engineering for an Optical Navigation System for Spacecraft.
In Deutscher Luft-und Raumfahrtkongress. Braunschweig, Germany. https://doi.
org/10.1007/s12567-017-0173-5

[12] Andrii Kovalov, Elisabeth Lobe, Andreas Gerndt, and Daniel Lüdtke. 2017.
Task-Node Mapping in an Arbitrary Computer Network Using SMT Solver.
In Integrated Formal Methods - 13th International Conference, IFM 2017, Turin,
Italy, September 20-22, 2017, Proceedings (Lecture Notes in Computer Science,

https://doi.org/10.1007/BFb0020949
https://doi.org/10.1007/BFb0020949
https://doi.org/10.1109/AERO.2018.8396435
https://doi.org/10.4028/www.scientific.net/AMM.241-244.3020
https://doi.org/10.4028/www.scientific.net/AMM.241-244.3020
https://doi.org/10.1006/jpdc.1994.1132
https://doi.org/10.1109/ETFA.2013.6648072
https://doi.org/10.1109/SIES.2009.5196187
https://doi.org/10.1145/2038617.2038627
https://doi.org/10.1109/ECRTS.2012.35
https://doi.org/10.1109/ECRTS.2012.35
https://doi.org/10.1007/s12567-017-0173-5
https://doi.org/10.1007/s12567-017-0173-5


Model Checking Message Delivery Times in SpaceWire Networks MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

Vol. 10510), Nadia Polikarpova and Steve A. Schneider (Eds.). Springer, 177–191.
https://doi.org/10.1007/978-3-319-66845-1_12

[13] Andreas Lund, Zain Alabedin Haj Hammadeh, Patrick Kenny, Vishav Vishav, An-
drii Kovalov, Hannes Watolla, Andreas Gerndt, and Daniel Lüdtke. 2021. ScOSA
system software: the reliable and scalable middleware for a heterogeneous and
distributed on-board computer architecture. CEAS Space Journal (31 May 2021).
https://doi.org/10.1007/s12567-021-00371-7

[14] Ping Luo, Rui Wang, Xiaojuan Li, Yong Guan, Hongxing Wei, and Jie Zhang. 2013.
Model Checking for SpaceWire Link Interface Design Using Uppaal. In 2013 IEEE

37th Annual Computer Software and Applications Conference Workshops. 181–186.
https://doi.org/10.1109/COMPSACW.2013.56

[15] Ting Peng, Benjamin Weps, Kilian Höflinger, Kai Borchers, Daniel Lüdtke, and
Andreas Gerndt. 2016. A New SpaceWire Protocol for Reconfigurable Distributed
On-Board Computers: SpaceWire Networks and Protocols, Long Paper. In 2016
International SpaceWire Conference (SpaceWire). 1–8. https://doi.org/10.1109/
SpaceWire.2016.7771624

https://doi.org/10.1007/978-3-319-66845-1_12
https://doi.org/10.1007/s12567-021-00371-7
https://doi.org/10.1109/COMPSACW.2013.56
https://doi.org/10.1109/SpaceWire.2016.7771624
https://doi.org/10.1109/SpaceWire.2016.7771624

	Abstract
	1 Introduction
	2 Related work
	3 System model
	3.1 Link Model
	3.2 Task Model
	3.3 Message Model
	3.4 Properties of Interest

	4 Evaluation
	4.1 ATON System
	4.2 Checking ATON Configurations
	4.3 Verification Time Sensitivity and Scalability

	5 Conclusion and future work
	References

