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Abstract

Seagrass ecosystems are globally significant hot spots of blue carbon storage,

coastal biodiversity and coastal protection, rendering them a so-called natural

climate solution. Their potential as a natural climate solution has been largely

overlooked in national and international climate strategies and financing. This

stems mainly from the lack of standardized, spatially explicit mapping and

region-specific carbon inventories. Here, we introduce a novel seagrass ecosys-

tem accounting framework that harnesses machine learning, big satellite data

analytics and open region-specific reference data within the Google Earth

Engine cloud computing platform. Leveraging a biennial percentile composite,

assembled from 16 453 Sentinel-2 surface reflectance image tiles at 10-m spatial

resolution, and 20 820 reference data points, we applied the cloud-native

framework to produce the first national inventories of seagrass extent and total

seagrass carbon stocks in Kenya, Tanzania, Mozambique and Madagascar. We

estimated 4316 km2 of regional seagrass extent (mean F1-score of 59.3% and

overall accuracy of 84.3%) up to 23 m of depth. Pairing country-specific in situ

carbon data and our spatially explicit seagrass extents, we calculated total regio-

nal seagrass blue carbon stocks between 11.2–40.2 million MgC, with the largest

national carbon pool in Kenya (8–29.2 million MgC). We envisage that

improvements in the remote sensing components of the framework guided by a

necessary influx of region-specific data on seagrass stocks and fluxes could

reduce uncertainties in our current spatially explicit ecosystem extent and car-

bon accounts, enhancing the incorporation of seagrasses into Multilateral Envi-

ronmental Agreements for future resilient ecosystems, societies and economies.

Introduction

Seagrasses, the overlooked nature-based
solution

Seagrass ecosystems—intertidal and subtidal vegetated

coastal habitats—along with mangroves and tidal flats are

globally acclaimed as natural climate solutions (NCS) due

to their significant ecosystem services which include car-

bon sequestration, biodiversity maintenance and coastal

protection. Although covering less than 0.5% of the global

seascape, NCS mitigate around 3% of annual global

greenhouse gas (GHG) emissions (Macreadie et al., 2021;

Nellemann et al., 2009). However, the immense ‘blue car-

bon’ sinks of seagrasses have long remained underesti-

mated and overlooked in climate agendas and schemes

(Duarte et al., 2013; UNEP-WCMC & Short, 2020). The

Paris Agreement of 2015 put forth the Nationally Deter-

mined Contributions (NDCs) to streamline the conserva-

tion and restoration of NCS based on quantified GHG

removals. From the 160 countries featuring seagrasses,

only 12 have explicitly included them in their mitigation
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and/or adaptation strategies by October 2021 (United

Nations Environment Programme, 2020a). This notable

exclusion arises from the lack of standardized, spatially

explicit seagrass monitoring and carbon inventories and

hampers effective blue carbon policy actions, especially in

nations with vast seagrass carbon sinks (Macreadie

et al., 2019, 2021).

The globally significant East African
seagrasses

Stretching over 25 degrees of latitude and 18 degrees of

longitude within the Tropical Indo-Pacific —the world’s

most extensive and diverse seagrass bioregion—East

Africa hosts 12 seagrass species (Green & Short, 2003;

McKenzie et al., 2020; UNEP-WCMC & Short, 2020).

These tropical and subtropical seagrasses lie often in close

proximity to mangroves, tidal flats and corals, building

ecologically interconnected seascapes (Gullstr€om

et al., 2018; Huxham et al., 2018; Juma et al., 2020).

These natural architectures protect and enhance seagrass

ecosystem services with co-benefits for societies and

economies, often beyond their physical locations. For

example, seagrasses in Gazi Bay, Kenya store 620 000 Mg

of carbon with an estimated climate regulation value of

$19 million globally (Githaiga et al., 2017; United Nations

Environment Programme, 2020a, 2020b). These carbon

stocks have fueled the world’s first carbon crediting

scheme which bundles seagrass services with mangrove

conservation (Githaiga et al., 2017; United Nations Envi-

ronment Programme, 2020a, 2020b). In addition, seagrass

meadows provide nursery habitats for fish and food pro-

visioning to local communities (Nordlund et al., 2018;

Unsworth et al., 2019), protection from cyclones and sta-

bilization of seabed sediments and cultural services which

elevate the sense of identity for local fishers and commu-

nities (de la Torre-Castro & R€onnb€ack, 2004).

Challenges for East African seagrass
ecosystem services

These highly valued seagrass ecosystem services are yet fac-

ing numerous challenges. More frequent and intense tropi-

cal storms, rising thermal stresses and sea level, coastal

eutrophication and development, overfishing and seaweed

farming are all impacting seagrass health and the liveli-

hoods of their dependent coastal societies (Amone-Mabuto

et al., 2017; Côt�e-Laurin et al., 2017; Cullen-Unsworth

et al., 2014; Ekl€of et al., 2008; United Nations Environ-

ment Programme, 2020a, SMART Seas, 2021). These

threats are coupled with uneven levels of protection: only

Madagascar recognizes the climate change mitigation and

adaptation benefits of seagrasses, while Tanzania only

recognizes their adaptation potential (Herr & Lan-

dis, 2016). Zooming out to the tropical Indo-Pacific biore-

gion, despite being the world’s largest seagrass bioregion,

only 17% of its seagrass exist within present marine pro-

tected areas (MPAs) (McKenzie et al., 2020; United

Nations Environment Programme, 2020a).

Contemporary Earth Observation advances
to the rescue

Until today, there have been numerous multi-scale map-

ping efforts using satellite data in the broader East Africa

(Dahdouh-Guebas et al., 1999; Gullstr€om et al., 2006;

Harcourt et al., 2018; Knudby et al., 2010, 2014; Knudby

& Nordlund, 2011; Poursanidis et al., 2021; Teixeira

et al., 2015). More recently, in 2020, the Allen Coral Atlas

project achieved the first regional geomorphic and ben-

thic habitat mapping using PlanetScope mono-temporal

mosaics (Allen Coral Atlas, 2021). With the exception of

the latter, which focus in the first 10 m of depth, all other

studies focused mainly on local benthic habitat mapping.

The aforementioned challenges for East African sea-

grasses paired with the broader lack of scalability and spa-

tial inventories can be resolved by harnessing

contemporary Earth Observation advances: cloud com-

puting, big satellite data analytics, artificial intelligence

and openly available data (i.e. satellite image archives,

field-collected and citizen-derived observations)

(Traganos, 2020; United Nations Environment Pro-

gramme, 2020a). Cloud-native Earth Observation frame-

works are the next generation of decision support systems

for coastal ecosystems (Bunting et al., 2018; Lyons

et al., 2020; Murray et al., 2019; Nijland et al., 2019; Tra-

ganos, Aggarwal, et al., 2018). These scalable frameworks

can integrate and transform petabyte-scale satellite and

geospatial datasets on-the-fly to Analysis Ready Data

(ARD) (Dwyer et al., 2018). Such transformed data are

built on multi-temporal (MT) analytics to overcome

showstoppers in traditional coastal aquatic remote sensing

using single images: dense clouds, waves, varying atmo-

spheric and water column composition, sunglint, etc.

(Poursanidis et al., 2021; Thomas et al., 2021; Traganos,

Aggarwal, et al., 2018; Traganos & Reinartz, 2018).

Through their high scalability, repeatability and confi-

dence, these modern big data paradigms can enable trans-

parent, spatially explicit accounts of seagrass ecosystem

extent, condition and services, from local to global level.

Ecosystem accounting and study objectives

Ecosystem accounting (EA) is a coherent and holistic

quantitative framework that entails the aforementioned

accounts across space, time and human activities. EA

2 ª 2022 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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frameworks can provide physical and monetary measure-

ments (accounts) on the ecosystem extent (total area),

condition (e.g. depth, water quality), services (e.g. carbon

sequestration, biodiversity support) and assets (stocks and

their changes) (United Nations 2021; Weber, 2014).

Despite the EA requirements for spatially explicit data to

enable their policy uptake, these approaches for coastal

NCS like seagrasses are still exploratory (Chen

et al., 2020; Weatherdon, 2018; Weatherdon et al., 2017).

Here, our central objective is to produce the first nation-

wide accounts of seagrass extent and total carbon stocks

for Kenya, Tanzania, Mozambique and Madagascar. To

achieve this, we designed and applied a novel Google

Earth Engine-native seagrass ecosystem accounting frame-

work, leveraging 2 years of Sentinel-2 surface reflectance

data and multi-sourced in situ and human-annotated ref-

erence datasets.

Materials and Methods

Study site

The East African seascape covers more than 128 000 km2

across a coastline of 21 924 km (WRI, 2000). Its coastal

climate is classified as Aw/As (tropical savanna climate)

according to the K€oppen-Geiger classification system

(Beck et al., 2018); with the exception of the southeast

Madagascar coast—BSk (cold semi-arid climate) and Af

(tropical rainforest climate). The seasonality here is char-

acterized by a bi-modal precipitation system with two wet

seasons between March and May, and during October

and December, set apart by two dry seasons from June to

September and during January and February (Bornemann

et al., 2019). The seascape of the region features an estu-

arine and coastal system of frequently co-occurring blue

carbon keystone ecosystems—12 seagrass species (10 in

Kenya, Tanzania and Madagascar), up to 9 mangrove spe-

cies, and at a much smaller extent, salt marshes, extend-

ing from the intertidal zone up to 40 m of depth (UNEP-

Nairobi Convention and WIOMSA, 2015). According to

the best available information in all four studied coun-

tries, seagrasses cover 7098 km2, while mangroves extend

across 7215 km2 (Bunting et al., 2018; UNEP-WCMC

and Short, 2020).

Data

Satellite data

We utilized all satellite imagery from the Sentinel-2 (S2)

Level-2A (L2A) Surface Reflectance archive as was avail-

able at the initiation of our study (14 December 2018–20
April 2020) within the Google Earth Engine (GEE)

platform. This archive featured 33 095 100x100-km S2

tiles across 128 743 km2 in East Africa and comprised the

initial satellite data input to our cloud-native ecosystem

accounting framework.

Reference data

We collated three individual reference datasets on turbid-

ity, bathymetry and benthic habitats to guide the model

training and validation in our framework. The collation

was based on a combination of field-collected and visually

self-annotated data points. The field datasets were sourced

from several efforts across the four countries, while the

annotated points were based on the S2 data. We describe

our image annotation approach and benthic habitat data

characteristics in sections 2.3.1 and 2.3.2. Table 1 depicts

the type, nature of collection, temporal range, total num-

ber of points and location of the three reference datasets

with associated sources, where available. Table S1 shows

the ratios of our utilized bathymetry training to validation

data across different depth intervals.

Cloud-native coastal ecosystem accounting
framework

Our cloud-based ecosystem accounting framework con-

sists of three main technological components (Fig. 1)

enabled and guided by big satellite and reference data: (a)

the Optically shallow processor (2.3.1), (b) the Machine

learning architecture (2.3.2) and (c) the Seagrass ecosys-

tem accounting (2.3.3).

Optically shallow processor

First, this technological component integrates and combi-

nes recent developments in multi-temporal composition

and scalability, optically deep water (areas with no ema-

nating signal in the water surface from the seafloor) and

turbidity masking (Pertiwi et al., 2021; Poursanidis

et al., 2021; Thomas et al., 2021; Traganos, Aggarwal,

et al., 2018; Traganos, Poursanidis, et al., 2018). Here, it

used the 33 095 raw Sentinel-2 L2A tiles ingested by GEE

within the area of interest and filtered them for cloud

coverage using the GEE filterMetadata function, retaining

only tiles with less than 25% CLOUDY_PIXEL_PERCEN-

TAGE, which halved the raw archive to 16 453 S2 tiles.

These tiles were then the input to the MT analytics pro-

cessor which first uses the Quality Assurance band of each

image to remove pixels flagged as clouds, before employ-

ing the reduce function to compose all of the scenes to

the 20th percentile value per pixel. This results in an

image composite for the entire East Africa. The 20th per-

centile has been proven qualitatively superior to both

ª 2022 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 3
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median (50th percentile) composites and traditional

single-image approaches (Donchyts et al., 2016; Traganos,

Aggarwal, et al., 2018; Traganos, Poursanidis, et al., 2018;

Traganos & Reinartz, 2018). The advantage of MT analyt-

ics in coastal aquatic remote sensing analysis is the highly

automated and effective parallelization of three processes:

(a) the filtering of common redundancy in single image

approaches: very bright and very dark artifacts over

coastal regions (e.g. remaining atmospheric scattering,

clouds, sunglint, turbidity, waves, cloud shadows); (b) the

large-scale scalability of a seamless, spectrally homoge-

neous image composite and (c) the circumvention of the

effect of varying tidal ranges by utilizing the darkest 20%

of reflectances which is the quantitative analogue of a

modelled low-tide composite (Sagar et al., 2017) minus

the computation burden. This scalability enabled by GEE

is essentially the main innovation of our ecosystem

accounting framework.

Second, the percentile composite is masked for land

and optically deep water pixels utilizing a non-

parametric, highly adaptive algorithm (Donchyts

et al., 2016) based on a combined Otsu-based threshold-

ing (Otsu, 1979) and Canny edge filter applied to the

modified normalized difference water index, MNDWI

(Pertiwi et al., 2021; Thomas et al., 2021; Xu, 2006). The

MNDWI index integrated the green (B3; 560 nm) and

shortwave infrared (B11; 1610 nm) bands of the Sentinel-

2 L2A percentile composite. Due to the large geographical

scale of the percentile composite and the spatially

restricted nature of the Canny edge filter, we applied the

unsupervised algorithm twice: first, to differentiate

exposed land from subtidal coastal waters, and second, to

disentangle optically shallower from optically deeper

water pixels. Both differentiations were attained by auto-

matically identifying suitable local threshold values on the

bimodal histograms of the MNDWI index. Finally, we

employed a recently developed turbidity processor to

detect and mask medium to high turbidity pixels by

applying spectral unmixing on the percentile composite

aided by the annotated data points described in sec-

tion 2.2.2 and Table 1. An in-depth description of the

turbidity processor is given in Pertiwi et al. (2021). The

utilization of this pre-processing step was deemed neces-

sary due to high reflectances (bright targets) caused by

yearlong, persistent turbidity across the entire East Africa,

remnants of the MT composition. These pixels contain

little to no benthic signal, comprising optically deep and

thus redundant for our analysis. Table S4 provides the

accuracy assessment of our thematic regional turbidity

layer. The output of the optically shallow processor is an

optically shallow, above-surface reflectance (Rrs) compos-

ite: essentially, a synthetic ARD image consisting of pixels

free of atmospheric, water surface and water column

effects.

Machine learning architecture

The pre-processed S2 Rrs percentile composite, including

the B1-B5 (443–705 nm) bands, along with 17 870 refer-

ence data points were the input to the second technologi-

cal pillar of our framework: the cloud-native Machine

learning (ML) architecture. This architecture classifies

national benthic ecosystems including seagrasses. We col-

lated a reference inventory of 13 547 points (10 789 for

training and 2758 for validation) based on a combination

of recent field data collections, and image and data inter-

pretation covering all four countries (Table 1). To further

enhance our ML architecture, we annotated 4323 addi-

tional training points in all four countries using the S2

percentile composite and the GEE-based high-resolution

satellite basemap, for a total of 15 112 training points

(Table 2; Fig. S1). This was to reduce initially observed

misclassifications (false positives) of seagrasses as turbid

waters, despite the prior masking of turbid pixels. The

initial six classes of the 13 547 points reflected the main

subtidal benthic ecosystems of East Africa: seagrass, coral

(mainly with algae), sand, rubble, rocks and microalgal

mats (Kennedy et al., 2021). As our main target here was

Table 1. Collated reference datasets.

Type Method of collection Time range

Number

of Points Country References

Turbidity Human annotation 2017–2020 360 All This study

Bathymetry In situ collection 2014, 2016, 2017,

2018, 2019

2590 Tanzania, Mozambique Eggertsen (2019), Muaves (2019),

Teixeira et al. (2015),

Macia et al. (2017)

Benthic Ecosystems In situ collection

and human

annotation

2014–2020 17 870 All Borrego-Acevedo et al. (2020),

Muaves (2019), Teixeira et al. (2015),

Poursanidis et al. (2021),

Macia et al. (2017)

All in the Country column denotes Kenya, Tanzania, Mozambique and Madagascar.

4 ª 2022 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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to accurately classify the national seagrass extent, we

reduced the six-class system into a two-class system: sea-

grass and non-seagrass. Figure 2 depicts the spectral

ranges of the seagrass reference data per country for the

first five S2 Rrs percentile bands.

The supervised ML classifier in the heart of our ML

architecture is the ensemble algorithm of Random Forests

(RF). Random Forest is a classification method that pro-

duces many different random decision trees, combining

in turn the results of these trees based on the most popu-

lar vote (Breiman, 2001). Our choice of RF is justified by

its efficiency in big satellite data processing; effectiveness

to handle collinearity and nonlinearity between predictor

variables; robustness against overestimates and noise in

the input data. Additionally, RF featured more recently

solid results in local-to-global, seascape remote sensing

exercises using various optical satellite data in both local

and cloud environments (Lyons et al., 2020; Murray

et al., 2019; Poursanidis et al., 2019, 2021; Traganos,

Poursanidis, et al., 2018; Traganos & Reinartz, 2018). We

employed the Classifier.smileRandomForest framework in

GEE, based on Breiman (2001), and trained it with our

collated training data (Tables 1 and 2). Intrinsically, this

function would also split the training data based on our

Figure 1. Schematic of the cloud-native Earth Observation coastal ecosystem accounting framework. MT analytics stands for multi-temporal ana-

lytics, which comprises the cloud masking using the QA band as well as the image stack reduction into a composite image. Readers are directed

to Section 2.3.1 for more information.

ª 2022 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 5
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input of 80–20 while training. We tuned three main RF

parameters—numberofTrees: 10, variablesPerSplit: 2, and

minLeafPopulation: 5. Our ML architecture consists of a

two-tier approach. First, an intermediate probabilistic

mode (through the GEE setOutputMode method) outputs

the per-pixel probability of extent for the seagrass and

non-seagrass classes varying between 0 and 100%, or the

‘soft’ probability of both classes. Second, the per-pixel

classified extent or ‘hard’ probability of the two classes is

obtained based on a dynamic thresholding analysis to

identify the most accurate soft probability threshold for

the classification. This dynamic analysis follows a back-

and-forth, iterative process of varying the probabilities of

seagrass presence in intervals of 10 between 10 and 100%,

and observing resulting mapping accuracies (described in

section 2.4) and classified seagrass extent, that is both

quantitatively and qualitatively. This iteration allowed us

to reduce potential misclassifications of seagrasses as tur-

bid or optically deep waters. The output of the ML archi-

tecture is the spatially explicit nationwide seagrass

ecosystem extent in Kenya, Tanzania, Mozambique and

Madagascar.

Seagrass ecosystem accounting

The third and final technological pillar of our framework

involves the assessment and accounting of the national

ecosystem extent, ecosystem condition (bathymetry in our

study) and carbon stocks (ecosystem asset) of seagrasses

in Kenya, Tanzania, Mozambique and Madagascar

(Fig. 1). While the classification of the seagrass extent is

described in section 2.3.2, we include it here as this spa-

tially explicit account is further delineated by estimating

its satellite-derived bathymetry (SDB) (and hence depth

limits)—applying the multilinear regression SDB method

of Thomas et al. (2021) to the optically shallow Rrs B1-

B5 bands and the depth reference points of Table 1. This

assessment ensures comprehensive and consistent seagrass

ecosystem extents (Fig. 3). Table S3 displays statistics of

our SDB experiments using three different metrics and

several S2 band combinations.

To estimate the nationwide seagrass carbon stocks, we

conducted an extensive literature review of available

in situ data of carbon stocks in seagrasses including total,

above-ground (ABG) and below-ground (BGB) biomass

and soil carbon (SC). Seagrasses sequestrate and store car-

bon within the living ABG (e.g. leaves, stems), BGB (e.g.

roots, rhizomes) and non-living biomass (e.g. leaf detri-

tus, macroalgae), and, principally, within their underlying

soils (e.g. soil organic matter, dead plant tissues)

(McLeod et al., 2011). The ratio of living biomass-to-soil

carbon is approximately 1:91, while the ABG:BGB ratio is

1:2 (Fourqurean et al., 2012). Our total carbon stocks

equal the sum of the ABG, BGB and SC, calculated at

both national and regional level.

We calculated the national seagrass blue carbon stocks

by multiplying our classified seagrass extents (in km2)

with their corresponding total carbon stock data (Mg/

km2), running both Tier 1 and Tier 2 assessments

(Howard et al., 2014). This enables an intercomparison

between their resulting carbon stocks, at national and

regional scale. Tier 1 assessments feature the highest

uncertainty and errors—up to �50% for ABG pools and

�90% for the SC pools—as they are based on simplified

assumptions and global averaged estimates (Kennedy

et al., 2014). In contrast, Tier 2 assessments integrate

more regional and/or country-specific mean carbon

measurements which reduce the uncertainty of the glob-

ally aggregated estimates. Table 3 shows the ranges of

carbon stocks used in the tiered calculations. Tier 2 is

based on existing mean field-collected ranges of organic

carbon (if there is more than one studied carbon stock

range). Due to insufficient data in Madagascar, we

adopted the same ranges from the nearest seagrass

meadows of Mozambique, assuming similar carbon stock

characteristics due to proximity. We articulate potential

uncertainties and assumptions behind the synthesis of

Table 3 data in the supplementary material, after

Table S1.

Statistical analysis

We validated the accuracy of the nationwide seagrass

ecosystem extent using the following statistical metrics:

overall accuracy (OA), producer’s accuracy (PA), user’s

accuracy (UA), F1-score (the harmonized mean of PA

and UA) through error matrices based on 2758 validation

points for both classes (seagrass, non-seagrass; Table 2;

Fig. 2) and displayed in Table S2.

Table 2. Collated reference dataset utilized in the Machine Learning

Architecture.

Kenya Tanzania Mozambique Madagascar

East

Africa

Training data

Seagrass 1289 1506 1612 1054 5461

Non-

seagrass

1393 2526 3912 1820 9651

Validation data

Seagrass 230 181 236 69 716

Non-

seagrass

218 503 832 489 2042

This dataset was synthesized from recent field data collections and

image annotation using photointerpretation, and was used for the

machine learning training and validation (2.3.2).
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Results

Spatially explicit national seagrass extents
in East Africa

Figure 4 displays our mapped seagrass ecosystem extent

at 10 m in Kenya, Tanzania, Mozambique and Madagas-

car between 0 and 23 m of depth. Utilizing a threshold of

70% on the RF extent probability layer, we mapped

679.6 km2 of extent in Kenya (14.1% of studied national

scale; mean and maximum depth of 2.1 and 9.2 m,

respectively); 548.2 km2 in Tanzania (2.3% of studied

national scale; mean and maximum depth of 2.1 and

23 m, respectively); 1779.3 km2 in Mozambique (2.7% of

studied national scale; mean and maximum depth of 1.6

and 9.2 m, respectively) and 1309.3 km2 in Madagascar

(2% of studied national scale; mean and maximum depth

of 1.06 and 8.52 m, respectively). Our mapped seagrass

extent across the entire East Africa is 4316.4 km2 (3.4%

of studied regional scale; mean and maximum depth of 2

and 23 m, respectively). The F1-score for the nationwide

extents is 66.7% in Kenya (OA of 73.2%), 70.4% in Tan-

zania (OA of 88.1%), 55.9% (OA of 86.4%) in Mozam-

bique and 44.2% in Madagascar (ΟΑ of 89.6%)—with an

average regional F1-score and OA of 59.3% and 84.3%,

respectively. The analytical error matrices can be found in

the supplementary material (Table S2). The highest PA of

55.7% is observed in Tanzania, whereas the highest OA of

89.6% is observed in Madagascar.

National seagrass carbon stocks in East
Africa

Using our classified extent inventories, we calculated asso-

ciated ranges of national total carbon stocks of seagrasses

in four countries of East Africa (Table 4). Based on the

global-based Tier 1 assessment, East African seagrasses

may store between 4.36 and 357.83 million Mg of carbon

Figure 2. Spectral ranges of the utilized seagrass reference data. Ranges are shown across the first five Sentinel-2 above-surface reflectance (Rrs)

bands in all four studied countries. Table 2 displays how these reference data are split between the different countries. Note the wider reflectance

range in the y-axis in Tanzania in contrast to Kenya, Mozambique and Madagascar.
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(average of 46.62 Mg C). The country-specific Tier 2

assessment narrows down these total carbon storages

between 11.16 and 40.23 million Mg. The largest national

carbon storage using the Tier 2 assessment is observed in

the Kenyan seagrasses which range between 7.96 and

29.25 million Mg, and represents 73% of the regional car-

bon storage, despite representing only 15.7% of the regional

seagrass extent. It is noteworthy that all our Tier 1 national

carbon stocks fall outside of the respective Tier 2 ranges.

The largest overestimation is observed in Mozambique by

14.86 million Mg, while, in Kenya, the Tier 1 carbon stock

is 655.97 Mg lower than our Tier 2 assessed minimum.

Discussion

National seagrass extents in East Africa

Our national seagrass extents are the first-ever products

of their kind: spatially explicit in nature at 10 m/pixel,

sourced from standardized, comprehensive big satellite

data analytics, spanning four countries, 128 743 km2 of

seabed and 21 924 km of coastline, in previously

uncharted waters for seagrasses. The uniqueness and vast

geographical scale of our physical national ecosystem

accounting was the product of innovative and intensive

research and development, but is characterized of a

plethora of assumptions, issues and uncertainties. As a

general trend in all four countries, we observe a system-

atic underestimation with the average UA nearly two

times greater than the average PA. Although the seagrass

PAs and UAs indicate that nearly all of the classified sea-

grasses are also seagrasses in ‘reality,’ based on the valida-

tion data, our mapping does not capture more than half

of the validated seagrasses across East Africa (average PA

of 45.1%). Two main parameters may come into play

here. Figure 2 unveils that the training data cover Rrs

reflectance values consistently lower than the ones cov-

ered by the validation data which might have induced

misclassifications of seagrasses as brighter yet similarly

looking coral/algae and microalgal mats. This is a typical

issue in machine learning which does not generalize well

outside of the range of the training data. The differences

Figure 3. Successive mapping products of the ecosystem accounting framework. Displayed is the nearshore island system of the Lindi region,

Tanzania. (A) 10-m Sentinel-2 surface reflectance percentile composite (natural color RGB; 2018–2020); (B) 10-m Sentinel-2 above-surface reflec-

tance percentile composite masked for land, optically deep waters and turbid waters (natural color RGB); (C) Satellite-derived bathymetry (m); (D)

Spatially explicit seagrass extent probability (0%–100%); (E) Spatially explicit Random Forest classified seagrass ecosystem extent. Readers are

invited to view all these layers in our GEE app: https://aviputri.users.earthengine.app/view/mappingeastafrica.

8 ª 2022 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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in the spectral ranges covered by the training and valida-

tion data points may have been also introduced by our

multi-temporal analytics: these reduced all integrated

16 453 Sentinel-2 tiles to the lowest (darkest) 20% of

their reflectances across the temporally aggregated com-

posite. Such low values practically represent the highest

seagrass (dark pixels) density per pixel. The second poten-

tial source of underestimation might arise from the differ-

ence in spatial resolution between Sentinel-2, with a

single pixel covering 100 m2, and the various high-

resolution field data collections which might have intro-

duced mixed pixels.

To reduce such underestimations and other uncertain-

ties in spatially explicit coastal ecosystem extent assess-

ments in the future, analysts may conduct a more

effective reference data design which, without being an

exhaustive list of recommendations, could feature:

aTraining and validation data points that come from

independent sources of different spatial resolution (higher

one for the validation data) to reduce spatial autocorrela-

tion bias, yet temporally close to ensure no additive bias

due to possible habitat changes in the period between the

different data collections (Finegold et al., 2016).

bImage annotation carried out by experienced individuals

with the targeted geographical area and the studied ben-

thic habitats. This will ensure that each annotated benthic

habitat on the satellite basemap is truly existent at the

very same location.

cHarmonized ranges, medians and means of the training

and validation data to aid the generalization of the

designed machine learning approaches.

dA depth stratification of the benthic habitat reference

data using bathymetry data ideally at the same spatial res-

olution across equal intervals (e.g. every 1, 2, 5 m) to

allow an equal and representative sample size for all the

benthic classes (Finegold et al., 2016).

The value of every single remote sensing assessment is

further enhanced when compared with existing estimates

across similar spatial scales. Our remotely sensed physical

accounts can be quantitatively compared with only a hand-

ful of existing mapping products across and within East

Africa. Harcourt et al. (2018) calculated the countrywide

seagrass extent of Kenya at 308.4 km2 using also Sentinel-2

satellite images from 2016, 371.2 km2 lower than our

mapped seagrass extent. And UNEP-WCMC and

Short (2018) yielded a Kenya-wide seagrass extent of

113.2 km2, approximately six times smaller than our Ken-

yan estimate. Furthermore, according to UNEP-WCMC

and Short (2018) and National Geographic Society (2000)

(only for Madagascar), the seagrasses in Tanzania, Mozam-

bique and Madagascar cover an extent of 46.1, 728 and

5793.5 km2, respectively. While this means that the best

available seagrass extent for Tanzania and Mozambique

may be underestimated by one order of magnitude and by

more than 1000 km2, correspondingly, the Madagascan

seagrasses may be overestimated more than fourfold. The

observed differences between our national inventories and

the aforementioned ones corroborate the observed and dis-

cussed biases elsewhere (Traganos, Aggarwal, et al., 2018).

These biases could be attributed to the fact that these stud-

ies do not feature spatially explicit and comprehensive esti-

mations as they are based on interpolated knowledge from

multiple experts, data sources and decades, unlike our spa-

tially explicit estimates based on a single, seamless and

standardized big satellite dataset of more than 1.2 billion

pre-processed pixels.

National seagrass carbon stocks in East
Africa

The 100-fold difference between our calculated Tier 1

minimum and maximum seagrass carbon stock, although

Table 3. Minima-maxima of in situ seagrass carbon stock estimates in East Africa.

Scale Carbon Stock min (Mg/km2) Carbon Stock max (Mg/km2) Source

East Africa 1000 82 900 Howard et al. (2014)

Kenya 11 765.25 43 045.85 Githaiga et al. (2017), Kamermans et al. (2002), Juma et al. (2020)

Tanzania 571.19 6233.50 Belshe et al. (2018), Gullstr€om et al. (2021), Lyimo et al. (2006),

Lyimo et al. (2008)

Mozambique 922.89 2447.11 Bandeira (1997), de Boer (2000), Green and Short (2003),

Gullstr€om et al. (2021)

Madagascar 922.89 2447.11 Bandeira (1997), de Boer (2000), Green and Short (2003),

Gullstr€om et al. (2021)

East Africa 3545.56 13 543.39 Same sources as the country-scale estimates

Estimates are given for both region-specific Tier 1 (in italics) and country-specific Tier 2 assessments. Tier 1 carbon stocks represent soil organic

carbon within the first meter of depth, while Tier 2 ones represent total carbon stocks in the living biomass (above- and below-ground) and sea-

grass soil. Mg denotes Megagrams, a unit of mass equal to 1 metric ton. The final regional estimate is averaged from the four country-specific

ranges, is given only for reference and has not been used in any assessment.
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reduced to a 10-fold difference between minimum and

maximum carbon stock in our Tier 2 assessment, reflects

the large uncertainties and biases in attempting to calcu-

late country or site-specific carbon stocks in seagrasses

using globally averaged values; highlights the poor repre-

sentation of East African seagrasses, and more broadly,

the carbon-dense tropical Indo-Pacific seagrass bioregion

in global datasets; and invokes prudent scientific efforts

to pair Earth Observation advances and frameworks, like

the one developed here, with existing and new field-

collected seagrass carbon stocks to unveil and understand

carbon storage and sequestration of seagrasses in similar

data-poor seagrass bioregions. A further comparison to

the only other existing national seagrass carbon estimate

across East Africa by Harcourt et al. (2018)—7.65 million

Mg of carbon stored in the Kenyan seagrasses—reveals

that the latter estimate falls closer to the minimum of our

Tier 2 calculation, owing probably to their more than

twofold lower seagrass extent.

Earth Observation and ecosystem
accounting: a contemporary synergy for
blue carbon policy uptake and financing

The integration of Earth Observation advances into

Ecosystem Accounting can be a promising systems-level

approach to mainstream blue carbon ecosystems and their

holistic natural climate solutions to biodiversity, societies

and economies. Through this systems approach, harmo-

nized geospatial and biophysical accounts reliant on eco-

logical knowledge, translated into economic units (i.e.

commodities) and measurable targets, and organized

thematically around environmental policies (thematic

accounting) can supercharge holistic insights and actions

in the blue carbon realm (United Nations, 2021). This

holistic accounting could essentially synthesize large-scale

stacks of blue carbon co-benefits with associated uncer-

tainties, allowing in turn equally blended forms of

finances for conservation and restoration (Macreadie

et al., 2021; Siman et al., 2021; United Nations Environ-

ment Programme, 2020a).

In the present study, we designed, developed and

applied a cloud-native ecosystem accounting prototype to

convert over three trillion and 26 terabytes of atmospheri-

cally corrected Sentinel-2 pixels into consistent nation-

wide accounts of seagrass extent and carbon stocks in

Kenya, Tanzania, Mozambique and Madagascar. Our

framework is enabled by the unprecedented parallel pro-

cessing of the Google Earth Engine cloud architecture,

open, dense time series of high-resolution optical satellite

images, and existing regional reference data collations—a

contemporary trifecta that can allow comprehensive, stan-

dardized spatial seagrass accounts, as demonstrated for

East Africa here. Our prototype can be scaled to cover

existing large spatial gaps in national seagrass extents and

constrain uncertainties in seagrass ecosystem condition,

services and monetary accounts—especially in global hot

spots of blue carbon, coastal biodiversity and areal loss

like the tropical Indo-Pacific, tropical Atlantic and

Mediterranean bioregions (de los Santos et al., 2019;

Dunic et al., 2021; Siman et al., 2021). Countries who

have included seagrasses and coastal ecosystems in their

current NDCs can be particularly benefited from our

approach to both update their national GHG inventories

Table 4. Estimated ranges of national and regional seagrass carbon stocks in East Africa.

Scale

Tier 1 assessment Tier 2 assessment

Carbon stock min (Mg) Carbon stock max (Mg) Carbon stock min (Mg) Carbon stock max (Mg)

Kenya 679 590 56 338 011 7 995 546 29 253 529

Tanzania 548 160 45 442 464 313 104 3 416 955

Mozambique 1 779 300 147 503 970 1 642 089 4 354 146

Madagascar 1 309 340 108 544 286 1 208 370 3 204 101

East Africa 4 316 390 357 828 731 11 159 109 40 228 732

Bold values are the regional sum of all columns.

These are based on Tier 1 and Tier 2 assessments (Kennedy et al., 2014), and in situ carbon stock data from Table 3 (for the Tier 2 assessment).

Tier 1 carbon stocks represent soil organic carbon within the first meter of depth, while Tier 2 ones represent total carbon stocks in the living bio-

mass (above- and below-ground) and seagrass soil. Mg denotes Megagrams, a unit of mass equal to 1 metric ton.

Figure 4. The nationwide extents of seagrass ecosystems in East Africa. The four pink inset panels show local-scale seagrass extents in each of

the four mapped countries: (A) Kwale County coast province, Kenya; (B) Mafia, Juani and Jibondo Islands, Tanzania; (C) Maputo Bay, Mozam-

bique; (D) Coastal waters of Toliara town, Madagascar. Τhe S2 L2A tiles are Sentinel-2 surface reflectance data—16 453 cloud-free tiles

(100 9 100-km) were used in our multinational ecosystem accounting.
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and put forward measurable targets for their conserva-

tion, following the examples of the Bahamas and Sey-

chelles (Climate Change and Energy Department, 2021;

United Nations Environment Programme, 2020a). Fol-

lowing the aforementioned uncertainties in sections 4.1

and 4.2, and the conceptualized systems-level approach

here, potential future large-scale coastal accounting efforts

aiming policy uptake may explore:

aSpatial harmonization and amalgamation of existing big

reference data on benthic ecosystem extent (Borrego-

Acevedo et al., 2020; Roelfsema et al., 2021) with large-

scale automated training data annotations using machine

learning and big spaceborne lidar data like ICESat-2

(Thomas et al., 2021)

bDevelopment and integration of spatially explicit valida-

tion metrics (e.g. confidence, uncertainty) which allows a

better understanding and reduction of the biases in the

approach and data. In addition, this is also a more effec-

tive communication and production of policy-relevant

monetary accounts

cMaterialization of scalable proof of concepts via verified

methodologies (Emmer et al., 2021) to create carbon

stock and flux inventories based on seagrass meadows.

This will contribute to the blue carbon crediting schemes

and may also allow uptake of these fluxes in the Environ-

mental, Social and Governance (ESG) goals of large com-

panies which require such data to showcase sustainable

supply chains in order to grow and attract investors

Technological advancements of our presented coastal

ecosystem accounting framework and effective collabora-

tion with relevant stakeholders can lay the foundations of

a large-scale decision support system for coastal resilience

in the 21st century and beyond. This is the ultimate aim

of the Global Seagrass Watch project of the German

Aerospace Center through which we are evolving the

technology and products of this study.
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