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Abstract
Background  The harsh environmental conditions during space travel, particularly weightlessness, impose a major burden 
on the human body including the cardiovascular system. Given its importance in adjusting the cardiovascular system to 
environmental challenges, the autonomic nervous system has been in the focus of scientists and clinicians involved in human 
space flight. This review provides an overview on human autonomic research under real and simulated space conditions 
with a focus on orthostatic intolerance.
Methods  The authors conducted a targeted literature search using Pubmed.
Results  Overall, 120 articles were identified and included in the review.
Conclusions  Postflight orthostatic intolerance is commonly observed in astronauts and could pose major risks when landing 
on another celestial body. The phenomenon likely results from changes in volume status and adaptation of the autonomic 
nervous system to weightlessness. Over the years, various non-pharmacological and pharmacological countermeasures have 
been investigated. In addition to enabling safe human space flight, this research may have implications for patients with 
disorders affecting cardiovascular autonomic control on Earth.

Keywords  Autonomic nervous system · Cardiovascular reflexes · Baroreflex · Orthostatic tolerance · Orthostatic 
hypotension · Space flight

Introduction

Following the first human space flight in the early 1960s of 
the last century by cosmonaut Yuri Gagarin, human space 
programs evolved rapidly. In 1969, the astronaut Neil Arm-
strong was the first human being to set foot on the Moon. 
Subsequently the American Space Shuttle program was 
launched, and the Russian MIR space station was estab-
lished. Perhaps, the most astonishing accomplishment in 
recent decades was the creation of the International Space 
Station (ISS) [1]. The first ISS modules were launched in 

the late 1990s. Meanwhile, the ISS enabled the presence 
of human beings in low Earth orbit for more than 20 years. 
While ISS will orbit the Earth for a few more years, we will 
witness exciting new developments driven by space agen-
cies and commercial entities. China will continue to build 
and utilize its recently established space station. The Arte-
mis program, which is led by the United States National 
Aeronautics and Space Administration (NASA), will bring 
human beings back to the moon and may lay the founda-
tion for future human missions to Mars. Finally, commercial 
providers have begun to offer suborbital and orbital space 
flights to paying customers. Thus, more and more human 
beings will experience space travel including individuals 
who would not qualify for a career as professional astronaut 
for medical or psychological reasons.

Given its importance in adjusting the cardiovascular 
system to environmental challenges, the autonomic nerv-
ous system has been in the focus of scientists and clinicians 
involved in human space flight. One of the highlights in this 
area was an international space shuttle mission dedicated to 
mechanistic human studies on post-space-flight orthostatic 

 *	 Jens Jordan 
	 jens.jordan@dlr.de

1	 Institute of Aerospace Medicine, German Aerospace Center 
DLR, Linder Hoehe, 51147 Cologne, Germany

2	 Aerospace Medicine, Medical Faculty, University 
of Cologne, Cologne, Germany

3	 Department of Anesthesiology and Intensive Care Medicine, 
Merheim Medical Center, Hospitals of Cologne, University 
of Witten/Herdecke, Cologne, Germany

/ Published online: 23 February 2022

Neurological Sciences (2022) 43:3039–3051

http://orcid.org/0000-0003-4518-0706
http://orcid.org/0000-0001-9927-4180
http://orcid.org/0000-0002-5672-1187
http://crossmark.crossref.org/dialog/?doi=10.1007/s10072-022-05963-7&domain=pdf


1 3

intolerance (Neurolab Mission, STS-90) [2]. The harsh envi-
ronmental conditions during space travel impose a major 
burden on the human body including the cardiovascular 
system [3]. In space, even the healthiest of the healthy will 
experience worsening of performance and health status 
unless sufficient countermeasures are instituted. Among 
more than 30 health risks during long duration space travel, 
NASA scientists identified five so-called red risks based on 
their likelihood to occur and their implications for health 
and performance during and after the mission [4]. These 
risks comprise consequences of space radiation, isolation 
and confinement, a hostile and closed environment, the 
distance from Earth, and altered gravity. Of those, altered 
gravity elicits particularly strong effects on cardiovascular 
control through volume redistribution in the body or altered 
vestibular signaling among other mechanisms. However, 
all the other environmental challenges could also affect the 
autonomic nervous system. For example, altered atmosphere 
conditions in a closed environment could engage peripheral 
or central chemoreceptors which regulate the autonomic 
nervous system. In the event that neurons in the brain in 
autonomic control circuits are being hit by heavy ions, which 
are important and difficult to shield components of galac-
tic cosmic radiation, grave consequences could occur [5]. 
Finally, the psychological stresses associated with confine-
ment and isolation could conceivably affect the autonomic 
nervous system [6].

This review provides an overview on human autonomic 
research under real and simulated space conditions with a 
focus on orthostatic intolerance. In addition to enabling safe 
human space flight, this research may have implications for 
patients with disorders affecting cardiovascular autonomic 
control on Earth.

Orthostatic tolerance—focus 
on the autonomic nervous system

Environmental challenges are sensed through barorecep-
tors, chemoreceptors, and the vestibular system among other 
afferent inputs [7–9]. The information is integrated at the 
brainstem level and leads to adjustments in efferent sympa-
thetic and parasympathetic activity. Sympathetic stimulation 
increases heart rate and cardiac contractility, increases vas-
cular tone, and promotes renal sodium reabsorption through 
renin release and direct tubular actions. Parasympathetic 
activation primarily decreases heart rate at the level of the 
sinus node. The importance of the autonomic nervous sys-
tem in cardiovascular control is illustrated by patients with 
severe autonomic failure. In these patients, efferent sym-
pathetic and parasympathetic counter-regulation is almost 
completely lost such that hemodynamic stresses imposed 
by standing produce profound orthostatic hypotension [10]. 

Other seemingly trivial hemodynamic challenges such as 
eating, taking a hot shower, or drinking alcohol massively 
reduce blood pressure. These stresses are easily compen-
sated for by autonomic counter-regulation in healthy young 
persons. However, sufficiently strong stimuli, such as expo-
sure to hypergravity on a human centrifuge, in a high-per-
formance aircraft, or during rocket launch or reentry may 
exceed the compensatory capacity of the healthy autonomic 
nervous system. Changes in volume status, such as acute 
blood loss, or cardiovascular deconditioning can also impair 
tolerance to gravitational challenges [11, 12]. Thus, unusu-
ally strong environmental stimuli, impaired hemodynamic 
reserve, or changes in autonomic nervous system control 
may elicit cardiovascular symptoms, particularly orthostatic 
intolerance and syncope [13–15].

The complex interactions between environment and 
autonomic cardiovascular control that ultimately determine 
orthostatic tolerance cannot be captured by single autonomic 
measurements. There is no gold standard approach telling 
the whole story. Instead, different methodologies and experi-
mental setups have to be combined to elucidate the chain 
from transduction and sensing of an environmental stressor 
to autonomically mediated cardiovascular responses.

Orthostatic intolerance following space 
travel

Launch and landing of space vessels are associated with 
major changes in gravitational loading of the human body. 
During launch, engine thrust accelerates the rocket thereby 
imposing substantial gravitational forces on human beings. 
Gravitational force-induced loss of consciousness, known 
as g-LOC by cognoscenti, could occur. During reentry into 
the atmosphere and the landing phase, the spacecraft rapidly 
decelerates which also generates gravitational stress to the 
body, normally approximately 3 to 5 times the gravity of 
the Earth. During space shuttle reentry, heart rates exceed-
ing 150 beats/min have been reported. The response likely 
resulted from combined physiological and psychological 
stresses [15, 16]. Thanks to gifted space engineers who 
incorporate human physiology knowledge in their designs, 
gravitational loading of the cardiovascular system is kept 
in a safe range except for true emergency situations. Gravi-
tational overloading is avoided through proper positioning 
of astronauts orthogonally to the acting gravity main vec-
tor (chest-to-back direction) during ascent and landing and 
through planning of flight trajectories among other meas-
ures. Even greater challenges to cardiovascular control can 
occur in other settings, such as in pilots of high-performance 
aircrafts who are exposed to accelerations in a head-to-foot 
direction, and are, therefore, not the focus of this review.
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Cardiovascular autonomic symptoms related to exposure 
to space conditions rather than launch or landing phases 
have been observed early into human space flight. Physi-
cians taking care of astronauts noted substantial orthostatic 
intolerance following return to Earth, a syndrome which 
was coined postflight orthostatic intolerance. It is safe to 
say that early missions were particularly heroic and stressful 
to astronauts. In addition to exposure to space conditions like 
weightlessness, astronauts were under immense psychologi-
cal and physiological stress. Over the years, medical care 
improved together with advances in technology and indi-
vidualized exercise programs. Nowadays, most astronauts 
are able to stand after several months onboard ISS without 
presyncope or syncope briefly following return to Earth. 
Notably, none out of 12 astronauts experienced orthostatic 
hypotension during the first 24 h after return from 6 months 
in space when investigated during activities of daily living 
[17]. Yet, nine out of fourteen astronauts returning from 
9–14 days space shuttle missions were unable to complete 
a 10-min standing test conducted within 4 h after landing 
[15]. In the upright position, heart rate and systemic vascular 
resistance were markedly increased while cardiac output and 
stroke volume were reduced compared with measurements 
before the mission [15]. Russian cosmonauts returning from 
several months ISS missions showed a modest increase in 
upright heart rate within the first days after landing (Fig. 1) 
[18]. Upright blood pressure was well maintained. Orthos-
tatic symptoms while generally mild-moderate and easy to 
manage on Earth could pose grave risks when landing on 
another celestial body.

Orthostatic intolerance in terrestrial models

Medical research in space is limited by the small number of 
potential test subjects and difficulties in conducting meas-
urements. Assessments, which are trivial on Earth, such as 
obtaining and analyzing a blood sample, pose major chal-
lenges in space. Parabolic flights can produce weightlessness 
or reduced g-loads akin to conditions on Mars or the moon 
for approximately 20–30 s. We have applied the approach 
to assess the initial orthostatic blood pressure and heart rate 
responses during different gravity loads [19, 20]. Yet, the 
short duration of altered gravity and potential confounding 
through rapid changes in gravity during flight maneuvers are 
major limitations. Therefore, terrestrial models mimicking 

Fig. 1   Mean changes in heart rate (∆HR, top), systolic blood pres-
sure (SBP, middle), and diastolic blood pressure (DBP, bottom) in 18 
Russian cosmonauts during orthostatic testing at 60 days before space 
flight (pre-flight, − 60), at 30 days before space flight (− 30 pre-flight), 
and 3–5 days after space flight (+ 4, post-flight). p < 0.01, paired t test 
between pre- and post-flight values (from Tank J. et  al. Clin Auton 
Res 2011;21(2) with permission)

▸
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certain aspects of space travel have been developed and suc-
cessfully applied over the years [21].

In cardiovascular autonomic research, bedrest in the 
head-down tilt position or dry immersion studies have been 
proven useful. In head-down bedrest studies, participants 
remain lying with the whole bed tilted head down typi-
cally by − 6°, a modest Trendelenburg position. All activi-
ties including eating and personal hygiene are conducted 
in this position. In dry immersion, participants are placed 
in a water tank with a water-resistant sheet that prevents 
direct contact with water. Both models unload the cardio-
vascular system and shift volume towards central circula-
tory compartments and the head. The fact that horizontal 
bedrest induces cardiovascular deconditioning and reduces 
orthostatic tolerance is known for more than 70 years [22]. 
One study assessed orthostatic responses before and follow-
ing 6-h bedrest in a − 5° head-down position, which pro-
duces cephalad fluid shifts similarly to weightlessness, and 
in a + 10, + 20, or + 42° head-up position on separate days 
[23]. Upright heart rate was significantly increased follow-
ing head-down bedrest and less so after head-up bedrest. 
In another study, orthostatic tolerance determined by lower 
body negative pressure (LBNP) decreased within 20  h 
of − 5° head-down bedrest [24]. The concept of applying 
negative pressure to the lower part of the body was originally 
developed for manned space flights in order to counteract the 
headward fluid shifts and to simulate orthostatic stress in 
weightlessness. In a 21-day head-down bedrest study, a dura-
tion more relevant for a space mission, orthostatic tolerance 
was measured by combined head-up tilt testing and LBNP 
and quantified as the time to abortion of the test [25]. On 
average, orthostatic tolerance was 21 min before and only 
12 min following head-down bedrest.

Observations in space and in terrestrial models mim-
icking space conditions suggest that all three components 
affecting orthostatic tolerance may be perturbed, namely 
volume status, cardiovascular fitness, and autonomic nerv-
ous system control.

Changes in volume status

In the early days of human space flight, astronauts may have 
experienced dehydration and volume loss due to inadequate 
water and solute supply in the face of space motion sickness, 
heat stress, and excess sweating. Furthermore, astronauts 
avoided drinking prior to launch due to the difficulties of 
voiding in space [26]. However, changes in volume status 
and volume distribution also occur when water and nutrient 
supply is optimized as it is today.

Immediately when astronauts enter weightlessness, 
fluid and blood cells are distributed towards the head. The 
response is associated with paradoxical central venous 

pressure reduction [27, 28]. Fluid shifts towards the head 
and fluid redistribution from the intravascular to the inter-
stitial and intracellular spaces contribute to face reddening 
and swelling—the so-called puffy face—and nose stuffi-
ness in astronauts [29]. The internal jugular vein is dilated 
and shows stagnant or even retrograde flow in weightless-
ness [30], which may predispose to neck vein thrombosis 
[30, 31]. More chronically, fluid shifts towards the head 
may contribute to structural changes in the brain and optic 
disc edema, which are part of the space-flight neuro-ocular 
syndrome [32–34]. Cerebral magnetic resonance imaging 
of astronauts after short and long duration space missions 
depicted upward shift of the brain and white and gray mat-
ter volume changes [33, 35]. In another study, an increase 
in blood markers for brain damage emerged in the first week 
after return from long duration missions [36]. Mastoid effu-
sions may also occur [37]. Invasive intracranial pressure 
measurements, which would be unrealistic in astronauts dur-
ing space missions, have been conducted in patients with 
Ommaya reservoirs in hyperacute weightlessness during 
parabolic flights. Ommaya reservoirs are catheter systems 
placed in cerebral ventricles with a subcutaneous port for 
infusion of anticancer chemotherapy that can also be used 
for intracranial pressure measurements. Intracranial pressure 
during weightlessness differed little from supine intracra-
nial pressure in normal gravity [38]. Possibly, intracranial 
pressure may not reach pathological levels in space. Yet, on 
Earth the brain may be protected by daily caudal volume 
shifts in the upright body position.

In addition to fluid shifts towards the head, plasma vol-
ume, red blood cells, and total blood volume decrease within 
days in space. [15] The response may be explained in part by 
fluid shifts from the intravascular to the intracellular com-
partment [39]. Furthermore, destruction of premature and 
young mature red blood cells may be an adaptive response 
to weightlessness [40]. Bioimpedance measurements suggest 
that there are sustained reductions in thoracic blood volume 
during long duration space missions (Fig. 2) [41]. Circulat-
ing mid-regional pro atrial natriuretic peptide concentrations 
also decrease, after a transitory 80% increase on the first 
day [42], in space independently of dietary sodium ingestion 
[41]. In a short-term − 5° head-down bedrest study, central 
venous pressure transiently increased followed by normali-
zation over several hours, which differs from the response 
in space [24]. Yet, cephalad fluid shifts also occur and may 
lead to ocular changes resembling those observed in astro-
nauts affected by the space-flight-associated neuro-ocular 
syndrome [43]. Mastoid effusion can also occur during 
head-down tilt bedrest [44]. Plasma volume decreases dur-
ing head-down tilt bed rest [45]. Thus, reductions in plasma 
volume in weightlessness and in head-down bed rest likely 
put an additional strain on orthostatic tolerance.

3042 Neurological Sciences (2022) 43:3039–3051
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Cardiovascular deconditioning

Deconditioning is the expected response of the cardiovas-
cular system to unloading be it in weightlessness or during 
bedrest. In astronauts, cardiopulmonary fitness was main-
tained after approximately 2 weeks in space but was reduced 
directly after return to Earth [46]. Following approximately 
2-week horizontal bedrest, healthy women and men showed 
a marked reduction in maximal oxygen uptake [47]. It is 
difficult, however, to discern primary changes in cardiovas-
cular structure and function from secondary influences of 
volume status and autonomic regulation on cardiopulmo-
nary performance and orthostatic tolerance [48, 49]. Nev-
ertheless, changes in cardiovascular structure and function 
may occur following space flight and in terrestrial models. 
In particular, reductions in left ventricular mass have been 
observed in astronauts following space flight and following 
12 weeks horizontal bedrest [50]. However, the response of 
left ventricular mass to bedrest deconditioning may be heter-
ogenous [49, 51]. One study showed reversal of cardiac atro-
phy within days after return from space, which may suggest 
that the response was mediated by fluid shifts rather than 
true cardiac atrophy [52]. A small heart together with reduc-
tions in volume status could contribute to orthostatic symp-
toms as evidenced by patients with the postural tachycardia 
syndrome [14, 53]. Influences of real and simulated space 
conditions on vascular structure and function have been 
recently reviewed [54]. Whether vascular changes, either 
on the venous or on the arterial side, contribute to orthostatic 
intolerance is unclear. The interpretation of the literature is 

complicated by the fact that in space, some aspects of car-
diovascular deconditioning are addressed more than others. 
For example, astronauts regularly conduct endurance and 
strength training to maintain exercise capacity. Yet, there is 
no adequate substitute for terrestrial gravity challenges to 
the cardiovascular system.

Sympathetic nervous system adaptation

Blood pressure is maintained during orthostatic stress when 
sympathetic actions on heart, blood vessels, and kidney 
are sufficiently increased. The response requires that post-
ganglionic sympathetic neurons are activated and release 
norepinephrine, which then engages postganglionic adren-
ergic receptors in cardiovascular organs or the kidney. The 
response is primarily terminated through neuronal re-uptake 
of released norepinephrine. Therefore, changes in norepi-
nephrine release, responsiveness, or uptake could affect 
orthostatic tolerance following space flight.

In astronauts who underwent muscle sympathetic nerve 
activity measurements through microneurography, sympa-
thetic activity was increased after space flight, both, while 
supine and during head-up tilt [55]. The response was pro-
portional to reductions in cardiac stroke volume postflight. 
Inflight measurements of muscle sympathetic activity and 
norepinephrine spillover during a space shuttle mission, a 
remarkable accomplishment considering the complexity of 
these methods, showed modest increases in sympathetic 
neural traffic and norepinephrine release [56]. However, 
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Fig. 2   Median thoracic fluid content (TFC) estimated by impedance 
measurements in 16 Russian cosmonauts before launch in the supine 
(SUP) and upright (UP) position, monthly onboard the International 

Space Station, and supine and upright after return to Earth (from 
Frings-Meuthen P. et al. Circulation 2020;141(19) with permission)
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during parabolic flight in seated healthy men and women, 
muscle sympathetic nerve activity was 191% during hyper-
gravity but only 82.8% during weightlessness compared 
with normal gravity [57]. In two Russian cosmonauts 
who underwent multiple plasma and urinary determina-
tions before, during, and after a long-term space mission, 
catecholamine measurements did not show major changes 
in space compared to before the mission. However, these 
measurements increased sharply in the days following the 
mission [58]. An increase in plasma norepinephrine fol-
lowing space flight was also shown in another study [59]. 
Yet, eight male astronauts showed no changes in plasma 
noradrenaline and adrenaline concentrations during and 
after their long duration ISS missions with respect to pre-
flight values, despite a 35–41% increase in cardiac output 
and an 8–10 mmHg decrease of arterial pressure in space 
[60].

Among 40 astronauts who had finished space missions 
of up to 16 days, those who were unable to remain stand-
ing for 10 min showed a markedly reduced increase in 
venous plasma norepinephrine compared to those who 
were able to remain standing. The group with less orthos-
tatic tolerance also exhibited lower standing systemic vas-
cular resistance. Women may be more likely to show such 
a response [61]. Astronauts with less orthostatic tolerance 
showed markedly raised dihydroxyphenylglycol (DHPG) 
plasma concentrations along with an attenuated norepi-
nephrine response [62]. Because, norepinephrine is con-
verted to DHPG through monoamine-oxidases following 
re-uptake from the synaptic cleft, the finding may indicate 
an increase in norepinephrine uptake and metabolism. An 
increase in tyramine-mediated norepinephrine release sup-
ports the idea [62]. Overall, it appears unlikely that space 
conditions render the sympathetic nervous system unable 
to respond to orthostatic stress, Yet, individual differences 
in sympathetic responsiveness may make an astronaut less 
or more likely to experience orthostatic intolerance fol-
lowing space flight.

Following head-down bedrest studies, participants 
showed unchanged or modestly increased resting sympa-
thetic nerve traffic [63–65]. The sympathetic response to 
handgrip exercise was unchanged [65]. The reduction in 
blood pressure during phase 2 of the Valsalva maneuver 
was exacerbated by head-down bedrest; however, sym-
pathetic activity increased appropriately [66]. A more 
detailed multiunit action potential analysis of sympathetic 
nerve recordings suggested that head-down bedrest may 
induce changes in neural recruitment strategies, particu-
larly during breath holding [64]. Despite a reduction in 
plasma volume over time, urinary norepinephrine was sub-
stantially reduced, and plasma norepinephrine was largely 
unchanged towards the end of bedrest [67]. Another 
head-down bedrest study showed a similar response [68]. 

The authors reasoned that an inappropriate sympathetic 
response to hypovolemia could predispose to orthostatic 
intolerance following bedrest. The idea is supported by 
the observation that persons with orthostatic intolerance 
following head-down bedrest showed a blunted increase 
in sympathetic nerve traffic with standing and insufficient 
vasoconstriction in the splanchnic circulation and in the 
legs [65, 69].

Parasympathetic heart rate control

Vagal withdrawal is the first response when assuming the 
upright position. However, patients with a denervated 
heart, such as heart transplant recipients, do not show 
major orthostatic symptoms. Moreover, cardiac pacemak-
ers while attenuating bradycardia during tilt table testing 
are of limited utility in improving orthostatic tolerance of 
patients with vasovagal syncope [70]. Similarly, intrave-
nous atropine did not prevent syncope during head-up tilt 
testing in healthy men [71]. On the other hand, patients 
with sympathetic vasomotor lesions faint during orthos-
tatic challenges despite a substantial increase in heart rate 
[72]. However, pharmacological norepinephrine trans-
porter blockade, which primarily raises heart rate, pre-
vented presyncope during head-up tilt testing in healthy 
persons [73]. Overall, influences of heart rate on orthos-
tatic tolerance are limited.

Nevertheless, altered parasympathetic activity might 
modify orthostatic heart rate responses following space 
flight. Compared with before space flight, heart rate was 
higher, and heart rate variability was reduced on landing day 
[59]. Heart rate variability was well maintained in Russian 
cosmonauts during long duration missions. During sleep, 
cosmonauts onboard the MIR station showed reductions in 
heart rate together with an increase in heart rate variability 
in the high frequency range, which primarily results from 
parasympathetic influences on the sinus node [74]. Another 
study showed an opposite heart rate variability response dur-
ing sleep [75]. However, maximal heart rate variability dur-
ing deep breathing declined in six out of seven cosmonauts 
suggesting that there may be reduction in vagal reserve [76]. 
Following return to Earth, astronauts who were unable to 
complete a standing test showed an increase in heart rate 
variability while supine [77].

Autonomic reflex regulation

As outlined above, parasympathetic and sympathetic 
efferent nerves are controlled by brain stem nuclei that 
receive input from various afferents and higher brain areas, 
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especially from the insula [78]. Therefore, changes in 
these reflex circuits could contribute to altered autonomic 
cardiovascular control in real or in simulated space con-
ditions. Baroreflex and vestibular mechanisms are prime 
suspects. The relevance of reflexes of the low-pressure 
system, e.g., the heart rate response to an acute increase 
in blood volume (Bainbridge reflex), is unclear.

Baroreflex-mediated heart rate responses elicited 
through neck suction were attenuated during and after 
short-term space flight [79]. Another study using transfer 
function analysis showed reduced low-frequency gain of 
the baroreflex after flight [80, 81]. Repeated baroreflex 
sensitivity measurements using the sequence and spec-
tral alpha techniques in four astronauts during a 16-day 
flight showed an initial increase in baroreflex-mediated 
heart rate control returning to baseline values at the end 
of space flight [81]. Interestingly, vagal heart rate control 
was reduced in 5 European but not in 5 Chinese astronauts, 
which raises questions regarding genetic variation in the 
response to space conditions [82]. In contrast, sympathetic 
responses to different stimuli like the Valsalva maneuver, 
head-up tilt, or lower body negative pressure seem to be 
enhanced during and after space flight [55, 56, 83]. Data 
about changes on autonomic reflex regulation from long-
term missions is still lacking.

The central shift of body fluids after transition into 
weightlessness should, in theory, activate volume recep-
tors located in central veins, pulmonary arteries, and car-
diac atria with subsequent vagal withdrawal and heart rate 
increases [84]. However, Chinese astronauts showed heart 
rate reductions in space [85]. Possibly, low-pressure reflexes 
are masked by a dominant arterial baroreflex.

The vestibular system, which regulates autonomic effer-
ents [86], is profoundly perturbed in weightlessness [9, 87]. 
Long-term space missions may attenuate vestibular influ-
ences on the sympathetic nervous system and, thereby, 
negatively affect orthostatic tolerance [88, 89]. Space flight 
may also affect the coupling between breathing and effer-
ent autonomic activity, which is of unclear significance for 
orthostatic tolerance [90].

Is cerebral autoregulation perturbed 
after space flight?

Theoretically, an impairment in cerebral autoregulation, 
which maintains blood flow over a wide range in blood 
pressure values, could compromise orthostatic tolerance 
following space flight. The topic including the different 
methodological approaches to determine static and dynamic 
cerebral autoregulation has been recently reviewed [91, 92]. 
Remarkably, cerebral vasoconstriction and hypoperfusion 

with hyperacute gravity transitions during parabolic flights 
may predict poor orthostatic tolerance [93].

In six astronauts participating in a space shuttle mission, 
dynamic cerebral autoregulation was determined before, 
during, and after space flight at rest and during orthostatic 
stress. If anything, cerebral autoregulation was improved 
after the mission [94]. During more long-term missions, 
cerebral blood flow velocity increased in proportion to a 
reduction in hemoglobin levels [95]. The authors suggested 
that increased flow may have compensated reductions in 
blood oxygen carrying capacity. Cerebral blood flow veloci-
ties during incremental lower body negative pressure testing 
were lower after compared to before a head-down bedrest 
study [96]. While subtle changes in cerebral autoregula-
tion may occur, particularly during more long-term mis-
sions, there is no evidence for a consistent and profound 
impairment.

Potential orthostatic intolerance 
countermeasures for space flight

Since NASA plans long duration human missions with up to 
1100 days in space, development of countermeasures main-
taining astronauts’ health and performance is an important 
goal. Given the importance of volume regulation in the 
pathogenesis of postflight orthostatic intolerance, interven-
tions affecting fluid balance or sodium homeostasis appear 
sensible. In a bedrest study in which plasma volume was 
restored to pre-bedrest levels through intravenous isotonic 
fluids and oral salt, presyncope or syncope after bedrest was 
improved [97]. However, volume loading did not prevent 
orthostatic tachycardia. In a 7-day head-down bedrest study, 
treatment with the mineralocorticoid fludrocortisone over 
24 h was more effective in maintaining plasma volume and 
orthostatic tolerance compared to oral salt and water loading 
[98]. Remarkably, baroreflex heart rate regulation was also 
better maintained in the fludrocortisone group. However, 
only seven persons per group were investigated. In a study 
conducted in space shuttle astronauts, one group received 
usual care, while another group increased fluid and salt 
intake before return to Earth. Fluid and volume loading sub-
stantially attenuated standing heart rate and stabilized blood 
pressure with standing [99]. Among astronauts who were 
treated with either a single fludrocortisone dose or placebo 
7 h prior to landing, those receiving fludrocortisone did not 
show an obvious improvement in orthostatic tolerance [100].

Rowing exercises preserved cardiopulmonary fitness and 
orthostatic tolerance during a head-down tilt bedrest study 
[101].

In a case report, a female astronaut with post-flight ortho-
static intolerance exhibited an improved orthostatic response 
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following a subsequent space flight after ingesting a single 
dose of the alpha-adrenoreceptor agonist midodrine [102].

Anti-G suits as well as garment systems for the calf, 
thigh, and splanchnic areas were tested effective in prevent-
ing acute volume shifts and increase orthostatic tolerance 
after real and simulated gravity [103–107].

Countermeasures mimicking some or all aspects of stand-
ing on Earth while being in space have been actively investi-
gated over many years. Thigh cuffs reducing venous drainage 
applied over several hours per day, an approach introduced 
by Russian cosmonauts [108], did not improve orthostatic 
tolerance following head-down bedrest [109]. However, the 
intervention may have had a beneficial effect on plasma vol-
ume and heart rate control. Whether lower body negative 
pressure training towards the end of space flight is effective 
in restoring orthostatic tolerance is questionable; however, 
cardiovascular responses to the intervention predict cardio-
vascular responses after returning to Earth [110]. Artificial 
gravity generated through a short arm centrifuge could be 
beneficial in attenuating the physiological deterioration in 
weightlessness [111]. Yet, artificial gravity alone may not 
suffice [49].Combinations of artificial gravity and exercise 
training hold promise [112]. During the Neurolab mission, 
four out of six crew members were exposed to 1 g on a cen-
trifuge installed inside the Space Shuttle Columbia. After 
return to Earth, none of the crew members in the centrifuga-
tion group experienced orthostatic intolerance, whereas one 
of the two crew members in the control group showed such 
symptoms [113].

Applications on Earth

Observations in astronauts remind us that the ability of the 
autonomic nervous system to cope with terrestrial gravity 
cannot be taken for granted. It is no surprise that orthostatic 
intolerance, which comes in different expressions, is a com-
mon clinical challenge in earthlings [114, 115]. Roughly, 
orthostatic intolerance syndromes can be divided in neurally 
mediated syncope, postural tachycardia syndrome (POTS), 
and orthostatic hypotension. Neurally mediated syncope 
is among the most common reasons for emergency room 
visits [116]. Patients with neurally mediated syncope have 
perfectly normal cardiovascular autonomic control until a 
trigger, such as prolonged standing, sets off hypotension 
with or without bradycardia. Owing to its name, POTS 
is characterized by an excessive heart rate response and 
hyperadrenergic symptoms with standing [117]. POTS is 
among the most common autonomic nervous system disor-
ders [118] and primarily but not exclusively affects younger 
women. Orthostatic hypotension, which is characterized 
by sustained reductions in blood pressure with standing, 
becomes more prevalent with increasing age [10]. Milder 

form of orthostatic hypotension, which is often explained 
by multiple factors, such as age-associated declines in auto-
nomic regulation, deconditioning, and medications among 
others, is rather common in older people. Profound orthos-
tatic hypotension usually points towards a severe underlying 
condition, such as multiple system atrophy, pure autonomic 
failure, or autoimmune autonomic ganglionopathy to name 
a few.

Phenotypically, orthostatic intolerance following real or 
simulated space flight resembles neurally mediated syn-
cope or POTS rather than the immediate and then sustained 
reduction in blood pressure seen in patients with orthostatic 
hypotension. It appears that orthostatic intolerance following 
space flight is not explained by a single mechanism. Ulti-
mately, individual predisposition, volume loss, cardiovas-
cular deconditioning, autonomic nervous system adaptation, 
and, perhaps, changes in cerebral autoregulation may have 
an additive negative effect on orthostatic tolerance. While 
all the orthostatic intolerance syndromes that we encounter 
in patients in the clinic have different underlying causes, 
the observation that multiple factors determine orthostatic 
tolerance is clinically relevant. For example, hypovolemia 
makes matters worse in all these conditions. Conversely, 
measures attenuating venous pooling may improve neurally 
mediated syncope, POTS, and orthostatic hypotension. Yet, 
targeting a single mechanism rarely suffices in severely 
affected patients. For example, simply starting a patient 
with severe orthostatic hypotension on pressor drugs rarely 
controls symptoms unless other treatments, such as dietary 
salt intake, water ingestion, compression garments, and so 
on are instituted [10]. However, in severely affected patients, 
currently available therapies may not suffice in improving 
symptoms. Novel therapies such as spinal cord pacing [119] 
or deep brain stimulation [120] may have utility in this set-
ting. We certainly hope that the engineering expertise, which 
is constantly pushed to its limit in space research, will yield 
new treatments for our patients with orthostatic intolerance 
on Earth.
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