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Abstract:
To calculate the driving temperature difference between the hot and the cold side of a heat
exchanger, the use of the logarithmic mean temperature difference is common practice. To
provide high robustness in complex dynamic system models, a robust formulation of the
logarithmic mean (logmean) function becomes vital. As the analytic definition of the logmean
function naturally comes along with singularities and limitations for specific input conditions, it
is essential to extend and modify it for heat exchanger modeling. This paper proposes how
the logmean function can be extended to be valid in all four quadrants of the Cartesian
coordinate system and how to bridge the resulting definition gaps. Special focus lies on the
robust formulation in such a way that it can be easily handled by numerical solvers. This
includes the numerical approximation of the logmean by use of its integral form by implicit
ODE solvers with variable step width. Furthermore a way is presented to flatten the naturally
steep gradients in the vicinity of the x- and y-axes without manipulating the function in the
uncritical regions. All the modifications on the logmean are finally applied in a simple simulation
model written in the object-oriented programming language Modelica to examine the robustness
of the approach.
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1. INTRODUCTION

The modeling and simulation of complex thermal system
architectures plays an increasing role in the development
of future energy systems. Such systems can represent the
thermal management of electric vehicles, aircraft environ-
mental control systems, power plants or any kind of cooling
circuit. When dealing with such complex thermal system
architectures, the robust formulation of all components is
inevitable. At our institute, a lot of effort is put into the ro-
bust modeling of complex thermofluid networks (Zimmer
et al. (2018) and Zimmer et al. (2021)).
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Fig. 1. Principle of counter-flow heat exchangers

Heat exchangers are frequently used in such models and
hence become a central part in thermal system architec-
tures. In the following, we take a closer look into a common
method to obtain the heat flow through a heat exchanger
when the inlet and outlet temperatures are given. In

general, the heat flow through a heat exchanger can be
described by the following equation given for example in
Incropera et al. (2007):

Q = UA∆T (1)

with the heat flow rate Q, the overall heat transfer coeffi-
cient U and the heat conducting area A. The temperature
difference ∆T determines the driving force for the heat
flow across the heat exchanger. As the temperature differ-
ence between the hot and the cold side varies along the
heat exchanger, a mean temperature difference is used.
To this end, the logarithmic mean temperature difference
∆TLM is introduced to calculate the heat flow:

Q = UA∆TLM . (2)

Figure 1 gives an overview about the inlet and outlet
temperatures of a generic heat exchanger in counter-
flow arrangement. The relevant temperature differences
are given with ∆TA = Thot,in − Tcold,out and ∆TB =
Thot,out − Tcold,in. Those temperature differences are used
to calculate the logarithmic mean temperature difference
∆TLM :

∆TLM =
∆TA −∆TB

ln
(

∆TA

∆TB

) =
∆TA −∆TB

ln(∆TA)− ln(∆TB)
. (3)
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The closed form of the logarithmic mean (logmean) func-
tion reveals several singularities and limitations for heat
exchanger modeling. It is only defined for both tempera-
ture differences being positive values. In transient zones
this condition might temporarily not be fulfilled. This
phenomena is called temperature crossing and can appear,
when the fluids in the heat exchanger experience sudden
temperature changes. The cold fluid therefore can reach its
maximum temperature already inside the heat exchanger
and not at the outlet. Also the domain for both temper-
ature differences being negative is not covered. Further-
more very steep gradients appear in the vicinity of the x-
and y-axes. It is therefore inevitable to apply appropriate
modifications to the analytic form of the logarithmic mean
function. It turned out as a quite challenging task to
modify the function in a way it can be used for robust
heat exchanger modeling. So lets have a closer look on the
logmean function to understand its behavior and how we
have to adjust it to our purpose.

2. REGULARIZING THE LOGARITHMIC MEAN
FUNCTION

This chapter describes how we have to extend and adjust
the typical formulation of the logmean function (see Carl-
son (1972)) to be valid for all possible input values that
can appear in dynamic simulation models including heat
exchangers.

2.1 Analytic form

The analytic formulation of the logmean function L(x, y)
is given by:

L(x, y) =
y − x

ln(y)− ln(x)
. (4)

It is defined for two non-negative numbers x and y and is
set to x if x = y:

L(x, y) =



x if x = y,

y − x

ln(y)− ln(x)
otherwise.

The special case of x = y is given, when the temperature
differences at both ends of the heat exchanger are equal.
It is then assumed, that the temperature difference stays
constant across the entire length of the heat exchanger.

Figure 2 shows the values of the logmean in all three
dimensions. The original definition of the logmean function
is therefore only valid in the first quadrant of the Cartesian
coordinate system. This would limit its use for robust heat
exchanger modeling, because temperature differences of all
possible sign-combinations can occur in transient phases of
dynamic models. To overcome this limitation we have to
expand the function to all four quadrants. This is done by
slightly modifying the natural definition as follows:

L(x, y) =




0 if x ∗ y < 0,

x if x = y,
y − x

ln( yx )
otherwise.

(a) x-y-z (b) x-z-plane

(c) y-z-plane (d) x-y-plane

Fig. 2. Validity of the analytic logarithmic mean

We now allow x and y to be negative numbers. This
modification mirrors the function to the third quadrant
to be valid for the case when x and y are both negative
numbers. As we need the logmean being valid in all four
quadrants, we still have to find a formulation for the second
and fourth quadrant. In those quadrants, the numbers x
and y have different signs. In heat exchanger modeling this
phenomena is called temperature crossing. A meaningful
solution for this region is to set all values to zero. This
guarantees us a smooth transition trough zero, when one
of the input values (temperature differences) changes its
sign. To bridge the definition gap at x = y, it is set to x
and hence applies in all quadrants.

Now we are able to plot the logmean function in all four
quadrants for x and y both ranging from -100 to 100:

Fig. 3. Surface plot of logmean function in all quadrants

The previous modifications helped to overcome the limi-
tations and singularities that come along with the natural
definition of the logmean. We now cover the entire number
range and found a solution for the singularity when x = y.
One might think that the job is done now, but the logmean
function offers some additional tricky pitfalls when it has
to be implemented for a numerical solver.

2.2 Numerical Integration

The logarithmic mean can also be interpreted as the
area under an exponential curve. For numerical solvers
it is more feasible to approximate the integral using a
quadrature method instead of implementing the closed
form of the logarithmic mean function.

By exploiting the integral form, we get rid of the logarithm
and end up with a fairly easy integral to approximate in
the definite interval [0,1]:

L(x, y) = x

∫ 1

0

(y
x

)t

dt. (5)

For the approximation of the integral we apply the trape-
zoidal rule. It is a common quadrature method that
promises robustness for our applications.

The general form of the trapezoidal rule for non-uniform
grid spacing is given by:

∫ b

a

f(x)dx ≈
N∑

k=1

f(xk−1) + f(xk)

2
∆xk (6)

with grid points xk and ∆xk = xk − xk−1 and the total
number of grid points being N + 1. An increase of grid
points leads to a higher accuracy in the approximation
of the integral. For better understanding, Figure 4 serves
as a visualization of the integral approximation using the
trapezoidal rule and the respective grid points x0...xN .

Fig. 4. Sketch of integral approximation using trapezoids

To analyse how close we are to the actual value of the
definite integral, we have to conduct an error analysis.

2.3 Error analysis

The following error analysis is performed for N = 4 and
the quadrature method is applied using the grid points
x0 = 0, x1 = 1

8 , x2 = 1
4 , x3 = 1

2 and x4 = 1. With this
rather low number of grid points, we are still expecting to
be close enough to the solution of the integral.

In general the error E can be estimated by subtracting the
value of the integral from the numerical result. For the sake
of simplicity we take the numerically approximated form
of the logmean Lapprox and subtract it from the analytical

form Lana. Doing so, we can calculate the absolute error
Eabs(x, y) from:

Eabs(x, y) = Lana(x, y)− Lapprox(x, y). (7)

Figure 5a shows the absolute error in the x-y plane for x
and y both ranging from -100 to 100. It can be observed,
that the error increases towards the axes (x, y → 0). The
maximum deviation to the analytic solution is < 2. For
further analysis, the relative error Erel(x, y) to the analytic
form is calculated from:

Erel(x, y) =
Lana(x, y)− Lapprox(x, y)

Lana(x, y)
. (8)

(a) Absolute error (b) Relative error

Fig. 5. Deviation from analytic form

The values of the relative error are given in Figure 5b. Here
it should be noted, that the relative error is only given for
the first and third quadrant. In the other two quadrants
the function is set to zero for both approaches and hence
the error is zero. The maximum deviation can be observed
near the axes with a maximum value of Erel < 7%. This
relative error can be accepted as it appears very locally,
when the magnitudes of x and y are very different to each
other. In summary it could be shown that a low number
of grid points is already sufficient and the resulting error
is pretty small. Nevertheless if needed, the accuracy of the
approximation could be improved by implying more grid
points to the trapezoidal rule.

What is also evident from the error analysis are the steep
gradients near the axes. When applying implicit ODE
solvers like DASSL (Petzold (1982)), the steep gradients
caused a drastic reduction in step-size and a major perfor-
mance loss. In interaction with other processes even high
frequency limit cycle behavior can result. A smoothing of
the edges and hence reducing their steepness seemed to be
an adequate mean to overcome this unwanted behavior.

2.4 Smoothing

In order to counteract the step-size reduction in such criti-
cal areas, an approach to smooth the edges of the logmean
function had to be developed. The goal was to locally
modify the edges of the function without manipulating the
values in the unproblematic regions. To do so, a smoothing
factor γ was introduced which constraints the prefactor x̃
of the integral with a maximum slope:

x̃ =

{
min(x, γy) if y > 0,

max(x, γy) otherwise.
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The following error analysis is performed for N = 4 and
the quadrature method is applied using the grid points
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2 and x4 = 1. With this
rather low number of grid points, we are still expecting to
be close enough to the solution of the integral.

In general the error E can be estimated by subtracting the
value of the integral from the numerical result. For the sake
of simplicity we take the numerically approximated form
of the logmean Lapprox and subtract it from the analytical

form Lana. Doing so, we can calculate the absolute error
Eabs(x, y) from:

Eabs(x, y) = Lana(x, y)− Lapprox(x, y). (7)

Figure 5a shows the absolute error in the x-y plane for x
and y both ranging from -100 to 100. It can be observed,
that the error increases towards the axes (x, y → 0). The
maximum deviation to the analytic solution is < 2. For
further analysis, the relative error Erel(x, y) to the analytic
form is calculated from:

Erel(x, y) =
Lana(x, y)− Lapprox(x, y)
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. (8)
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Fig. 5. Deviation from analytic form

The values of the relative error are given in Figure 5b. Here
it should be noted, that the relative error is only given for
the first and third quadrant. In the other two quadrants
the function is set to zero for both approaches and hence
the error is zero. The maximum deviation can be observed
near the axes with a maximum value of Erel < 7%. This
relative error can be accepted as it appears very locally,
when the magnitudes of x and y are very different to each
other. In summary it could be shown that a low number
of grid points is already sufficient and the resulting error
is pretty small. Nevertheless if needed, the accuracy of the
approximation could be improved by implying more grid
points to the trapezoidal rule.

What is also evident from the error analysis are the steep
gradients near the axes. When applying implicit ODE
solvers like DASSL (Petzold (1982)), the steep gradients
caused a drastic reduction in step-size and a major perfor-
mance loss. In interaction with other processes even high
frequency limit cycle behavior can result. A smoothing of
the edges and hence reducing their steepness seemed to be
an adequate mean to overcome this unwanted behavior.

2.4 Smoothing

In order to counteract the step-size reduction in such criti-
cal areas, an approach to smooth the edges of the logmean
function had to be developed. The goal was to locally
modify the edges of the function without manipulating the
values in the unproblematic regions. To do so, a smoothing
factor γ was introduced which constraints the prefactor x̃
of the integral with a maximum slope:

x̃ =

{
min(x, γy) if y > 0,

max(x, γy) otherwise.
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The resulting x̃ can now be placed in the integral form of
the logmean (Eq. 5) as follows:

L(x, y) = x̃

∫ 1

0

(y
x

)t

dt. (9)

The result for different values of the smoothing factor γ
is shown in Figure 6. It is clearly visible that the edges of
the function near the x- and y-axis can be flattened to a
greater or lesser extent by choosing different values for γ.

(a) unsmoothed (b) γ = 5

(c) γ = 10 (d) γ = 25

Fig. 6. Applying different values of smoothing factor γ to
original function

When increasing the value of γ, the closer the result gets
to the curve without smoothing. Lower values of γ are
flattening the edges to a greater extent. This becomes more
visible in Figure 7, where the resulting function is plotted
along the y-axis..
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Fig. 7. Impact of different smoothing factors (x = 100)

The last remaining regions of the presented formulation
of the logmean function that need some more attention
are the planes in the second and fourth quadrant. As the
value of the logmean is set to zero in those quadrants, no
gradient can be found here. For gradient-based methods
this will be quite tricky to solve, as the convergence can not
be guaranteed. One possible way to prevent from this is to
slightly tilt the planes and thus providing a small gradient
to support the numerical solver. This is done by adding a
fraction α of the arithmetic mean to the logarithmic mean
in the following way:

L(x, y) = (1− α)L(x, y) + α
x+ y

2
. (10)

Consequently, the ”tilting-factor” α has to be a number in
the range of 0 and 1. Figure 8 depicts the contours of the
resulting function for α = 0.2. The resulting gradient in
the second and fourth quadrant is now clearly visible. It
has to be mentioned, that for the sake of visibility, a fairly
high value of α is chosen here. Very small gradients in those
areas and therefore very small values for α can already be
sufficient for numerical solvers. This has to be taken with
care and kept in mind for each individual application of
this modification.
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Fig. 8. Contours of logmean with α = 0.2

To conclude the paper we plug in the logmean function
with all the modifications into a representative model in
the modeling language of our choice.

3. IMPLEMENTATION AND TESTING IN
MODELICA

For the modeling and simulation of thermal architectures,
the object-oriented programming language Modelica is
widely used at our institute. Hence we want to give an
insight on how we implemented the logmean function in
Modelica, whereas the presented modifications are not
meant to be Modelica specific. As in this section the focus
solely lies on the testing of the logmean function, it is done
outside of the frame of a heat exchanger in an isolated test
model.

3.1 Modelica Implementation

To examine the behavior of the modified logmean function,
a very simple minimal model shall do the job. It is
represented by a block that contains the logmean function
and the respective inputs x and y and the output L(x, y).
The algorithm section of the implementation is given in
Listing 1:

Listing 1: Implementation of the logmean

algorithm

f := abs(y*x/(x^2+ x_norm ^2));

// Loop to apply trapezoidal rule

for i in 2:N+1 loop

dx := grid[i] - grid[i-1];

L := L + (1/2) *(f^(grid[i-1])+f^(grid[i

]))*dx;

end for;

// Smoothing the edges

if y > 0 then

x_s :=min(x, gamma*y);

else

x_s :=max(x, gamma*y);

end if;

L := x_s*L;

//X and y having different signs

if x*y < 0 then

L := 0;

end if;

//x=y

if y - x == 0 then

L := x;

end if;

// Tilting

L:= (1- alpha)*L + alpha*(x+y)/2;

It has to be denoted here, that array indexing in Modelica
starts with 1. For this reason the starting point of the loop
for the trapezoidal rule hat to be moved to 2. The array
variable grid contains the manually defined grid points.
Another special case that hasn’t been considered in the
previous sections yet is given when both inputs x and y
are equal to zero. This would result in a division by zero.
To prevent the division by zero a common normalization
method is applied:

∣∣∣y
x

∣∣∣
norm

=

∣∣∣∣
yx

x2 + x2
norm

∣∣∣∣ (11)

with xnorm being a very small number (xnorm = 10−5).

3.2 Testing

The objective is to cover the whole scope of the logmean
definition while retrieving meaningful results for all inputs.
To examine whether we can retrieve a meaningful value for
the logmean for every possible inputs, we are considering a
test case that covers all of the following critical conditions:

• both inputs positive
• both inputs negative
• inputs with opposite sign
• both inputs zero

Figure 9 shows the result of the Modelica model. All
possible combinations of x and y are covered with the
corresponding input time-table. The model was simulated
using the implicit DASSL solver with a tolerance of 10−4.
As expected, the solution of the logmean travels smoothly
through all conditions and hence shows the desired behav-
ior. For the given model the smoothing factor γ is set to 15
and the tilting-factor α is set to 0.01. This fairly simple test
model has been sufficient to examine the implementation
of the logmean in Modelica. The presented implementation
of the logmean with all its modifications, proved to be
robust in more complex system architectures that include
several controllers.
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Fig. 9. Result of Modelica model

4. CONCLUSION

In summary it became very clear, that the analytic def-
inition of the logarithmic mean is usually not suitable
for robust simulation of heat exchangers especially if they
undergo uncommon transients as this may happen in com-
plex architectures. Finding an appropriate formulation of
the logmean function turned out to be more challenging
than expected. The presented methods to reformulate the
logmean function are intended to serve as a toolbox to im-
prove the robustness while maintaining validity. Sacrifices
in the validity only have to be made in limited areas that
should not affect the stationary result. After all, the point
has to be stated that the amount and the extent of the
presented modifications of the logmean function can be
varied depending on the field of application. Our motiva-
tion for putting substantial effort in the regularization of
the logmean function were oscillations in heat exchangers
that are part of fairly complex system architectures. The
resulting reductions in simulation performance made us
to revise the implementation of the logmean. For smaller
models, for instance only the extension of the logmean to
all four quadrants could be sufficient enough. In any case,
a simulation engineer using the logarithmic mean should
be aware about all the potential regularization that might
be needed to make this function applicable in practice.
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