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ABSTRACT

In this work we analyse how training datasize affects the abil-
ity of a deep neural network to deal with noisy training la-
bels in a semantic segmentation task with labels from Open-
StreetMap. To this end, several versions of the training set
were created by introducing varying amounts of label noise,
and a model was then trained on subsets of varying size of
these versions. The results indicate that the relationship be-
tween noise level and model performance is largely indepen-
dent of the datasize except for very small datasizes where
adding label noise has an even more deteriorating effect than
usual.

Index Terms— label noise, building footprints, dataset
size, Deep Learning, OpenStreetMap

1. INTRODUCTION

Deep Neural Networks (DNNs) have become state-of-the-art
for the segmentation of remote sensing imagery. Despite the
success of DNNs, one of the major challenges that can of-
ten hinder their full potential is the need for large amounts of
labeled training data. A common way of obtaining such la-
bels in remote sensing is the usage of crowdsourced datasets
where the labels are provided mainly by volunteers, as for
example in the popular OpenStreetMap project [1]. Labels
obtained from crowdsourcing can be subject to noise due to
subjectiveness in assessment, incomplete coverage of an area
or errors out of carelessness and oversight. Estimating the
impact that such noise has on the quality of predictions made
by models trained on this data is important to assess whether
crowdsourcing is a valid alternative to expert labeling. How-
ever doing such estimations is not trivial, since the interac-
tion between noise in training labels and the quality of sub-
sequent predictions is not well researched yet. One of the
factors that possibly affects this interaction is the size of the
training dataset. Previous studies found that the minimum
size of the training dataset required for effective training of
DNNs increases with the noise level in the data labels. In this
work we aim to validate these findings in the remote sens-
ing domain, thereby answering the question of how training

datasize affects the capability of a model to deal with label
noise in semantic segmentation. For this, we train a DNN on
datasets of varying noise levels and datasizes and compare the
predictive performances of the resulting models.

2. RELATED WORK

The role of label noise in Deep Learning has been studied
numerous times. One of the first important findings in this
regard was stated by Zhang et al. [2], who showed that DNNs
are able to memorize noise completely, making the danger of
models overfitting to noise seem imminent. It was later shown
by Arpit et al. [3] as well as by Arazo et al. [4] that DNNs
usually learn clean labels first during training and only later
overfit on noisy samples, which alleviates the problem of hav-
ing noisy labels to some extent. Rolnick et al. [5] found that
DNNs can be very robust against label noise. They also anal-
ysed the influence of the training dataset size and came to the
conclusion that the minimum dataset size required for effec-
tive training increases with the noise level in the data. Similar
findings were also stated by Wang et al. [6]. To our knowl-
edge, Rolnick et al. and Wang et al. are the only ones who
analysed the impact of dataset size on the role of label noise
in Deep Learning so far.
Looking at the task of semantic segmentation, there are only a
few works that examine the influence of label noise: Zlateski
et al. [7] analysed the relationship between time spent on
annotating a dataset and predictive performance of a model
trained on this dataset, while a study on the influence of la-
bel noise in medical image segmentation was performed by
Vorontsov et al. [8]. They found that the type of errors makes
a big difference for its impact on model performance to the
extent that biased errors have far more impact than unbiased
ones.
In the field of remote sensing, Mnih et al. [9] were among the
first who pointed out that using existing geographic informa-
tion as training labels can introduce unwanted noise. Other
works at the intersection of remote sensing and semantic seg-
mentation include Rahaman et al. [10] who analysed the role
of label noise in water body segmentation and found that in-

303978-1-6654-2792-0/22/$31.00 ©2022 IEEE IGARSS 2022

IG
AR

SS
 2

02
2 

- 2
02

2 
IE

EE
 In

te
rn

at
io

na
l G

eo
sc

ie
nc

e 
an

d 
Re

m
ot

e 
Se

ns
in

g 
Sy

m
po

siu
m

 |
 9

78
-1

-6
65

4-
27

92
-0

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

IG
AR

SS
46

83
4.

20
22

.9
88

45
70

Authorized licensed use limited to: Deutsches Zentrum fuer Luft- und Raumfahrt. Downloaded on November 16,2022 at 14:35:34 UTC from IEEE Xplore.  Restrictions apply. 



creasing the noise level can result in massive drops in accu-
racy, Li et al. [11] who studied the impact of label noise on
different classifiers for hyperspectral images, as well as Henry
et al. [12] who introduced omission noise and registration
noise into road segmentation datasets. Their results suggest
that small amounts of noise can even increase predictive per-
formance when a suitable loss function is used.

3. DATA AND MODEL

For our experiments we are using data from OpenStreetMap
[1], a freely available geographic database. Building geome-
tries for roughly 10 000 images of 256x256 pixels were down-
loaded from OpenStreetMap and converted into binary la-
bel masks, so that each pixel is either classified as building
or as background. Imagery was as well taken from Open-
StreetMap. That means that we do not use real-world aerial
imagery, but a cartographic view. The reason for using such a
dataset is that - since the images are merely the labels ren-
dered among other objects - the label quality is extremely
high. It can be safely assumed that the only noise existent
in those labels is the one that we introduce on purpose for
our experiments. For further details on the generation of the
dataset we refer to our previous work [13].
We focus here on the noise type of omission noise, that means
objects which are present in the imagery are not represented in
the labels. We create several noisy versions of our dataset by
removing random objects from the initial clean labels. This
way, 10 versions of noisy label sets were created between
10% and 100% label noise. Here, the percentage refers to
the area of buildings, meaning that in the dataset with 10%
omission noise, approximately 10% of the original building
area in each label mask was removed. The labels with 100 %
omission noise consequently do not contain any buildings and
consist only of the background class. Examples are illustrated
in Figure 1.
We train a DeepLabV3+ segmentation network [14] for 30
epochs on subsets of different sizes of all versions of the train-
ing dataset and repeat each run 10 times to obtain mean val-
ues and standard deviations of our metrics. The number of
epochs was chosen after observing that on our clean dataset
the accuracy saturates after 30 epochs. The metrics are always
calculated on a clean test set.

4. RESULTS

Table 1 shows the pixelwise accuracy as well as the recall,
precision and IoU for the building class that were achieved
by our experiments. In the following, we focus mainly on the
IoU for reasons of brevity and because most of the other met-
rics display a similar behaviour. Figure 2 shows how the IoU
changes with the noise level for different sizes of the train-
ing dataset. Not surprisingly, bigger dataset sizes consistently
outperform smaller ones. Especially the dataset size of 100

(a) (b)

(c) (d)

Fig. 1. Training data sample used in the experiments. (a):
cartographic imagery from OpenStreetMap. (b): clean labels
from OpenStreetMap. (c): labels with 50% omission noise.
(d): labels with 90% omission noise.

samples shows a drastically worse performance than all the
other dataset sizes. The differences in performance between
dataset sizes become gradually smaller with increasing noise
levels since at a noise level of 100% no learning is possible
anymore and so each network necessarily achieves the same
performance there, predicting always the background class.
Comparing the absolute changes in performance between the
different dataset sizes can be misleading since lower sizes also
have a lower performance right from the start and so just look-
ing at the slope of the performance curve does not necessar-
ily allow to draw conclusions about the impact of the dataset
size. For this reason, we also show the development of the
IoU metrics relative to their starting values in Figure 3. It can
be seen that the development of the relative IoU is similar for
each dataset size except for the smallest one with 100 sam-
ples. The metric drops a lot faster and reaches its minimum
far sooner than for all the other dataset sizes.
Furthermore, to compare our results with the findings from
Rolnick et al. [5], Figure 4 shows the pixelwise accuracy plot-
ted against the training datasize for the different noise levels.
A stepwise curve as observed by Rolnick et al. cannot be seen
here, instead the accuracy increases more gradually with the
logarithm of the dataset size.

5. DISCUSSION

The results shown in Figure 3 show that the dataset size does
not affect the ability of the model to deal with label noise, ex-
cept for the smallest datasize of 100 samples, where the pre-
dictive performance drops much faster with increasing noise
level. This could mean that the vulnerability towards label
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metric noise level
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

tr
ai

ni
ng

da
ta

si
ze

100

Accuracy 0.837 0.827 0.821 0.815 0.813 0.812 0.811 0.811 0.811 0.811 0.811
Recall 0.195 0.115 0.069 0.030 0.006 0.004 0.001 0.001 0 0 0
Precision 0.817 0.820 0.787 0.790 0.776 0.755 0.659 0.213 0 0 0
IoU 0.185 0.112 0.066 0.028 0.006 0.004 0.001 0 0 0 0

500

Accuracy 0.905 0.893 0.887 0.873 0.862 0.842 0.832 0.819 0.814 0.812 0.811
Recall 0.726 0.694 0.608 0.475 0.372 0.251 0.148 0.056 0.019 0.006 0
Precision 0.822 0.802 0.829 0.850 0.846 0.847 0.847 0.861 0.840 0.760 0.073
IoU 0.625 0.588 0.534 0.437 0.348 0.238 0.143 0.056 0.018 0.005 0

1000

Accuracy 0.919 0.911 0.901 0.885 0.881 0.857 0.840 0.828 0.818 0.812 0.811
Recall 0.844 0.759 0.650 0.528 0.475 0.291 0.196 0.103 0.050 0.006 0
Precision 0.810 0.835 0.850 0.864 0.850 0.865 0.856 0.848 0.876 0.847 0
IoU 0.703 0.657 0.581 0.486 0.438 0.278 0.189 0.101 0.050 0.006 0

5000

Accuracy 0.946 0.939 0.928 0.911 0.889 0.863 0.843 0.828 0.818 0.813 0.811
Recall 0.885 0.820 0.741 0.626 0.478 0.312 0.168 0.092 0.040 0.010 0
Precision 0.874 0.897 0.906 0.909 0.916 0.918 0.924 0.919 0.903 0.885 0.071
IoU 0.785 0.749 0.688 0.589 0.457 0.303 0.166 0.091 0.040 0.010 0

10000

Accuracy 0.955 0.948 0.937 0.916 0.893 0.869 0.849 0.834 0.821 0.814 0.811
Recall 0.866 0.840 0.783 0.657 0.501 0.305 0.209 0.127 0.052 0.012 0
Precision 0.925 0.919 0.922 0.935 0.942 0.947 0.951 0.934 0.926 0.932 0.125
IoU 0.809 0.782 0.734 0.628 0.486 0.299 0.206 0.126 0.052 0.012 0

Table 1. Selected metrics for the different setups after 30 epochs of training. Metrics are mean values of 10 training runs and
were calculated on the same clean test set. Precision, recall and IoU were calculated with respect to the building class.

Fig. 2. Mean IoU values of 10 training runs for different sizes
and noise levels of the training dataset. The IoU metric was
calculated on a clean test set.

noise is increased for very small datasizes. On the other hand,
at such a small datasize, bad results could also just occur by
chance, when the dataset contains only samples that are hard
to generalize from.
Previous work from Rolnick et et al. [5] reported a clear tresh-
old datasize that is necessary for successful learning. Our re-
sults don’t show such a clear treshold (see Figure 4). However
we did see in Figure 3 that there is a big difference in per-

Fig. 3. Mean IoU values of 10 training runs for different sizes
and noise levels of the training dataset. The IoU metric was
calculated on a clean test set. Values are normalized with
respect to the respective IoU on clean labels

formance between the smallest dataset size and the all other
ones, so the existence of a minimum reasonable dataset size
still seems plausible with our observations.
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Fig. 4. Pixelwise accuracy plotted against log training data-
size. Colored areas denote standard deviations from 10 train-
ing runs.

6. CONCLUSION

Our results indicate that dataset size only plays a role for a
model’s ability to handle label noise when the dataset size is
very small. In general, small dataset sizes should be avoided
anyway. With our findings in mind, this is even more the case
for noisy datasets. Here, we only looked at the narrow case of
a specific noise type and non-real-world data. To evaluate the
role of dataset size in a more general way, future studies on
other noise types and real-world imagery are of importance,
as well as a closer look on other use cases in remote sensing,
like for example road detection.

7. REFERENCES

[1] OpenStreetMap contributors, “Planet dump re-
trieved from https://planet.osm.org,” https://a.
tile.openstreetmap.org/, 2020.

[2] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin
Recht, and Oriol Vinyals, “Understanding deep learning
requires rethinking generalization,” International COn-
ference on Learning Representations, 2017.

[3] Devansh Arpit, Stanislaw Jastrzkebski, Nicolas Ballas,
David Krueger, Emmanuel Bengio, Maxinder S Kan-
wal, Tegan Maharaj, Asja Fischer, Aaron Courville,
Yoshua Bengio, et al., “A closer look at memorization in
deep networks,” International Conference on Machine
Learning, 2017.

[4] Eric Arazo, Diego Ortego, Paul Albert, Noel O’Connor,
and Kevin McGuinness, “Unsupervised label noise
modeling and loss correction,” in International Confer-
ence on Machine Learning. PMLR, 2019, pp. 312–321.

[5] David Rolnick, Andreas Veit, Serge Belongie, and Nir
Shavit, “Deep learning is robust to massive label noise,”
arXiv preprint arXiv:1705.10694, 2018.

[6] Fei Wang, Liren Chen, Cheng Li, Shiyao Huang, Yanjie
Chen, Chen Qian, and Chen Change Loy, “The devil
of face recognition is in the noise,” in Proceedings of
the European Conference on Computer Vision (ECCV),
2018, pp. 765–780.

[7] Aleksandar Zlateski, Ronnachai Jaroensri, Prafull
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