6th International Conference on Advances in ICASP Solidification Processes

20-24 June 2022, Le Bischenberg, France

Assessment of a nucleation and growth model in CrB-structured alloys

Till Niersbach, Matthias Kolbe, Raphael Kobold, Florian Kargl

German Aerospace Center, Cologne, Institute of Material Physics in Space

HELMHULIZ ESEARCH FOR GRAND CHALLENGES

Institut für Materialphysik im Weltraum

Knowledge for Tomorrow

What are we doing?

- Solidification from undercooled metallic melts
 - \rightarrow contact free processing
 - \rightarrow non-equilibrium conditions
 - \rightarrow several 100 K below T_m
 - \rightarrow microstructure analysis
- In **orthorhombic** systems $\alpha = \beta = \gamma \mid a \neq b \neq c$
 - Weaker mechanical properties than cubic systems
 - Specialized technological uses
 - \rightarrow Perovskite in photovoltaics
 - \rightarrow YSZ coatings on gas turbines
 - \rightarrow Tin based solder alloys

[1] C. Mercer et.al., Proc. R. Soc. A, 463 (2007) 1393-1408

Motivation – n-fold twinned growth mechanism

Solidification in the NiZr system ^[2,3]

- Star-like structure emerging from a single nucleus
- 10-fold symmetry
- Straight grain boundaries over the whole sample
- Result from high temperature solidification proven with high-speed camera images

[2] Hornfeck, W., Kobold, R., Kolbe, M. *et al. Nat Comm* 9, 4054 (2018)
[3] R. Kobold, M. Kolbe, W. Hornfeck, D.M. Herlach, J. Chem. Phys. 148, 114502 (2018)

Motivation – n-fold twinned growth mechanism

- Misorientation angle of 36° between grains
 - \rightarrow measured with EBSD
 - \rightarrow 10-fold symmetry
- Orthorhombic unit cell
 - \rightarrow grain boundary through the diagonal of the unit cell

HELMHOLTZ

100 µm

Motivation – n-fold twinned growth mechanism

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Growth model in NiZr by Hornfeck-Kobold-Kolbe^[2,3]

- Homogeneous nucleation at high undercoolings
 → due to high purity and contact-free levitation
- Nucleus of icosahedral short-range order with 5-fold symmetry, quasi-crystalline
- Further growth into multi-twinned orthorhombic structure (10-fold)
 B33 phase, CrB-structure
- Cell symmetry preserved across boundaries

[2] Hornfeck, W., Kobold, R., Kolbe, M. et al. Nat Comm 9, 4054 (2018)
[3] R. Kobold, M. Kolbe, W. Hornfeck, D.M. Herlach, J. Chem. Phys. 148, 114502 (2018)
[4] R. Kobold, W. W. Kuang, H. Wang, W. Hornfeck, M. Kolbe, D.M. Herlach, Philosophical Magazine Letters, 97:6, 249-256 (2017)

Can this be replicated in other systems?

Other symmetries can be calculated geometrically

 $\rightarrow \phi = 2 \tan^{-1} (a/b)$

in NiZr: $\phi = 36^{\circ} \rightarrow 10$ -fold symmetry in NiGd: $\phi = 40^{\circ} \rightarrow 9$ -fold symmetry In NiB: $\phi = 45^{\circ} \rightarrow 8$ -fold symmetry etc...

• Exclusive in NiZr or present as a universal growth mechanism?

 \rightarrow more than 130 CrB-structured binary alloys known

- Deep undercooling is needed to more likely get single nucleus
- Challenges?

 \rightarrow most systems are highly oxidative

 \rightarrow impurities/ oxides act as nucleation sites \rightarrow heterogeneous nucleation/ low ΔT

 \rightarrow solid-phase transitions \rightarrow change of microstructure

Electrostatic levitation

- UHV, <10⁻⁶ mbar
- processing without any mechanical contacts
- high purity elements
- Recalescence: latent heat is released

- elevated temperature observable with HSC

 \rightarrow

high ΔT

Electromagnetic levitation | parabolic flights

- 22 seconds of µ-gravity
- less convection and disturbances in melt in contrast to ground EML
- \rightarrow option for alloys that can't be levitated on ground \rightarrow e.g. AuGd
- \rightarrow also for highly oxidative systems or when impurities on surface are not solvable

HELMHOLTZ

Assessment of universal growth model

Crucial features needed, based on the NiZr prototype system, to observe this growth:

- 1. Deep undercooling
 - \rightarrow possibly homogeneous
 - \rightarrow singular nucleation event
- 2. Nucleus based on icosahedron
 - \rightarrow transition from QC to twinned microstructure
- 3. Solidification within CrB-structure (B33 phase)
 - \rightarrow lattice parameter ratio a/b
 - \rightarrow twinned dendrites
- 4. Orientation around common <001> direction (c)
- 5. Stable phase for microstructure analysis

NiHf | 10-fold symmetry

- Undercoolings up to $\Delta T = 460 \text{ K}$
- same heat front as in NiZr
- ten-fold symmetric structures
- EBSD and pole figures show ten orientations around common <001> direction
- $\phi = 36^{\circ}$ matches 10-fold expectation

NiHf | solid-phase transition

- Solid-solid transition present
- high-temperature B2 phase, cubic
 → into B33, orthorhombic
- nucleation and growth model only present, when B33 is initial phase →
- otherwise, if B2 is initital:

Slide 11

10 µm

 subject of current studies, will be presented in detail in future publications

hypercooling, if $\Delta T > 360 \text{ K}$ \rightarrow 100% solidified during recalescence

NiGd | *uneven* 9-fold symmetry

- First expected uneven symmetry
- $\phi = 40^{\circ}$ matches expectations •
- common <001> direction
- up to now only low undercoolings (ΔT up to 90 K)
- only incomplete or distorted structures present
- Adaptation of model may be necessary
 - \rightarrow heterogeneous growth front
 - \rightarrow multiple symmetric structures
 - \rightarrow same <001>
- Similarities to *iQC-mediated nucleation mechanism* by Rappaz et.al. in fcc-alloys

100 µm | OM

Till Niersbach | Institute for Materials Physics in Space | ICASP 2022

NiGd | twinned dendrites

- Twinned dendrites confirmed in NiGd
- both parts share a common {110}
- common <001> direction

- $\phi = 45^{\circ}$ matches expectations
- common <001> direction
- undercoolings up to 110 K
 - \rightarrow oxides/ impurities on surface
- One growth structure through whole cross-section
 - \rightarrow as present in NiZr
- Distorted grain boundaries
 - \rightarrow degrading symmetry across grain boundary

Discussion – Universal nucleation and growth model

Crucial features

- 1. Solidification in B33
- 2. Angle φ
- 3. Common <001>
- 4. Deep undercoolings

Х

- 5. Icosahedral core
- 6. Stable grain boundaries

HAADF-STEM micrograph of coherent twin boundary in NiZr (\perp [001])

[2] Hornfeck, W., Kobold, R., Kolbe, M. et al. Nat Comm 9, 4054 (2018)

thank you for your attention

