Trace gas concentration retrieval from
short-wave infrared nadir sounding
spaceborne spectrometers

Philipp Hochstaffl

Miinchen 2021






Trace gas concentration retrieval from
short-wave infrared nadir sounding
spaceborne spectrometers

Philipp Hochstaffl

Dissertation
an der Fakultat fiir Physik
der Ludwig-Maximilians—Universitat
Minchen

vorgelegt von
Philipp Hochstaffl
aus Innsbruck, Osterreich

Minchen, den 06.09.2021



Erstgutachter: Prof. Dr. Mark Wenig
Zweitgutachter: Prof. Dr. Thomas Trautmann
Tag der mindlichen Priifung: 20.01.2022



To my loving parents who gave me the opportunity to build on my talent and offered so
much more






Zusammenfassung

Aus der Beobachtung reflektierter Sonnenstrahlung im kurzwelligen Infrarot (SWIR)
kéonnen Spurengaskonzentrationen in der Erdatmosphéare abgeleitet werden, wobei die
Losung des inversen Problems eine Schiatzung des wahren Atmosphérenzustands liefert.
Die Inversionsmethode BIRRA (Beer InfraRed Retrieval Algorithm) ist einer von mehreren
am DLR (Deutsches Zentrum fiir Luft- und Raumfahrt) am Institut fiir Methodik der
Fernerkundung (IMF) entwickelten Algorithmen zur Bestimmung von Molekiilkonzentra-
tionen aus spektroskopischen Messungen. Das Vorwéartsmodell von BIRRA basiert auf
dem ebenfalls am DLR-IMF entwickelten Generic Atmospheric Radiation Line-by-line
Infrared Code (GARLIC).

Am Anfang stand die Validierung der mit BIRRA abgeleiteten Kohlenmonoxid (CO)
Gesamtsdaulen aus SCIAMACHY (SCanning Imaging Absorption spectroMeter for At-
mospheric CHartographY) Messungen im 2.3 um Bereich. Dazu wurden die BIRRA
Gesamtsaulen mit jenen der bodengebundenen Beobachtungsstationen der Netzwerke TC-
CON (Total Carbon Column Observing Network) and NDACC (Network for the Detection
of Atmospheric Composition Change) im Zeitraum von 2003-2011 verglichen. Die mit
BIRRA ermittelten CO Konzentrationen zeigen eine ~ 10% negative Abweichung und
stimmen mit den Ergebnissen d&hnlicher Studien anderer Autoren weitgehend iiberein.

Nach erfolgter Validierung wurden Neuerungen des Strahlungstransportmodells GAR-
LIC in das BIRRA Vorwartsmodell eingebaut und die Ergebnisse des aktualisierten In-
versionsalgorithmus mit jenen des Vorgéangers verglichen. Auf Basis von SCIAMACHY
Daten wurde numerische Ubereinstimmung der Ergebnisse festgestellt.

Anschliefend wurde das Vorwértsmodell mit Blick auf die Verwendung neuester spek-
troskopischer Liniendaten, wie SEOM-IAS (Scientific Exploitation of Operational Mis-
sions — Improved Atmospheric Spectroscopy), erweitert. Um genauere Molekiilabsorptions-
querschnitte berechnen zu konnen, musste das (klassische) Voigt-Absorptionslinienprofil
erweitert werden. Der Einfluss der neuen Spektroskopie wurde zuerst auf Basis von SCIA-
MACHY Messungen untersucht und anhand von Vergleichsrechnungen auf Basis aktueller
HITRAN (HIgh-resolution TRANsmission molecular absorption database) und GEISA
(Gestion et Etude des Informations Spectroscopiques Atmosphériques) Daten bewertet.
Es stellte sich heraus, dass die SEOM-IAS Liniendaten einen signifikanten Einfluss auf die
Inversion haben: die Residuen werden kleiner und auch die abgeleiteten CO Konzentratio-
nen unterscheiden sich leicht. Die gleiche Methodik wurde anschliefend dazu verwendet,
den Einfluss der Spektroskopie fiir das CO Retrieval aus TROPOMI Messungen zu bestim-
men. Dabei zeigten sich die Auswirkungen noch deutlicher — signifikant kleinere Residuen
und eine damit einhergehend héhere Genauigkeit (kleinere Fehler) der CO Séaulen sowie
der (mit-)abgeleiteten Parameter. Desweiteren besteht weitgehende Ubereinstimmung
mit den Resultaten der SCIAMACHY Studie.

Ein weiterer Teil der Arbeit beschéftigt sich mit Instrumentenfunktionen (auch bekannt
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als Instrumentenprofile), speziell mit der Untersuchung einer passenden Parameterisierung
der TROPOMI-Funktion im SWIR Band. Die tabellierten TROPOMI Instrumentenpro-
file konnen mit geeigneten Parameterisierungen gut modelliert werden. Dariiber hinaus
konnte der positive Einfluss der SEOM-TAS Spektroskopie auf die spektralen Residuen
auch mit einem parameterisierten Instrumentenprofil nachgewiesen werden. Aufgrund
der Flexibilitat der vorgestellten Parameterisierungen konnten diese auch fiir zukiinftige
Sensoren zum Einsatz kommen.

Abschlieend wird der Einfluss von Aerosolen im CO Retrieval analysiert. Auf Basis
einer einfachen Parameterisierung wurde versucht, die Extinktion bzw. die optische Tiefe
(mit) zu bestimmen. In diesem Zusammenhang wurden auch der (klassische) nichtlineare
Least Squares und der separierbare Least Squares hinsichtlich des Konvergenzverhaltens
beim Losen des inversen Problems untersucht. Erste Ergebnisse zeigen ein stabiles CO
Retrieval unter Verwendung der separierbaren Least Squares Methode, wobei die (mit-
)Jabgeleiteten Aerosol- und Reflektivitatsparameter auf Probleme durch Entartung hin-
weisen.

Die vorliegende Arbeit hat gezeigt, wie das CO Retrieval aus SCTAMACHY Messungen
verbessert werden kann. Mit dem weiterentwickelten BIRRA Code wurden dariiberhinaus
erfolgreich CO Konzentrationen aus wolkenfreien TROPOMI Messungen bestimmt. Viele
Aspekte der Arbeit sind auch fiir die prazise Konzentrationsbestimmung anderer Molekiile
wie COs oder CH, von Bedeutung. Damit bietet die vorliegende Arbeit eine valide Grund-
lage fiir die Weiterentwicklung.



Abstract

The remote sensing of short wave infrared (SWIR) radiation reflected from the Earth
allows to infer atmospheric trace gas concentrations by solving the inverse problem. The
retrieval algorithm BIRRA (Beer InfraRed Retrieval Algorithm) has been developed at
the DLR (Deutsches Zentrum fir Luft- und Raumfahrt) Remote Sensing Technology
Institute (IMF) since around 2005 and is one of multiple algorithms to infer molecular
concentrations from calibrated radiance spectra. BIRRA’s forward model is based on
the Generic Atmospheric Radiation Line-by-line Infrared Code (GARLIC) which has also
been developed at the DLR-IMF.

First, the BIRRA retrieved carbon monoxide (CO) columns from SCTAMACHY (SCan-
ning Imaging Absorption spectroMeter for Atmospheric CHartographY') 2.3 um observa-
tions from 2003-2011 were validated against eighteen stations from the ground-based
networks TCCON (Total Carbon Column Observing Network) and NDACC (Network for
the Detection of Atmospheric Composition Change). The BIRRA inferred CO concentra-
tions were found to be ~ 10 % low biased which is in large agreement with other similar
studies.

Next, the latest updates from the radiative transfer code GARLIC were incorporated
in BIRRA’s forward model and the physical results of both, the old (but validated) and the
latest (updated) BIRRA algorithms were verified and found to be numerically consistent
for SCTAMACHY input data.

Subsequently, the forward model was extended by upgrading its capabilities with re-
spect to spectroscopy, i.e., enhanced line models were incorporated in order to utilize latest
spectroscopic information from line lists such as the SEOM-TAS (Scientific Exploitation of
Operational Missions — Improved Atmospheric Spectroscopy). More specifically, ‘beyond
Voigt’ line profiles were implemented and the impact of the SEOM-ITAS spectroscopy was
studied with respect to latest compilations of HITRAN (HIgh-resolution TRANsmission
molecular absorption database) and GEISA (Gestion et Etude des Informations Spectro-
scopiques Atmosphériques) for a large set of SCTAMACHY measurements. It was found
that the SEOM-IAS line data and corresponding line models have significant impact on
the spectral fitting: the residuals become smaller and the retrieved CO concentrations are
also slightly different. The same methodology was then applied to study the spectroscopic
impact on CO from S5P/TROPOMI measurements. The impact of the SEOM-TAS spec-
troscopy revealed to be even more pronounced, in particular with respect to the fitting
residuals and smaller retrieval errors (higher precision) of the CO and co-retrieved param-
eters. Overall, the TROPOMI results are in agreement with that found for SCTAMACHY.

A subsequent part of the thesis examines instrument spectral response functions
(ISRF), in particular appropriate parameterizations for the TROPOMI’s SWIR, band
responses. A first assessment with tabulated instrument profiles indicates that the pa-
rameterized variants can mimic the tabulated responses within ~ 3-6 %, depending on
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the instrument model and spectral position. The positive impact of the SEOM-IAS spec-
troscopy on the spectral fitting residuals could also be identified with the parameterized
response functions. Moreover, the presented instrument profiles are considered promising
candidates for the description of responses from upcoming sensors due to their flexibility.

Finally, the co-retrieval of aerosol parameters in the CO fit is presented. Based on a
simple model for the aerosol optical thickness the feasibility to co-retrieve aerosol extinc-
tion was investigated. In this context two different inverse solvers, namely the ’classical’
nonlinear least squares and separable least squares, were examined with respect to con-
vergence. First results show a stable CO retrieval for the separable least squares solver,
however, the co-retrieved aerosol and reflectivity parameters indicate issues due to degen-
eracies.

This thesis improved the retrieval of CO from SCIAMACHY observations. Moreover,
the upgraded BIRRA algorithm successfully retrieved CO concentrations from cloud-free
TROPOMI measurements. Many aspects investigated in this study are also relevant for
the retrieval of other atmospheric constituents, such such CO, or CH4. The study does
hence provide a proven basis for further developments.
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Chapter 1

Introduction

Remote sensing methods make a wide range of measurements in order to study various
aspects of the Earth system (Solimini, 2016). Nowadays, observations are made from
various platforms such as satellite, aircraft, balloon and from the surface. In particular,
satellite observations have become an important data source to determine the state of the
Earth system, including its atmosphere (Burrows et al., 2011).

1.1 Brief overview of Earth observation missions

Earth observations from space-based sensors have been used since the early years of space
flight basically starting in April 1960 with the launch of NASA’s (National Aeronautics
and Space Administration) Television and Infrared Observation Satellite (TIROS; Aid-
der and Vonder Haar, 2010) into a low-Earth orbit. The evolution of remote sensing
techniques in the following decades motivated the development of new spaceborne instru-
ments. Particularly, in the last two decades important Earth observation missions were
realized by various space agencies and private companies around the globe.

Highly valuable atmospheric scientific missions from the European Space Agency
(ESA) include ENVISAT (ENVIronmental SATellite) and some of the Sentinel missions,
each incorporating instruments dedicated for the monitoring of atmospheric chemistry
and temperature. ENVISAT for example is hosting instruments such as SCIAMACHY
(SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY; Bovens-
mann et al.; 1999; Gottwald and Bovensmann, 2011), GOMOS (Global Ozone Monitoring
by Occultation of Stars; Kyrold et al., 2004) and MIPAS (Michelson Interferometer for
Passive Atmospheric Sounding; Fischer et al., 2008). SCIAMACHY is a diffraction grat-
ing spectrometer that records atmospheric absorption from scattered and reflected solar
radiation in various viewing geometries while MIPAS employs a Fourier transform spec-
trometer (F'T'S) to observe limb emission spectra from the middle and upper atmosphere.
The Sentinel-5 Precursor (S5P; Veefkind et al., 2012) is ESA’s first satellite within the
European Union’s Earth observation program Copernicus that is dedicated to the monitor-
ing of atmospheric chemistry. S5P’s payload is the Tropospheric Monitoring Instrument
(TROPOMI) which consists of a nadir viewing grating spectrometer and is building upon
the heritage of its predecessors GOME (Global Ozone Monitoring Experiment; Burrows
et al., 1999), GOME-2 (Munro et al., 2016), SCTAMACHY, and OMI (Ozone Monitoring
Instrument; Levelt et al., 2006).

Sensors from other space agencies such as the Michelson interferometer of the ACE
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(Atmospheric Chemistry Experiment; Bernath, 2017) aboard SCISAT from the Cana-
dian Space Agency (CSA) and GOSAT/GOSAT-2 (Greenhouse Gases Observing Satel-
lite; Kuze et al., 2009, 2016) from the Japan Aerospace Exploration Agency (JAXA) use
FTS to record atmospheric spectra. The NASA instrument MOPITT (Measurement of
Pollution in the Troposphere; Vargas-Rodriguez and Rutt, 2009; Dakin et al., 2003) mea-
sures emitted and reflected radiance from the Earth using gas correlation spectroscopy.
The NASA missions named OCO-2 (Orbiting Carbon Observatory-2; Crisp et al., 2004)
and OCO-3 (Orbiting Carbon Observatory-3; Eldering et al., 2019; Taylor et al., 2020), of
which the latter is deployed aboard the International Space Station (ISS), employ nadir
viewing grating spectrometers to image atmospheric absorption spectra. The Atmospheric
Infrared Sounder (AIRS; Chahine, 1991; Chahine et al., 2006) on NASA’s Aqua satellite
and the [ASI (Infrared Atmospheric Sounding Interferometer; Clerbaux et al., 2009) in-
struments aboard the three METOP (METeorological OPerational Satellite) satellites,
operated by EUMETSAT (European Organisation for the Exploitation of Meteorological
Satellites) measure thermal emission in the nadir direction. In the recent past also pri-
vate companies such as GHGSat launched missions dedicated for the remote sensing of
greenhouse gases and other trace gases (Varon et al., 2018).

1.2 Atmospheric remote sensing

The principle of atmospheric remote sensing measurements from space is based on the
interaction of electromagnetic radiation with constituents in the atmosphere (Solimini,
2016). Most passive sensors measure the radiation coming from the Sun that is trans-
mitted and scattered through Earth’s atmosphere or emitted by the atmosphere itself.
Other instruments use solar, lunar or stellar occultation measurements (Gottwald and
Bovensmann, 2011; Kyrdld et al., 2004).

According to Wien’s displacement law the Sun strongly emits in the near-UV (Ul-
tra Violet), VIS (VISible) while radiation emitted by the Earth peaks at much longer
wavelengths in the IR (InfraRed) (Zdunkowski et al., 2007). As indicated in Fig. 1.1 the
solar radiation at Top of Atmosphere (ToA) which is proportional to the solid angle of
the Sun at a distance of one astronomical unit d,, (E3"% at ToA o< (rsun/dan)?, also
see Goody and Yung (1995, Tab. A.9.1)) is dominant in the NIR (Near InfraRed) range
(indicated in gray). Towards the thermal infrared (TIR) the emission from Earth’s sur-
face and atmosphere becomes larger and surpasses the solar irradiance at ToA at roughly
2000 cm~!. Consequently, the relevance of different processes in radiative transfer through
the atmosphere is depending on the observed wavenumber interval.

Interaction of electromagnetic radiation with atmospheric constituents such as trace
gases and aerosols generally include absorption, emission, and scattering. However, in the
absence of particles' scattering is of little importance in the SWIR (Short Wave InfraRed)
and thermal emission from Earth’s surface and atmosphere is also weak (see Fig. 1.1).
Consequently, most of the photons detected by nadir looking space or airborne instruments
have taken the path from the Sun to the surface and back, thereby providing nearly
homogeneous sensitivity to all atmospheric levels (Richter, A., 2010). Measurements that
target the quantification of molecules such as carbon monoxide (CO), methane (CH,) or
carbon dioxide (CO,) from the SWIR fulfill this ideal situation and are hence employed

1 Solid and liquid, e. g., aerosols, clouds, haze, ...
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Figure 1.1: Spectral irradiance for a blackbody at 288 K representing the Earth’s surface tem-
perature. The solar blackbody irradiance at a temperature of 5777 K is distance
scaled by one astronomical unit (see Sec. 1.2). For comparison the Kurucz solar
reference spectrum is shown too (Kurucz, 2005).

by many satellite instruments (e.g. Frankenberg et al., 2005; Buchwitz et al., 2007a,b;
Deeter et al., 2009; Veefkind et al., 2012). A downside, however, is that the neglect of
some processes in the SWIR radiative transport limits its application, e.g., absence of
scattering limits the signal-to-noise (SNR) ratio of measurements, particularly over dark
surfaces such as water (Richter, A.; 2010).

The retrieval of trace gas concentrations from spectroscopic measurements constitutes
an inverse problem. The spectral dependence of molecular absorption is used to identify
atmospheric species in the measurements. In order to deduce the amounts of molecules
from the measured spectrum the observed absorption is compared to modeled spectra
from a radiative transfer model. The goal of the retrieval is to find the inverse solution
of the forward model, i. e., parameters in the model that can not be observed directly. In
general, since the relation between radiance y and the state vector @ is often not linear

y = F(x), (1.1)

an iterative approach is required (details see Sec. 3.2.2).

In atmospheric remote sensing the forward problem F' is described by a radiative
transfer model which encompasses the parameters of interest. The so called retrieval
parameters make up the state vector for the forward model. In the retrieval algorithm
the set of parameters is updated/modified until agreement is found within predefined
limits with the measurement, e.g., by testing the relative change of the state vector x.
In general, an initial guess or a priori estimate needs to be provided for the state vector.
Moreover, the forward model requires input of non-fitted quantities that are assumed to
be sufficiently well known such as vertical pressure and temperature profiles as well as the
observation geometry, molecular line data etc.
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1.3 Carbon monoxide

1.3.1 Atmospheric chemistry

The background concentrations of CO vary from = 50 — 100 ppbv, however, these levels
can be increased many times in polluted urban areas or in environments with exten-
sive biomass burning. Its atmospheric lifetime in the order of a few weeks makes it an
atmospheric tracer for the transport of pollutants on the global scale (Holloway et al.,
2000).

Large anthropogenic sources of CO are the incomplete combustion of fossil fuels or
biomass (Burrows et al., 2011). Another main source of CO in the atmosphere is the
oxidation of CH4 and other non-methane hydrocarbons (NMHC) which in turn constitute
a main sink for the hydroxyl radical OH in the troposphere (Jacob, 1999, Sec. 11.2). The
net mechanism for the oxidation of CHy yields

CH, + 30H + 205 — CO, + 3H,0 + HO, - (R1)

In the cascade of reactions in React. (R1) an intermediate reaction of CHy with the OH
radical yields CO as a product so that the source of CO depends on the distribution of
the hydroxyl radicals and hydrocarbons (Jacob, 1999, Sec. 11.3.3). It is estimated that
NMHC oxidation causes 40-60 % of surface CO levels over the continents, slightly less
over the oceans, and 30-60 % of CO levels in the free troposphere (Poisson et al., 2000).
According to Fig. 1.2 its vertical distribution is rather equal across various climatological
regions in the troposphere but differs above.

/ Figure 1.2: Carbon
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/,//j,// TRO reference atmospheres

(Anderson et al., 1986),
——— SAS i.e., US-Standard (USS),

MLS tropical (TRO), subarctic
101 LW winter and summer (SAW
and SAS), and midlatitude
summer and winter (MLS
and MLW).

=

T
wn
z
<

pressure [hPal

10°

107 10-6 1075
mole fraction

A primary loss mechanism of CO in the Earth’s atmosphere is its oxidation by the
OH which hence constitutes another leading sink of the radical. Moreover, CO is a main
determinant of tropospheric air quality, particularly in polluted areas, since CO serves
as a precursor for ozone in the troposphere by affecting the catalytic production and
destruction of ozone (Jacob, 1999, Sec. 11.3). Whether tropospheric ozone is produced
or destroyed in the oxidation of CO is depending on the availability of nitrogen oxides
(NO,), which comprises nitric oxide NO and nitrogen dioxide NO,. Both are typically
created in combustion processes at high temperatures. Although NO, is emitted mainly
as NO, cycling between NO and NO, takes place in the troposphere on the time scale
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of a minute (Jacob, 1999, Sec. 11.4). In case of high NOy concentrations (=~ 100 pptv at
Latm or 1013.25hPa) the net reaction producing ozone is (Holloway et al., 2000)

This net reaction indicates that the presence of NOy allows the regeneration of OH so
that no hydroxyl radicals are consumed in React. (R2). In a clean environment without
sufficient NO, concentrations the net reaction is a O3 and OH destruction

which yields a hydroperoxyl radical HO,. In Reactions (R2) and (R3) the greenhouse gas
carbon dioxide is produced.

1.3.2 Rotation-vibration bands in the SWIR

Carbon monoxide has a diatomic configuration where a carbon and oxygen atom join
together (see Fig. 1.3). The asymmetric charge distribution causes a permanent dipole
moment in the molecule (Zdunkowski et al., 2007). The spectral characteristics of diatomic
molecules can be derived from the Schrodinger equation (Hanel et al., 2003).

Figure 1.3: Carbon monoxide consists of one carbon
atom (black) and one oxygen atom (red). Both are con-
nected by a triple bond that consists of two m bonds and
one o bond. The computed fractional bond order is 2.6
(Martinie et al., 2011).

In the SWIR and TIR spectral regions CO displays P and R branches (see Fig. 1.4 and
Zdunkowski et al., 2007, Fig. 8.10). These branches are caused by transitions where the
vibrational transition number Av = v — v is fixed (in general v = 0 and v'= 1,2, 3) while
the rotational transition number AJ = J' — J varies. Transitions in the TIR correspond
to the fundamental band (Av = 1) while the SWIR spectrum of the molecule between
4250 — 4350 cm ™! and 6350 — 6450 cm ™! belong to the first overtone (Av = 2) and second
overtone (Av = 3), respectively. The energy of states within each band are characterized
by the rotational quantum number J’. Based on selection rules the transition between
rotational energy states are one quantum rotation level away AJ = £1. In the P branch
AJ = —1 and in the R branch it is AJ = +1. Consequently, every absorption line in the
CO spectrum can be assigned to a change in vibrational state and changes of AJ = +1
in the rotational quantum number.

1.4 Space-based measurements of CO concentrations

In the past decades, multiple instruments were launched to quantify global CO concen-
trations from space. The first space-based CO measurements were made in 1981 and
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1984 via the MAPS (Measurement of Air Pollution from Satellites; Newell et al., 1988;
Reichle Jr. et al., 1999) instrument aboard the Space Shuttle. The data acquired proved
the feasibility of the measurement technique and many of the gross features of global CO,
e.g., biomass burning, anthropogenic pollution, and North/South hemispheric gradients
where identified.

The advent of MOPITT measurements in early 2000 allowed to identify major sources
of CO emissions for the first time (Deeter et al., 2003; Edwards et al., 2004) and revo-
lutionized the understanding of natural and anthropogenic tropospheric pollution. The
MOPITT sensor was designed to retrieve CO profiles from thermal emission and absorp-
tion as well as from reflected SWIR radiation, however, the SWIR channels suffered from
instrumental issues and were not used for CO retrieval (Clerbauz et al., 2008).

Carbon monoxide measurements are also available from AIRS (McMillan et al., 2005).
The data has been used to look at long range transport of pollution and were also com-
pared to MOPITT and ground-based observations ( Warner et al., 2007). A sensor aboard
NASA’s Aura spacecraft named TES (Tropospheric Emissions Spectrometer; Rinsland
et al., 2006) provided vertical distributions of CO that were also validated against MO-
PITT observations (Luo et al., 2007; Kopacz et al., 2010). The Michelson interferometer
IASI also measures TIR emission spectra and contributes to the suite of CO observations
George et al., 2009, 2015. The GOSAT-2 mission from JAXA is capable of recording
CO absorption in the 4.200 — 4.300 cm™! spectral range (Sufo et al., 2021). Yet an-
other mission that measured CO concentration profiles in limb viewing geometry from
the mid-troposphere to the thermosphere was the ACE-FTS (Bernath et al., 2005; Cler-
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Figure 1.4: Line strengths of CO according to the GEISA 2020 line data from the TIR to NIR
(top). The SWIR absorption lines of CO around 4000 cm~! correspond to the first
overtone (v' = 2). Absorption cross sections for standard atmospheric conditions in
the SWIR are depicted below. Rotation-vibration bands < 4260 cm™!correspond
to the P branch while transitions > 4260 cm™!are attributed to the R branch.
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bauz et al., 2005). Also the MIPAS instrument was providing limb observations of CO in
the TIR around 2100 cm™! (fundamental band v = 1). Two other instruments, namely
SCIAMACHY and TROPOMI, are of particular interest for this thesis. Both provide
measurements in the SWIR from which CO concentrations can be inferred by fitting its
transmission in the first overtone (see Fig. 1.4).

(a) (b)

Figure 1.5: The (a) ENVISAT and (b) Sentinel-5P spacecrafts in low Earth orbit (LEO) over
Europe (image credit: ESA).

1.4.1 SCIAMACHY aboard ENVISAT

The SCIAMACHY instrument was part of ENVISAT’s atmospheric mission and was
launched on March 1, 2002 (Gottwald and Bovensmann, 2011). SCTAMACHY was a pas-
sive absorption spectrometer in the UV-SWIR range and consisted of eight spectroscopic
channels with the SWIR channel 8 spanning the wavelength range from 2259-2386 nm.
The nominal spectral and spatial resolution in the SWIR was 0.26 nm and 120 km x30 km
in nadir viewing geometry, respectively. The mission was lost way beyond its nominal
lifetime of 5 years in April 2012.

Although the instrument encountered issues with its SWIR channels (Gloudemans
et al., 2005), CO data has been retrieved (Buchwitz and Burrows, 2003; Buchwitz et al.,
2004; Frankenberg et al., 2005; Buchwitz et al., 2007a; Gloudemans et al., 2009; Gimeno
Garcia et al., 2011) and validated (Dils et al., 2006; de Laat et al., 2006, 2007; Borsdorff
et al., 2016; Pub. I) with ground-based FTIR (Fourier transform infrared) measurements.

1.4.2 TROPOMI aboard S5P

A rather new sensor that measures CO in the SWIR is the passive grating imaging spec-
trometer (a pushbroom instrument) TROPOMI (Kramer, H. J.,2021). The S5P, launched
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on October 13, 2017, is a single payload satellite mission of the Copernicus Space Com-
ponent (CSC) and its instrument shares many common features with SCIAMACHY.
However, multiple new developments and a number of stringent performance require-
ments make TROPOMI a rather different sensor with superior performance Vonk (2017);
Kleipool et al. (2018); van Kempen et al. (2019). It has seven spectrometers spanning
from UV/VIS to the SWIR and its absolute radiometric accuracy in the SWIR chan-
nels is specified to be within 6 %. The SWIR module has a spectral range from 2305 to
2385 nm (=~ 4193-4338 cm ') which constitutes a subset of SCTAMACHY’s channel 8. Tts
nominal spectral resolution of the channel is 0.25nm with a sampling interval < 0.1 nm.
The minimum radiometric resolution (SNR) in the SWIR ranges from 100-120 and it has
a spatial resolution of 7.5 x 7.5km in the nadir direction.

1.5 Retrieval algorithms in the SWIR

1.5.1 Competing algorithms

As indicated in Sec. 1.2 the retrieval of molecular concentrations from radiance or trans-
mission spectra poses an inverse problem that is typically solved by optimization algo-
rithms. Several codes have been developed for the analysis of SWIR spectra at different
European institutes, e.g., the Weighted Function Modified Differential Optical Absorp-
tion Spectroscopy (WEFM-DOAS; Buchwitz et al., 2004, 2005) algorithm, the Iterativ
Maximum A Posteriori (IMAP-DOAS; Frankenberg et al., 2005) method, the Iterative
Maximum Likelihood Method (IMLM; Gloudemans et al., 2005), the Shortwave Infrared
CO Retrieval (SICOR; Borsdorff et al., 2017, 2018) algorithm, and the Beer InfraRed
Retrieval Algorithm (BIRRA; Gimeno Garcia et al., 2011; Pub. I).

The WFM-DOAS algorithm approximates the logarithm of the Sun-normalized mea-
sured intensity by linearization around an initial guess according to a first order Taylor
expansion plus a low order polynomial (Buchwitz et al., 2000, Eq. (1)). The difference
between the radiance of the observed and initial guess spectrum is described by fitting
altitude independent factors that scale weighting functions for the parameters of interest.
Because of the linearization of the forward model it is possible to apply a linear least
squares fit to determine the parameters from SWIR observations.

The IMAP DOAS inverse method uses optimal estimation in order to find the state
vector that maximizes the a posteriori probability function(Frankenberg et al., 2005). The
state vector for the retrieval comprises scaling factors for the molecular concentrations at
different layer heights, a climatoligical index for temperature changes in the atmsphere and
polynomial coefficients accounting for low frequency absorption and scattering. Moreover,
it computes the atmospheric transmission on a monochromatic grid, i.e., before convolu-
tion with the instrument’s spectral response. This is particularly important in the SWIR
where narrow lines that exhibit rather strong absorptions are measured at a moderate
spectral resolution.

The IMLM algorithm is based on scaling a priori profiles (Gloudemans et al., 2008).
The retrieval fits the modeled radiance to the measurements by varying the total amounts
of the trace gases using a weighted least squares fit. Beside profile scaling factors the
the algorithm provides estimates for the coefficients of the low order polynomial which
accounts for effective surface albedo, continuum effects or smooth variations of the surface
albedo with wavelength.
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The inverse method SICOR also uses a profile scaling approach which is considered a
kind of regularization of the CO profile retrieval (Landgraf et al., 2016). The algorithm
employs an unconstrained least squares fit to adjust CO abundances by scaling a reference
profile. Another regularization is introduced for the inversion of cloud and surface param-
eters as the latest SICOR variant accounts for light path enhancements by a two stream
radiative transfer solver. However, for the retrieval of CO from clear sky observations the
fit of a scattering layer is ignored.

1.5.2 Beer Infrared Retrieval Algorithm (BIRRA)

The BIRRA algorithm has been developed by the Remote Sensing Technology Institute
(IMF) at the German Aerospace Centre (DLR) and its least squares solvers are provided
by the PORT optimization library (Foz et al., 1978). To infer trace gas concentrations the
inverse method performs a nonlinear least squares fit (NLS; Rust, 2002; Sec. 3.2.2) of the
observed radiance by scaling initial guess profiles. The BIRRA code features a separable
least squares solver (SLS; Gay, 1990; Sec. 3.2.3) with optional bounds to specify physical
constraints, exact analytical derivatives, and line-by-line computation of molecular cross
sections.

The forward model in BIRRA (Gimeno Garcia et al., 2011) is based on the Generic
Atmospheric Radiation Line-by-line Infrared Code (GARLIC; Schreier et al., 2014). The
molecular spectroscopic parameters for the line-by-line calculations are obtained from,
e.g., HITRAN (HIgh-resolution TRANsmission molecular absorption database; Roth-
man et al., 2009) or GEISA (Gestion et Etude des Informations Spectroscopiques At-
mosphériques; Jacquinet-Husson et al., 2008) databases. Moreover, the CKD (Clough,
Kneizys, Davies continuum; Clough et al., 1989) absorption model and Collision Induced
Absorption (CIA; Richard et al.; 2012; Karman et al., 2019) can be considered. As a
forward model for nadir observations, GARLIC provides model spectra for up- and down-
looking observation constellations in a spherical geometry.

Beside an operational version there is a scientific (prototype) variant of the BIRRA
algorithm. The former designates the operational SCTAMACHY Level-1b — 2 processor
for the CO and CHy (Hamidouche et al., 2016) products. As an operational ESA processor
this variant is subject to the European Cooperation for Space Standardization (ECSS)
standards and is hence not used for scientific retrievals or prototyping.

The scientific BIRRA described in Gimeno Garcia et al. (2011) incorporates additional
enhancements over the operational variant which are particularly tailored to mitigate the
adverse impact of the SCTAMACHY instrument’s degrading SWIR spectra from channel
8 (Gloudemans et al., 2005; Lichtenberg et al., 2010). Moreover, the framework of the
scientific processor allows for more flexibility in the retrieval setup. In order to enable
processing of large datasets with the prototype BIRRA a suite of Python and C-Shell
scripts were developed at DLR (S. Gimeno Garcia 2016, personal communication). This
framework prepares files and tasks required by the retrieval algorithm to assimilate model
spectra upon measurements. The scientific BIRRA variant with the prescribed features
was the basis for the developments described in this thesis.
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1.6 Motivation and objectives

Validation studies of SCIAMACHY inferred CO with ground-based remote sensing ob-
servations were conducted for multiple different retrieval algorithms in the past, e.g.,
Dils et al. (2006); Sussmann and Buchwitz (2005); de Laat et al. (2010); Kerzenmacher
et al. (2012); Borsdorff et al. (2016). Most of these studies found that the retrieval and
validation of CO from SCIAMACHY is challenging because single SCTAMACHY CO
measurements show instrument noise errors up to 100 % of the total CO column value—
in particular for the later years of the mission (i.e. from 2006 onward). However, a
similar verification and validation is considered a crucial step in the BIRRA algorithm
refinement by Gimeno Garcia et al. (2011, Sec. 5). Moreover, assessing the quality of
BIRRA retrieved CO concentrations by a true reference throughout its further develop-
ments becomes even more important as the algorithm should be applied to data from
latest sensors. Nonetheless, reprocessing SCIAMACHY observations with state of the art
retrieval algorithms remains relevant for long-term consistency and to provide a homoge-
neous multi-mission time series for CO.

A different issue that applies across sensors is spectroscopic uncertainty, in particular
uncertainties in the line intensities and broadening parameters. Both can cause systematic
errors in the retrieval product and multiple studies called attention to this issue in the
past. Quite recent studies by Galli et al. (2012) and Checa-Garcia et al. (2015) found
that spectroscopic errors in the 2.3 ym band can induce errors that exceed TROPOMI’s
error budget and that further efforts should be directed to improve the HyO (water)
and CHy4 spectroscopy in this regime. FEarlier studies such as, e.g., Frankenberg et al.
(2005) pointed out the classical Voigt profile, i.e., the to date standard in the modeling
line-by-line radiative transfer in the atmosphere, is not a fully accurate representation of
the spectral line shape observed in gas mixtures and that narrowing mechanisms such
as line-mixing should be taken into account in the calculation of molecular absorption
cross sections. In preparation of the SHP mission, ESA commissioned the compilation
of a new spectroscopic database in the SWIR according to the needs of the TROPOMI
instrument. The project yielded the SEOM-TAS (Scientific Exploitation of Operational
Missions — Improved Atmospheric Spectroscopy; Birk et al., 2017a,b) line list.

Another important facet of spectroscopic measurements is modeling the instrument’s
line shape (ILS). In order to accurately model variations in the measured signal to changes
in the optical depth precise knowledge of the instrument’s spectral response function is
indispensable (Frankenberg et al., 2005, Fig. 2) (Gloudemans et al., 2005). While often a
Gaussian slit function is used (e. g. Gimeno Garcia et al., 2011) sensors such as TROPOMI
provide tabulated response functions that significantly differ from the Gaussian shape.
However, often a parameterized model is used in the Level-1b — 2 processing as it allows
for more flexibility in the retrieval.

Yet another important issue in the retrieval of atmospheric constituents from space
is the fact that, beside molecular absorption, scattering by aerosols (and molecules) con-
tributes to the radiative transfer (Burrows et al., 2011, Chap. 6). Although scattering
is of little importance for clear sky observations in the SWIR, aerosol loaded scenes or
cirrus clouds can modify the light path in a way that leads to an inaccurate estimation of
the true concentration of, e.g, CO or CHy, if not appropriately accounted for (Landgraf
et al., 2016).

The prescribed aspects lead to the formulation of four objectives which are addressed
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in this thesis.

(1) Validation of the retrieval algorithm — in order to quantify the accuracy of
the prototype BIRRA inferred CO columns from SCIAMACHY observations a thorough
intercomparison against globally distributed ground-based observations should be carried
out. The validation should be performed for all SCTAMACHY measurements from 2003 —
2011, which basically encompasses the full-mission dataset.

(2) Impact of spectroscopy — line-by-line radiative transfer codes require spectro-
scopic line data and models to calculate molecular cross sections in order to describe
absorption. Latest scientific advances in the field of SWIR nadir retrievals indicated that
the accurate computation of cross sections is crucial for current missions such as, e.g.,
S5P /TROPOMI or the GOSAT and OCO missions but also for upcoming missions such
as the CO2 Monitoring (CO2M) mission in order to meet the specified requirements. The
impact of most recent molecular line lists such as SEOM-IAS, HITRAN, or GEISA on
the retrieval of CO in the 2.3 um region should be assessed for TROPOMI measurements,
but also for heritage missions such as SCTAMACHY.

(3) Instrument line shape — instrument spectral response functions (ISRFEs) are re-
quired for the convolution of the monochromatic line-by-line spectrum to instrumental
resolution and incorrectly modeled instrument line shapes can cause errors in the re-
trieved columns. In order to account for modifications of the slit function caused by, e. g.,
heterogeneous scenes or by changes in the instrument characteristics, tabulated spectral
response functions from on-ground calibration should be replaced by an appropriate pa-
rameterized model which allows, e. g., for variations in a pixel’s center frequency or its half
width. Appropriate parameterizations for TROPOMI’s SWIR band should be developed
and their applicability should be demonstrated in the retrieval of CO from TROPOMI
measurements.

(4) Aerosol extinction — aerosols contribute to optical depth in the Earth’s atmo-
sphere. In order to account for aerosol extinction in the CO retrieval an adequate pa-
rameterized model should be examined. The retrieval should be modified so that the
state vector includes aerosol parameters which are then co-retrieved with CO concentra-

tions. The model and implementation should be assessed with observations, e.g., from
TROPOMI.

1.7 Outline

The subsequent chapters are organized as follows. In Chapters 2 and 3 the methodology
with respect to the forward modeling and inversion is described, respectively. Chapter 4
is dedicated to the results of the thesis. More specifically, Secs. 4.1, 4.4, and 4.5 are
summaries of the papers published in peer-reviewed journals. Section 4.2 provides more
discussions on the averaging kernels that were relevant for Pub. [. Section 4.3 briefly
discusses the results from the verification of the retrieval algorithm upgrade. Section 4.6
presents findings with respect to instrument line shape parameterizations and tabulated
response functions. Section 4.7 discusses the feasibility of aerosol parameter fits in the
SWIR. Finally, Chap. 5 concludes and summarizes the results and provides an outlook
for future studies.
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Note that some results regarding higher order line profiles—relevant for Pub. [T and
Pub. [ll—are already presented in Chap. 2 to facilitate readability. Another exemplary
result, demonstrating the application of inverse methods and adequate postprocessing for
a set of TROPOMI observations, is also presented in Chap. 3.



Chapter 2

Methods: Radiative transfer —
forward modeling

2.1 Blackbody radiation

Electromagnetic radiation emitted by the Sun is the primary source of radiative energy
on Earth. The Earth’s atmosphere is heated by absorption of solar radiation, and cooled
by emission of thermal infrared radiation (Stamnes et al., 2017). The assumption that
the local thermal emission is balanced by the local rate of heating due to absorption of
radiation at all wavelengths is called local radiative equilibrium (LTE). It allows to assign
a local thermodynamic temperature which is particularly important for radiative transfer
modeling (details see Sec. 2.2 and Fischer and Hase, 2015).

Although the Sun is not an ideal blackbody (absorption s, = 1.0 independent of fre-
quency) described by Planck’s law (Weinberg, 2015, Chap. 1) the physics that lead to
the spectral energy distribution of a blackbody is of fundamental importance for passive
remote sensing (Pierrehumbert, 2010, Sec. 3.2). In order to adequately explain the fre-
quency distribution of radiation from a blackbody it is necessary to go beyond classical
physics and take the quantum nature of the electromagnetic field into account ( Weinberyg,
2015, Sec. 1.1).

Max Planck (1858-1947) and Albert Einstein (1879-1955) proposed the assumption
that the spectral energy could exist only in discrete quanta which are proportional to the
frequency according to

E =h-f = hcv, (2.1)

where ¢ designates the speed of light. The discrete energy parcels h- f of an electromagnetic
field at a certain frequency are called photons with 2= 6.62607015-10~27 (ergs) designating
Planck’s constant which relates a photon’s energy to its frequency [ (or wavenumber
v = f/c). It is important to note that the energy of electromagnetic waves is quantized
even in free space, i. e., when the waves are not constrained. Moreover, it is important to
note that there is no finite lower limit or upper limit on the possible energy of a photon
since the frequency is continuous (see Eq. (2.1)).

In order to model the spectral energy radiated from a hot cavity the solutions for elec-
tromagnetic standing waves (also known as resonant or normal modes) in a confinement
according to Eq. (2.2)) are considered (Hanel et al., 2003, Chap. 1).
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All possible solutions for standing waves in a resonator with physical boundaries x =
{0, L} have different frequencies according to

nc

fn=57 (2.2)

with n € N*, f; being known as the fundamental frequency and f,-; the overtones. The
solutions for these normal modes of the harmonic oscillator are then given by

E, =2 FE, sin (anU) cos(2m ft) , (2.3)

and possible solutions for £ are now limited by f,, (see Fig. 2.1).
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Figure 2.1: The normal modes of the harmonic oscillator for n = 1,2, 3. Note that every point

x behaves like a separate oscillator with amplitude 2 Ey sin “7=.

In thermal equilibrium and for the classical limit (corresponds to low particle densities
and high temperatures 7") the probability for the occupancy of modes of energy £, =nhwv
is described by the Boltzmann distribution (Pg; Rybicki and Lightman, 2008, Sec. 1.5)
according to
exp (—FE, /ksgT)

P T) =
5(n, ) < oexp (—E,/kgT) "’

(2.4)

where kg = 1.380649 x 1070 erg K~! represents the Boltzmann constant (Ludwig Boltz-
mann 1844-1906). The average energy of a harmonic oscillator (mode) with wavenumber
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v is then given by the energy of the mode times the probability that the mode will be
occupied according to

hcv

E(w,T) = f;EnPB(n,n - — (2.5)

n=1 eXp (/fBT> -1
The power emitted per volume and wavenumber interval v to v + dv is then given by the
product of Eq. (2.5) and the number of modes per interval in a volume L3

dN
75 = Srvidy, (2.6)
according to Planck’s formula
2h 2.3
B(w,T) = c 7 (2.7)

o (125) 1
The radiated power per volume and wavenumber interval, i. e., the spectral radiance, only
depending on the object’s temperature (see Fig. 1.1). In the limit of small wavenumbers
and large temperatures Planck’s formula gives the Rayleigh-Jeans law while for large
wavenumbers the formula reduces to Wien’s law. Geometric considerations account for
the factor (mc)/4 in Eq. (2.7) with respect to the product of Egs. (2.5) and (2.6).

As indicated above the spectral radiance B describes the power per unit projected
area dA | into a unit solid angle d{2 per wavenumber dv. The solid angle d€2 is defined
as the section of a sphere with radius r according to

a — "dersinbdd - hdndy . (2.8)

r2

Passive remote sensors aboard satellites quantify the energy received per area, direc-
tion and time by looking at a surface from a specified viewing angle. This measurement
constitutes an estimate of the instantaneous power I =~ B(v,T). Irradiance E, the quan-
tity depicted in Fig. 1.1, is a hemispheric flux since the power is received per surface area
A, from all directions of a hemisphere (half space). Given that the emitted or received
radiance is isotropic, i.e. not depending on the zenith and azimuth angles, the source is
said to be Lambertian with irradiance E and radiance related by 7 according to

2T 7T/2

I/dgp/sin@d@ =xl = FE. (2.9)
0 0

2.2 The radiative transfer equation

The radiative transfer equation is a macroscopic description for the exchange of energy
between the radiation field and the medium it passes through and gives the specific
intensity of radiation / at wavenumber v during its propagation by a distance s (Goody
and Yung, 1995; Zdunkowski et al., 2007; Stamnes et al., 2017). Due to the conservation
of energy, for any term that introduces a loss there must be a term that introduces a gain.
The equation states that the radiance I is subject to losses due to extinction (absorption
and scattering) and gains due to emissions and scattering according to

dI(v,s)

P —u(v,s)I(v) + pJ(v,s), (2.10)
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with
o=t s = a4l e (211)

the extinction coefficient. It is defined as the sum of the absorption (attenuation) coeffi-
cient u, and scattering coefficients ji5 for gases and particles, respectively. In the source
term the emission coefficient per unit mass is designated .J and the mass density is given
by p.

In a homogeneous gaseous medium in local thermodynamic equilibrium (LTE) with
p8er) = 0, the molecular absorption coefficient 11{8%%) is equal to the emission coefficient
according to Kirchhoff’s law (Gustav Robert Kirchhoff 1824-1887). The assumption for
LTE is important since it guarantees that the temperature of a gas does not vary with
time (steady state) and that the exchange of energy from the radiation field of the source
B(v,T) is in equilibrium with both, the excitation temperature in the Boltzmann dis-
tribution (see Eq. (2.4)) and kinetic temperature of the Maxwell (James Clerk Maxwell
1831-1879) velocity distribution (Lopez-Puertas and Taylor, 2001; Miller-Kirsten, 2013).
The source function without scattering accounts for molecular emission with emissivity
e = pu{#*) and is then equal to

pJ(v) = eB(w,T) = u® B(v,T) (2.12)

where B is the Planck function from Eq. (2.7) at temperature 7. If scattering is considered
s # 0, photons deflected out of the probing path contribute to the loss of intensity
while the fraction of radiance scattered into the path of propagation (multiple scattering)
constitutes a source of radiation and is hence attributed to the source term of Eq. (2.14).
The total contribution of radiation incident from all directions into the direction of interest
Q2 is then given by the source function Jg

4am
1
k= o / P(Q,Q) 1(9)dQ. (2.13)
™
0
The normalized scattering phase function Ps
1 4
P = o [ P@.0an =1 2.14
S A J ( ) ) ) ( )

gives the probability of incident radiation being scattered from direction €2 into the direc-
tion of propagation €. Substitution of the above assumptions into Eq. (2.10) gives the
differential equation

df
o () T4 B b () g (219

where p = p&) 4 (&2 (2 represents the extinction so that the ratio

(gas) (aer) (gas)
A M S N s (2.16)
" 7

is referred to as the single scattering albedo (SSA).
In the infrared spectral range scattering often plays a minor role, or can even be ne-
glected (i. e. us = 01in Eq. (2.16)), and a pure gas atmosphere can be assumed (Zdunkowski
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et al., 2007). In case of an inhomogeneous medium, i.e. when the physical properties are
not constant along the path, the solution for the radiance I received by an instrument at
distance s is then given by the Schwarzschild equation

[(v,5) = Lw)T(v,s) — / " B, T(s)) Wé:;s') ds’ (2.17)
— L) T(,s) + /:OB(V,T(T'))T(V,S') dr' | (2.17D)

where 7 is the monochromatic transmission according to Beer’s law (named after August
Beer 1825 — 1863)

T(v,s) = exp(—7(v,s)) = exp [— /SO p(v, s ds’} : (2.18)
with the molecular optical depth 7. The volume absorption coefficient is given by

pE =3k (v,0(3), T(5)) nn(s) (2.19)

where k and n,, are the absorption cross section and number density of molecule m.

1.00 1.00 1.005
“w ““]l mls-mlw
1.004+
0.98 0.981
1.0031
£0.96 0.961 . 1.002
= Z 1.0011
a = U
< =
5094 0.94 2 1.000- UUJU
0.9991
0.92 0.921
0.9981
—— CO (mls) —— CO (mlw)

0. 0.90 0.997
492%0.00 4290.00 4330.00 49250.00 4290.00 4330.00 4()250.00 4290.00 4330.00
wavenumber v [em™!]

Figure 2.2: Single path transmission of CO according to Beer’s law for US-Standard mid-
latitude summer and mid-latitude winter atmospheric conditions.

Particularly in the SWIR, thermal emission from Earth’s atmosphere and surface
is still weak compared to reflected sunlight (see Fig. 1.1). Hence the integral term in
Eq. (2.17) also becomes negligible and the radiative transfer equation is equivalent to
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Beer’s law for a double path through the atmosphere according to

1) = " cos(9) Bun0) Ti0) Ti0)

(e

— ) cos(8) Esun(v)

exp (— / ds' Y np(s) km(y,p(s'),T(s’)))

exp (— / ds" > " np(s") k‘m(y,p(s"),T(s"))> : (2.20)

earth m

where 7 refers to the surface reflectivity, Eqy, the irradiance at ToA, 7, and 7T; (with
T = T,T:) denote transmission between Sun and reflection point (e.g. Earth’s surface)
and between reflection point and ToA, respectively. For a spherical symmetric, plane-
parallel atmosphere, the path length s’ is related to altitude 2’ via s = 2’/ cos(w) for an
nadir looking observer. Likewise it holds s” = 2"/ cos(6) for a solar zenith angle 6.

2.3 Molecular absorption

In the infrared spectral range molecular absorption is due to radiative transitions between
rotational and ro—vibrational states of the molecules. The infrared radiation excites vi-
brations from their ground states (v' = 0) to excited states (v' = 1 the fundamental, or
v" = 2 the first overtone) (Zdunkowski et al., 2007). A criterion for infrared absorption is
a net change in dipole moment in a molecule as it vibrates or rotates (Hanel et al., 2003;
Goody and Yung, 1995). So called ro-vibrational spectra occur when rotational energy
states are superimposed upon vibrational transitions.

In general, a single spectral line is characterized by its position 7, line strength S, and
line width ' where the transition wavenumber 7 is determined by the energies F;, E; of

the initial and final state, |i), |f)
1
= o (B~ E) (2.21)

A molecule’s absorption cross section k is defined as the product of the line strength S
and a normalized line profile function ¢

“+o00o
k(v) = S - glv—0,T) with /gdy =1, (2.22)

and describes the exchange of energy between the radiation field and energy levels of a
molecule. The argument I" designates the broadening coefficient (details see Sec. 2.4.1.1
and Sec. 2.4.1.2).

2.3.1 Line strength and partition functions

The line strength for a transition is proportional to the Einstein coefficient for absorption
Biy (liy < |f) — E; < Ey) (Rothman et al., 1998, A. 1; Bernath, 2016, Sec. 1.3)
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according to

sry = Dom (1 - g“”) By, (2.23)

cn g5
where n is the molecule’s total number density, n; and ny are the number densities of the
upper and lower states, and g; and g, are statistical weights for the electronic, vibrational,
and rotational transitions according to the degeneracy of the lower and upper energy states
of the transition, respectively (Fdwards, 1988). The Einstein coefficients for absorption
Bis and stimulated emission By are related to the Einstein As; coefficient by the Einstein
relations (Seager, 2010, Eq. (8.34)).

In LTE the population partition of states is given by the Boltzmann-distribution ac-
cording to Eq. (2.4), so that

ni  9i X (&)
N Q)
with the total internal partition sum Q(T) given by

Zg]exp< /fT) . (2.25)

(2.24)

Accordingly, the ratio in Eq. (2.23) is equal to

ging hcv
= = —— . 2.26
Y o (-97) (220

In the infrared spectral region the total partition sum is the product of the rotational
(Norton and Rinsland, 1991) and vibrational (FEriksson, 1999) partition functions, ¢ =
Qrot - Qvin, whose temperature dependence are calculated from

B
Qrot(T) = Qrot(TO) <77-,;> s (227)
Quin(T) = f[ [1 — exp(—hew; /kT)]™% | (2.28)

where [ is the temperature coefficient of the rotational partition function, and ¢ the total
number of vibrational modes with wavenumbers w; and (vibrational) degeneracies d;.

The square of the temperature dependent matrix element D of the electric dipole
moment operator R;y = |(f|D]i) |2 describes the probability of the transition and is hence
related to the Einstein coefficient B, according to

3h?

o = g

Bis - 10° (2.29)
Further factors accounting for the partition function, Boltzmann-distribution, and stimu-
lated emission finally determine the line strength for electric dipole transitions according
to

81 gl A ; :
) — ica_ s ~Bi/KT [{ _ p~hco/kT . 10736 9.
S(T) = 5, oy 7 [1—e¢ | Ris-10 (2.30)

where [, is the relative abundance of the isotope.
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In spectroscopic line lists such as HITRAN, GEISA or SEOM-IAS the line strength
is provided for a reference temperature (e. g. Ty = 296 K). The line intensity at any other
temperature T is given by the ratio of line strengths at the two temperatures according
to

ST) = S(Ty) -

Q(Ty) exp(—E;/kT) 11— exp (—hev /ET) (2.31)

Q(T) exp(—E;/kTp) — exp (—heD /KTy)

1072
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Figure 2.3: Line strengths of CO, CHy, and H2O according to the GEISA 2020 line list.

2.4 Line profile functions

In high-resolution spectroscopy of vibrational-rotational and pure rotational transitions,
pressure and temperature greatly affect the shape of an absorption line. The effects are
caused by various physical phenomena such as the finite natural lifetime (relaxation rate)
of the upper energy state (natural broadening), collisions between molecules (pressure
or collision broadening), and the thermal motion of molecules (Struve, 1989; Tennyson,
2005; Hartmann et al., 2008; Brooks, 2014; Bernath, 2016). Narrowing mechanisms arise
from collision-induced velocity changes and the speed-dependence of the relaxation rates
(Varghese and Hanson, 1984; Boone et al., 2007). Moreover, effects such line-mixing can
cause asymmetrical line shapes (Rosenkranz, 1975).

2.4.1 The Voigt profile

Various models have been developed to characterize the physical processes caused by
the interaction of the absorbing molecule and the surrounding perturbers. The Voigt
profile (Armstrong, 1967) is the simplest line shape model accounting for pressure and
velocity effects. The pressure induced modifications are described by the Lorentz profile
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Table 2.1: Overview of the absorption line parameters (in units cm™!) required for the Voigt
profile.

Parameter Symbol
Line position Do
Pressure-induced line shift AL
Air- and self broadening Iy
Doppler broadening I'a

while effects caused by the velocity distribution of molecules are modeled by the Doppler
profile.

New releases of HITRAN and GEISA databases are made available every few years
(Gordon et al., 2017; Jacquinet-Husson et al., 2016) and include Voigt parameters for every
transition. Line shape parameters in spectroscopic databases (e.g. HITRAN, GEISA,
GOSAT-2009/2014 Nikitin et al., 2010, 2015) are provided for a given reference pressure
and temperature. In those line lists, the Voigt parameters are tabulated for a reference
pressure py = 1013.25 hPa and temperature T, = 296 K.

In analogy to the temperature conversion in Eq. (2.31) each line shape parameter needs
to be converted to the actual p, T values. Table 2.1 summarizes the converted parameters
for the Voigt profile. The Doppler broadening parameter is not included in spectroscopic
line lists as it can be computed according to Eq. (2.41).

2.4.1.1 Pressure (collisional) broadening — Lorentz profile

An ideal spectrometer with full spectral resolution would not observe an absorption line
that corresponds to an infinitely narrow delta function g(v — ) # §(v — ) due to natural
line broadening ( Bernath, 2016, Sec. 1.3). The effect is caused by the finite lifetime of the
excited state 7 as the Heisenberg uncertainty principle (Werner Heisenberg 1901-1976)
states that uncertainty in lifetime o, causes uncertainty in energy og
h h
op oL > P (2.32)

and so in a line’s position (see Eq. (2.21)). Although this effect can be neglected in
atmospheric spectroscopy, the impact of uncertainty on line broadening is briefly described
subsequently since both, the natural upper state lifetime and pressure induced mechanisms
have the same effect on the line shape.

The corresponding line profile can be derived from the decay of the excited state
according to a damped oscillating dipole moment M at the Bohr (Niels Bohr 1885-1962)
angular frequency wyo= 2mci

M) = M, eXp(—;T) cos(wiot) | (2.33)

where 7 is the mean natural lifetime in the upper state which is inverse proportional to
or/h « 1/7 and so inverse proportional to the Einstein Ajq coefficient for spontaneous
emission (Seager, 2010).

The collision of molecules causes the upper state lifetimes to be shortened and is
referred to as phase-changing or dephasing collisions (Bernath, 2016; Hartmann et al.,
2008). Given that 74 is the average time between two collisions, the Fourier transform
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of Eq. (2.33) leads to the frequency content of the dipole according to Bernath (2016,
Eq. (1.71)). With the normalization condition from Eq. (2.22), the Lorentzian line profile
normalized to 1 is then given by

FL/ﬂ'

B —— 2.34
(v—0)2+T%" ( )

gL(V — 19, FL) =
where I't, = 1/(2mery) specifies the half width at half maximum (HWHM) of the profile
(also see Bernath (2016, Eq. (1.75))). Since the number of collisions depend on the molec-
ular number density and velocities, the Lorentz half width is a function of pressure and
temperature (Zdunkowski et al., 2007). The Lorentzian profile therefore constitutes an
adequate model to describe pressure broadening in molecular absorption.

The pressure broadening effect is small at low pressure but dominates the line’s shape
at pressure levels found in the lower atmosphere (Schreier, 2011, Fig. 2). More specifically,
the Lorentz width I'y, is inversely proportional to 74 which is inverse proportional to
pressure so that I', o« p and hence decays approximately exponentially with altitude.
Moreover, it decreases with increasing temperature T'. Therefore, in a gas mixture with
total pressure p and partial pressure ps of the absorber molecule the total width is given by
the sum of a self broadening contribution due to collisions between the absorber molecules
and a broadening contribution due to collisions with other molecules,

. T\ ™
0,air 0,self 0
L= (W™ (p-p) + % p) - (T) : (2.35)
The exponent n quantifying the dependence of temperature is known for many transitions
of the most important molecules. In case it is not specified, the kinetic theory of gases
(collision of hard spheres) yields the classical value n = 1/2. The self broadening coeffi-

cient 7£self) is known for many (strong) transitions, however, if not specified, the coefficient

is set to %(Jself) = ﬁ/](jnr), i. e. the broadening coefficient with respect to air (Rothman et al.,
1987), so that

air T "
ML = %™ p (79) - (2.36)

Moreover, the contribution of the self broadening coefficient is weak for molecules with
low atmospheric concentrations. In the terrestrial atmosphere, for example, only N,, O,
and H,O in certain climatological regions have a significant share p, in the total pressure.
On other planets such as Mars or Venus with atmospheres mainly composed of CO,, self
broadening becomes crucial for a different set of molecules (Hanel et al., 2003).

Another pressure related effect changes the energy levels of the absorber leading to a
shift in the spectral line’s position. This pressure-induced line shift Ay,

AL = 0 —Dp, (2.37)

designates the difference of a position # from its wavenumber at py and Ty, which is linearly
dependent on pressure. Similar to above, the self-pressure induced line shift coefficients
for temperature and pressure are largely unknown so that the shift is modeled with respect
to air 6{**) and 5 according to

Ay = 68 (p—p) + 677 (T—To) (p—p.) - (2.38)
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Figure 2.4: Lorentz cross sections of CO according to HITRAN 2016 for three different pres-
sures at 296 K. The vertical grid lines to the left and right of the lines center
position designate the half width of the line profile. The lines for 1000 hPa and
100 hPa are pressure shifted since the figure is centered on the 300 hPa line position.

2.4.1.2 Doppler broadening — Doppler profile

In thermal equilibrium the velocity distribution of molecules is given by the Maxwell-
Boltzmann distribution

m

q(v) = (M)é exp (—(v/wv)) , (2.39)

where vy = /2kT'/m is the most probable speed of an individual molecule of mass m
(Bransden et al., 2003; Zdunkowski et al., 2007). As a result, the thermal motion leads to
the broadening of spectral lines caused by an ensemble of Doppler shifts (Doppler effect).
The resulting line shape is described by a Gaussian distribution

1 (m2\"? v—1p\>
gp(v—0,Tg) = o <W> - exp [—an( To ) ] ) (2.40)

The HWHM is essentially determined by the line position o, the temperature T', and the
molecular mass m,

1
2In2 KT\ ? v/ 1n2
e — o <n> RACEL (2.41)

mc? c

and hence not considered as a free parameter in laboratory spectroscopy. For the Earth’s
atmosphere one finds

Dg~6-102 0T for m =~ 36amu,
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Figure 2.5: Doppler cross sections of CO according to GEISA 2020 for three different temper-
atures at 500 hPa. The vertical grid lines to the left and right of the lines center
position designate the half width of the Gaussian profile.

where 36 amu designates the atomic mass unit for the most important infrared active
molecules in the Earth’s atmosphere. In contrast to I'r,, the Doppler width I'g does hardly
vary with altitude. As a result lines are generally pressure broadened in a high pressure
regime such as the troposphere. Beside temperature, the transition to the Doppler regime
is depending on the spectral region (Schreier, 2011, Fig. 1). Moreover, the uncertainty
principle from Eq. (2.32) with ogo; = 0,0, where 0, and o, = % designate the standard
deviation of position and momentum, respectively, confines the wavenumber shift for a
single molecule to be o, > % in the direction of the observer (Bernath, 2016).

2.4.1.3 Combined Pressure and Doppler broadening — Voigt profile

The Voigt line profile combines the effects of both broadening mechanisms by convolution
of the Lorentz and the Gauss profiles according to

gV(V_ﬁurlan) = 9L®9D

o0 2.42
= /_ dv gu(7,I'L) - gp(v — 0 —7,Tq) . ( )

Every line profile needs to be normalized to unit area according to Eq. (2.22) so that the
Voigt profile gives

VIn2/7
72/ K(z,y) , (2.43)

I'a
—¢2
y o [® €
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with K(z,y) representing the Voigt function which is normalized to /7. The dimension-
less variables x, y are defined in terms of the distance from the center position, v — 7,
and the Lorentzian and Gaussian half-widths I'y, I'g according to

— U r
r = Vin2 27 and y = VIn2 - . (2.45)
I'q I'q

x10~20 x10~19

5{ —— Voigt Ty Gauss
Lorentz

w =

[N}
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Figure 2.6: Voigt, Lorentz, and Doppler cross sections of CO according to GEISA 2020 at
330 hPa and 242 K. The absorption cross sections of the former two profiles are
depicted on the left y-axis while the latter is shown on the right axis. The vertical
grid lines to the left and right of the lines center position designate the half width
of the Voigt profile which is similar to the half width of the Lorentz profile but
much greater than the Gaussian half width describing the Doppler broadening.

The Voigt function represents the real part of the complex function

. o 42
W(z) = K(z,y) + iL(z,y) = % /_Oo ;_t dt with z=x+1iy. (2.46)

Given that y > 0, W (z) is identical to the complex error function (probability function,
Abramowitz and Stegun, 1964) defined by

.2 2i 7 g2 I .
w(z) = e (1 + ﬁ/o e dt) = ¢ (1 - erf(—w)) . (2.47)

with the normalization condition for the error function erf(+oo) = +1. It satisfies the
differential equation

w'(z) = —2z-w(z) + (2.48)

21
VLS
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and the series and asymptotic expansions (where I" is the gamma function)

w(z) = i _ (2" (2.49)

n:0r<%+1)
w(z):;ww=;<@+...>. (2.50)

According to Eq. (2.47) for vanishing arguments z or y one has

K0,y) = & (1—-erf(y)), (2.51)

K(z,0) = e* (2.52)

respectively. Furthermore, truncating the asymptotic expansion of the complex error func-
tion from Eq. (2.50) readily shows that the wing of the Voigt profile is approximated by
a Lorentzian (Armstrong, 1967; Abramowitz and Stegun, 1964; DLMF). The fact that the
function values vary rapidly only near the line center but decrease slowly with increasing
distance is exploited by many optimization schemes in state of the art line-by-line models
(e.g. Schreier, 2011).

The convolution integral of a Lorentzian and Gaussian function can not be evaluated
in closed analytical form (Schreier, 2016) hence most modern algorithms for the Voigt
function employ approximations for the complex error function. Rational approximations,
i.e. the quotient of two polynomials of degree M and N according to Ry n = Py/@Qn
(Ralston and Rabinowitz, 1978), have been proven to be an efficient and accurate approach
to evaluate the complex error function (Hui et al., 1978; Humlicek, 1979, 1982; Weideman,
1994). Because of the asymptotic behaviour of the complex error function w ~ 1/z (see
Eq. (2.50)), the degree of the nominator and denominator polynomials are constrained by
N=M+1.

A variety of rational approximations for the complex error function were examined
in (Schreier, 2011, 2018). Schreier (2011) proposes a combination of the Humlicek R o
rational approximation (Humlicek, 1982) and the Weideman approximation ( Weideman,
1994) according to

le/ym for |z| +y > 15
( ) _ -3 (2 53)
w(z) = B N-1 N7 '
T b I, o (£52)" else (with L=27ANY?)

for line-by-line computations where speed is an issue since the time consuming Weideman
approximation is only used near the line center while the significantly faster asymptotic
rational approximation is evaluated in the line wings. The real-values polynomial coef-
ficients aq,...,axn can be computed once and for all by a single fast Fourier transform
(Weideman, 1994). The combination of both approximations has demonstrated to be
efficient and accurate for all  and y given the accuracy required for atmospheric spec-
troscopy applications. More specifically, N = 24 is considered sufficient for Voigt line
profile modeling, whereas N = 32 should be applied for derivative as well as for line
shape computations ‘beyond Voigt’ (Schreier, 2011, Fig. 8).
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2.4.2 Beyond Voigt profiles

Many studies found systematic discrepancies between molecular laboratory spectroscopy
measurements and modeled spectra using the Voigt profile (Lisak et al., 2004; Hartmann
et al., 2008; Schneider et al., 2011; Kochanov, 2012; Ngo et al., 2012; Birk and Wagner,
2016). This indicates that the classical profile is not a fully accurate representation of
the spectral line shape observed in gas mixtures and that the differences are caused by
physical processes that are not considered in the Voigt model (Varghese and Hanson,
1984; Tennyson et al., 2014). For that reason, several more refined line profiles have been
developed (Berman, 1972; Rautian, 1999).

The complex error function in Eq. (2.47) can be used to compute those more so-
phisticated profiles that take additional effects such as collisional narrowing, the speed-
dependence of collisional broadening (Boone et al., 2007; Ngo et al., 2013, 2014; Tran
et al., 2013, 2014), or line coupling (asymmetry) into account (Tran et al., 2011; Boone
et al., 2011). The symmetry relations (Olver et al., 2010)

2

w(—z) = 277 —w(z) = w(z), (2.54)

and particularly
K(-z,y) = + K(z,y) (2.55)
L(—l’,y) = - L([E,y) ) (256)

make the imaginary part of w(z) a useful tool in modeling those higher order effects.

A report by Tennyson et al. (2014) summarizes the results from a TUPAC (Interna-
tional Union of Pure and Applied Chemistry) Task Group on line profiles. It advocates the
partially Correlated quadratic-Speed-Dependent Hard-Collision profile (pCqSD-HCP) as
the appropriate model for high-resolution spectroscopy. This model is also known as the
Hartmann-Tran (HT) profile and accounts for various additional collisional contributions
to an isolated absorption line (Ngo et al., 2013, 2014; Tran et al., 2013, 2014). Conse-
quently, the refined model requires more free parameters to characterize the transition.

In the line lists from Sec. 2.4.1, the line parameters were fitted upon the Voigt profile.
However, with the recommendation of the IUPAC to standardize on the HT profile line
lists such as the HITRAN version of 2016 started to provide beyond Voigt parameters for
the Speed-Dependent Voigt, Galatry, and Hartmann-Tran line shapes for some transitions
(Gordon et al., 2017). Nonetheless, the classical Voigt parameters are still given for
every transition in HITRAN. The latest version of GEISA (2020) also includes updated
parameters for the Voigt profile (Fig. 2.7) but does not yet specify any higher-order
parameters.

Beside these general spectroscopic databases the SEOM-IAS is an improved line pa-
rameter database of HyO, CHy, and CO compiled within the framework of an ESA project
according to the needs of the TROPOMI instrument (Birk et al., 2017a,b). The absorp-
tion lines were fitted using the HT profile without considering partial correlation 7 (Loos
et al., 2017). In order to account for line-mixing, the profile was extended using the ap-
proximation by Rosenkranz (Y'; Rosenkranz, 1975; Boone et al., 2011) and Smith (Smith,
1981). Table 2.2 summarizes the set of spectroscopic line parameters required to describe
molecular absorption according to the HT model.

While I';, and Ay (see Table 2.1) describe the collisional width and shift for the av-
eraged speeds of the molecules, I'y; and A, specify their dependence on the absorbing
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Figure 2.7: (a) Cross sections for CO from GEISA 2020 compared to GEISA 2015. (b) Com-
parison for HoO. No difference was observed in the examined interval for CHy.

Table 2.2: Overview of the various ‘beyond Voigt’ line parameters.

Parameter Symbol Units

Speed-dependence of air broadening I's cm~!
Speed-dependence of pressure-induced line shift Ay cm~!
Frequency of velocity-changing collisions (Dicke effect) I'n cm~!
Correlation of velocity and rotational state changes n 1
Coupling coefficient for Rosenkranz line-mixing Y

molecule’s speed (Varghese and Hanson, 1984; Rohart et al., 2008; Pine, 1994). In the
HT profile as well as the Speed-Dependent Voigt profile described by Boone et al. (2007)
a quadratic-speed-dependence of these parameters is assumed.

The parameter I'y = vy (see Tennyson et al., 2014) describes modifications of the
spectral line shape caused by collision-induced velocity changes that influence the Doppler
broadening (Hartmann et al., 2008). The effect is known as collisional (Dicke) narrowing
(Dicke, 1953).

The parameter 1 quantifies the partial correlation between velocity and rotational state
changes since velocity-changing and phase-changing collisions are correlated. However, 7
has so far only been fitted for very few transitions and hence the parameter was not
available for the studies related to this thesis (Pub. II; Pub. I1I; Schreier and Hochstaffl,
2021).

Finally, the coupling coefficient Y represents the Rosenkranz parameter which approx-
imates line-mixing in the first order. Line-mixing arises for lines which are close together
and is dependent upon molecular collisions (Lévy et al., 1992), hence, also modifies the
collisional broadening (Lorentz) portion of the complex error function (Letchworth and
Benner, 2007).
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Despite their importance for the applicability of the HT profile the temperature de-
pendence of the new parameters is still an open question (Ngo et al., 2013, 2014; Tennyson
et al., 2014). To mitigate the problem, a separate reference temperature is provided for
each temperature interval in HITRAN 2016 (Gordon et al., 2017). Within an interval,
pressure dependence follows a linear relation and temperature dependence is in general
approximated with the conventional power law (Birk et al., 2017b). In case of the SEOM-
IAS line list the pressure and temperature dependence of the beyond Voigt parameters is
modelled according to

air TO "

r, = %w"p <T> (2.57)

Ay = 65 (2.58)
air TO

Ty = %g)p? (2.59)
(ain) ngair)

y = Yy 1 T -1, 2.60

hence the zeroth and second order broadening parameters are assumed to have the same
p,T dependence, i.e. I'f o oc p1", whereas the narrowing parameter is inversely propor-
tional to temperature, I'y o< p/T. As pointed out by Tennyson et al. (2014) collisional
parameters for the more complex parameterization are, strictly speaking, no longer lin-
ear combinations of the various molecule-perturber pairs in the gas mixture (Ngo et al.,
2014), but rather separate profiles for perturbations by e.g., Oy or Ny need to be added.
However, so far, databases such as SEOM-IAS treat collisional parameters as linear com-
binations. Since partial correlation between speed-dependence and velocity changes is not
considered in SEOM-TAS, i.e., it is zero for all lines, the Speed-Dependent Rautian with
line-mixing (SDRM) profile is sufficient for this database (Pub. I1; Schreier and Hochstaffi,
2021). Table 2.3 provides an overview of the various higher-order profiles and their set of
parameters, respectively (also see Tennyson et al., 2014). The HT profile is introduced
first as the simpler models are its limiting cases.

2.4.2.1 The Hartmann-Tran profile

The HT profile refines the description for a single isolated absorption line by accounting
for collisional effects not considered in the classical Voigt model. It is based on seven

Table 2.3: Line profiles with corresponding line parameters.

Acronym Profile Parameters

- VOigt F(;, FL, AL

VM Voigt with line-mixing g, T, ALY

- Rautian I'e, 'y, AL, I'y

SDV Speed-Dependent Voigt g, T, AL To, Ay
SDVM Speed-Dependent Voigt with line-mixing I'e, ', AL, g, As, Y
SDR Speed-Dependent Rautian Fg, L, AL T, Ao, I'y
SDRM Speed-Dependent Rautian with line-mixing g, T, Ar, T2, Ag, T'N,Y
HT Hartmann-Tran (pCqSD-HCP) I'g, T, AL, T2, Ag, T'n,

HTM Hartmann-Tran with line-mixing I, T, AL, e, Ao, T'n, 1, Y
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parameters, of which six are collisional parameters (see Table 2.3) that determine the
shape for each spectral line and perturber. According to Ngo et al. (2013); Tennyson
et al. (2014) the normalized (to unit area) HT profile is given by

gur(v — 0, I, To, Ap, Ay, T, I'nym) =

— l o A(v)
- R {1 — (I'n —n(CL —3C5/2)) A(v) + (7702/@3) B(v) } , (2.61)

where A and B are combinations of the complex error functions from Eq. (2.47) according
to

VIn2/m
Alv) = 7/ [w(iz_) —w(izy)] , (2.62)

I'a
= % VT — 22 iz —ﬁ — 2 ) w(izy) —
B = gt (S0t - 0= Atz -1 26

vy designates the most probable speed of the molecules (see Eq. (2.39) and (2.41)) and 2y
specifies the line’s position (see Eq. (2.37)). The complex arguments izy are given by

= VX +Y + VY, (2.64)

where
FN + i(V — ﬁo) CL 3
X = + = — =, 2.65
(1 — 77) CQ CQ 2 ( )
N 2
Vo Vo
Y = - 2.
<20(1—77) C2> (2:66)
and
Cr, = TI'p+iAp (2.67)

according to (Tennyson et al., 2014; Tran et al., 2013). The quadratic-speed-dependence
in Eq. (2.68) is modeled as a modification of the collisional broadening (Lorentz) portion
of the complex error function while collision-induced velocity changes reduce the Doppler
broadening (Boone et al., 2007; Varghese and Hanson, 1984).

The HT profile can be calculated readily from the complex error function as it involves
the difference of two complex error functions (Schreier, 2017; Schreier and Hochstaffl,
2021). In view of the calculation of differences, highly accurate numerical algorithms
are required for the computation of the convolution integral defining the complex error
functions. For this thesis the rational approximation according to Eq. (2.53) with N = 32
was hence used to compute the integral for all combinations of x and y (Schreier, 2017).
Beside the model’s high accuracy for various combinations of absorbers and perturbers
(Ngo et al., 2014) the computational time is in the order of simpler models (= a factor
2-3 slower) and in addition beyond Voigt profiles only need to be calculated for the
(strongest) lines that hold additional parameters (see Pub. 11, Table 1). These are crucial
considerations for the performance of line-by-line radiative transfer codes (Edwards, 1988).
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The computational aspects of the complex square roots in the calculation of the com-
plex argument izy are discussed in (Schreier and Hochstaffl, 2021, Sec. 3.1 and 3.2).
Particularly for small y, standard floating point precision fails to evaluate the difference
in Eq. (2.64). A reliable way to avoid the subtraction of two similar numbers VX +Y
and VY is
X X

VX+Y + VY oz

The HT model is compatible with current implementations of line-mixing (see Sec. 2.4.2.5
and Rosenkranz, 1975; Boone et al., 2011). Moreover, accordingly to the limiting cases
of the Lorentzian and Doppler shapes in case of the Voigt profile, simpler (lower-order)
models emerge from limiting cases of the HT profile where not all the parameters have
been determined.

o= VX +Y - VY =

(2.69)
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Figure 2.8: Absorption cross sections of (a) CO, (b) CHy, and (c) H2O for the HT profile and
SEOM-TAS line data, computed for 356 hPa and 236 K with partial correlation set
to n = 0.5 and n = 0.0, respectively.

2.4.2.2 Rautian profile

The effect of line narrowing described by the Dicke parameter can be modeled using
the hard- or soft-collision models. The hard-collision model, referred to as the Rautian
profile (Rautian, 1999), is most appropriate when the perturbers are considerably more
massive than the absorbing molecule since after a single collision the velocity is completely
uncorrelated to the velocity prior to it. In the soft-collision model, known as the Galatry
profile, a single collision is highly correlated with the velocity prior to the collision and
many collisions are required before the velocity becomes randomly distributed. Both
models introduce one extra parameter to quantify the frequency of the velocity-changing
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collisions. The Rautian profile for the hard-collision model with the narrowing parameter
I'y is given by

In(2
gren(v — 9,1y, A, T, Ty) = HIEG)/W Re { — \;“E(”zj(;; 2)+ 5 } . (2.70)
where
¢ = Vin 2Ty (2.71)

I'c

is the frequency of collision changes (Dicke narrowing) normalized by the Gaussian width.
According to Dicke (1953) collision-induced velocity changes narrow the spectral line
shape and it becomes noticeable for small values of the parameter y, i.e. when the line
profile is dominated by Doppler broadening.
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Figure 2.9: Absorption cross sections of CHy for various line profiles beyond Voigt at 330 hPa
and 243 K computed with SEOM-TAS line data. The difference is calculated with
respect to the Voigt profile. The inset shows the center region of the individual
line shapes.

2.4.2.3 Speed-Dependent Voigt profile

For vanishing n = 0 and I'y o< ¢ = 0 the limit of the HT profile is the Speed-Dependent
Voigt (SDV) profile (Boone et al., 2007; Schreier, 2017) given by

. \/In2/m ' _
gspv(v — 0,11, T, AL, Ag, Tg) = TRe w(izo) —w(izg) ¢ - (2.72)
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2.4.2.4 Speed-Dependent Rautian profile

With vanishing correlation (n = 0) the HT model reduces to the Speed-Dependent
Rautian (SDR) profile (Varghese and Hanson, 1984; Tennyson et al., 2014; Schreier and
Hochstaffl, 2021). The SDR function is essentially the quotient of the difference of two
complex error functions. The profile is given by

gspr(v — 0, T, Tg, AL, Ag, T, ') =

- \/mRe{ wiz) — wizy) } (2.73)
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Figure 2.10: Single path nadir CH4 transmission for SEOM-TAS based Voigt and SDR cross
sections and two spectral intervals. US-Standard atmospheric conditions apply.

2.4.2.5 Rosenkranz Line-Mixing

The line profiles considered above have assumed that the spectral line being calculated
is sufficiently isolated. If two strong lines have transitions |fi) < |i1) and |f3) < |ig)
with transition wavenumbers 7 and 0, within e. g., their half width I', the molecule has
several possible paths to make the transition from state |i;) or |is) to |f1) or |f2) (Lévy
et al., 1992; Loos et al., 2015; Hartmann et al., 2009; Tran et al., 2010). Line-mixing can
only occur for lines of the same molecule (and isotopologue) and the effect becomes more
important with increasing pressure (i.e. for large values of the parameter y Loos et al.,
2017). Figure 2.11 shows the effect of line-mixing for 330 hPa. The line shapes drop off
more gradually on the side where another strong line is present and more quickly on the
side where there is no coupling.

The effect of first order line-mixing on the line profile can be modeled by the Rosenkranz
approximation ( Rosenkranz, 1975; Boone et al., 2011; Strow et al., 1994; Pine and Gabard,
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2000). In case of the Voigt profile the formalism utilizes the imaginary component L(x,y)
according to

A B In(2)/7 _
gwm(v — 0,1, Tg,Y) = T Re((1 —iY)w(z))
B In(2)/7
= S K +Y L) @7
G

For higher order line models such as the HT profile from Eq. (2.61) Rosenkranz line-mixing
is considered by introducing Y according to

gHTM(V_ﬁ7FL7F27AL7A27FG7FN7TIaY) =
1 (1-iY) A(v)

T {1 — (x — n(CL — 3C4%/2)) A(v) + (nCy/v3) B(y)} . (2.75)

The Hartmann-Tran with line-mixing (HTM) profile reduces to the HT profile for Y =0
and a comparison of both models is shown in Fig. 2.12. Other profiles such as the SDRM
or Speed-Dependent Voigt with line-mixing (SDVM) are treated accordingly (Boone et al.,
2011, Sec. 4).
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Figure 2.11: The effect of line-mixing on molecular cross sections for the SEOM-TAS based
Speed-Dependent Voigt profile at 330 hPa and 243 K. While in the left figure the
line strengths of the two neighboring lines differ by a factor &~ 2 the line strengths
in the figure on the right are almost equal causing the mixing effect to be more
pronounced.
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2.5 Extinction by particles and molecular scattering

In addition to molecular absorption scattering by molecules also contributes to attenuation
as photons scattered out of the probing beam do not reach the detector. Furthermore,
particles (aerosols) attenuate by scattering and absorption which is known as extinction
(Burrows et al., 2011, Chap. 6).

The loss term on the right hand side of Eq. (2.16) indicated that both, absorption
and scattering contribute to the loss of radiative intensity. In contrast to molecular
absorption where transitions from lower to higher energy states determine absorption,
scattering by molecules (Rayleigh scattering) and aerosols redirect the incident energy
according to their single scattering phase function (see Eq. (2.14) and Seager, 2010).
Aerosols can also absorb some of the incident intensity as a gray body with emissivity
e = p{®) according to Kirchhoff’s law (Stamnes et al., 2017). Note that this aspect was
not considered in the radiative transfer equation in Eq. (2.16) since it would violate LTE
which, strictly speaking, compromise predictions from Eq. (2.17) and Eq. (2.18), both
requiring a thermodynamic temperature according to LTE conditions (Fischer and Hase,
2015).

The Angstrom exponent 3 (Anders Jonas Angstrom 1814-1874) is a measure for the
aerosol optical depth 7, at wavelength A according to

= w) (.70

where T,er(Ag) is the optical thickness at a reference wavelength (e.g. Ao = 1 pm). The
exponent /3 basically depending on the scatterer’s size distribution n(r) which in turn is
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primarily depending on the aerosol’s origin (e.g. rural-, urban-, polar-, marine- aerosols).
For clear sky conditions with weak scattering by haze or dust a § could be set to 1.3
(Liou, 2002; Yan et al., 2015) while for hazy conditions it is assumed to increase to & 2.5
(Wunderlich et al., 2021).

As indicated in Eq. (2.19) the exponential attenuation of intensity when passing
through a medium is composed of several components according to their optical depths. In
order to account for the additional attenuation caused by Rayleigh and aerosol scattering,
the exponent can be complemented accordingly

Tiot (s 8) = T(V,8) + Tray(V,8) + Taexr(V,5) , (2.77)

where 7.,y and 7, are the Rayleigh and aerosol optical depth at a particular wavenumber
v, respectively, and 7 the molecular optical depth from Eq. (2.18) (Bodhaine et al., 1999).

2.5.1 Aerosol extinction

In analogy to molecular absorption coefficient from Eq. (2.19) a aerosol cross section ke,
can be formulated by using Eq. (2.76). As mentioned in the previous section an aerosol
optical depth that is appropriate for clear conditions is proportional to A=*3 so that

Far(N) = kL /AP with kper(Mo = 1pum) =kl =1.4-1077 (2.78)
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Figure 2.13: Molecular and aerosol optical depths for a double path through the atmosphere.
The aerosol optical thickness (red) for = 1.3 is of the same magnitude as the CO
optical depth. However, it does not show any high frequent spectral variations.
The Rayleigh optical depth (magenta) is almost two orders of magnitude smaller.

The aerosol optical depth for a double path in nadir viewing geometry is then given
by (Liou, 2002; Kaltenegger and Traub, 2009)

ToA
(V) = / Faor (1) Tiaie () / cos(0) s’ + / Kaor (1) Tiaie (2) ] cos(nr) ds'
earth earth

= (ML + NL) Kl (104/u)_13
= (N4 + NJ,) 8833107 1 (2.79)
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The total column density for air V,;, is simply the sum of the individual molecular columns

() Na dn(2)

g(Z) Mol

N (20) E/oonm(z) dz = /Z:Onair(z) m(2)dz = /Z:O bs dz, (2.80)

20

where ¢,,(z) is the mole fraction of molecule m at level z, p, is partial pressure, zj is the
ground elevation (surface altitude) and g the gravitational acceleration of the Earth and
m?*  the molar mass of air that is approximately constant in the so called homosphere

(z < 80km). Figure 2.13 shows the optical depth for the CO retrieval interval according
to Eq. (2.79).

2.5.2 Rayleigh extinction

Elastic scattering by air molecules is referred to as Rayleigh scattering and was originally
formulated by Lord Rayleigh (1842—1919). It describes scattering of radiation by particles
with a size parameter x = 277 v that is 2- 1072 < < 2- 107! with r designating the
radius of a spherical particle and v the wavenumber of the incident radiation. Similar
to the aerosol cross section, the loss in intensity due to Rayleigh scattering is calculated
by the scattering cross section kyy per molecule (Bodhaine et al., 1999). It is essentially
independent of n,; so that the optical depth 7., at a particular wavenumber for a double
path through the atmosphere is given by the product

sun ToA

Tray(V) = / Fray (V)Naix(2')/ cos(0) ds’ + / Kray (V)Naix(2") ] cos(m) ds”
earth earth
= (Niir + NL) Foray (V) - (2.81)

Rayleigh extinction by scattering is roughly proportional to the fourth power of a wave’s
frequency kyay o< v* (Seager, 2010). As a consequence scattering decreases rapidly with
increasing wavelength so that, according to Eq. (2.76), scattering is approximately 600
times less effective in the SWIR (& 3-10~* at 2.3 um) compared to the intensity scattered
at 550 nm (Bodhaine et al., 1999, Tab. 3). The Rayleigh optical thickness in Fig. 2.13 was
calculated according to Zdunkowski et al. (2007, Eq. (11.12)).

Different authors proposed various models to approximate k,,, in order to compute
the Rayleigh optical depth (Nicolet, 1984; Bucholtz, 1995; Bodhaine et al., 1999) and also
datasets for the scattering cross sections at different wavelength have been compiled, e. g.,
by Penndorf (1957); Sneep and Ubachs (2005); Thalman et al. (2014) or the DLR Institute
of Planetary Research (DLR-IPF) in Berlin (F. Schreier, personal communication).

2.6 Continuum absorption

The continuous spectral absorption by a gas without an apparent line structure (reso-
nance lines) is known as continuum absorption (Shine et al., 2012; Mlawer et al., 2012).
This non-resonant absorption is defined empirically as the difference between and the
experimentally observed total absorption and the calculated contribution of molecular
absorption, aerosol extinction, and Rayleigh scattering (Serov et al., 2017; Elsey et al.,
2020) |

,u(con)(V, S) = - Mggas . Iugaer) _ Iuggas) _ ugaer)_ (2.82)
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Although the causes of the continuum remain a subject of controversy it is postulated
to have its origin in far-wing broadening, e. g., by collisional effects, and absorption due
to water dimers (Shine et al., 2012). In general the continuum is broken down into two
components, i. e. the foreign- and self continuum. In case of e. g., water, the foreign contin-
uum arises from interactions between HoO molecules with other (abundant) atmospheric
molecules such as Ny or O while the self continuum is due to the interaction of two HyO
molecules (Shine et al., 2012). In the terrestrial atmosphere where molecular densities are
sufficiently high, even molecules that have no intrinsic dipole moment such as nitrogen
Ny or oxygen Oq absorb radiation (Karman et al., 2019).

In the empirical CKD model the definition of the water vapor continuum coefficient
is defined as the sum of the contributions from all lines beyond 25cm™ from its cen-
ter (Shine et al., 2012; Mlawer et al., 2012). It constitutes a slowly varying function
which is tabulated at 10cm™! intervals in the CKD (and MT-CKD) models. The CKD
continuum used a wavenumber dependent "y function’ modified line profile (super- and
sub-Lorentzians, depending whether y = 1.0, respectively) in order to account for far-
wing mechanisms causing the continuum. The updated MT-CKD model includes inelastic
collisions of molecules (collision-induced absorption) in addition to far-wing contributions
and so called 'fudge factors’ to account for discrepancies with respect to latest measure-
ments. However, there is strong evidence that the MT-CKD still underestimates the Hy,O
continuum absorption in the SWIR windows (Shine et al., 2012).

Beside the two CKD models, collision-induced absorption accounts for the contribution
of binary molecular complexes to absorption cross sections (Karman et al., 2019). More
specifically, in a gas mixture of two molecules A and B the continuum contribution from
molecular pairs would be

p (v,s) = kaay ey + ka-p) i sy + ks-p) s (2.83)
so that the volume absorption coefficient is given by
pENvys) = ka(v) na(s) + kp(v) np(s) + p(v,s) . (2.84)

It is composed of the (monomer) contributions according to Eq. (2.19) and the CIA
contribution caused by collisions-induced absorption of molecular pairs A— B with number
densities 714y and () of corresponding units. In GARLIC /BIRRA inelastic collisions of
pairs including HyO, Ny, Oy, and CO; can be considered (also see Karman et al., 2019,
Tab.1).

2.7 Instrument — spectral response

The monochromatic spectrum is subject to smoothing because of an instrument’s finite
spectral resolution of A\/AX = Av/v, where A) designates the smallest spectral sepa-
ration between two peaks that the instrument can resolve at wavelength A. The ISRF
represents the instrument’s response & to a monochromatic stimulus and is required for
the convolution of the high-resolution spectrum to instrumental resolution (Beirle et al.,
2017). Given that S is not depending on A but only on the difference A\ — X" the signal
recorded by the instrument can be described by

i) = I0) @S0 — (eS8 = / IV)SO—N)dN . (2.85)
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The retrieval of number densities of atmospheric constituents from spectrometers re-
quires that instruments are calibrated and well characterized with respect to known ra-
diometric sources (Kleipool et al., 2018). An importrant part of the on-ground calibration
is the measurement of the ISRF since it is directly linked to the radiative transfer model
by convolution (van Hees et al., 2018). A measured and tabulated ISRF can either be
directly applied to the convolution of the monochromatic signal (Pub. I1I) or it can be
parameterized by an appropriate function S(\, ¢) where the parameter ¢ accounts for in-
strument characteristics (Sec. 4.6). In case of diffraction grating spectrometers the ISRF
can often be approximated by a Gaussian function (Gimeno Garcia et al., 2011; Munro
et al., 2016), however, also more complex parameterizations with several parameters have
been developed (e.g. Veefkind et al., 2012).

In case of TROPOMI the results of the calibration measurements are stored in the
calibration key data (CKD). The main spectral characteristics of the TROPOMI’s SWIR
spectrometer is provided in (Kleipool et al., 2018, Tab. 1). In the CKD the response data
for a given detector pixel along spectral dimension is provided as a normalized function of
wavelength. Figure 2.14 shows the response function along the spectral and spatial axes.
In course of the instrument’s on-ground calibration the pixel’s response was determined
up to 4.5 pixels away from the center (i.e. within a range of sufficient SNR) and the
ISRF is set to zero outside that range. The authors in Kleipool et al. (2018); van Hees
et al. (2018) conclude that the ISRF determined for the SWIR spectrometer meets the
requirements (i.e. < 1% of its maximum) and should thus be sufficient for trace gas
retrieval over the full operational lifetime.

() (b)

normalized responge

/nm_ﬂ

Figure 2.14: (a) The tabulated SWIR spectral response function across the spectral axis for
the detector pixel 128 (center, nadir direction) of the TROPOMI instrument.
(b) The spectral response for a single spectral pixel (at ~ 4289 cm~!) across the
detector’s spatial axis.

Often, however, an appropriate function is used to parameterize the ISRF upon one or
multiple parameters (Beirle et al., 2017). For example, various analytical functions were
proposed for the spectral response in the channels of the SCTAMACHY instrument. Other
studies by e.g., Gimeno Garcia et al. (2011) or Pub. I used a Gaussian to parameterize
the instrument’s spectral response which allowed to include an estimation for the shift and
width of the (unknown) ISRF in the Level 2 retrieval. In case of the SWIR spectrometer
aboard TROPOMI the measured ISRF is slightly flat-topped (van Hees et al., 2018; Beirle
et al., 2017). In the effort to find an appropriate analytical ISRF for the TROPOMI
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SWIR of the CO retrieval window (4277.2 — 4302 cm™!) a skewed Gaussian model with
parameters for amplitude, shift, half width, and skewness was examined. An advantage
of using a parameterized model for the ISRF is that it allows to account for apparent
modifications of the tabulated response values specified in the CKD. In particular, a
heterogeneous reflectivity in the observed scene can cause inhomogeneous illumination
of the entrance slit of the instrument. Scenes with strong variations in the reflectivity
such as observations along coastlines do alter the instrument’s spectral response (a.k.a.
slit function) for which Level 2 processing should account for (Noél et al., 2012; Hummel
et al., 2021).

A function that is often used for the parameterization of the ISRF is the Gaussian

function . ,
Gv) = exp (—(V_V)> : (2.86)

2mo 202

with the property that the integral over all wavenumbers gives a probability of 1 according
to

/ Gw)dv = 1. (2.87)

It is important to note that, strictly speaking, the subsequent parameterizations are nor-
malized on an infinite interval, however, the ISRF is only calculated on a finite interval.
The half width at half maximum (HWHM) of this symmetric distribution is given by

v = +v2In20, (2.88)

where o represents the standard deviation of Eq. (2.86) from 2, and 2v corresponds to
the full width (FWHM). Since a spectrometer’s resolution is often specified in terms of
FWHM, Eq. (2.86) is often expressed in terms of v according to

VIn2 ( In2 V2>
— eXp —_—— .
oavas 72
In order to model the flat-topped distribution of TROPOMI’s spectral response a gener-

alized normal distribution (Nadarajah, 2005; Beirle et al., 2017) is required, i.e., a class
of functions

Sa(v) (2.89)

w

Su(v) = Alw, k) exp <_’”

k) , (2.90)

with the parameter £ > 2 and the normalization of the integral to 1 via

k
Alw k) = ———— | 2.91
where I' is the gamma function. If 7 is used to describe the width then
wp = (2.92)

vIn2
is depending on k while if the half width at 1/e maximum (HWEM=() is used then w = ¢

and hence not dependent on k (see Beirle et al., 2017, Fig. 1). The super-Gaussian with
half width ~ is then given by

Si) = 2 1n)2 exp <—W> (2.93)

74
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The application of the above introduced ISRFs as well as an assessment of more
sophisticated instrument line shapes with respect to TROPOMI is presented in Sec. 4.6.






Chapter 3

Methods: Retrieval — inverse
problem

3.1 Inversion

The extraction of atmospheric properties and constituents from a spectrum constitutes
an ill-posed inverse problem (Rodgers, 2000; Neto and da Silva Neto, 2012). The retrieval
generally consists of a forward model F(x) and an inverse method in order to solve for
the quantity of interest (see Fig. 3.1). The most important mathematical aspects that
are encountered in the solution of ill-posed inverse problems such as the retrieval of trace
gas concentrations from an observed spectrum are described subsequently (Hansen et al.,
2013; Aster et al., 2018; Gill et al., 2019). This is important in order to be able to interpret
the results in Sec. 4 and apprehend the methods limitations.

3.1.1 Ill-posed problems

In atmospheric remote sensing the property of interest X € R is usually a function
of altitude (e.g. molecular concentrations or temperature profile) that is not observed

Forward model y = F(x)

True state & (unknown)

Measurement y
e.g. a spectrum

Estimated state x

Inversion x = F~(y)

Figure 3.1: Schematic depiction of the forward model and inversion methodology. The forward
model provides a spectrum for a given state vector . The retrieval does the inverse
and yields an estimate for & for a given spectrum y.
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directly but represented by a model function f(v), generally represented by the radiative
transfer equation (see Sec. 2.2). In atmospheric inversion problems the Fredholm integral
of the first kind appears (Hanson and Phillips, 1975)

f0) = TIX()] = [ kv2) X(2)dz, (3.1)
20

with f(v) the image of X (z) under the integral transformation Z. The function k(v, z) is
referred to as the integral kernel of the transform. It is considered to be given, and encodes
the physics relating an unknown function X (z) to corresponding data f(v). The goal is
to find the inverse transform In general, the smoothness of the integral kernel limits the
ability to recover higher frequency components in X (z) from Eq. (3.1) (Margerum, 1983).
This causes ambiguity that is often described as inherent instability or ill-posedness.

According to Jacques Salomon Hadamard (1865 — 1963) a problem is called well-
posed if (a) there exists a solution to the problem, (b) there is at most one solution to the
problem, and (c) the solution depends continuously on the data. In the case the problem
is not well-posed it is called ill-posed. The evaluation of a function at a given point can
be well- or ill-posed (Neto and da Silva Neto, 2012). It is an intrinsic property of the
function being evaluated and it does not depend on approximations.

In cases where the mathematical model for a system’s physics is approximate or the
data is noisy, no exact solution might exist (a). The reason for (b) is that in many
physical phenomenon (spectroscopy, gravitational fields, ...) the result can be the same
for different models. For case (c), given that the model is continuous and a unique
solution exists, a more practical definition could be used, e.g. that a model FI(X,v) is
well-posed at X if |(F(X +¢),v) — F(X,v)) /¢| <1 holds, and ill-posed otherwise (Neto
and da Silva Neto, 2012).

3.1.2 Discrete inverse problems

In practice, even if the function f(r) might in theory be known, function values are
usually provided by measurements of finite resolution. In atmospheric remote sensing a
spectrometer measures at discrete wavenumbers v; to provide a set of intensity values over
some spectral range. A consequence of the discrete representation of the spectrum is that
the object of interest X (z) also needs to be defined on a discrete grid. Series expansion
of order N with basis functions ¥} give

X() = Xnlz) = Yol (), (32

so that the continuous Eq. (3.1) can be represented in the discrete form

f03) = S [ H5 )0 )z, (33)

where the solution consists of determining the constants a;. It can be formulated as

N
fi = Y Ky, (3.4)
i=1



3.1 Inversion 45

with the operator

Ki = [ ki)l )z, (35)

20

and z; corresponds to the coefficient a;. A model K  of a discrete spectrum y € RM with
parameters x; € x is corresponding to a linear transformation from RY — RM according
to

y = Kz, (3.6)

where @ is a column vector with NV elements (model parameters) and K is an M x N matrix
(Zhang, 2011; Golub and Van Loan, 2013). Equation (3.6) constitutes a linear discrete
inverse problem with respect to @, hence methods of linear algebra can be applied in
order to solve the problem (Gentle, 2017). In principle, if K is a square matrix (M = N)
of independent columns, the solution for the inverse problem reduces to a simple matrix
inversion. However, from the set of linear equations that aim to fit the model vector @ to
measurement data y issues such as solution existence, solution uniqueness, and instability
of the solution remain.

3.1.3 Discrete ill-posed inverse problems

For the subsequent sections it is useful to recall that given a matrix KM*¥ the dimension
(rank) of the row space is equal to the dimension of the column space tk(K) = rk(KT) € R
(Zhang, 2011). The span of the columns v in K define the range of the matrix R according
to

R(K) = span(v;)i=1,.nv = {K:c | x € RN}, (3.7)

that are all vectors y € RM for which K& = y is consistent. The column space is a
subset of R while the row space with range R(K?) is a subset of RY. Furthermore, the
(column) null space N, defined as

N(K) = {K:I::0|w7é0}, (3.8)

with € RY is a subset of RY with the dimension dim(N(K)) = N — rk(K) according to
the rank-nullity theorem (Zhang, 2011, Thm. 1.3).

In practice, no model might fit the data exactly, so that the measured data y is not
in the range of matrix K, hence

y¢R(K): Ke#£y|yecRY veecRY, (3.9)

and no exact solution exists. Non-uniqueness, on the other hand, is a characteristic of
rank deficiency meaning the matrix K has a non-empty null space N'(K) # {0} so that
any linear combination of vectors & can be added to Eq. (3.6) without affecting y.

As radiance measurements at different wavenumbers do not contain independent in-
formation on the individual parameters of &, the columns in K do not form an orthogonal
basis. As a result, the inverse solution for & can be very unstable with respect to small
changes € in the data vector

y+e =y = Kz . (3.10)
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Consequently, small errors in the measurement, caused by noise, can induce substantial
change in the solution & — (®) > € so that (®) — = whenever y&) — y is violated (c)
(Gill et al., 2019).

The ill-conditioned nature of the problem brings that K is not automatically over-
determined if there are more equations than unknowns M > N. Some of the components
in the solution & might be over-determined, while other components are under-determined
(Aster et al., 2018). Whether a component is over- or under-determined depends on
how the parameter is mapped from the vector space £ € RY to the measurement space
y € RM and also on the magnitude of € which will be further examined in the subsequent
sections. The ill-posedness is hence caused by both, inconsistent measurements and model
parameters that cannot be determined from the measurement vector y.

3.1.4 Solving inverse problems

Given the matrix KM*Y with M > N it is said to have full rank if rk(K) = N so that
R(K) € RY. Consequently, the matrix has a trivial null space of dimension dim(N(K)) =
0. A so called left inverse K* can be formulated using the transposed matrix of K given by
KT. The product KTK is a positive definite symmetric N x N matrix that is injective if it
is of full rank. Moreover, every positive (semi-)definite matrix is convex which guarantees
that Eq. (3.10) has a unique closed-form solution (Gentle, 2017). Therefore, it is not
singular and has non-negative real eigenvalues. The inverse of a squared matrix is given
by

(K'K) " = Kk (KT) ", (3.11)
so that .

K™ (K") " (K'K) =1, (3.12)

and the left inverse (generalized/pseudo inverse) can be given by
Kt = (K'K) KT (3.13)

The product KTK only equals the identity matrix | if 4 € R and K is positive definite
(Zhang, 2011, Sec. 7.1). Accordingly, y € R(K), so that the generalized inverse K~! does
provide the exact solution

Kly—xz = 0. (3.14)

In the over-determined case, however, K"K = P gives a matrix of size N x N that is the
projection of y € RM onto the column space R(K) € RY so that

Kly—Pxz = y,, (3.15)

with y; € N(K). As a result, K™'y is not an exact solution (a) for & but the one with
the minimum 2-norm
minlly - Kal, < miny.]2 . (3.16)

In cases where rk(K) < N the system of equations will in general have either no
exact solution (a) or infinitely many solutions (b). Such rank deficient and ill-conditioned
problems are over- and under-determined at the same time! The reason is that in this case
K has a non-trivial null space NV (K) # {0} and data vectors y are outside the operators
range R(K) ¢ RY even if y € R". Most inverse problems in atmospheric science, including
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the retrieval of atmospheric parameters from an observed spectrum, deal with the latter
kind of problem.

The characteristics of rank deficient and ill-conditioned linear systems can be more
thoroughly examined with the singular value decomposition (SVD, Golub and Van Loan,
2013, Sec. 2.4). The SVD exists for any matrix and is a factorization scheme that allows
to examine various properties of a matrix K and compute a matrix’s pseudo-inverse K.

The SVD of the matrix K € RM*N ig defined as
K =UxVvT, (3.17)

with unitary matrices U € RM*M 'V ¢ RV*N and a diagonal matrix ¥ € RM*V,

The unitary matrices U and V are orthogonal, so they are composed of column vectors
(of length one) u; € U, v; € V which form an orthogonal basis (u],w;) = d and
(v}, v;) = 6, respectively. The range of U and V is given by the span of the set of their
vectors

span(w)i=1..v = R(U) € RM | (3.18)
span(v))i=1,.nv = R(V) € RY. (3.19)
The diagonal elements of ¥ are o; with { = 1,..., min(M, N) represent the singular

values that correspond to the vectors of both, U and V. The product KK, by which the
left inverse KT was defined in Sec. 3.1.4, can be given in terms of the unitary matrix V

KTK = VvI2V! — KTKV = VX2, (3.20)

so that the square roots of the N eigenvalues of KTK are the real-valued (right) singular
values o; > 0 of K. The singular values are ordered oy > 05 > --- > o where R is the
smallest non-zero singular value which determines the rank of the matrix rk(K) = R. In
numerical applications, for example, the criterion that defines the rank can be formulated
as

op:min(3y) >elee€Ryy, RN . (3.21)

The condition number cnd(K) € R* is then given by

cnd(K) = 24, (3.22)

OR

It is a measure for the sensitivity of the solution to small perturbations (e.g. noise,
rounding errors, ...) in the input data (¢) and can become very large as cnd(K) — oo
whenever op — 0.

Provided that R = N and the input data is given by y € R, the diagonal matrix ¥
contains non-zero singular values up to

K’Ul = oy for lzl,,N s (323)
so that the range and null space of the ill-conditioned system is given by

span(ul)l:Lm,N = R(K) € RN , (324)
span(uy)i=n+1,.m = N(K). (3.25)
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In analogy to Eq. (3.15), the measurement vector has two components

N
Y = Z<y7 ul)“’l ) (326)
=1
M
Y. = Z <y7 ul)“’l ’ (327)
I=N+1

so that no exact solution exists (see Eq. (3.9)).

In the case of rank deficient (R < N) ill-conditioned systems, only the singular values
up to op are non-zero (see Eq. (3.21)) so that the matrix has a non-trivial null space, and
hence

K'Kv, = oo for 1=1,....R (3.28)
K'Kv, = 0 for |=R+1,...,N. (3.29)

The decomposition of K into unitary and diagonal matrices U X VT allows to formulate
the Moore-Penrose pseudo-inverse

N
1
Kt =vs'uh = Y —uuf, (3.30)

=1 91

which is equal to the inverse in Eq. (3.13) and exists for every matrix. Equivalent to
Eq. (3.15), it is the solution with the minimum 2-norm. In the under-determined case,
K™ provides the solution which is minimized with respect to its 2-norm (see Eq. (3.16)).

3.2 Least squares

3.2.1 Linear least squares

The linear least squares solution for & € R" corresponds to the vector that minimizes the
2-norm of the squared residual between the measurements y € R™ and the model

min [|ly — Ka|f; , (3.31)
so that the residuum (objective) function to be minimized is given by
T
r(x) = {y - Km] [y - Ka:] . (3.32)

Provided that the columns of K comprise a set of linearly independent (but in general not
orthogonal) vectors of size M > N, its second order derivative

——— = 2K'K, (3.33)

is positive definite so that FEq. (3.32) constitutes a convex function with a unique global
minimum (Hansen et al., 2013; Rust, 2002) given by

—— = 2K"Kz — 2Ky = 0. (3.34)
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The appearance of the factor two explains the factor 1/2 that is often introduced with
the residuum function. The solution can be represented in form of the so called normal
equation

K'Kz = K'y. (3.35)

In analogy to Egs. (3.15) and (3.23), with the columns of K assumed to be linearly
independent, the matrix product on the left hand side is non-singular ( Rust, 2001a). The
least squares problem is then formally solved by

z = Ky = (K'K) K'y. (3.36)

In order to guarantee that Eq. (3.36) gives the solution with the minimum variance,
known as the best linear unbiased estimate for & (Rust, 2001b), the (usually unknown)
errors € € RM of the imperfect measurements

y = Ke+e (3.37)
need to be unbiased and normally distributed with the mean
E(e) = 0, (3.38)

and a symmetric, positive definite variance matrix with a common variance ¢? (white
noise)
E(ee’) = 1. (3.39)

If the imperfect measurements contain independent random errors of various magni-
tudes the noise (co-)variance matrix C of size M x M is given by

C = ¢"'lg = diag(<?,...,<3)). (3.40)

In order to account for the statistical characteristics of the observations in the solution
the least squares need to be modified. With the assumptions on errors the distribution of
noise-contaminated measurements can be described by the joint probability function Py
(Gaussian distribution)

Py(ylx) = (27r)M/12|C|1/2 exp (—; {y — KCIZ}TC’1 [y — K:I:D , (3.41)

which is formed by the product of the M individual probability functions. The likelihood
L of the observation is then given by the joint probability density functions according to

L(zly) = P(ylz). (3.42)

The best estimate for & is found by maximizing the likelihood function for the given
observations

max {L(m]y)} . (3.43)

The residuum function that needs to be minimized in order to fulfill Eq. (3.43) is then
given by

r(x) = {y — K:z:}TC’1 {y — KII}} : (3.44)
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which represents the absolute value | - | of the exponent without constant factors as they
do not affect the maximization. The minimization problem for this weighted residuum

function is )

min {r(z)} = min|[C72 (y —Ka)| (3.45)
with the normal equations solution given by
z = (K'C'K) KC 'y, (3.46)

In case of errors according to Eq. (3.39) the factors in the noise variance matrix cancel
out, hence the value of ¢ does not need to be known for the classical least squares (see
Eq. (3.36) and Rust, 2001a).

3.2.2 Nonlinear least squares

A function f is nonlinear in « if the derivative 0f / da is a function of a (Hansen et al.,
2013). A fitting model F is nonlinear if it depends nonlinearly on one or more parameters
x € RY. Examples for such models are the exponential decay

F(x1,29,t) = x1 exp (—xat) , (3.47)
the solutions given by the wave equation
F(z1,x9,t) = 1 exp [i(kxe — wt)] (3.48)

or, more specifically to atmospheric remote sensing, the convolution of a monochromatic
spectrum with the instrument’s spectral response function S(v)

F(1, 2, 0) = / S(x,v —7) f(r)dr . (3.49)

A nonlinear least squares fit is required in order to find an estimate for x that minimizes

the residuum function r(x) with the measurements 4 and the model functions F € R
in the 2-norm

min {r(z)} = min|y - F(z)|; . (3.50)

In principle, analogous to the linear case, the best estimate for & can be found by
computing the gradient according to Eq. (3.34) and solve the equations for @ (Lawson
and Hanson, 1995). In the nonlinear case, however, this can be very challenging and
often there is no closed-from solution for the estimate of @ so that iterative algorithms
are required to solve the optimization problem. And even if the problem does have a
closed form solution, it may still be much more computationally efficient to solve the
problem with iterative algorithms (Chen and Surmont, 1976). Moreover, ill-posed inverse
problems are often not convex, so that parameters can be optimal among nearby sets of
parameters without being globally optimal (O Leary and Rust, 2013).

In general, iterative algorithms (see Fig. 3.2) start with an initial estimate x, and
proceed by a series of corrections

L1 — &y —+ (5{131 s (351)



3.2 Least squares 51

that obtain each dx; by solving a linear minimization problem according to Eq. (3.36)
(Rust, 2002, 2003). For a given iteration step the minimization problem from above can
then be written as

ri(oz) = |ly— F(x; + 5m)||§ ; (3.52)

which is equivalent to
T
ri(0x) = [y — F(x; + 6:1:)} {y — F(x; + 5w)} : (3.53)

The first order Taylor series expansion is used to linearize the forward model with respect
to the quantities of interest

F(x;, +x) ~ F(x;)+ J(x;) éz, (3.54)

where J is the Jacobian matrix for the state vector & which is a fundamental quantity for
any nonlinear optimization method and is given by

or  0F OF
o1 Oxo o Oxzn
J@;) = VF(z;) = | = . (3.55)
OFy  OFy OF M
ox1 Oxo T oxrN

It comprises the partial derivatives with respect to the parameters in . With the Taylor
series approximation from above, Eq. (3.53) becomes

r(oz) = [(y - Flz.) + (@) oz| [(y - F(x,)+ (=) dx] . (3.56)

which is similar to the linear least squares residuum function in Eq. (3.32). It can therefore
be solved in the same way, i.e.

sw = 3] 9 y- Fl) (3.57)

In contrast to Eq. (3.36), however, it is not guaranteed that the corrected estimate x; 1 =
x; + 0x; is closer to the ’true’ value than x;. The iteration might converge to a local
minimum which might not be a good fit for y and so the least squares need to be started
again with a new xq (Rust, 2002).

The Gauss-Newton method for the NLS (Hansen et al., 2013) approximates the Hes-
sian matrix H = V2F = VJ by the product of the Jacobians J7J, while the Levenberg-
Marquardt adds a positive definite matrix D and a coefficient A as a adjustable damping
constant

bz, = [J1J,+AD] U (y— F(x,) . (3.58)

in order to counter the effects of ill-conditioning.

3.2.3 Separable least squares

In problems, where the model function F'is a linear combination of nonlinear functions
such as

F(x1, 29,23, 24,v) = x1 exp (rav) + x3 exp (z4v) + ..., (3.59)
the SLS, also known as the Variable Projection method (Golub and Pereyra, 2003), can be
applied to find a solution for the problem. The method eliminates the linear variables for
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Initial estimate x,,, = x, | Forward model F(x) | Model spectrum
Update xl'_l_l =xi + 5xl' " ymod

Yobs © Ymod

System state x
e.g., atmosphere Observation y

Figure 3.2: Iterative optimization algorithm. The number of iterations is influenced by the
tolerance criteria |Ax| /|x| < €, and |Yobs — Ymod| < €y. The PORT optimization
library used in BIRRA stops the iteration process if one or both criteria are met.

the NLS fit in order to reduce the dimension of the parameter space that results in a better
conditioned problem. The reduced number of parameters in the nonlinear minimization
problem improves efficiency and reduces the number of local minimizers which makes
convergence to the globally optimal solution more likely (O 'Leary and Rust, 2013).

Fitting models such as Eq. (3.59) allow the state vector  to be separated in a vector
of nonlinear 7 parameters and linear 8 parameters to be estimated

x — (n,0) with x €RY, neR?, BeR?and N =p+q, (3.60)
so that the minimization problem is given by

min {r(z)} = minlly = F(n,B)[; . (3.61)

with the forward model F € RM comprising the set of all parameters. The forward model
can then be separated and formulated according to

q
F(n,B) — > Bifin) . (3.62)
i=1
with f; € RM for i = 1,...,q. These vector valued model functions can be combined in
a matrix
K(n) = (fl(n),fz(n), . -,fq(n)) with K e R~ (3.63)

where each model function is depending on nonlinear parameters. So for given 1, Eq. (3.61)
represents a linear least squares problem for the state vector 3,

min |y — KBI[; . (3.64)

which is formally solved by
-1
B = (K'K) K'y. (3.65)
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By inserting solution Eq. (3.65) into Eq. (3.61), the original least squares problem Eq. (3.61)
can be represented only in terms of the nonlinear parameters n and becomes

y - 2;((KTK)_1 KTy)ifi(n)

This NLS problem for 7 is independent of 8 and can be solved in the usual way by means
of Gauss—Newton Eq. (3.57) or Levenberg-Marquardt algorithms Eq. (3.58). Although
the Jacobian matrix for Eq. (3.66) is reduced in size, it still needs to be calculated for
VF(n) (O'Leary and Rust, 2013). Once the optimum 7 is found, the unique solution for
the linear parameter vector 8 is obtained from Eq. (3.65).

2
min
n

(3.66)

3.3 Retrieval of CO from nadir measurements

In the SWIR spectral region the forward model F'(x,v) for the upwelling monochromatic
radiance for a double path through the atmosphere can be formulated as

F(z,v) = rv) co8(0) Egun (v exp( Zame ) ® S(v,v) + b(v) , (3.67)

™

where the state vector @ includes the retrieval parameters (also see Eq. (2.20)). In this
region of the electromagnetic spectrum the nadir viewing geometry does not allow to
retrieve information on the vertical distribution of trace gases. The reason is that the
information of the vertical profile is well under-determined in the observed spectrum
because derivatives of the top of atmosphere radiance with respect to profile changes
at different altitudes (weighting functions) do not peak at various altitudes for different
wavenumbers (Gimeno Garcia et al., 2011, Fig. 1) (BU(h witz et al., 2000, Sec. 3). Still,
instruments observing in the TIR around 2100 cm™! such as AIRS, IASI or TES (see
Sec. 1.4) are able to provide vertical distributions of CO. In the SWIR, however, it is
customary to retrieve total column densities N,;,. Often, instead of total column densities
according to Eq. (2.80) the total column averaged dry-air mole fractions ¢, are given

Nm(Z())
Nair(20) — Nu0(20)

which represent the abundance of m relative to that of all other components n,, = ¢, Nair
and are less sensitive to variations in zo (Pub. I).

The subspace of the state vector x in Eq. (3.67) is defined by the set of retrieval
parameters it holds

Gm (3.68)

xeS C {rba,ydE...}. (3.69)

The linear parameters r; € r and b; € b represent the coefficients for polynomials of
optional order i, j < 2. The polynomials model the surface reflectivity and the baseline
correction (optional), respectively. The scaling factors of the individual molecules m (CO,
CHy, HyO, COs, ...) are represented by a,, € c. In general, molecules with absorption
lines in the observed spectral interval need to be considered in the state vector. The
instrumental slit function S, approximated by functions according to Sec. 2.7, includes
the optional parameters v for the half width, § for the wavelength shift and ¢ for the
skewness of the spectral response.
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In the retrieval of CO from TROPOMI’s band 7, an exemplary state vector for the
SLS fit could be chosen to include seven parameters in total, e. g.

r — <n,,8> — ((aco,acm,aHQo,é)T,(ro,rl,rg)T>. (3.70)

The wavenumber shift ¢ is often used to account for modifications in the spectral re-
sponse due to heterogeneous illumination of the entrance slit of the instrument (details
see Sec. 4.6). In comparison, the state vector for the SCTAMACHY CO retrievals in
Pub. I and Pub. Il include an additional parameter for the half width ~ of the Gaus-
sian response function because an ice layer on the detector modified the instrument’s slit
function (Lichtenberg et al., 2010; Gimeno Garcia et al., 2011).

The forward model at wavenumber v; (with j = 1,..., M) for the SLS is then given
by

Fim,B) = rofo(n) + rifiln) + rafao(n Z@fz

S cos(8) Isun(v}) exp< Zame v, > ® S(v;,9)

™

1

+  —v; cos(0) L (V) exp( Zame v, ) ® S(v;,0)
m

r

+ —21/]2 cos(0) L (v}) exp( Zame v, ) ® S(v;,0), (3.71)

™

and the corresponding row in the Jacobi matrix by

J(n) = VyFin,B) . (3.72)

3.4 Pre- and Postprocessing

A crucial aspect for the successful retrieval of state parameters (elements of the state
vector) is pre- and postprocessing. This included the thorough preparation of Level-
1b data, including the application of quality flags such as the bad and dead pixel mask
(BDPM), rigorous cloud filtering, the removal of non-converged retrievals, and the disposal
of measurements with very small SNRs (e.g., observations above large bodies of water,
such as lakes, rivers, etc.).

Retrieved CO mole fractions for a subset of TROPOMI observations from various or-
bits around the globe are depicted in Fig. 3.3. The subset includes every tenth TROPOMI
scanline and one scanline consists of 215 measurements. Figure 3.3a shows all converged
retrievals while only retrievals with a cloud fraction of < 10 % according to the S5P-NPPC
(SbP-National Polar-orbiting Partnership Cloud) product (see Pub. III, Sec. 2.2.4) are
shown in Fig. 3.3b. The majority of CO is distributed within 20 — 100 ppbv. However,
the figure clearly shows that values below 40 ppbv are primarily caused by retrievals over
optically thick clouds since the bimodal distributions in the non-filtered cases vanish after
cloud filtering. The vertical distribution of CO has a relative maximum in the troposphere
(see Pub. 11, Fig. 6), hence clouds that obscure most of the lower atmosphere cause the
column averaged mole fraction to decrease.
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Figure 3.3: Inferred CO concentrations from TROPOMI measurements over Africa and Eu-
rope on September 21, 2019 (orbits 10045 — 10047). All converged observations
are depicted in (a) while in (b) cloud filtered retrievals are shown.

3.5 Altitude sensitivity—averaging kernels

An aspect that is inherent to all remote sensed measurements but varies across different
observing systems is their distinct altitude sensitivity. This feature is characterized by
averaging kernels which in general need to be considered in a comparison between different
observing systems (Rodgers and Connor, 2003).

(a) (b)
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£ 200 205 4 200 54'051
3001 300
500 25 500 43.0
700 700
1000 10 1000 B Llgo
06 10 14 18 22 0.0 0.2 04 0.6 08 1.0 1.2
averaging kernel averaging kernel

Figure 3.4: Averaging kernels for ground-based observations in Bremen. (a) The TCCON
column averaging kernels for various solar zenith angles (SZA). (b) The averaging
kernels for the NDACC site in Bremen.
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The averaging kernel matrix A = dx /0% relates the retrieved quantity « to the ’true’
quantity & and to any initial guess x, used in the retrieval by

r—x, = A(Z—x,) + €. (3.73)

The error €, includes both random and systematic errors in the measured signal and in
the instrument’s forward model. Since @ describes an altitude profile of, e.g. CO, a row
of A can be regarded as a smoothing function for a single altitude level. Hence, in order
to avoid biases caused by different altitude resolutions and (likely different) linearization
points x, averaging kernels need to be taken into account when comparing vertical profiles
from different instruments or retrieval algorithms.

However, in case of column density retrievals the state vector is composed of profile
scaling factors a,,, €  (i.e. one scalar per molecule m) but not molecular concentrations
at different altitude levels as in the profile retrieval above. Therefore, a so called column
averaging kernel matrix (C, Buchwitz et al., 2004, Sec. 5) is used to describe the vertical
sensitivity of the retrieval. In contrast to a profile retrieval, C is composed of vectors c
each representing the column averaging kernel for one element «,, in the state vector. The
column averaging kernel ¢ describes the retrieval’s response to a perturbation from the
initial guess profile and deviations from unity can be interpreted as null space (Eq. (3.8))
or smoothing errors according to (Rodgers and Connor, 2003, Sec. 2 and 3). Therefore,
in a comparison of total columns the equation

te = aN +c" (d - ad,) (3.74)

takes different altitude sensitivities from different observing systems into account. More
specifically, t., represents the vertically integrated a accounting for the sensitivity of
the observing system. N represents the total column of the prior profile according to
Eq. (2.80) and c is the vector containing the column averaging kernel for molecule m
(also see Wunch et al., 2010).

ToA ToA ToA
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Figure 3.5: Schematic depiction of a column averaging kernel for an observing system with in-
creased sensitivity towards the lower atmosphere (see Buchwitz et al., 2004, Sec. 5)
(left). Exemplary retrieval outcome given that the initial guess concentration pro-
file d, has the shape of the true profile (center) — the retrieved profile is a scaled
version of the initial guess (prior profile). The initial guess’ shape is different from
the true profile (right).
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In Fig. 3.5 the effect of averaging kernels on total columns from different observing
systems is depicted. If the initial guess profile =, has the correct shape, proper application
of the total column averaging kernel to the scaled profile ad, eliminates the null space
error as the difference between ad, and d is solely caused by the deviation of ¢ from
unity. For cases where shape of the initial guess is different from the true a null space
error is introduced (see Eq. (3.8)). The difference of the scaled profile from the true profile
will introduce another null space error which can not be corrected since the shape of the
true atmospheric profile is in general not known. In the example the offset (bias) is only
attributed to the systems gradient in vertical sensitivity and vanishes when c is taken into
account. So in general t., should be used for the comparison of, e. g., space-based and
ground-based in order to account for these differences and correctly quantify the (possible)
offset.






Chapter 4

Results

4.1 Publication I: Validation of CO total columns
from SCIAMACHY

In Pub. I CO mole fractions inferred from SCIAMACHY 2.3 um nadir observations from
2003-2011 using the BIRRA retrieval algorithm were validated against 18 stations of the
ground-based networks TCCON (Total Carbon Column Observing Network) and NDACC
(Network for the Detection of Atmospheric Composition Change). Weighted averages of
SCIAMACHY CO observations within a circle around the g-b observing system were
utilized to minimize effects due to spatial mismatch of space-based (s-b) and g-b observa-
tions. The global bias was determined to be in the order of —10 parts per billion in volume
(ppbv) depending on the reference network and validation strategy used. The largest neg-
ative bias was found to occur in the northern mid-latitudes in Europe and North America.
It was found that after postprocessing of the BIRRA retrieval output, the individual CO
mole fractions inferred from SCIAMACHY still vary significantly between sites, ranging
from around 100 ppbv up to 200 ppbv. The study also found that differences in verti-
cal sensitivity between the BIRRA retrievals from SCIAMACHY and the ground-based
retrievals from FTIR measurements are small allowing for a direct comparison.

Figure 4.1 shows the results for the comparison of the SCIAMACHY full-mission
dataset with TCCON and NDACC ground-based observations. The rather large co-
location radius of 500 km was required in order average over a sufficiently large ensemble
of SCIAMACHY measurements, thereby reducing the noise. To mitigate representation
errors however, the averages were weighted with increasing distance from the ground
station. As shown in Pub. I this had a positive impact on the mean bias, i.e., reduced
the representation error induced offset. The overall bias b = —12.1 ppbv was determined
as the average of all monthly-mean station biases weighted by their respective standard
deviation (Pub. I, Sec. 2.4). The mean standard deviation across sites ¢ was found
to be larger than the actual bias, hence the global bias b is not considered significant.

Moreover, the per station bias turned out to be only significant at some sites, namely
Kiruna (NDACC), Bialystok (TCCON), and Bremen (NDACC, TCCON).
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Figure 4.1: Observations within 500 km from the TCCON and NDACC ground stations were
used for the calculation of monthly averages upon which the bias was determined.
(a) Biases b together with their standard deviations on a monthly average bases
for SCTAMACHY observations from 2003-2011. The SCIAMACHY CO concen-
trations were (de-)weighted inverse to the distance squared from the reference site.
b The standard error of the mean values.

4.2 Averaging kernels

The decision to neglect the column averaging kernel in Pub. I was based on the analysis
shown in Fig. 4.2. To quantify the effect of altitude sensitivity on the retrieved CO
columns a true (Liye) and a prior (L) profile were defined. Next, the BIRRA column
averaging kernels C (see Buchwitz et al., 2004, Sec. 5) for SCTAMACHY /TROPOMI were
calculated for different observer zenith angles (OZA) and solar zenith angles (SZA). Note
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that they are almost identical for both instruments given the same retrieval algorithm
and spectral interval (see Pub. 11, Fig. 8 and Pub. 111, Fig. 7). Then a BIRRA retrieval
was performed based on a synthetic observations for @, (US-Standard profile) and a
‘wrong’ prior profile (initial guess) @pior. The retrieved profiles @, scaled versions of
the initial guess profile, were found to be < 2% or ~ 5 - 10'% (molec cm™?) within the
true column value for all examined profiles. After application of the averaging kernels
according to Eq. (3.74), the difference in columns was reduced by ~ 1% to that the null
space error was quantified to be in the order of 1% for CO retrievals from SCIAMACHY
clear-sky observations. This is in good agreement with findings by Borsdorff et al. (2016,
Fig. 2) which represents a minor contribution to the overall SCTAMACHY error budget
can hence be neglected in a comparison. A direct comparison was therefore considered
adequate.
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Figure 4.2: (Left) Three different vertical CO profiles. The true profile x¢ye Wwas used to
simulate the measurement while the retrieved profile x,¢, is a scaled version of
the prior x;¢,. The corresponding cprofile designates the respective total column.
(Center, Right) Column averaging kernels for different SZAs and observer zenith
angles (OZAs), respectively.
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4.3 Retrieval algorithm upgrade

The development of the scientific BIRRA variant was (more or less) frozen at the sta-
tus described in Gimeno Garcia et al. (2011), however, the development of the GARLIC
radiative transfer model was ongoing (by Franz Schreier). In early 2018, version 4.1
was the most current variant of the line-by-line code in the GIT version control system
(Loeliger, 2010). The forward model that was implemented in BIRRA at that time was
based on GARLIC version 2, so it was lagging two version numbers. In order to upgrade
BIRRA with GARLIC version 4 major modifications in the BIRRA code were required
since GARLIC version 4 incorporates multiple enhancements compared to its predecessor.
This includes updated interpolation schemes, optimized convolution routines, the MT-
CKD (Mlawer-Tobin-CKD, Mlawer et al., 2012) and CIA (Collision-Induced-Absorption,
Karman et al., 2019; Richard et al., 2012; Borysow, 2002) continuum absorption models
(see Sec. 2.6), as well as multiple additional approximations to compute Rayleigh cross
sections (see Sec. 2.5.2). In order to increase its efficiency in the line-by-line calculations,
the latest GARLIC variant moreover incorporates changes in the data handling and order
of calculations, particularly in the code sections for the computation of molecular absorp-
tion. In addition, changes were made with respect to the GARLIC user interface (i.e.
FORTRAN (Adams et al., 2008) namelist records).

The BIRRA upgrade was performed in small steps and accompanied by functionality
tests of the relevant code segments in order to be able to track issues from the beginning.
At this stage it was essentially a software engineering task where in particular subroutines
and code blocks needed to be rearranged, new interfaces to be built or existing ones to be
redefined, and variable declarations to be adapted. The update was finally completed in
the third quarter of 2018 and the upgraded BIRRA variant was designated version 3.0.
Although the update was complete from a software engineering point of view, essentially
meaning that the program was compiling without errors, the physical results were yet to be
examined and verified. In order to do so retrievals on a set of SCTAMACHY observations
were performed with the old but validated BIRRA v2.0. The output was then compared
to retrievals for the same subset but inferred with BIRRA v3.0. The final result is shown
in Fig. 4.3a and 4.3b. It was found that the rather small discrepancies are primarily
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Figure 4.3: Comparison of retrieval results from BIRRA v2.0 and v3.0. (a) Carbon monoxide
total columns for a subset of SCIAMACHY observations from orbit 13212 on
September 9, 2004. (b) The corresponding spectral fitting residuals.
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caused by different variable declarations in the new GARLIC version. More specifically,
some floating point numbers were changed from single to double precision thereby causing
numerical effects.

The successful upgrade was a crucial accomplishment for all of the subsequent studies
since any deficiency incorporated during the code update could have lead to severely
compromised results.

4.4 Publication II: Impact of molecular spectroscopy
on CO from SCIAMACHY

In Pub. IT the impact of SEOM-IAS spectroscopic information on CO columns from a
large subset of SCTAMACHY measurements in 2003, 2004 and 2005 was examined. The
well-established HITRAN 2016 and GEISA 2015 line lists were used as a reference upon
which the impact was assessed.
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Figure 4.4: Retrieval output of BIRRA v3.0 for SCTAMACHY observations from the second
quarter of 2004. The molecular absorption cross sections were calculated with
SEOM-IAS line data according to the SDVM line profile. (a)-(c) The profile
scaling factors of CO, CHy4 and H2O, respectively. In (d) the effective reflectivity
ro is shown.

It was found that the SEOM-IAS spectroscopy has positive impact on the spectral
fitting residuals. This is attributed to both, the updated SEOM-IAS line data as well
as more sophisticated line profiles that can be used with the extended set of SEOM-TAS
line parameters. The largest effect, however, was found to be attributed to the updated
SEOM-TAS line parameters (~ 3% on average, up to 15% for individual observations)
but not the models. Nonetheless, the best retrieval results for this enhanced spectroscopic
dataset is obtained when higher-order effects in molecular absorption described by the so
called beyond Voigt profiles are taken into account.
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Beside the improvements in the spectral fit quality, the CO mole fractions increased
by 4 — 11 % for SEOM-IAS spectroscopic information, thereby reducing the bias to both
NDACC and TCCON ground-based observations. However, since SCTAMACHY obser-
vations show a rather high variability, this difference was found not significant for the
majority of observations but only for some spectra over the Sahara with sufficient SNR
Fig. 4.4. For those scenes an ~ 3% increase in the CO column was found.

In conclusion, the outcomes confirm recommendations from earlier investigations, e. g.,
by Galli et al. (2012) or Checa-Garcia et al. (2015), i.e., trace gas retrievals in the SWIR
will benefit from improved molecular spectroscopy. Although SEOM-IAS has been com-
piled to meet the accuracy requirements of new operational missions such as TROPOMI
the findings suggest that the updated line data and models are beneficial for the retrieval
of CO from SCIAMACHY. This is an important aspect, e.g., for the compilation of a
multi-mission CO product.

4.5 Publication III: Impact of molecular spectroscopy
on CO from TROPOMI

Publication III investigated the impact of the SEOM-IAS spectroscopy on CO mole frac-
tions from TROPOMI SWIR observations.

Similar to Pub. I, it was found that SEOM-TAS line data with the adequate model
improves the spectral fit quality by significantly reducing the residuals to TROPOMI
measurements compared to both, HITRAN 2016 and GEISA 2015. The magnitude of
the improvement varies across climatological regions but range from ~ 10 — 20% (see
Fig. 4.5) and up to 30 % for individual observations with respect to GEISA 2015. The
improved fit quality was identified to be mainly caused by updates in the Ho,O and CH,
cross sections based on enhanced SEOM-IAS line data and models.
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Figure 4.5: Comparison of the CO retrieval error for different molecular spectroscopies. (a)
Retrieval errors for SEOM-TAS based SDRM cross sections. (b) The correspond-
ing errors for HITRAN 2016 with Voigt cross sections.
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In contrast to the fitting residuals, the differences in CO columns between SDRM
and H16 were found to be rather small across most regions (< 3%). The comparison
to TCCON and NDACC revealed that the smaller retrieval errors in the SEOM-TAS
inferred CO concentrations are beneficial when comparing post-processed mole fractions
to ground-based references since stricter filter criteria can be applied on the TROPOMI
observations within a given distance from the station.

Overall, many aspects of the findings underline recommendations from earlier inves-
tigations (Galli et al., 2012; Checa-Garcia et al., 2015) and are in good agreement with
findings from Publication II.

4.6 Instrument models and parameter fits

The accurate description of an instrument’s spectral response is crucial for spectroscopic
measurements (Beirle et al., 2017). In contrast to tabulated response functions that are
usually determined during on-ground calibration, parameterized instrument models in
general allow for more flexibility in the Level-1b — 2 retrieval, e.g., account for small
spectral misalignments between the modeled and the recorded spectra by a shift and
squeeze (Gimeno Garcia et al., 2011; Buchwitz et al., 2000).

The tabulated TROPOMI response functions as well as some classical instrument line
shape parameterizations were presented in Sec. 2.7. In the subsequent paragraphs the
tabulated TROPOMI response functions serve as the basis for the assessment of new
parameterized instrument models. The latter part of the section examines the fit quality
of the TROPOMI CO retrieval when instrument parameters are incorporated into the
state vector (i.e., co-retrieved).

A simple method to introduce a flat-topped and skewed distribution is to linearly com-
bine the Gaussian (see Eq. (2.89)) and super-Gaussian (see Eq. (2.93)) models according
to

Spa(v,x) = A*Sy(v —62) + (1 —A")Su(v —64), (4.1)

such that 0 < A* < 1. The state vector for the ISRF fit could then be chosen as
x = (A% 02,7,04,71). The parameters v and ¢ represent the respective widths and
spectral shifts.

Another approach is to use the generalized normal distribution discussed in Nadarajah
(2005) and combine it with the error function erf(v) in order to get a generalized skewed
normal distribution according to

S(v, ) = N* % exp (—’:k k){l + erf (g :k )} . (4.2)

The state vector could then be defined as * = (k,v,6,&). The parameter £ models the
skewness and wy, is given according to Eq. (2.92). The normalization factor N* accounts
for the finite integral (i.e. N* # 1, see Eq. (2.87)).

The accuracy of the parameterized response functions is examined with respect to the
tabulated (reference) ISRFs in Figs. 4.6 and 4.7. The figures depict least squares fits of
some reference ISRFs via Eqs. (4.1) and (4.2).

While Fig. 4.6 shows the fit for various pixels across the spectral axis at detector pixel
zero (left- or rightmost pixel), Fig. 4.7 shows the accuracy for different detector pixels
at 4295cm™'. The results for Eq. (4.1) across the spectral axis of TROPOMI’s band
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7 in Fig. 4.6a reveal a homogeneously distributed residuum within 3% of the tabulated
ISRF. In Fig. 4.6b the instrument’s response is parameterized according to Eq. (4.2) and
the variability of the residuum is more pronounced across the three different tabulated
responses. Better results are attained for pixels at lower wavenumbers with the residuum
increasing up to 6 % for detector pixels corresponding to higher wavenumbers. Largest
discrepancies arise in the transition from the center to the wing of the distribution. How-
ever, the further away from the peak the disagreements occur the less critical they are
for the convolution with the monochromatic spectrum as the spectral response becomes
weaker.

The results for different detector pixels at 4295 cm~!depicted in Figs. 4.7a and 4.7b
reveal similar results for both parameterized response functions. The findings suggest that
the TROPOMI ISRFs in band 7 could be replaced by the parameterized models without
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Figure 4.6: Fit of the tabulated TROPOMI spectral response functions for three spectral pix-
els (4266.2 cm™!, 4306.6 cm™!, 4351.6 cm™!) of detector pixel 1. Two different
parameterization schemes were used. In (a) linear combinations of Gauss and
super-Gauss models S 4) were applied while in (b) different realizations of the
skewed Gauss/super-Gauss variant Sis were used.
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inducing large spectral errors and hence still give accurate retrieval results.

Another investigation assessed the quality of the fit when the ISRF parameters of e. g.
Eq. (4.2) are included in the state vector and co-retrieved with CO columns. As indicated
in Fig. 4.8a, it turned out (as expected) that the spectral residuum p

p=1y— F(z), (4.3)

becomes smaller the more ISRF parameters are included in the state vector. However,
the incorporation of multiple additional fit parameters into the state vector makes the
retrieval prone to overfitting.

The various state vectors also have major implications on the retrieved CO quantities
as shown in Table 4.2. The variations were quantified with respect to the tabulated
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Figure 4.7: Same analysis as in Fig. 4.6 but for three different detector pixels (viewing angles)
at &~ 4295.5cm™!. The left, center, and right subplots correspond to the detector
pixels 1, 128, and 254, respectively. (a) Linear combinations of Gaussian response
functions according to S(5 4y and (b) the response according to Ss.
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Table 4.1: Goodness of fit for the TROPOMI observation from Fig. 4.8.

Parameters Residuum (x?)
tabulated 1.881072
{7,0,€} 3.841073

(7,6} 6.21(07) 1073
{~,8} 6.21(48)1073
{5} 2201072

response. The differences in the CO columns were calculated according to

_ CO(st) _CO(Stbl)

ACO ,
CO(Stbl)

(4.4)

where COgg,,) and COg,,,) represent the retrieved CO concentrations using either the
parameterized or tabulated ISRFs. The corresponding spectral residual with respect to
the actual observations is given by

2
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(4.5)

M
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known as the goodness of fit statistic (Hansen et al., 2013). The results in Table 4.2
demonstrate that the inferred columns vary considerably across the various retrieval se-
tups. While most options reveal a positive bias towards to the tabulated ISRF setting, the
CO columns with the {~, d, £} option is rather symmetrically distributed. In Table 4.1 the
retrievals with the tabulated response functions exhibit a larger x? than the fits with the
parameterized ISRF—except for the shifted-only variant ({0}). Although the additional
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Figure 4.8: Spectral residuum for a randomly chosen TROPOMI observation computed with
GEISA 2020 line data over the Sahara on May 07, 2018 (orbit 2923). The spectral
shift of the Sss(v,d) model with respect to the tabulated ISRF can be clearly
observed in (a) at around 4295cm~!. (b) The corresponding histogram of the
spectral residuals. The residuals become smaller the more instrument parameters
are included in the state vector.
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Table 4.2: Percentage differences of retrieved CO total columns for various ISRF parameter-
izations with respect to TROPOMI’s tabulated spectral response. The retrievals
were performed on a subset of TROPOMI observations over the Sahara on May 07,
2018.

{1,0,§} 1.6} {v,0p {0}
min. (%) -1051  1.13 128 6.49

max. (%) 837 859 848 18.69
mean (%) -187 350  3.68 10.55

state vector elements (fit variables) increase the goodness of the fit by minimizing the
residuals, the risk of overfitting increases as well.

The parameterized instrument response function according to Eq. (4.2) (with k& = 4)
was used for the retrieval of CO across Africa in Fig. 4.9. Beside the CO total columns
the corresponding errors and cloud fractions are shown. A survey of the spectral residuals
over the Sahara revealed smaller discrepancies for the SEOM-IAS spectroscopy compared
to HITRAN 2016. This is in good agreement with retrievals using the tabulated ISRFs
from Pub. I1I. Moreover, this indicates that overfitting is not yet that much of an issue.
Since the results for the parameterized ISRFs are promising it is proposed that a system-
atic comparison of TROPOMI retrievals for the tabulated and parameterized versions is
conducted in the future.
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Figure 4.9: CO columns from TROPOMI measurements with the ISRF model Sys(v,7,9,£).
(a) CO columns in units (moleccm=2) with (b) corresponding errors over Africa
for a single overpass on May 07, 2018 (orbit 2924). (c) Corresponding cloud
fractions, given in (%), were taken from the SSP-NPPC product. Cross sections
were calculated with SEOM-TAS spectroscopic data and the SDVM line profile
and US-Standard Anderson et al. (1986) initial guess profiles were used for CO,
CH4 and H20O. Vertical temperature profile was taken from CIRA (COSPAR
International Reference Atmosphere, Fleming et al. (1990)) climatology. Note the
hemispheric gradient in CO concentrations.
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4.7 Retrieval of aerosol parameters

The co-retrieval of aerosol parameters in the CO fit is based on the extinction of radiation
by particles. Therefore, the aerosol optical depth 7, from Eq. (2.79) is treated as un-
known by adding an amplitude scaling factor ai,e;0 and an exponent e to the elements
of the state vector

Taer(”, aaerOaaaerl) = (laer0 <Niir + N:Iir) 8833 10_33 l/aaerl . (46)

The feasibility of fitting the extended state vector was assessed by employing the non-
linear least squares (NLS) and the separable least squares (SLS) methods from Secs. 3.2.2
and 3.2.3, respectively. The performance of both algorithms was evaluated using TROPOMI
observations.

First, the feasibility of the aerosol retrieval was estimated by assessing the Jacobian
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Figure 4.10: (a) Jacobians for the nonlinear molecular and aerosol parameters of the CO
retrieval. (b) Jacobians for the linear parameters, i.e., the coefficients of the
reflectivity polynomial.
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matrix (see Eq. (3.55)), i.e. the change of the transmission with respect to retrieval
parameters. The outcome is shown in Fig. 4.10, where Fig. 4.10a and Fig. 4.10b include
the nonlinear and linear parameters, respectively.

In Fig. 4.10a Jacobians for the molecular scaling factors and aerosol parameters aero
and a,eq are depicted. The Jacobi matrix was calculated for a double path through the
atmosphere in nadir viewing geometry at ToA and for a SZA of 30°. A spectral resolution
(FWHM) of 0.25 cm™! was assumed. The derivatives for the aerosol parameters appear
to be similar across the spectral range and only differ by a factor In(v) - Qaeg. As a
result, the two columns of the Jacobi matrix are close to linear dependence making the
inversion of both parameters very sensitive to small perturbations (see Secs. 3.1.1 and
3.1.3). Consequently, as indicated by the very large condition numbers in Fig. 4.11, the
matrix represents a very ill-conditioned system when both aerosol parameters are elements
in the state vector (see yellow bars).

The top-left of Fig. 4.11 shows various sets for the state vector @ of the SLS algorithm.
Note that the sets only include nonlinear parameters since the algorithm does not require
any linear parameter for the iterative fit (see Sec. 3.2.3). This keeps the condition numbers
low, except for the case where both aerosol parameters are included. Interestingly, the
inversion with respect to the aerosol exponent .1 appears to be slightly better condi-
tioned than the inversion with respect to a,e0. This suggests that at least one parameter
should be possible to fit along with the molecular scaling factors.
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Figure 4.11: Condition numbers for Jacobian matrices that hold different parameter ensembles
relevant for the CO retrieval in the SWIR. The group in the top left shows
the condition numbers for the nonlinear retrieval parameters o which is hence
relevant for the SLS algorithm. The groups in the other figures include the linear
parameters 3 in addition to a which are thus relevant for the NLS solver. As
indicated, the condition numbers for the SLS Jacobians in the top left plot are at
least (approximately) one order of magnitude better compared to the rest (NLS
Jacobians).
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Table 4.3: Comparison of 4730 BIRRA CO retrievals over Europe for state vector elements
{amola Qaer0, ﬁreﬂO} (center COhlIIlIl) and {amola Qaer0, ﬁreﬁOa /Breﬂlv 6reﬁ2} (I‘ight col-
umn) using two different iterative least squares solvers. The SLSB and NLSB fits
use the SLS and NLS algorithms with (upper and lower) bounds, respectively.

solver converged (%) converged (%)
SLSB 99.0 99.1
NLSB 99.0 73.4

The other three subplots of Fig. 4.11 show different sets for « for the NLS solver. The
condition numbers of the respective Jacobians are worse compared to the SLS subplot in
the top-left. This is because the algorithm requires derivatives for all elements of x as all
fit parameters are estimated in an iterative approach.

The significantly higher condition numbers for the Jacobians in the classical NLS fit
asked for a comparison of the SLS and NLS algorithms. A first assessment was conducted
in Table 4.3 using the bounded variants of both algorithms, i. e. NLSB and SLSB. A subset
with 4730 TROPOMI observations over Europe was selected and the number of converged
fits was compared. Strict cloud filtering criteria according to Pub. III (Sec. 2.2.4) were
applied. Retrievals were calculated for two different state vectors, i.e. the surface re-
flectivity was modeled by polynomials of different degrees (a constant and second order
reflectivity polynomial). The bounds for q,eo were set to 0 and 10. The GEISA 2020
spectroscopic line list was employed to calculate molecular absorption and positivity con-
straints (bounds) were enforced on the molecular scaling factors. The result shows that
both solvers perform equal for the fits with the constant reflectivity while the SLSB out-
performs the NLSB when the reflectivity is modeled by the higher order polynomial.

In Fig. 4.12a the CO mole fractions with the co-retrieved a1 is depicted. The differ-
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Figure 4.12: (a) CO scaling factors over Europe on September 21, 2019 with the e fit
enabled in SLS solver. (b) The difference in CO when either qaero Or Qaer1 is
co-retrieved is insignificant.
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ence of CO for either co-retrieving qerg Or (aer1 (respectively) is shown in Fig. 4.12b. The
SLS solver was used in both setups and no cloud filter was applied this time. Although
the retrieval converges for most observations, the fit of either aerosol parameter has an
adverse impact on Seao (3> 1 for most cases). The results indicate issues due to degen-
eracies since the distribution of the retrieved aerosol parameter does hardly resemble a
physically reasonable distribution and neither least squares solver converges at physically
meaningful aerosol values and reflectivity parameters. However, the estimates of either
aerosol parameter seems to only have a minor effect on the final CO columns in the SLS
fit.

The results presented in this section are not yet considered conclusive, however, they
constitute an important step towards an algorithm that considers extinction by particles
in addition to molecular absorption. Upcoming studies should also examine other aerosol
parameterization schemes for the SWIR (e.g. Reuter et al., 2017).






Chapter 5

Conclusions and Outlook

5.1 Conclusions

The topic of this thesis is the investigation of CO retrievals from SWIR nadir observa-
tions by spaceborne observations using the BIRRA code. An assessment and validation
of the BIRRA algorithm was performed. This task embarked on the science question (1)
in Sec. 1.6 and the outcome along with a detailed description of the methodology is pre-
sented in Sec. 4.1 and Pub. [. The inferred CO concentrations from SCIAMACHY SWIR
measurements from 2003-2011 revealed to be largely consistent with similar validation
studies from other authors using different algorithms. Additional results regarding the
averaging kernels are presented in Sec. 4.2 describe the BIRRA column averaging kernels
and the decision making process for a direct comparison.

Although the BIRRA software development was not an objective addressed in Sec. 1.6
the algorithm upgrade and its successful verification described in Sec. 4.3 was a crucial
aspect for the upcoming studies and prepared the stage for new enhancements in the
retrieval algorithm and its forward model.

Next, BIRRA’s capabilities were improved in order to accurately retrieve CO from
latest missions. A major effort was put in modeling higher order effects 'beyond Voigt’
in molecular absorption using latest spectroscopic data. The enhanced physical descrip-
tion of molecular absorption along with updated line data was studied for SCTAMACHY
(Sec. 4.4 and Pub. II) and TROPOMI (Sec. 4.5 and Pub. III) measurements and the
outcome was compared against TCCON and NDACC ground-based observations. It was
found that the new SEOM-IAS line data together with the adequate line profile improves
the spectral fit quality by significantly reducing the spectral fitting residuals compared to
both, HITRAN 2016 and GEISA 2015. The differences in the retrieved CO concentrations
were found to be rather small. However, SEOM-IAS spectroscopy significantly reduces
the retrieval error and enhances the precision of the CO product and should therefore be
the preferred spectroscopic input for the retrieval of CO in the SWIR.

Further studies that address the objectives (3) and (4) were conducted but (not yet)
published in articles of peer-reviewed journals. The studies on instrument line shapes in
Sec. 4.6 focus on objective (3). The assessment of the proposed instrument line shapes
revealed that both are adequate in fitting the range of tabulated TROPOMI response
functions. Moreover, the positive impact of the SEOM-TAS spectroscopy on retrieved
CO concentrations was also observed with a proposed parameterized response function.

The retrieval of aerosol parameters presented in Sec. 4.7 deals with objective (4). The
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results show that the simple model for aerosol extinction is not sufficient to retrieve a
reliable aerosol distribution across scenes. A survey of the Jacobian matrices condition
numbers revealed the SLS fit outperforms the NLS fit for the co-retrieval of a single
aerosol parameter (i.e. either the aerosol scaling factor or exponent). It was found that
the significant higher number of converged fits for the SLS algorithm is attributed to the
fact that the derivatives of the nonlinear aerosol parameters are similar to the derivatives
of the linear reflectivity coefficients which cause degeneracies and lead to ill-conditioned
Jacobians for the NLS fit. However, neither NLS nor SLS converges at physically mean-
ingful values for the reflectivity and aerosol parameters—this is particularly true without
setting constraints (bounds). Therefore, more investigations on the co-retrieval of aerosol
parameters is proposed before it can be routinely employed in the BIRRA CO retrieval.

5.2 Outlook

It was shown that BIRRA is successful in retrieving CO from spaceborne SWIR measure-
ments and that it is a flexible and versatile tool for a wide range of studies. The enhance-
ments in the BIRRA algorithm yield an improved CO product across instruments. For
strictly cloud filtered scenes the BIRRA results show good agreement with both TCCON
and NDACC. In order to more accurately account for light path modifications by aerosols
or cirrus clouds in the retrieval, investigations on co-retrieved effective aerosol parameters
should be intensified.

The developments, in particular the improvements in molecular spectroscopy, are con-
sidered a crucial aspect in the algorithm’s capabilities to successfully infer concentrations
of other atmospheric constituents such as CO5 and CHy. Atmospheric concentrations for
both are increasing ( Ekwurzel et al., 2017; Yue and Gao, 2018; Saunois et al., 2020) causing
radiative forcing that has the potential to trigger significant changes in climate (Etminan
et al., 2016). The majority of anthopogenic COs emissions are concentrated on a small
fraction of the globe, primarily on cities and power plants (Nassar et al., 2017; Kuhlmann
et al., 2019; Strandgren et al., 2020). The Paris climate agreement sets ambitious goals
to reduce CO5 emissions in order to limit global warming well below 2°C ( United Nations
Framework Convention on Climate, 2015, Article 2). The agreement envisages measures
that allow for independent monitoring and verification of nationally reported anthro-
pogenic CO4 emissions. This includes periodically (5-yearly) glob