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ABSTRACT

The decay of trailing vortices is a fundamental problem in fluid mechanics and constitutes the basis of control applications that intend to
alleviate the wake hazard. In order to progress, we use the recently developed modal-decomposition technique to identify the governing
dynamics in an experimental trailing vortex. A particular emphasis is on the difficulty and usefulness of applying such tools to noisy experi-
mental data. We conducted a water-tunnel experiment at a chord-based Reynolds number Re = 4 x 10* using stereoscopic particle image
velocimetry measurements over a downstream range of 36 chords. The downstream evolution of the maximum of vorticity suggests that the
whole wake can be partitioned into three consecutive regimes. A higher-order dynamic mode decomposition of the streamwise vorticity in
each such part of the wake shows that the decay is well approximated by at most three modes. Additionally, our study provides evidence for
the existence of several instabilities after the vortex roll up beyond about 6.5 chords.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://

creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0117611

I. INTRODUCTION

The formation of trailing vortices is due to the finite length of
three-dimensional aerodynamic profiles, which appear in applications
such as sailing hydrofoils,' turbomachinery,” or aircraft.” Our main
interest is in the latter, where there is a pressure difference on both
sides of the airfoil that encounters at the end of the wing span at a cer-
tain positive angle of attack and, therefore, generates a persistent and
highly rotating axial flow in airport runways’ for a low subsonic,
incompressible turbulent regime at high Reynolds numbers Re ~ 10°
(the Reynolds number is defined in Sec. II). In addition, this wake
damage occurs even at moderate or low Re ~ 10* in Unmanned
Aerial Vehicles (UAVs).”®

These trailing vortices are in fact the main reason for the restric-
tive rules in air traffic management” and close UAV: flight configura-
tion.” The motivation for this work is the possibility to devise an
efficient means of vortex alleviation, being a critical concern for safety
and economic reasons including, for example, the time reduction
between takeoff and landing operations at the airport, the decrease in

fuel consumption in aircraft, or the increase in safe control in close
UAVs. As a matter of fact, isolated trailing vortices are highly persis-
tent fluid objects that diffuse at an almost viscous rate.” A possible
strategy to alleviate vortices would be an efficient vorticity reduction
using a device that results from the combination of active control” and
frequency response.'’ For this purpose, it is relevant to have detailed
knowledge of the vortex structure to determine a basis for constructing
simplified vortex skeletons and low-order flow descriptions.'' In par-
ticular, we focus our attention on the identification of the modes
responsible for the vortex decay and their corresponding amplitudes
and frequencies. Thus, it is feasible to force these modes with an active
control to promote the vortex breakdown.

One alternative for the identification of coherent structures in
trailing vortices is the Proper Orthogonal Decomposition (POD).'*"”
This technique processes the modes ordered by relevance in terms of
energy. To that end, there is a decomposition of the velocity field with
a strong rotational component into a summation containing deter-
ministic spatial functions whose modulation is given by random time
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coefficients. In the case of trailing vortices,"* the most energetic mode has
turned out to be |m| = 1 and has been associated with low frequencies.

This mode has also been the protagonist in the explanation of the
random and erratic motion that appears in the wake, commonly called
vortex meandering." "'

Another approach for the characterization of complex experi-
mental flow dynamics present in trailing vortices is the use of
Dynamic Mode Decomposition (DMD).'”'? As reported in a recent
review of this method,'” DMD processes high-dimensional sequential
measurements, extracts coherent structures, isolates dynamic behavior,
and reduces complex evolution processes to their dominant features
and essential components. DMD has recently been improved,
introducing the Higher Order Dynamic Mode Decomposition
(HODMD).”**" This latter method seems to be a useful tool to identify
and extrapolate flow pat‘terns22 and reduced-order models;”” therefore,
it should give a better understanding of the vortex performance and
the predominant modes that are responsible for the vorticity decay. As
discussed below in Secs. 11T and IV, HODMD has some disadvantages
because it is not straightforward to identify the optimal parameter
choices when using raw experimental (noisy) data.”* However, it is
possible to attribute a physical meaning to the most relevant modes
when the results have been analyzed carefully. The comparison
between DMD/HODMD and POD has been explored, with the for-
mer being more appropriate for reconstructing the flow and finding
the physical mechanisms underlying the dynamics.”° To the best of
our knowledge, there is no implementation of HODMD applied to
trailing vortices, which is the novelty of the work.

To sum up, there is considerable need to better understand
the dynamics of the wake of both aircraft or UAVs. To take advan-
tage of HODMD, we analyze the modes using two options: (i) the
whole experimental spatial domain and (ii) the three different
regions into which the wake behavior can be divided, e.g., the near,
intermediate, and far fields. Ideally, the HODMD would retain
information associated with the vortex decay. This would permit a
low-dimensional representation of the decay dynamics of the

scitation.org/journal/phf

vortex, which could serve to simplify the vortex mathematical
model and reduce the computational burden to its computation.

The paper is organized as follows. First, we introduce the experi-
mental setup as well as the two-component and three-dimensional,
2D3C-PIV data. Second, we describe mathematically, and in a rigor-
ous manner, the algorithm employed. Finally, we show the results
using the two alternatives stated above and we draw the main
conclusions.

Il. OUTLINE OF THE EXPERIMENT

We carried out experimental tests in a towing tank located in
the Vehicles Aero-Hydrodynamics Laboratory (Malaga, Spain).””’
Figure 1 shows the 3D layout of the experimental arrangement. The
support (1) allows different angles of attack between the upstream
flow and the wing model, see inset (b). All the results shown corre-
spond to a single angle of attack (o = 9°). The scaled wing model used
to generate wingtip vortices was a rectangular wing profile with a
rounded (half-circular) tip. It has a NACA 0012 wing section which is
symmetrical with a maximum thickness of 12% of the chord. The
main dimensions are a semi-span [ of 0.2 m and a chord ¢ of 0.1 m, so
the aspect ratio AR is equal to 2, see inset (c). This low aspect ratio has
been determined by the physical limitations in the experimental setup.
However, we find the present aspect ratio AR=2 being sufficiently
large to produce a sharp rotating flow behind the wing model, which
is the objective of the following dynamic mode decomposition study.
The towing tank is 10m long and 0.5 x 0.5 m* cross section in
Perspex® which had a thickness of 25 mm (2) to allow for optical vis-
ualizations and three-dimensional Particle Image Velocimetry (2D3C-
PIV) measurements of the velocity field. This technique captures
velocity information of the whole flow fields in fractions of a second
using two consecutive images from the illuminated plane (3). The
wing model is vertically assembled on a guide rail (4) that moves
(from right to left in the schematic) through the whole towing tank. A
chord-based Reynolds number for the flow is given by

FIG. 1. 3D Schematic of the experimental
setup: NACA 0012 wing with AR of 2 in a
support moving from right to left (1), per-
spex channel (2), laser sheet (3), guide
rail (4), computer to velocity control of
guide rail and PIV system (5), high speed
cameras (6), and blue iron structure (7).
Inset (a) on the right corresponds to zoom
in study zone with wing model, cameras,
and laser sheet, whereas inset (b) shows
a half-span wing model mounted detail
with ¢ = 0.1 and / = 0.2 m, see inset (c).
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Re = , (1)

where v is the (temperature dependent) kinematic viscosity of the
water and W, is the wing model velocity. The temperature measure-
ment was calculated before running the experiment as the mean value
of nine temperature sensors located at different levels along the towing
tank. The mean and standard deviation of these measurements were
156 *£0.2°, so that ¥ = 1.1203 m*s~!. The wing model was pulled
at an approximately constant velocity of W, = 0.448 ms™! to ensure
a chord-based Reynolds number Re = 4 x 10%. To that end, an elec-
tric motor has been installed which provides a velocity between 1072
and 1 ms™! with an error lower than 0.5 %. The electric motor is con-
trolled by a laptop with feedback by means of an encoder (5), and the
control of the acceleration from rest and the final position of
the model was set using Matlab® through the USB port. To obtain the
images, we seeded the tank with glass silver-coated spheres of 10 um
(HGS-10 from Dantec). These particles are neutrally buoyant in water,
thus minimizing their relative motion to the water flow due to gravity
and centrifugal forces. The illuminated plane of the flow is located per-
pendicularly to the wing model movement, and the images are
recorded by two high-speed cameras located downstream to the model
movement (6). These cameras have their corresponding optical win-
dows to avoid refraction in image capture. The towing tank used two
rails made of iron (7). They were mounted with 90° to bear the weight
of the water and to guarantee the correct alignment within = 0.1°.

A 2D schematic layout is shown in Fig. 2 to aid readers in
understanding the key 2D-3C PIV layout. The displacement of the
wing model from left to right, indicated by a blue arrow, is shown
along with the Cartesian reference frame. Thus, the schematic shows
precisely when the wing model passed through the laser sheet and
the first velocity field was measured (z/c = 0). On the other hand,
by placing water-filled prisms in the air-glass—water interface, the
refraction of the interface has been corrected. Two transparent

Water filled Water filled

Y| Wing
Light sheet
Lens
Laser  [_<] Water
Il Perspex
[ 1Air

FIG. 2. 2D Schematic of the experimental setup.
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Plexiglas prismatic windows were attached to the lateral sides of the
channel working section. These windows, which faced normally
the cameras by forming an angle of 45° with the Plexiglas walls of
the channel, were filled with water and adjusted through watertight
unions to the channel walls.

As the experiments are conducted in a towing water tank, the
distance and sampling time over which the airfoil can maintain a
constant speed are 1 or 1 m/W,, = 2.5s, respectively. Hence, the
wing model goes from rest to the desired speed in the first meter
with a linear ramp by using the dc motor and its speed control.
Afterward, the wing model has a constant velocity; therefore, the
laser sheet is placed at 3m from the beginning of the towing tank.
Figure 1 shows the wing model at the point where the wing model
has almost reached the constant velocity, but the laser sheet has not
yet been reached.

As described in Sec. I, vortices are so sensitive that they are dis-
turbed by turbulence, which causes random shifts in the center of the
vortex. This phenomenon is known as meandering, and it hinders
experimental measurements. There are well-established methods in
the literature to correct for wandering techniques.'”***’ In our case,
this phenomenon of erratic movement of the vortex core is not very
pronounced due to the low turbulence in the towing tank.

A 2D3C-PIV system was used to measure the velocity field of
the wingtip vortex. Consequently, a three-dimensional description
of the vortex is compiled in the control plane. As mentioned above,
this plane is perpendicular to the movement of the airfoil, and it has
a fixed location, whereas the wing model moves through the towing
tank. Subsequently, we examine the velocity field in each plane (x, y)
alongside the axial coordinate (z). The 2D3C-PIV system consists of
three components: (i) a laser sheet (3) that is less than 1 mm thick in
the measurement section obtained using three 0.5W green laser
sources (532 nm-model SDL-532-500T) in conjunction with a set of
lenses (cylindrical lens of —6.25 mm focal length), and a mirror that
was installed in front of the laser plane to obtain a better illumina-
tion sheet, (ii) two high-speed monochrome cameras together with
mechanical connecting fittings to implement the Scheimpflug sys-
tem (6) model PixeLINK PL-D732MU-T which records images of
2.2 Mpx up to 170 fps, and a 25mm RICOH lens (model FL-
CC2514-2M) and f/2.8, (iii) synchronizer and the use of software
PixeLINK Capture OEM, and finally, (iv) a photoelectric cell to syn-
chronize the experimental setup. Only a maximum frame rate of 120
fps was required for this experimental work, although lower frame
rates were also used; hence, the authors need to warn that the images
required to do 2D3C-PIV could have been obtained with a standard
camera with slow motion application. This experimental setup
allowed us to obtain the wing wake evolution over a distance of
about 36¢ from the onset of motion. We set the exposure time to
8 ms with the global electronic shutter. The calibration of a 2D3C-
PIV imaging setup relies on images of a planar calibration target
placed alongside the light sheet plane. This calibration target con-
sisted of an equally spaced grid of dot markers (10 mm) that were
easily detected with simple image processing techniques. The PIV
algorithm employed was DPIVSoft which performs a double pass
PIV method with window deformation of 32 x 32 pixels, being the
time step between images the inverse of the frame rate. Data reduc-
tion algorithms provided the true particle displacement and 3D
velocity vector field at the illuminated plane.”’
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I1l. HIGHER ORDER DYNAMIC MODE DECOMPOSITION
A. A brief description of the basis

We employ the Higher Order Dynamic Mode Decomposition
(HODMD) proposed by Le Clainche and Vega.” A similar theory has
been developed by Kamb et al.””

Experiments provide us with a sample of the continuous Eulerian
flow fields on a discrete measurement grid of dimension M x N, where
M = M.M, and N are the number of spatial and temporal measure-
ment points, respectively. Concatenating the spatial data at each time
instance into a vector, we obtain an ordered sequence of length N where
each element is a R™-dimensional vector called snapshot. It is conve-
nient to assemble the data into a R**Y_dimensional snapshot matrix
WY = [wi,wa,...,wy], with w, :=w(t,) and t,= (n—1)At for
n=1,2,...,N.In our case, we consider the data of the streamwise vor-
ticity { since the vorticity decomposition has captured the fluctuating
enstrophy more efficiently than the equivalent velocity field decomposi-
tion for a given number of POD modes in the backward-facing step
problem.'" However, we will continue with the generic definition of the
vector w in this section for mathematical description purposes.

It is a fundamental aspect of DMD that the temporal order of the
data are taken into account, unlike, for instance, in Snapshot Proper
Orthogonal Decomposition (POD) where the temporal ordering of
the snapshots is irrelevant for the POD modes (spatial patterns) and
associated eigenvalues. This is consistent with the assumption of a sta-
tionary random process underlying POD.” On the other hand, DMD
makes the fundamental assumption that the time sequence of snap-
shots follows from a linear dynamics. That is,

d
Wnid =Y Awnii1 with n=1,2,.,N—d and d>1, (2)
i=1

where A; € RM™*M s the propagator of the linear dynamics. A linear

approach even for nonlinear dynamics has been justified by interpret-
ing (2) in terms of Koopman mechanics.'” In this framework, we
maintain that the dynamics is governed by some nonlinear dynamical
system which, however, is not directly observable. What we actually
measure are but functions mapping the states of the system onto a
measurable observable, of which the snapshots are approximations.
For this reason, (2) is called (higher order) Koopman assumption. For
d=1, (2) involves only a mapping between two subsequent time steps,
which is the assumption of (classical) DMD.' "'

However, we can formally reduce the general problem (2) to a
one-step evolution upon working in a d-dimensional embedding
space. Working in high-dimensional spaces is a commonly employed
strategy to unfold the apparent complexity of observed dynamics. One
state in the embedding space is defined as the sub-ensemble of time-
lagged snapshots, viz. W, := (Wy, Wyi1, ..., Wyid—1) € R The
propagator in the embedding space accordingly becomes a R
dimensional matrix of the transpose companion type. That is, A;; is
of (upper-diagonal) shift type for i=1,2,....,(d —1)M and
j=1,2,...,dM, while the entries in the lowest row (ie., for
i=(d—1)M+1,...,dM) are the propagators in (2). With this,
we get the one-step problem

Wy1 =Aw,, n=12..N—d, (3)

in the d-dimensional embedding space.

scitation.org/journal/phf

The purpose of the DMD is a characterization of the propagator
(in this context called Koopman or composition operator'”) in terms
of its point spectrum.” The associated eigenvalue problem for A has a
maximum of dM eigenvalues 4; € C and associated eigenvectors
q; € C™ (complex conjugation, degeneracy, etc. depend on the data).
The adjoint of the Koopman operator is the Perron-Frobenius opera-
tor and has eigenvalues and eigenvectors /; and Pp;> respectively (an
overbar denotes complex conjugation). The direct and adjoint eigen-
vectors are biorthogonal (p;, q;) = J;; with respect to the inner prod-
uct (-,-) on R An expansion of w,,, in the eigenvectors thus
reads

Wyi1 = Zaj(tn+1)qj where  a;(tui1) = (pj, Wni1).  (4)

J

It follows at once f}‘om (3) that w, . ; = A"w, by recurrence. By virtue
of the linearity of A, hence,

W1 =AWy = Z aj(O)Anqj = Zaj(o)),;‘qj. (5)
j J

Let 4; # 0, then we can define the transformation

9 SiAt

Aj = <~ 5= 5] + 1w] =At"'Iln /11 (6)

We order the amplitudes in decreasing order a; > a; > --- > 0. Let
epmp > 0, we keep only the R < dM largest amplitudes such that
a
< e (7)
ay
holds for the leading relative error. We call R the epyp spectral com-
plexity. The approximate reconstruction of the measured data

R
Wy~ wh = Za,q,e(‘s'“w')(”’l)m, n=12,...N—d. (8)
r=1

For given R of the reconstruction (8), the DMD modes g, span a man-
ifold of dimension §:= dimspan{q,,q,,...,qz} < min{dM, R},
which we call €,c-spatial complexity.

B. The algorithm

A detailed description of the algorithm of classical DMD can be
found in several research papers.'®*”> A comparison and extension to
HODMD is given in Le Clainche and Vega.”’ We would like to men-
tion here the essential aspects of the procedure which are important
for the present study.

We refer to DMD and HODMD as DMD-d in an encompassing

manner.zu

1. Step 1: Dimension reduction

The first step of the DMD-d algorithm is a coordinate transfor-
mation together with a truncation of the representation. The result is a
filtering and dimension reduction.

SVD of the snapshot matrix WY = UXV*.

(@) Let J, < min{M, N} be the rank of the snapshot matrix, we
define the relative truncation error (ratio of Frobenius
norms)
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FIG. 3. Vortex flow at z/c = 0: (a) non-dimensional vorticity and (b) radial profile of the azimuthal velocity.

)

associated with a representation in the leading J. < J, singular
modes for some predefined threshold esyp > 0. We refer to
the truncated SVD matrices as U € R £ ¢ R/ and
V* € RN (An overbar denotes truncation.)

(b) We define the reduced snapshot matrix with respect to the
truncated basis

W) = U WY =£v" e RV, (10)

as the projection of the full snapshot matrix WY onto the
leading J. singular modes. (A hat denotes reduction due to
projection, possibly with respect to a truncated singular-
vector set.) SVD is a coordinate transformation to the princi-
pal components, spanning an ellipse with respective axes’
lengths equal to the singular values. From this picture, we see
that (9) and (10) imply that we are working in the leading
principal components with a relative error of egyp. Put differ-
ently, we work only with the time series of expansion coeffi-
cients in the singular-vector expansion. We pass back to the
full (yet, truncated) space by multiplying with U € R,

The snapshot matrix in the embedding space reads

~ N—d+1

Wl = [ﬁ/law%"'?ﬁ/Nfd#»l] € RdMX(N7d+l)a (11)
and in the reduced coordinates
2 N—d+1 ~ N ~
1 = [wl,ﬁ’z,...,ﬁ’N,dJFJ S Rd]FX(N7d+l), (12)

respectively. This snapshot matrix in the time-lagged reduced and
truncated coordinates is again reduced and truncated along the same

lines described above. This yields "21711\]7'”1 c R« X(N7d+l>, where

= N—d+1
J. < rankW .

2. Step 2: Reduced Koopman operator

In the second step, we compute the reduced Koopman operator
from a purely data-driven approach.

(a)  We can express the Koopman assumption (2) in the reduced coor-
dinates. Therefore, note that the nth snapshot in the truncated rep-
resentation is w, = UX®,, where v, is the nth column of V*,
and W, = X, the nth reduced snapshot. Projecting (2) onto the
reduced singular-vector space and using linearity readily yields

d
Woid = E AWy,
p

upon defining the reduced Koopman operator as the projection
A; = U"A;U. Apparently, the Koopman assumption in the
truncated and reduced coordinates is structurally identical to (2),
thus going to the embedding space, we get a one-step problem
structurally identical to (3), only replacing the entries by the
respective reduced forms. This implies A € RY*¥ for the
reduced Koopman operator in the embedding space.

24
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FIG. 4. Downstream evolution of the vorticity maximum. Dashed lines indicate the

partition into the three different wake regimes identified by linear regression (solid
black lines).
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FIG. 5. HODMD analysis of the whole field: (a) amplification factor vs frequency and (b) frequencies vs amplitude. In both pictures, the modes with highest amplitude are
marked with squares: mode 1 in blue and mode 2 in red. The most unstable modes are marked with colored stars: mode 1 in green and mode 2 in black.

(b) Since A; are not known explicitly, we cannot compute the
projection A; directly. Instead, we compute it by means of the
pseudoinverse. For this purpose, we write the one-step,

higher-order Koopman assumption in the reduced coordi-

2 N—d+1 2 2 N—d 22228,
nates W, =AW, =AUXV, which
2 2 N—=d+1 2 2 -1

A=W, VI

yields

*

Co

We then solve the eigenvalue problem Aq, = 4,4, and use the
first J. components of the eigenvector in the reconstruction of the data

R
oy Wl =g, 0N S L2 LN (13)
r=1

For the sake of discussing the experimental results, it is convenient to
associate time and space increments according to Az = W, At,
whereas W, denotes the pulling velocity. This yields the downstream
(Dynamic) evolution of the rth mode as follows:

D, (t) = exp ((0, + iw,)t) = exp {(If/f; +i ;U‘;;) %] (14)

Data are continuously collected for about 8s between the starting
and the end points. Despite this, due to the small changes in the wing
tip vortex that occur as it evolves temporally without the presence of
external turbulence, this time between the first and last snapshot does
not significantly alter the flow patterns as well as the development of
eventual instabilities within the vortex. With this experimental setup, we
are also able to have many sampling points staggered in time to perform
an accurate calculation through HODMD. A similar experimental setup
for wing-tip vortices was presented in Ghimire and Bailey.”®

We base our HODMD analysis on the streamwise vorticity field
{ in equidistant measurement planes perpendicular to the wing
motion. We sampled data over the downstream range z/c € [0, 36]
with a total of N=963 planes, spaced at a constant distance of
3.73 X 107 %¢, as detailed in Sec. I1. Streamwise vorticity { = du/dy
—0v/0x was computed with a second-order, central finite difference
scheme from the velocity data directly obtained in the PIV measure-
ments non-dimensionalized using the pulling velocity W, and chord
¢ as characteristic velocity and length, respectively.

Since we are interested in the vortex dynamics, we restrict the
analysis to an observation window centered around the instantaneous
vortex center in each measurement plane. The vortex center is defined
as the location of the maximum of the vorticity field,”” and the obser-
vation window was chosen to extend over nine grid points to each side
of the center. Therefore, the computational domain extends over
approximately three core radii ry, see its definition in (16).

Experimental results allow us to clearly identify the vortex shape
when representing vorticity. Figure 3(a) shows the dimensionless vortic-
ity {¢/ W in the first measurement plane at z/c = 0 where the vortex
structure is clear. Black solid lines are representing 50% and 85% of the
maximum of vorticity. A cross marker and a dashed black circle of
radius r; = 0.07c have been added to illustrate the vortex center and
the vortex core, respectively. Along the negative y coordinate, we still see
a trace of the roll up of the trailing vorticity sheet. At the same time, the
main vortex already approaches an approximately axisymmetric shape.

Figure 3(b) depicts the radial profile of the associated non-
dimensional azimuthal velocity in the same measurement plane at

TABLE 1. Comparison of the results obtained from the various domains considered.

Physical =~ Unique physical

IV. RESULTS Domain Snapshots  Modes  modes modes
A. Overview of the vortex flow Whole 963 792 158 80

Trailing vortices observed in experiments are associated with a Near 172 63 11 6
broadband spectral signature spanning all resolved scales. We use Intermediate 558 420 87 45
HODMD to identify the governing dynamics associated with vortex Far 233 122 23 12
decay and instability.
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z/c =0, obtained by taking the azimuthal average in the measure-

ment plane, i.e.,

27

1
ug(r,z = const) := Z—J
TJo

ug(r, 0,z = const)do.

(15)

The integral in (15) is approximated by a sum over 30 points in the
azimuthal coordinate (i.e., 12%). It is observed that the radial profile of
the azimuthal velocity increases almost linearly up to a peak and there-
after its value drops monotonically. The radial coordinate at the maxi-

mum of azimuthal velocity
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r1(z) := argmax uy(r, z), (16)

is called core radius. From Fig. 3(b), we infer r1(0)/c ~ 9 x 1072,
This value increases smoothly up to r,(36¢)/c ~ 11 x 1072 at the end
of the experimental domain. On the other hand, the peak starts at
v9(0)/ Wo = 0.28 and it decreases till vy(36¢)/ Wy, & 0.22.

Figure 4 shows the downstream evolution of the maximum of
dimensionless vorticity over the measurement range. The trend of the
vorticity maximum shows a clear distinction, suggesting to separate
the wake into three different z regimes, which we refer to as near,
intermediate, and far fields for convenience. This separation is indi-
cated by adding vertical dashed lines to Fig. 4. This partition of the
whole wake into three regimes is based on the best linear fit in the whole
domain, requiring the approximation of the near and far field to be a hori-
zontal line (the linear approximations are shown as solid black lines in
Fig. 4). That is, the division of the wake is at the streamwise coordinates
that minimize R?, where R is the linear regression parameter. According to
this definition, the near field ranges approximately within z/c € (0, 6.42),
the intermediate field is identified with the range z/c € (6.42,27.25), and
the far field stretches beyond this point to the end of the measurement
domain. As will be explained below, this separation in three areas has a
double advantage: on the one hand, a better reconstruction of the vortex
and its decay and, on the other hand, the knowledge of the area where
unstable modes first appear. Note also that in the near field the vortex core
radius as well as the peak of azimuthal velocity are oscillatory, having a
mean and standard deviation of r/c~7 x 1072 =8 x 10~® and
max uy(r, z) ~ 0.3 = 0.01, respectively, for z/c € (0, 6.42).

B. Higher-order DMD

We selected the values of d, esyp, and epyp according to the par-
ticular flow physics and purpose of analysis.”’ In particular, we chose
esyp = 0.025 to filter the error coming from the experimental data, as
explained in Sec. III. The number of DMD modes that attained for the
expansion is, however, determined by epup = 1073, see Sec. III.
Finally, we made a choice of d=110 to minimize the RMS error.
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This value of d is consistent with previous studies, indicating that a
good estimation of d is about 10% of the total number of snapshots.”’

1. Results using the whole z domain

We have first applied the HODMD on the whole domain with a
totality of N= 963 snapshots, yielding 792 modes for the selected pair
of parameters, esyp, and epyp. It is useful to mention that not all of
the modes contribute equally to the vortex dynamics. To find the
physically relevant modes, let us first recall that the downstream evolu-
tion of the rth mode is governed by Eq. (14), which is parametrized by
the amplification factor d, and the angular frequency w,. As a neces-
sary condition for a mode to be physically pertinent, we require that it
lies at the intersection of the parameter space with a sufficiently small
decay and frequency. Thus, we avoid very short-lived transients or
high-frequency modes associated with noise in the experiment.

To retain only weakly damped modes, we restrict to amplification
factors for which 9, 77— > —2. This threshold corresponds to the dis-
carding of modes that attenuate to less than 5% of their initial ampli-
tude within about z/c = 1.5. Note that this threshold only removes a
few modes, two in the case of the whole domain.

To guarantee sufficient sampling of the temporal evolution, we
neglect modes with very high frequency that are likely to be associated
with experimental noise or that are not resolved properly taking into
account our frame rate in the experiment. In fact, the vortex dynamics
are not expected to have so high frequencies.' ' This step allows
reducing significantly the number of modes. Specifically, we have cho-
sen signals with are sampled with at least ten points, equivalent to
| | > 16.79.

The restrictions described above reduce the overall 792 modes to
a maximum of 158 modes that are potentially physically meaningful.
Figure 5 shows the amplitudes, frequencies, and damping factors asso-
ciated with these modes. The leading modes in order of amplitude a,
and amplification factor ¢, are marked with squares and stars, respec-
tively. Since our data are real-valued, the HODMD modes must come
in complex-conjugate pairs or be real.
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FIG. 7. HODMD analysis to the near field: (a) amplification factor vs frequency and (b) frequencies vs amplitude. In both pictures, the modes with highest amplitude are marked
with squares: mode 1 in blue and mode 2 in red. The modes with highest non-zero o are marked with colored circles: mode 1 in green and mode 2 in black.
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There are two types of HODMD modes: (i) those associated with
real values and (ii) others corresponding to complex-conjugate pairs.
In the case of computing the HODMD on the whole field, there are
two modes associated with real values and the rest are complex-

conjugate pairs. Each one of the conjugate modes has the same spatial
structure and damping frequency, so we consider only 80 unique
modes. Table T shows in the first row a summary of the number of
modes considered for the whole domain taking into account the
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FIG. 9. HODMD analysis of the intermediate field: (a) amplification factor vs frequency and (b) frequencies vs amplitude. In both pictures, the modes with highest amplitude
are marked with squares: mode 1 in blue, mode 2 in red, and mode 3 in cyan. The most unstable modes are marked with colored stars: mode 1 in green and mode 2 in black.

different criteria mentioned above. The remaining rows in Table I
summarize the HODMD results for each of the three regions, ie.,
near, intermediate, and far.

Figures 6(a) and 6(b) show the spatial structure of the two modes
of highest amplitude a, together with their downstream evolution in
(c). Both of them are cases of purely real (i.e., non-oscillating) modes,
and they exhibit nearly axisymmetric vorticity patterns, m = 0. This
relationship between axisymmetric modes and real modes is found
throughout this investigation. For the analysis of the whole domain,
we find that modes 1 and 2, although having similar amplitudes a,, are
associated with strongly different decay rates |,| < |0,|. Therefore,
the downstream evolution of both modes is significantly different. The
combination of these two modes captures the tendency of the vortex
decay depicted in Fig. 4.

While the leading non-oscillating modes represent the evolu-
tion of the mean, the oscillatory contributions (so-called as they are
associated with o # 0) represent fluctuations. Oscillatory modes
correspond to multi-polar spatial patterns. In particular, the unstable
modes have dipolar pattern in the vorticity. Figures 6(c) and 6(d)
depict the two most unstable modes together with the dynamic evo-
lution in (e). HODMD yields a totality of 15 unstable modes for the
whole domain and all of them are associated with a dipole pattern
(Tables II-V).

Finally, it is important to remark than the spatial representation
of the different modes give the same order of magnitude,
see Figs. 6(a), 6(b), 6(d), or 6(e). Therefore, it is feasible to obtain an
estimation of the relevance of the mode contribution from the analysis
of both the amplitude a, and the parameter 6,, see Eq. (13). This char-
acteristic is valid for any spatial domain to which HODMD is applied
in this investigation.

2. Results dividing the zdomain in three regions

As mentioned above, the fluid flow shows different structures for
different areas along the z domain. Therefore, we have divided our z

domain into three different regions and computed HODMD in the
near, intermediate, and far fields. We retain the same HODMD

parameters, that is, gsyp = 0.025, epyp = 1073, and d = 110 to allow
a comparison with those previous computations shown for the whole
domain.

a. Near field. This spatial domain relates to the wake region
where z/c € (0,6.42). We obtain 63 modes from HODMD. After
applying the restrictions on ¢, and w, to compute the physical relevant
modes, we obtain a set of 11 modes, 6 of them being unique. The
amplitude, frequency, and decay associated with these modes are
shown in Fig. 7. Note that there is only a real mode in this region, hav-
ing an amplitude at least an order of magnitude greater than the com-
plex modes. The two modes with greater amplitude a, are marked
with squares in Fig. 7, whereas the two with maximum non-zero J, are
depicted in circles. Since all non-zero 0, are negative in this near field,
we can conclude that there is no unstable mode in this region.
However, these latter two modes with the greatest non-zero J, will fol-
low a dynamic evolution with the slowest decay, and therefore, they
are more relevant to the structures along this z domain.

The leading two HODMD modes in order of decreasing ampli-
tude a, are presented in Figs. 8(a) and 8(b) with their associated
dynamics shown in Fig. 8(c). Mode 1 is associated with the mean flow
and exhibits nearly constant D, as expected from the behavior shown
by the maximum vorticity. The second mode in order of amplitude is
a oscillatory becoming very weak at about half of the z domain in the
near region. This is also the case for the two modes in order of decreas-
ing non-zero J,, see Fig. 8(f), both of them having a dipole-like spatial
structure, as shown in Figs. 8(d) and 8(e).

b. Intermediate field. The intermediate field corresponds to the z
domain ranging between 6.24¢ and 27.25¢. This region is associated
with the most obvious vortex decay, see Fig. 4. Therefore, its under-
standing is deemed crucial for any application targeting vortex allevia-
tion. The results provided by HODMD in this region are more
intricate than in the near field having 45 unique physically relevant
modes. The amplitude, frequency, and decay associated with these
modes are shown in Fig. 9. It is observed that there are three real
modes which are also the modes with the highest amplitude a,
marked with squares in the plot. In addition, there are four pairs of
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conjugates (unstable modes) with J, > 0. The two modes with the
highest 6, have been marked with stars.

The structure of the three real modes is shown in Figs.
10(a)-10(c) in order of decreasing amplitude, together with the
dynamics in Fig. 10(d). Mode 1 is similar to the mean flow and has a
slow decay. Mode 2 has some smaller structures and it is associated
with a transient decay with a very small value at about 1/3 of the spa-
tial domain. Mode 3 appears to be a mode with an annular structure
with some loss of axisymmetric (c) and with stronger decay than
mode 1. Note that modes 1 and 3 in the intermediate field have a simi-
lar structure to modes 1 and 2 in the whole domain, compare Figs.
10(2) and 10(c) with Figs. 6(a) and 6(b). This fact is reasonable since
the intermediate region is about 3 times larger than the near or far field
regions, and therefore, it has a stronger influence on the computation
of the whole field using HODMD. Figures 10(e) and 10(f) show the
two most unstable modes together with their downstream dynamics in
Fig. 10(g). Both of them have dipole-like structure as the rest of the
unstable modes in this region (not shown).
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It is interesting to analyze how the decay of modes 1, 2, and 3 can
be directly related to the decay of the maximum of the vorticity. To
that end, we reconstruct the maximum of the dimensionless vorticity
in each plane using the expression

max{’(z) = a; max(q,)D:(z) + a, max(q,)D,(z)
+ a; max(q,)Ds(z). (17)

Since these three modes have real spectral values, (17) is equivalent to

Z a; max(q “/W“. (18)

max{"(z

Figure 11 shows the experimental data together with the reconstruc-
tion using only three modes in the intermediate field. Neglecting a
transient within approximately 3.5c¢ after the beginning of the interme-
diate field, it is observed that the agreement is quite good to capture
the mean decay. Fitting both data to linear approximations provides a
mean slope of -0.2232 in the raw experimental data and —0.2563 in
the approximation. This ability of HODMD of capturing the decay
is very relevant applications focusing on vortex alleviation.
Furthermore, the decay is obtained only from a few leading DMD
modes, giving a reduced-order model consistent with the use of
HODMD, which consists of a useful tool for low space but high
time complex data."”

c. Far field. We applied HODMD to the far field, defined as
z/c > 27.25, obtaining 12 unique physically relevant modes.

The amplitude, frequency, and decay associated with these modes
are shown in Fig. 12. The leading modes in terms of amplitude and
the two most unstable modes are marked with squares and stars,
respectively. Similar to what happens in the near field, there is only
one real mode. In addition, there are four pairs of unstable modes
some of them with very high amplitude. Note also that in this region
the most unstable modes have a 6, much bigger than in the other
regions leading to a higher amplification.
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FIG. 12. HODMD analysis to the far field: (a) amplification factor vs frequency and (b) frequencies vs amplitude. In both pictures, the modes with highest amplitude are marked
with squares: mode 1 in blue and mode 2 in red. The most unstable modes are marked with colored stars: mode 1 in green and mode 2 in black.

Phys. Fluids 34, 107116 (2022); doi: 10.1063/5.0117611 34,107116-12

© Author(s) 2022


https://scitation.org/journal/phf

Physics of Fluids ARTICLE scitation.org/journal/phf

1
0.15
4 0.15
0.1 0.1 0.5
0.05 3 0.05 0
< < o
> ) N -0.5
-0.05 -0.05 p
-0.1 -0.1
1 15
-0.15 -0.15
-2
-0.2 -0.1 0 0.1 0.2 -0.2  -0.1 0 0.1 0.2
x/c
(a)
3
3
045 0.15 ,
0.1 ) 2 0.1
: 1
0.05 1 0.05
QO Q 0 0
\ 0
> 0 > 1
-0.05 -0.05
-1 2
-0.1 . / -0.1
-0.15 2 -0.15 -3
-4
-0.2 -0.1 0 0.1 0.2 -0.2 -0.1 0 0.1 0.2
x/c z/c
(b) (e)
1.5 T T T ; 800
1 — PP W N LA B 600 |
‘|,| “n" ll L h '-| LT ll T
05 - n n || L hn n |I n 400 +
E 11 1y R NUEL 1
LI B BT B R oy
! PRI B L N PR L h 200
Q o '|I||l|"l|'I|'|I”|II""|I'||'I_ a 0
Y ll'llIIIIHII|'|||I|I|I|II
05 F 1 1 [ I TR T M I T
Ly ity LI | [ | -200
|l I. |l PR UURTILL |l I' " I| ! || 1
-1 f[=——Mode 1 by Amplitude | ¢ W Y ¢ [T -400 || Unstable Mode 1
— = Mode 2 by Amplitude = = Unstable Mode 2
1.5 : : - : -600 . . . .
28 30 32 34 36 28 30 32 34 36

z/c z/c
(c) (f)

FIG. 13. Analysis over the far field: (a) and (b) real part of the leading HODMD modes q in terms of amplitude, (c) the associated temporal dynamics, (d) and (e) real part of
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The spatial structure of the first two modes in order of amplitude with a spiral concentration near the vortex core has to be noted.
are shown in Figs. 13(a) and 13(b) along with their downstream Figures 13(d) and 13(e) display the two modes with the highest J,
dynamic (c). Again, the first mode is real, and it is associated with the together with their downstream dynamic in (f). The downstream
mean flow and has almost no decay. The second strongest mode in dynamics of the mode with the highest J, shows a huge amplification
amplitude is already an unstable mode, and it is associated with a in only a few chords. To sum up, in the far field it was possible to find
dipole-like structure. In this particular case, the shape of the dipole unstable modes with both the highest amplitude a, and the highest 6,.
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V. CONCLUSION

We have applied HODMD to (noisy) experimental data obtained
by stereoscopic (2D3C-)PIV in the turbulent wake of a wing model
with a NACA0012 airfoil. In particular, HODMD has been applied to
the vorticity field. HODMD demonstrated a great ability to extract
temporal information neglecting the experimental noise.

The results of the HODMD technique are relevant in three fun-
damental aspects. First, despite the experimental noise, HODMD can
be successfully applied either to the whole spatial domain or to differ-
ent areas of it. In particular, it was found that partitioning by zones
along the z axis yields a better identification of the most important
modes for the reduction of the trailing vortex model. Second, the
modes with larger amplitude a, are real and are associated with the
vortex decay in the base flow. Third, there are unstable modes, with
0y > 0, in all the regions but the near region where all modes are sta-
ble. The unstable modes have always been identified with a dipole
structure. To the best of our knowledge, this is the first study on insta-
bilities in a streamwise oriented wake vortex in non-turbulent initial
conditions.

The motivation of this paper was to identify the dynamic modes
governing vortex decay within 36 chords behind the wing, which per-
mit to derive reduced-order models of the trailing vortex dynamics.
Such models are of highest importance for the design of efficient con-
trol strategies. Our HODMD analysis shows that, in this downstream
range, the trailing vortex is decaying while being subject to amplified
oscillations beyond about six chords behind the wing (that is, in the
intermediate and far field). With this information, it will be feasible to
introduce active control in an experiment, thus forcing the vortex
decay more efficiently.
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APPENDIX A: ROBUSTNESS OF THE SOLUTION

In this appendix, we provide details about the robustness of
the solutions upon parameter variations.

First of all, we discuss the time resolution. Previous experi-
ments provide considerable evidence that the governing vortex
dynamics is of low frequency. For instance, vortex meandering is
typically associated with frequencies of the order of w7— ~ 1. This
is about two orders of magnitude slower than our sampling rate
07 = 2tfy 7 ~ 180,

Nevertheless, and in order to verify the temporal resolution of the
experiment for the dynamics of interest using HODMD, we introduced
a skipping parameter r > 1 to select only every rth image from the
recording. Hence, we obtain the reduced snapshot matrix
®, = [p(1), (1 +7),p(1 +2r),...], where ¢(k) € RM denotes
the spatial data of the kth measurement (M measurement points in the
plane). In particular, we have analyzed the whole time series (r=1)
and repeated the analysis with only half of the snapshots (using every
other snapshot, i, r=2). The results show that the error found in
both cases is equivalent and also that the optimal d value for both cases
is comparable in the used range of snapshots (one has twice the value
of the second one). The proof about the value of d when reducing the
number of snapshots is given in the State of Art.”’

Second, we discuss the domain size. The original domain was
recentered in the position of the maximum vorticity considering the
center point and nine grid points to each side. Thus, yielding a
19 x 19 grid with dx = 0.272 and dy = 0.211 cm. Therefore, the
computational domain extends over approximately three core radii.
However, HODMD has shown to be robust in terms of the size of
the domain. To prove that, HODMD was computed from 15 x 15
to 23 x 23 grid points without any significant change in the results.

Third, we discuss the threshold of epyp. e€pyp that was
selected relatively small in order to capture the unstable modes
since these modes could be associated with small scale fluctuations.
Note that there are mean modes with higher order amplitude in
general. Nevertheless, we have found some instabilities of high
amplitude making the conclusion of having unstable modes robust
to any reasonable variation of eppp.

Last, we discuss the influence of the position of the divisions of
the different regions of the z domain. The divisions to define the differ-
ent z domains were computed minimizing the error with linear interpo-
lation as described on Sec. I'V. However, we have varied the limits of
the different domains in a reasonable range finding similar spatial
modes with frequencies associated within a small error margin of less
than 10%, similar to other recent HODMD studies.*

APPENDIX B: MODES DATA

This appendix, in Tables TI-V includes the data of the unique
physically relevant modes in each of the z regions to complement the
figures presented in the paper. Note that the tables include only @, > 0
values but all the complex modes come in pairs of complex conjugates
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TABLE II. Whole field.

scitation.org/journal/phf

Mode Amplitude Damping factor Frequency Mode Amplitude Damping factor Frequency
no. ﬁ(w) o, e W g no. maizar) O, e r g
1 1.0000 —0.0012 0.0000 41 0.0167 —0.2036 2.9054
2 0.7729 —0.1318 0.0000 42 0.0164 —0.1027 11.1938
3 0.2655 —0.3621 1.2574 43 0.0160 —0.1896 14.5854
4 0.2262 —0.2793 0.6429 44 0.0153 —0.3372 3.4258
5 0.1910 —0.0718 0.1698 45 0.0152 —0.1338 12.0740
6 0.0910 —0.1063 1.1086 46 0.0144 —0.0325 9.9786
7 0.0788 —0.5046 12.6464 47 0.0140 —0.0782 9.1654
8 0.0682 —0.3098 6.0388 48 0.0134 —0.0454 5.4513
9 0.0660 —0.2162 10.0544 49 0.0131 —0.0119 4.4463
10 0.0607 —0.3168 6.4251 50 0.0122 —0.0386 2.0763
11 0.0565 —0.1477 15.6568 51 0.0116 —0.1742 8.8894
12 0.0550 —0.2785 15.8858 52 0.0113 0.0035 10.9985
13 0.0531 —0.1589 2.2990 53 0.0112 —0.0501 8.2744
14 0.0513 —0.0773 1.4170 54 0.0111 —0.0608 12.4417
15 0.0466 —0.1613 7.7168 55 0.0100 —0.0479 7.9954
16 0.0461 —0.3392 13.1328 56 0.0097 0.0133 15.2346
17 0.0371 —0.1012 0.8748 57 0.0090 0.0120 14.8375
18 0.0367 —0.1346 15.4829 58 0.0088 —0.1051 16.1846
19 0.0363 —0.1632 12.8592 59 0.0084 —0.1208 3.6261
20 0.0352 —0.2311 8.6181 60 0.0079 —0.0443 1.6365
21 0.0338 —0.1767 7.0670 61 0.0077 —0.0201 10.4633
22 0.0313 —0.1119 11.4251 62 0.0075 —0.0117 11.9673
23 0.0305 —0.1268 8.4721 63 0.0068 —0.0604 3.1034
24 0.0301 —0.0771 3.9969 64 0.0068 0.0244 7.3802
25 0.0288 —0.1020 13.8469 65 0.0062 —0.1201 6.7902
26 0.0285 —0.0922 2.6112 66 0.0057 —0.0324 49610
27 0.0271 —0.0309 10.1563 67 0.0056 0.0304 7.1668
28 0.0248 —0.0331 0.5531 68 0.0052 0.0089 3.2339
29 0.0248 —0.1759 16.3536 69 0.0050 0.0384 2.5759
30 0.0244 —0.2457 14.0315 70 0.0049 —0.0713 5.7591
31 0.0238 —0.0551 4.6691 71 0.0047 0.0105 6.5509
32 0.0238 —0.1527 9.5319 72 0.0043 —0.0821 5.0679
33 0.0226 —0.0488 5.2983 73 0.0042 0.0350 3.8663
34 0.0219 —0.2274 10.6359 74 0.0034 0.0454 6.2059
35 0.0198 —0.0533 9.6383 75 0.0032 0.0121 14.5047
36 0.0192 —0.0904 13.4258 76 0.0025 —0.0714 1.8938
37 0.0191 —0.1361 4.3234 77 0.0019 0.0709 7.6851
38 0.0191 —0.1028 14.2592 78 0.0018 0.0718 11.6100
39 0.0181 —0.0487 8.9788 79 0.0014 0.0895 13.0386
40 0.0179 —0.0618 6.0465 80 0.0011 0.0991 10.8601
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TABLE IIl. Near field. TABLE V. Far field.
Mode Amplitude Damping factor Frequency Mode Amplitude Damping factor Frequency
no. maza,) Or g Or g no. ﬁ(m Or g r g
1 1 —0.0015 0.0000 1 1.0000 —0.0058 0.0000
2 0.0429 —0.9680 6.1911 2 0.1405 0.0219 10.6036
3 0.0336 —0.6981 12.2144 3 0.1248 —0.0281 6.1717
4 0.0259 —0.8766 14.8737 4 0.0959 0.0808 12.9505
5 0.0205 —0.8152 3.3381 5 0.0458 —0.6065 1.0679
6 0.007 —1.1782 8.9696 6 0.0326 —0.2128 7.7308
7 0.0295 0.4912 8.7049
8 0.0236 —0.6831 2.9952
9 0.0202 —1.0762 4.2854
10 0.0162 —0.0329 15.4810
so the same mode with negative frequency exists and is associated with 11 0.0151 —0.0992 14.0935
the same spatial mode. The modes are sorted in order of amplitude and 12 0.0015 0.7720 5.2025
the unstable modes are marked with bold letters.
TABLE IV Intermediate field.
Mode Amplitude Damping factor Frequency Mode Amplitude Damping factor Frequency
no. maZEa,) o, WLX W, WL@C no. maiza,) 0, W%C Wy WL@C
1 1.0000 —0.0101 0.0000 24 0.0163 —0.1136 0.5672
2 0.6082 —0.9523 0.0000 25 0.0160 —0.1210 16.7830
3 0.3679 —0.1046 0.0000 26 0.0152 —0.0106 15.6430
4 0.0976 —0.4940 5.1412 27 0.0149 —0.0689 14.6285
5 0.0525 —0.1423 9.7615 28 0.0145 —0.1721 1.8594
6 0.0408 —0.1788 8.9078 29 0.0144 —0.0810 11.6622
7 0.0362 —0.1121 1.0956 30 0.0140 —0.0300 10.2655
8 0.0326 —0.1035 9.8954 31 0.0139 —0.0587 14.1894
9 0.0315 —0.2737 5.6492 32 0.0134 —0.1734 15.9467
10 0.0309 —0.3688 3.2078 33 0.0117 —0.0517 15.1788
11 0.0297 —1.1527 10.9055 34 0.0114 0.0072 3.3120
12 0.0281 —0.0332 1.4511 35 0.0110 —0.0012 6.4754
13 0.0258 —0.0963 16.4237 36 0.0109 —0.0079 10.8594
14 0.0256 —0.0868 3.9049 37 0.0106 0.0033 9.1846
15 0.0255 —0.3856 8.3214 38 0.0092 —0.0810 12.0172
16 0.0241 —0.0440 13.7771 39 0.0089 —0.1288 12.8696
17 0.0223 —0.1956 4.3039 40 0.0077 —0.0250 8.2263
18 0.0222 —0.0771 2.3560 41 0.0072 0.0420 5.9963
19 0.0213 —0.1352 2.8025 42 0.0071 —0.0629 12.4596
20 0.0211 —0.1021 4.7648 43 0.0068 0.0393 11.3708
21 0.0210 —0.0943 13.4202 44 0.0018 —0.0875 6.9158
22 0.0182 —0.0633 7.8579 45 0.0017 —0.1571 5.2008
23 0.0175 —0.0401 7.3852
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