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Abstract: Dense matching plays a crucial role in computer vision and remote sensing, to rapidly
provide stereo products using inexpensive hardware. Along with the development of deep learning,
the Guided Aggregation Network (GA-Net) achieves state-of-the-art performance via the proposed
Semi-Global Guided Aggregation layers and reduces the use of costly 3D convolutional layers. To
solve the problem of GA-Net requiring large GPU memory consumption, we design a pyramid
architecture to modify the model. Starting from a downsampled stereo input, the disparity is
estimated and continuously refined through the pyramid levels. Thus, the disparity search is only
applied for a small size of stereo pair and then confined within a short residual range for minor
correction, leading to highly reduced memory usage and runtime. Tests on close-range, aerial, and
satellite data demonstrate that the proposed algorithm achieves significantly higher efficiency (around
eight times faster consuming only 20–40% GPU memory) and comparable results with GA-Net on
remote sensing data. Thanks to this coarse-to-fine estimation, we successfully process remote sensing
datasets with very large disparity ranges, which could not be processed with GA-Net due to GPU
memory limitations.

Keywords: dense matching; deep learning; convolutional neural networks; end-to-end;
pyramid architecture

1. Introduction

Over the years, dense stereo matching has been studied persistently in the field of
computer vision, remote sensing, and photogrammetry, as the corresponding applications
keep promoting the development of self-driving, urban digitization, topographic survey,
forest management, etc. [1–4]. Given a pair of images with the camera parameters and the
relative distance (baseline) in between, the object depth is computed which extends 2D im-
age information to 3D knowledge of the scene [5]. In stereo matching, the depth is obtained
in the form of disparity which presents the (horizontal) displacement of two corresponding
pixels from each of the (rectified) stereo pair, respectively. A disparity map allows each pixel
to be triangulated to its location in the 3D space. Stereo vision methods define two terms
for locating correspondences, the data term and smoothness term. The former searches
pixels with similar intensity as potential matches, while the latter requires close disparity
predictions between neighboring points for spatial smoothness. Semi-Global Matching
(SGM) is a representative method in stereo matching [6]. The algorithm acquires dense
correspondences via a simple pixel-wise cost comparison under a disparity searching range,
and guarantees the (piece-wise) smoothness of the reconstructed surface simultaneously.
For each target pixel, the previous point along a certain path is also considered to avoid
neighboring disparity inconsistency. By repeatedly applying the strategy through multiple
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(normally 8 or 16) symmetric paths, 2D regularization is performed while keeping the
algorithm computationally feasible.

As more high-quality, high-resolution data become available, the computational cost
of dense matching rises exponentially, especially in the field of remote sensing. To limit
the memory usage and runtime, Rothermel [7] proposed tSGM. Images are firstly down-
sampled to several scales constituting a pyramid structure, in which the dense matching is
applied from the lowest resolution to the highest, level by level. On the pyramid top, the
disparity range is downscaled accordingly together with the image size, leading to reduced
workload. The matching result is then passed to the next higher resolution level as an initial
prediction, from which a small disparity buffer is set as a new search range to locally refine
the estimation. The coarse-to-fine scheme thus greatly reduces the demand for memory
and runtime. Moreover, the influence of ambiguous disparity candidates is limited. Addi-
tionally, this strategy enables the use of deep learning-based algorithms, which typically
only support small search ranges due to memory limits on datasets with large disparity
ranges of sometime several thousand pixels, as typically occurring in extreme mountainous
regions, such as the Himalayas.

Recently, Zhang et al. [8] introduced their GA-Net, which approximates SGM as a
differentiable Semi-Global Guided Aggregation (SGA) layer, to construct an end-to-end
neural network for stereo matching. All the user-defined parameters in SGM can be learned;
thus, the smoothness requirement is satisfied in a smarter way depending on the specific
scene situation. With SGA and only a few 3D convolutional layers to regularize the cost
volume, GA-Net is more efficient than other networks, e.g., GC-Net [9], PSMNet [10], etc.,
and achieves state-of-the-art performance. For processing high-resolution remote sensing
data, however, the training and prediction are still memory- and time-consuming (days
are needed for training on patches of 384 × 576, with [0, 192] as the disparity search range,
consuming around 15 GB GPU memory for each batch).

Inspired by tSGM and some corresponding pyramid networks [11–13], we adjust GA-
Net to a pyramid architecture, and propose our GA-Net-Pyramid. The disparity is initially
estimated for the full depth range at the coarsest resolution, then refined through the
pyramid. Thus, we enhance the efficiency of the algorithm significantly, with moderately
decreased accuracy especially for remote sensing data. To summarize our contributions:

• Firstly, we propose a hierarchical strategy for GA-Net stereo matching to estimate
the depth from coarse to fine, for which two pyramid models are introduced with
explicit or implicit image downsampling, respectively. A trainable Spatial Propagation
Network (SPN) [14] is tested as a post-processing step to sharpen the depth boundaries.
It is shown that the effect from SPN varies depending on the target data domain.

• Secondly, the proposed methods are tested on cross-domain datasets, from close-range
benchmarks, Scene Flow [15] and KITTI-2012 [16], to large-scale aerial/satellite stereo
data. We prove that our algorithm is robust and consistently more efficient in all
cases. We also build a stereo dataset, consisting of simultaneously acquired 30-cm
satellite and 6-cm aerial imagery which are co-registered to sub-pixel precision. This
is particularly important for remote sensing scenarios, considering that the currently
published data, such as [17], cannot provide reliable ground truth disparity maps, due
to different sensing modalities or scene changes caused by temporal inconsistency.

• At last, we successfully solve a satellite stereo task on stereo pairs with very large
disparity ranges, which cannot be handled by the baseline model GA-Net.

The rest of the paper is organized as follows: In Section 2, traditional stereo methods,
SGM and its variants are recapped, which enlighten the main idea of GA-Net and our
GA-Net-Pyramid. We also describe representative learning-based algorithms, from hybrid
approaches replacing certain traditional components with deep learning-based ones, to full
end-to-end stereo networks. Afterwards, we state the principle of our method, GA-Net-
Pyramid, with a review of its prototype GA-Net in Section 3. In Section 4, we present a
detailed comparison between GA-Net and our GA-Net-Pyramid on various datasets. At
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last, we discuss the strengths and limitations of the method in Section 5, and conclude the
paper in Section 6.

2. Related Work
2.1. Traditional Stereo Methods

Conventional stereo matching algorithms define two terms to find dense correspon-
dences from a stereo pair, data term and smoothness term [5]. The data term measures
the photo consistency between potentially matched pixels through a pre-defined dispar-
ity range. The smoothness term guarantees a smooth reconstructed surface by limiting
neighboring points’ disparity differences. SGM well balanced the two terms via a scanline
optimization strategy, which was widely applied thanks to the good compromise between
accuracy and efficiency [6,18,19]. The strategy was further improved with a dynamic
searching range for correspondences through a pyramid structure, leading to tSGM which
consumed less memory and runtime [7]. As More Global Matching (MGM) was proposed,
the support from neighboring pixels was increased without extra overhead, by additionally
considering the previous scanline visited already [19,20]. Compared with other traditional
stereo methods [21–25], which may solely rely on the cost function and winner-takes-all
(WTA) strategy resulting in limited accuracy, or struggle to find the minimum global en-
ergy under certain runtime or memory budget, the SGM variants achieve robust stereo
estimation consuming reasonable computational resource.

2.2. Learning-Assisted Stereo Methods
2.2.1. Integration of Conventional Stereo Methods and Machine Learning

Recent advances in machine/deep learning and convolutional neural networks (CNNs)
enable the learning of data representation [26], and promote the development of stereo
matching with a series of state-of-the-art algorithms. Deep learning could be exploited to
extract features from images, in order to better measure the similarity for matching cost
calculation. Zbontar and LeCun [27] used a Siamese network [28] to extract features from
two patches symmetrically, after which a cost volume was constructed and regularized by
SGM. The idea was adjusted by Luo et al. [29] based on multi-class classification, achieving
faster estimation. Regarding the cost aggregation and disparity computation, Seki and
Pollefeys [30] proposed their SGM-Net to learn the penalty terms for conflicting disparity
predictions from neighboring points. Michael et al. [31] considered a specific weight for
each scanline in SGM to achieve a weighted 2D scanline optimization, since varying perfor-
mance could be obtained via each scanline depending on the scene structure. Poggi and
Mattoccia [32] constructed a feature vector for each pixel according to the disparity estima-
tion via a single scanline. The feature represented the statistical dispersion of surrounding
disparities, which could be analyzed by a random forest to predict a confidence measure of
the scanline for a weighted scanline summation. Similar work was accomplished in [33,34].
The disparity predicted by each scanline and the corresponding costs were fed to a random
forest, so that the better performed scanlines were adaptively selected. The corresponding
disparity estimation could serve as a reference to guide the further stereo prediction.

2.2.2. End-to-End Stereo Networks

The above methods mainly integrated deep learning with traditional stereo matching
techniques for better performance, which were then followed by encoder-decoder struc-
tures for depth prediction as an end-to-end system. Dosovitskiy et al. [35] firstly presented
a network, FlowNet, to estimate optical flow directly from a stereo pair. They used a correla-
tion layer to measure the similarity between corresponding patches. Mayer et al. [15] then
designed a large synthetic dataset, Scene Flow, allowing an initial training of deep neural
networks before adjusting to specific scenarios. They also proposed DispNet and DispNet-
Corr, as one of the first end-to-end stereo matching networks. Kendall et al. [9] proposed
GC-Net, which applied 3D convolutions to regularize the cost volume, with both geometry
and context information incorporated. Chang and Chen [10] introduced a pyramid pooling
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module in their PSMNet to aggregate multi-scale features. Thus, the global context and
local details were simultaneously contained within the cost volume. Guo et al. [36] im-
proved PSMNet by proposing the group-wise correlation stereo network (GwcNet). They
constructed a group-wise correlation-based cost volume which required less parameters for
the cost aggregation, achieving similar performance as PSMNet. Zhu et al. [37] proposed a
multi-scale pyramid aggregation module to handle the cost volume, leading to MPANet
with significantly better disparity estimation for foreground objects. Xu and Zhang [38]
proposed AAnet, utilizing intra- and cross-scale cost aggregation, which delivered better
results for depth discontinuities and large textureless area. Wang et al. [39] applied a
recurrent unit to iteratively refine the stereo estimation, and designed a pyramid voting
module to produce a semi-dense disparity map for self-supervision. Confident disparity
prediction was achieved via seeking consistent estimation across scales. Inspired by SGM,
Zhang et al. [8] proposed the GA-Net using so-called SGA layer for cost aggregation,
to replace 3D convolution which was computationally expensive. They achieved great
performance on multiple benchmark datasets, which coincided with the idea from [40]
that classical stereo matching methods could serve as a robust guideline to develop deep
learning-based algorithms, rather than designing a pure learning architecture. Semantic
information could also be involved for stereo matching problems [41,42] as the object
boundaries mostly corresponded to the depth discontinuities. The two tasks supported
each other leading to a win-win situation. Other works included cost distribution study,
disparity refinement, cross-domain prediction, stereo neural architecture search, etc., which
boosted the state-of-the-art constantly [40,43–47].

Recently, the pyramid architecture was tested in a learning-based stereo framework,
since the efficiency could be largely enhanced via a coarse-to-fine estimation [11–13,48,49].
Regarding the architecture in [11–13] as a baseline model, the stereo correspondences were
firstly located on the pyramid top using downsampled features. Then, the disparity was
iteratively refined through the network towards the pyramid bottom in full resolution,
which considerably reduced the computational effort and GPU memory consumption.
Chang et al. [48] benefited from the architecture to achieve real-time performance, with an
attention-aware feature aggregation module for better representative ability of the feature.
Compared with these methods, our contributions are different. At first, we additionally test
our model on airborne and spaceborne images. We fill the application gap of the previous
research, considering the very limited test cases applying newly proposed computer vision
algorithms in the field of remote sensing. The proposed model is proven effective to process
stereo imagery with large disparity range (thousand pixels) over mountain areas. It should
be noted that our model acquires no supervision in training phase on stereo data with large
baselines, with no need to normalize/denormalize the disparity measurement in test phase
as [50]. This is, to the best of our knowledge, a novel showcase of adapting well-performed
computer vision models to deliver high-quality geographical products in extreme regions.
In addition, our baseline is the up-to-date model GA-Net-deep from [8], rather than the
shallower and less accurate version GA-Net-11 used in [49].

3. Methodology

In this section, we recap GA-Net by presenting the proposed SGA and LGA (Local
Guided Aggregation) layers, which approximate SGM for cost regularization and protect
thin structures, respectively. SGM applies the scanline optimization strategy to efficiently
locate stereo correspondences and avoids the streaking problem. For a detailed description
of SGM, we encourage readers to follow the papers [6,51]. Afterwards, we describe our
pyramidal extension of GA-Net, GA-Net-Pyramid. Two architectures are proposed. The
first model explicitly downsamples the input stereo pair according to the pyramid level,
and simply applies GA-Net on each level to regress disparity. The second model applies
a different feature extraction strategy via a U-Net [52] structure to generate multi-scale
features implicitly.
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3.1. GA-Net

In traditional SGM, the scanline optimization technique [53] is applied to satisfy the
spatial smoothness, by limiting the depth difference between neighboring pixels. To avoid
the streaking problem, a pixel is accessed through multiple scanlines simultaneously along
several canonical directions, typically 8 or 16, to consider the disparity estimation from its
neighbor. Along a certain scanline traversing in direction r, the cost for a pixel located at
the image position p assuming d as the disparity, is calculated as:

Lr(p, d) = C(p, d) + min( Lr(p− r, d), Lr(p− r, d− 1) + P1,
Lr(p− r, d + 1) + P1, mini Lr(p− r, i) + P2 ).

(1)

In the above equation, the photo inconsistency is measured by C(p, d), while P1 and
P2 are defined for penalizing the prediction when the previous neighboring point p − r
prefers a different disparity value. In practice, however, two problems exist. Firstly, the
users need expertise to determine appropriate P1 and P2 to punish neighboring disparity
inconsistency. Tuning of P1 and P2 additionally depends on scene structure and the used
similarity measure. Moreover, the values of P1 and P2 are fixed throughout the stereo
processing or simply adapted according to, e.g., pixel gradients, which are not optimal for
all the pixels within the image, especially under a varied scene structure, e.g., from plains
to mountains.

GA-Net addresses these issues by introducing the SGA layer, a differentiable approxi-
mation of Equation (1) that is suitable for an end-to-end trainable network. Specifically, the
master epipolar image provides guiding information through a sub-network to better pe-
nalize depth discontinuity, and enable a self-adaptive parameter setting. Thus, the penalty
terms for conflicting neighboring disparities are determined according to the pixel location
and scanline direction, which is more reasonable for smoothness regularization. Via the
guidance sub-network, a weight is supplied for each term in Equation (1) to simulate the
scanline optimization in SGM, leading to the following equation:

Lr(p, d) = C(p, d) + sum( w1(p, r) · Lr(p− r, d),
w2(p, r) · Lr(p− r, d− 1), w3(p, r) · Lr(p− r, d + 1),

w4(p, r) ·maxi Lr(p− r, i) ).
(2)

Compared with Equation (1), the punishment from P1 and P2 is replaced by the relative
importance (weight) wi of each term, which is predicted separately for each pixel along a
directed scanline. Moreover, there are two differences with SGM, one of which is that the
first/external minimum operation is substituted by a weighted sum. This can be regarded
as a replacement from a max-pooling layer to a convolution with strides, which is proven
effective without accuracy loss [54]. In addition, the second/internal minimum search is
changed to a maximum, which embodies the learning target to maximize the probability
at the ground truth disparity rather than minimizing the cost. To avoid the exploding
accumulation of Lr(p, d) along the scanline, C(p, d) is also included within the weighted
summation, with the sum of all the weights equal to 1. Thus, SGA is finally formulated as:

Lr(p, d) = sum( w0(p, r) · C(p, d), w1(p, r) · Lr(p− r, d),
w2(p, r) · Lr(p− r, d− 1), w3(p, r) · Lr(p− r, d + 1),

w4(p, r) ·maxi Lr(p− r, i) ,

∑i=0,1,2,3,4 wi(p, r) = 1.

(3)

In SGM, the cost Lr(p, d) from each scanline is simply summed up to approximate
2D smoothness, which was demonstrated to be not reasonable for incurring inferior
scanlines [33,34]. Accordingly, GA-Net takes the maximum as L(p, d) = maxr Lr(p, d)
to keep the best information.
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The guidance sub-network also provides weights for another layer, LGA, to further
filter the cost volume as below:

L∗(p, d) = sum
(

∑q∈Np w0(p, q) · L(q, d),

∑q∈Np w1(p, q) · L(q, d− 1),

∑q∈Np w2(p, q) · L(q, d + 1)
)

,

∑q∈Np w0(p, q) + w1(p, q) + w2(p, q) = 1,

(4)

from which a 3D neighborhood (in both spatial and disparity dimensions) centered around
each pixel within the cost volume is utilized for a weighted average to protect thin structures.
Afterwards as suggested by [9], a softmax operation σ(·) is applied to the filtered cost
volume in order to acquire a normalized probability for each disparity candidate (from
[0, Dmax]) and regress the final disparity value d̂ as:

d̂ =
Dmax

∑
d=0

d× σ(−L∗d). (5)

3.2. GA-Net-Pyramid with Explicit Downsampling

GA-Net adapts the scanline optimization scheme to an end-to-end stereo matching
system. Inspired by SGM, the disparity of each pixel can be estimated with the support
from all the previous neighbors along multiple paths, instead of a pure convolution-based
encoder-decoder to regularize the cost volume. Furthermore, the proposed SGA and LGA
layers are computationally more efficient than 3D convolutions, which are used by most
state-of-the-art methods [9,10]. However it can still take days to train a well performing
model, when the computational power is limited. In our case, for example, the training
on the Scene Flow dataset (patch size 384 × 576), which is normally used by most stereo
matching networks for the initial learning phase, takes around 12 days to finish 8 epochs
on two Quadro P6000 GPU cards. Hence, the employment of the network is hampered. In
the field of remote sensing, it can be imagined that GA-Net would struggle to process high-
resolution aerial or satellite stereo data, especially for wide baseline stereo pairs requiring
larger disparity search ranges.

Rothermel [7] proposed an improved SGM, tSGM, which constructed a pyramid
architecture to search correspondences between the stereo pair from coarse to fine. Based
on this strategy, comparable quality was achieved with far less memory and runtime
consumed. This inspires us to restructure GA-Net with a pyramid architecture as well,
to regress the depth from coarse to fine. Figure 1 presents the schematic overview of
our GA-Net-Pyramid. Three pyramid levels are depicted which could be extended. We
use the same stacked hourglass module (a double U-Net structure) as GA-Net, which
is essentially a Siamese network [28] for symmetric feature extraction from the left and
right image, respectively. The input of the feature extraction module, however, is a stereo
pair downsampled in accordance with the pyramid level. Afterwards, the cost volume is
generated and then processed by SGA and LGA for disparity regression, in order to guide
the subsequent level for the disparity refinement until the original resolution is recovered.

3.2.1. Pyramid Top

We start from the pyramid top with the original image downscaled by a factor of
4 along both row and column directions in our implementation (termed as ‘Scale 1/4’ in
Figure 1). Then, the feature is extracted to construct a 4D cost volume by concatenat-
ing the left and right feature maps along the channel dimension, with a horizontal shift
indicated by a disparity candidate within the search range. Assuming the cost volume
on the original full-resolution image is of size H ×W × Dmax × 2C, for the image height,
width, the maximum disparity, and twice the channel number of the generated feature
maps, respectively, our cost volume on the pyramid top reaches a highly reduced dimen-
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sion as H/4×W/4× Dmax/4× 2C. Thus, the memory consumption and computational
complexity are decreased by a factor of 1/64.

L-Image

Downsample

R-Image

Scale 1

Scale
1/4

Scale 1/2

Feature Extraction Block Cost Volume

...

SGA, LGA

Disp
Map

Upsample

Disp Map
Scale 1/2

...

Residual
Disp Map

Disp Map
Scale 1

Warped
R-Feature

L-Feature

Add

Residual
Disp Map

...

Add

Output

Warped 
R-Feature

L-Feature

Pyramid Top

SPN

Figure 1. GA-Net-Pyramid with explicit downsampling. The input stereo pair is downsampled
explicitly according to the resolution required by each pyramid level. At the pyramid top, the stereo
correspondences are located within an absolute disparity range in low resolution. The following
pyramid levels perform disparity refinement within a pre-defined residual disparity range until
the original resolution is recovered at the pyramid bottom. SPN indicates the Spatial Propagation
Network which is an optional module for depth boundary enhancement, as described in Section 3.3.

Afterwards, the cost volume enters the cost aggregation block containing SGA and
LGA layers, for which the guiding information is obtained from the downscaled master
epipolar image. At last, the filtered cost is used for the following disparity regression as
GA-Net. Thus, a disparity map of the downsampled image ‘Scale 1/4’ is obtained for the
pyramid top. From here, the depth of the scene is already roughly estimated and the large-
scale context is perceived, which provides a good guidance for the following processing.

3.2.2. The Other Pyramid Levels

Based on the prediction of the pyramid top, the other levels thus only need to locally
refine the disparity values. Therefore, the disparity map from ‘Scale 1/4’ level is upsampled
by a factor of 2 via bilinear interpolation, to match the resolution of ‘Scale 1/2’ level as an
initial estimation dini. Feature maps are computed for the left and right image of ‘Scale 1/2’
level as Fl and Fr, respectively. Assuming dini is accurate enough, we can warp Fr according
to dini which would perfectly match Fl . However, considering the details lost through
downsampling on the pyramid top and the corresponding matching error, a small shift
would exist between the left and the warped right feature, which is named disparity
residual and should be additionally considered for a perfect match. Accordingly, a cost
volume CV is built in size of H/2×W/2× (2disp_resi + 1)× 2C for ‘Scale 1/2’ level. Here,
disp_resi is a pre-defined threshold, leading to a range [dini − disp_resi, dini + disp_resi]
around the initial disparity estimation dini for refinement. The cost volume is thus formed
by concatenation of Fl and Fr as:

CV(x, y, d) = Fl(x, y)⊕ Fr(x + (dini(x, y) + d), y), d ∈ [−disp_resi,+disp_resi]. (6)
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In Equation (6), x and y are the indices of a pixel along the width and height dimension.
⊕ represents the concatenation. Then, the cost volume is regularized by SGA and LGA,
and a residual disparity map dresi is calculated via multiplying each residual candidate
to the corresponding probability and summing them up. The disparity estimation for the
current level is obtained by adding the residual and the previously upscaled disparity map
as: dresi + dini.

The stereo pair on ‘Scale 1/2’ level is twice larger in height and width; however,
the search for correspondences is restricted within a narrow range. Hence, only a small
overhead is accumulated. We apply the same procedure for the remaining pyramid level,
to continuously improve the disparity estimation until the original resolution is reached.

Each pyramid level only requires the input epipolar imagery at its level and the
disparity image of the previous level. For an efficient and memory saving implementation
during disparity estimation, computation of the levels could be decoupled to significantly
lower the memory footprint while allowing large input image sizes. Compared to GA-Net,
it is thus feasible to significantly increase both image size and disparity range, as only the
pyramid top needs to process the full disparity search range, for example, processing of
images with a four times larger width, height, and disparity range is possible without
additional GPU memory requirements in this case. Note that the evaluation in Section 4 is
recorded without adding these optimizations.

3.2.3. Loss

We train the model using the same smooth L1 loss function as GA-Net in [8]. However,
our pyramid architecture predicts more than one disparity map, which should all be
considered to allow for intermediate supervision. Hence, a weight is assigned to each
pyramid level for a weighted loss summation as:

L =
N

∑
i=1

l(|d̂i − d̄|) ·ωi, (7)

in which d̂i denotes the disparity predicted by the pyramid level i (starting from 1 at the
pyramid top), and d̄ is the corresponding ground truth. l computes the smooth L1 loss from
the disparity difference. A weight ωi is assigned to the level i for a weighted summation
through all N pyramid levels. The disparity map from each level is upscaled to the original
full resolution before computing the loss. As the estimation is improved from the pyramid
top to the bottom, the corresponding weight is also increased (details for parameter setting
are in Section 4).

3.3. GA-Net-Pyramid with Implicit Downsampling

The paper focuses on presenting a more efficient model based on the structure of
GA-Net, in order to achieve robust estimation on datasets from multiple domains. Thus, we
design different feature extractors and observe the corresponding performance, so that an
appropriate model could be used to handle specific data types. The architecture in Figure 1
simply applies GA-Net in a pyramidal manner, which takes the linearly downsampled
stereo pair as input to extract features for further processing. Therefore, we propose another
architecture to implicitly learn the downsampled feature, as displayed Figure 2, such that
both explicit and implicit image downsampling strategies are tested.

Instead of downsampling the input stereo pair level by level, we only use the stacked
hourglass once to extract the feature from the original (full-resolution) images for feeding
all the pyramid levels. The input images are firstly downsampled via convolutions with
stride two, and then deconvolved to gradually recover the resolution, in which a skip
connection is exerted between corresponding feature maps of the encoder and decoder at
the same resolution. Before reaching the original size, we directly extract the intermediate
feature maps from the decoder to feed each level, as long as the expected resolution is
acquired. To differentiate the GA-Net-Pyramid with explicit and implicit downsampling,
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in the following sections we name the two variants as GA-Net-PyramidED and GA-Net-
PyramidID, respectively.
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Figure 2. GA-Net-Pyramid with implicit downsampling. The feature extractor is applied on the
stereo pair in original resolution, with the intermediate feature maps from its decoder to feed each
pyramid level according to the expected resolution. SPN indicates the Spatial Propagation Network
which is an optional module for depth boundary enhancement, as described in Section 3.3.

As the disparity is estimated and refined through the pyramid, we add a Spatial
Propagation Network (SPN) as a post-processing step to explore its influence on the
matching results. SPN is capable of sharpening the object boundaries, by learning from
the source image (in our case, the master epipolar image) in a data-driven mode, which
is appropriate as a further refinement in our pyramid architecture, especially for close-
range data with rich details. Hence, four models are finally proposed including GA-Net-
PyramidED and GA-Net-PyramidID, respectively, with or without SPN added at the end
of the pyramid bottom.

4. Experiments

In this section, we compare our GA-Net-Pyramid with GA-Net through a series of
experiments on close-range, including Scene Flow and KITTI-2012, aerial, and satellite
stereo datasets. For a fair comparison, the implementation details are rigidly controlled
between the two algorithms. Regarding the training, we use the same patch size with a
pre-defined disparity search range, to train the networks for certain epochs, based on Adam
optimization strategy [55]. Each stereo pair is normalized, according to the mean and
standard deviation of the pixel values from each channel, before feeding to the network.
SGA is applied along four directions (horizontally and vertically) for both GA-Net-Pyramid
and GA-Net.

For GA-Net-Pyramid specifically, the number of pyramid levels is 3 and the search
range for the disparity residual after the pyramid top is set as [−6, +6] to refine the matching
results. Details about the pyramid setting are discussed in Section 4.2.3. We apply 3 SGA
and 2 LGA layers to regularize the cost volume on our pyramid top, which is the same as
GA-Net. With regard to the other pyramid levels, only 1 SGA layer (with 2 LGA layers)
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is utilized due to the small disparity search range. The weight is set as 0.25, 0.5, and 1,
to the pyramid level 1 (top), 2 and 3 (bottom), respectively, to calculate the final loss in
Equation (7). The implementation of the methods is based on Python and Pytorch.

4.1. Experiments on Close-Range Stereo Data

We firstly test the networks on Scene Flow and KITTI-2012 datasets, in which the scene
structure is relatively complicated with rich details. Referring to most learning-based dense
matching algorithms, we train the models on Scene Flow data from scratch, and utilize real
data, KITTI-2012 in our case, for finetuning. Both the pre-trained and finetuned models are
tested on the corresponding dataset. Regarding the former, the whole Scene Flow training
dataset is used for training (8 epochs), while only 1000 stereo pairs from its validation set
are selected for test to save time. On the other hand, 170 images from KITTI-2012’s training
data are exploited to finetune the models for 800 epochs, with the remaining 24 images for
test. All the data selection is random, so that a fair evaluation is achieved. In training, we
use the same patch size (384 × 576) with the maximum disparity set to 192. The networks
are trained with a batch size of two on two Quadro P6000 GPU cards.

4.1.1. Close-Range Stereo Data

Scene Flow is a synthetic dataset via randomly combining human-made objects with
backgrounds from real images, which is used by most stereo networks for initial training.
Afterwards, only a small dataset from a specific field is sufficient to adjust the model into
practical scenarios. The dataset contains three subsets, namely FlyingThings3D, Monkaa
and Driving, including around 35,000 images for training and 4370 images for validation.
KITTI-2012 is a stereo dataset with a focus on outdoor street views, which is normally
applied in the field of autonomous driving. The dataset includes 194 training and 195 test
stereo pairs, with ground truth disparity maps based on LiDAR measurements provided
or withheld.

4.1.2. Visualization and Evaluation on Close-Range Stereo Data

The pre-trained networks are firstly tested on the Scene Flow dataset. The quantitative
and visual comparison between our pyramid models and GA-Net is shown in Table 1 and
Figure 3. As indicated by the table, we calculate the percentage of pixels, for which the
estimation error is smaller than 1, 2, and 3 pixels, respectively, and the end point error
(EPE) for accuracy evaluation. Regarding the efficiency, the runtime and GPU memory
consumption are reported. For all the experiments in this paper, the runtime in the test
period is counted for processing the whole test dataset. Specifically, we generate a binary
file to save the disparity value of each correspondence, and a png (Portable Network
Graphics) file to visualize the result. In the tables, M denotes megabytes for the GPU
memory consumed by each network, while the time spent in training and test is expressed
in hours (h) or seconds (s). Better performance is highlighted in bold.

Table 1. Accuracy and efficiency comparison between GA-Net-Pyramid, including GA-Net-
PyramidED and GA-Net-PyramidID, and GA-Net on Scene Flow data.

Accuracy Training Efficiency Test Efficiency

1 pix 2 pix 3 pix EPE Memory Runtime Memory Runtime

GA-Net-PyramidED 81.77% 88.59% 91.42% 1.61 7052 M 38.25h 2761 M 0.39 h
GA-Net-PyramidED+SPN 83.04% 89.97% 92.67% 1.44 7140 M 40.62 h 2761 M 0.39 h

GA-Net-PyramidID 81.26% 89.10% 92.05% 1.49 7264 M 30.07 h 3501 M 0.40 h
GA-Net-PyramidID+SPN 84.27% 91.09% 93.64% 1.23 7422 M 31.69 h 3501 M 0.39 h

GA-Net 91.41% 95.35% 96.60% 0.86 30,464 M 280.53 h 6983 M 2.10 h

Bold font means the best accuracy/efficiency in each group.

From the results, it is found that GA-Net outperforms the two pyramid models in
accuracy; however, the latter consume much less memory and runtime in both training
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and test periods. In case of the close-range data, the objects are captured under an ideal
viewing condition, thus very high resolution is achieved with plenty of details and tex-
ture information contained. Moreover, as Scene Flow is a synthetic dataset, the random
arrangement of man-made objects makes the scene non-natural, non-logical, and highly
complicated with many occlusions. Hence, our GA-Net-Pyramid is surpassed by GA-Net,
considering the information loss due to a sequence of downsampling-upsampling through
the pyramid levels. On the other hand, our hierarchical strategy highly simplifies the
problem complexity, consuming far less computational source but at a much higher speed.
Between the two pyramid models, GA-Net-PyramidED and GA-Net-PyramidID, similar
accuracy is obtained. Regarding the SPN processing, a positive effect is achieved for both
pyramid structures, while GA-Net-PyramidID could be improved by a larger extent. The
experiments of this paper are implemented on a server open to multiple users; therefore, the
runtime of each model could be slightly influenced by unknown processes. We recommend
referring to the training time to evaluate the speed of the algorithms, especially for each
pyramid model with similar efficiency, considering the relatively long training process com-
pared with the test period. GA-Net-PyramidID is faster than GA-Net-PyramidED, since
the feature extraction in the former case is applied only once on the full-resolution stereo
pair, rather than repeatedly learning from the corresponding downsampled images level
by level. In case of the GPU memory consumption, GA-Net-PyramidED performs better.
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Figure 3. Visual comparison on Scene Flow data. Two test cases are displayed in subfigure (a,b). In
each subfigure, the disparity maps from the ground truth, GA-Net-PyramidID+SPN and GA-Net are
displayed from left to right in the first row. The second row provides the master epipolar image and
the corresponding error map of each model. Regions where the proposed algorithm outperforms
GA-Net are marked with red arrows.

As for the figures in the paper, only the best performed pyramid model is visually
compared with GA-Net, e.g., GA-Net-PyramidID+SPN on Scene Flow dataset. Accordingly,
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we display the master epipolar image, where the guidance information is acquired for SGA
and LGA, the ground truth, and the corresponding results from each algorithm. The color
bar at the end shows the disparity and error changes. In Figure 3, it is found that GA-Net
obtains a generally better disparity result than GA-Net-PyramidID+SPN, with clear edges
and more details included. However, our pyramid model still produces a disparity map in
good quality, even including superior depth results in certain regions. We discover that
GA-Net-PyramidID+SPN is capable of better reconstructing hollow-shaped objects, e.g.,
the barrel and the shelf as indicated by the red arrows. The finding is also supported by the
following experiments on the KITTI dataset.

The pre-trained networks are finetuned on part of KITTI-2012’s training data and tested
on the remaining stereo pairs. In Table 2 and Figure 4, the corresponding quantitative
and qualitative results are provided. Regarding the training efficiency, only the time spent
for finetuning is recorded. Similar to the previous experiment, GA-Net acquires the best
accuracy, however, the pyramid models are faster and more memory friendly. SPN still
improves the results of all the pyramid models, among which GA-Net-PyramidID+SPN
achieves the highest accuracy. It should be noted that our GA-Net-Pyramid performs better
for real data, leading to a further reduced accuracy gap compared with GA-Net. From the
visual inspection, the depth result of each algorithm is barely distinguishable. Moreover as
mentioned before, we obtain a better depth prediction for hollow-shaped structures (see
the regions indicated by the red arrows). KITTI-2012 does not provide ground truth for the
whole scene; nevertheless, according to the image content, it is obvious that our pyramid
architecture gives a clean and more reasonable depth estimation.

Table 2. Accuracy and efficiency comparison between GA-Net-Pyramid, including GA-Net-
PyramidED and GA-Net-PyramidID, and GA-Net on KITTI-2012 data.

Accuracy Training Efficiency Test Efficiency

1 pix 2 pix 3 pix EPE Memory Runtime Memory Runtime

GA-Net-PyramidED 86.54% 93.57% 95.76% 0.89 7140 M 17.81 h 2641 M 28.07 s
GA-Net-PyramidED+SPN 86.56% 93.53% 95.66% 0.88 7242 M 18.49 h 2641 M 29.29 s

GA-Net-PyramidID 83.20% 92.68% 95.12% 1.10 7546 M 13.77 h 3379 M 27.02 s
GA-Net-PyramidID+SPN 86.88% 94.13% 96.18% 0.83 7680 M 15.02 h 3379 M 29.89 s

GA-Net 91.55% 96.64% 97.65% 0.60 30,514 M 135.47h 6565 M 165.72 s

Bold font means the best accuracy/efficiency in each group.

4.2. Experiments on Aerial Stereo Data

In this section, the networks are tested using our aerial data. The airborne and satellite
(discussed in the following section) stereo processing is the target domain of this research,
since the corresponding data are usually large in size and own a much wider stereo baseline,
which presents a higher demand on the algorithm’s efficiency. The networks are trained
on synthetic remote sensing data (854 stereo pairs) from scratch for 200 epochs, then
finetuned on a subset (200 stereo pairs) of our aerial data for 100 epochs (data details are
in Section 4.2.1). We randomly select another 20 aerial stereo pairs, possessing no overlap
with the finetuning data, to test the trained models. Image patches in size of 384 × 576
are randomly cropped for training, and the test images are 1152 × 1152. The data may
contain negative or very large disparity values; hence, we exclude the stereo pairs with
large baselines in order to keep the disparity range processible by both GA-Net-Pyramid
and GA-Net. Accordingly, the disparity range is also set as [0, 192]. The models are trained
with a batch size of two on two Quadro P6000 GPU cards.

In addition, SGM is utilized as a baseline model in our aerial and satellite experiments,
since the algorithm is widely used in the field of remote sensing for dense reconstruction.
We exploit Census [56] to calculate the matching cost with a 7 × 7 window. The penalty
terms P1 and P2 (see Equation (1)) are set to 19 and 33, respectively. The cost from 8 sym-
metric scanlines along horizontal, vertical, and diagonal directions are accumulated to
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compute the disparity based on the WTA strategy, which is then further refined using a
left-right consistency check.
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Figure 4. Visual comparison on KITTI-2012 data. Two test cases are displayed in subfigure (a,b). In
each subfigure, the disparity maps from the ground truth, GA-Net-PyramidID+SPN and GA-Net are
displayed from left to right in the first row. The second row provides the master epipolar image and
the corresponding error map of each model. Regions where the proposed algorithm outperforms
GA-Net are marked with red arrows.

4.2.1. Aerial Stereo Data

Nowadays, most state-of-the-art dense matching algorithms are data-driven deep
neural networks [8–10,12,41–43]. The high performance usually originates from a thorough
training, for which a synthetic dataset is preferred for an initial learning phase, to avoid
time-consuming data collection and annotation. In the field of remote sensing, neverthe-
less, a well-annotated stereo dataset is scarce. For example, the aerial image matching
benchmark [57,58] provides reference data using LiDAR measurement. However, each
algorithm is finally evaluated by the median of the DSM estimation from all the evaluated
approaches, due to the limited accuracy of the reference data. Therefore, we propose a
synthetic dataset, which is designed specifically for airborne and satellite stereo tasks. The
dataset focuses on urban regions via referring to six city models provided by the software
CityEngine: Paris, Venice, New York, Philadelphia, and two small development scenes.
The models were exported and processed in Blender to preserve the textures and relevant
information. Afterwards, we used BlenderProc [59] to render the dataset according to the
geometry of the model which included RGB images and the corresponding disparity maps.
Considering both aerial and satellite platforms, the simulated camera for rendering was
located at 200 m and 500 km above the cities, respectively. A total of 854 stereo pairs in size
of 1024 × 1024 pixels were generated, with the ground sampling distance (GSD) ranging
from 5 cm to 50 cm.

Regarding our real aerial data, we use the 4K sensor system mounted on a heli-
copter for the data collection [60]. Three off-the-shelf Canon EOS cameras (one 1D-C and
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two 1D-X) constitute the imaging unit. The data contain geo-referenced images with a
size of 17.9 megapixels, acquired over Gilching in the southwest of Munich, Germany.
Equipped with 50-mm lenses looking in varying view directions, a field of view (FOV) up
to 104◦ is reached. The flight height was 500 m above ground, enabling 6.9-cm nadir GSD.
A multi-view stereo matching based on SGM was applied, in which the calculated heights
(depths) from multiple highly overlapped images were fused to achieve a high-quality
digital surface model (DSM). The DSM was used to compute disparity maps for each stereo
pair, which were utilized as reference data for finetuning and evaluation.

4.2.2. Visualization and Evaluation on Aerial Stereo Data

In Table 3, the performance of each algorithm is recorded. We firstly find that all
the GA-Net models outperform the baseline SGM by a certain margin. Moreover, our
pyramidal revision leads to a very small accuracy decrease compared with the original
structure, but highly improves the efficiency. Our GA-Net-PyramidED (without SPN
added) is the best performing pyramid model, which is only around 1% worse than
GA-Net in accuracy. Nevertheless, the pyramid models are about 8 and 7 times faster
than GA-Net, by only expending around 25% and 40% memory usage for training and
prediction, respectively. It should be noted that for airborne data, SPN cannot improve
the performance for either of the pyramid models, which is different from the close-range
experiments. A visual comparison among the methods is provided in Figure 5.

Table 3. Accuracy and efficiency comparison between GA-Net-Pyramid, including GA-Net-
PyramidED and GA-Net-PyramidID, and GA-Net on aerial data (baseline model: SGM).

Accuracy Training Efficiency Test Efficiency

1 pix 2 pix 3 pix Memory Runtime Memory Runtime

GA-Net-PyramidED 77.28% 86.19% 89.70% 7124 M 25.18 h 5623 M 83.60 s
GA-Net-PyramidED+SPN 74.06% 86.08% 89.69% 7238 M 26.19 h 5623 M 89.08 s

GA-Net-PyramidID 76.35% 85.46% 89.14% 7544 M 20.59 h 6979 M 84.02 s
GA-Net-PyramidID+SPN 76.14% 84.82% 88.21% 7676 M 21.54 h 6979 M 86.19 s

GA-Net 78.75% 86.99% 90.13% 30,512 M 187.59 h 15,685 M 616.74 s
SGM 72.14% 75.89% 77.15% — — — —

Bold font means the best accuracy/efficiency in each group.

We select two regions, one vegetation and one building area from the test data for
the visualization. It is shown that GA-Net-PyramidED archives good performance in
airborne stereo matching. When the scene is relatively simple, containing fewer depth
discontinuities and a smooth depth change, the hierarchical estimation and refinement of
disparity is capable of highly enhancing the efficiency, without a noteworthy sacrifice of
the result’s quality.

4.2.3. Pyramid Setting

To further understand our GA-Net-Pyramid when applied in the field of remote
sensing, we explore the impact of different pyramid architectures using our aerial data.
Regarding the pyramid structure, two variants are the most important factors, the num-
ber of pyramid levels and the residual search range for disparity refinement. The main
difference between GA-Net-PyramidED and GA-Net-PyramidID is the strategy to extract
features, which is not directly related to the above two factors. In addition, our two pyramid
models achieve similar accuracy. Therefore, we select GA-Net-PyramidED without SPN
for post-processing to study the pyramid setting, since it is the more intuitive pyramidal
modification of GA-Net. As for the number of pyramid levels, we start from 2, since a
1-level GA-Net-Pyramid will degenerate to GA-Net, to 4 levels, with a fixed residual range
[−6, +6]. The model is trained on our synthetic dataset from scratch and evaluated on the
same test data. We use the same hyperparameter setting as before, except that the size of
the training patches changes to 384 × 768 to facilitate the downsampling when more levels
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are applied. We train the model on one GPU card due to the less memory requirement of
GA-Net-Pyramid. The results are in Table 4.

According to the table, it is found that the architecture with 4 pyramid levels acquires
the best efficiency. However, with slightly increased memory and runtime, the model
with 3 pyramid levels achieves better results. Along with GA-Net-PyramidED regresses
towards GA-Net (from 3 to 2 levels), the efficiency drastically deteriorates as expected,
nevertheless, without a noticeable improvement of the accuracy. Therefore, we determine
to use the number of pyramid levels as 3. Then, we adjust the residual search range to
[−3, +3], [−6, +6] and [−12, +12], respectively. The model is also trained from scratch on
our synthetic dataset using one GPU card, and tested on the same 20 aerial images. We
keep the training setting unchanged, except that the patch size is set back to 384 × 576. In
Table 5, the performance for different residual search ranges is recorded.
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Figure 5. Visual comparison on aerial data. Two test cases regarding vegetation and building area
are displayed in subfigure (a,b), respectively. In each subfigure, the reference disparity map and the
stereo results from GA-Net-PyramidED, GA-Net and SGM are displayed from left to right in the
first row. The second row provides the master epipolar image and the corresponding error map of
each model.
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Table 4. Accuracy and efficiency comparison for GA-Net-PyramidED with different pyramid levels.

Accuracy Training Efficiency Test Efficiency

Pyramid Levels 1 pix 2 pix 3 pix Memory Runtime Memory Runtime

2 72.38% 80.89% 85.14% 11521 M 70.25 h 5813 M 120.28 s
3 72.17% 81.22% 85.69% 8121 M 29.13 h 5623 M 82.11 s
4 72.08% 81.19% 85.57% 7647 M 27.80 h 5589 M 63.92 s

Bold font means the best accuracy/efficiency in each group.

Table 5. Accuracy and efficiency comparison for GA-Net-PyramidED with different residual
search ranges.

Accuracy Training Efficiency Test Efficiency

Residual Range 1 pix 2 pix 3 pix Memory Runtime Memory Runtime

[−3, +3] 73.38% 81.95% 86.04% 5941 M 23.49 h 5467 M 55.23 s
[−6, +6] 73.76% 82.21% 86.40% 6283 M 26.35 h 5623 M 84.50 s

[−12, +12] 73.38% 82.11% 86.37% 7033 M 34.96 h 6489 M 123.09 s

Bold font means the best accuracy/efficiency in each group.

Table 5 indicates that as the residual range becomes larger, the efficiency naturally
decreases. Moreover, when the residual buffer expands over [−6, +6], the accuracy cannot
be further enhanced. Hence, the structure of our pyramid is determined as 3 levels, with the
maximum/minimum residual set as 6/−6. To keep the experiments consistent, the pyramid
structure is used for both GA-Net-PyramidED and GA-Net-PyramidID in this paper.

4.3. Experiments on Satellite Stereo Data

The flight campaign regarding our aerial 4K images was performed during a
WorldView-3 stereo acquisition of the same area [61]. Due to the minimal time difference
of less than 1 hour of each aerial image from the satellite images, the higher resolution
airborne data are well suited as reference data for the satellite stereo matching to finetune
the models and evaluate the results. This is a notable improvement over other satellite
stereo datasets [17,62], which do not provide sub-pixel disparity accuracy due to different
sensing modalities and scene changes due to time difference between the image and ground
truth acquisition. In contrast, the data used in this article allow reliable evaluation for 1-
and 2-pixel accuracy metrics. This is especially import for photogrammetry and remote
sensing, as many applications require highly precise elevation measurements.

Similar to Section 4.2, the networks are pre-trained on our synthetic remote sensing
data for 200 epochs, and finetuned on the generated satellite training data for 150 epochs.
The training conditions stay the same, including the patch size (384 × 576), disparity
range ([0, 192]), batch size (2), GPU usage (2 Quadro P6000 cards), etc. SGM is also tested
for reference.

4.3.1. Satellite Stereo Data

WorldView-3 is a very-high-resolution imaging satellite currently offering the most
detailed publicly available spaceborne imagery, at a resolution of 30 cm. After bundle-
adjustment of the data with the 4K aerial imagery and DSM as reference, we generated
an epipolar rectified stereo pair using the algorithm implemented by the CARS stereo
pipeline [63]. Similar to the aerial imagery, a reference disparity map was calculated by
projecting each point of the 4K DSM into the epipolar satellite stereo pair. The stereo pair
has a dimension of 20,815× 28,264 pixels, which was cut into 98 tiles (in size of 1152 × 1152)
owning an overlap larger than 25% with the 4K data coverage. From them, 78 tiles were
randomly selected for finetuning the pre-trained GA-Net models, with the other 20 image
pairs as the test data.

As the airborne data were geo-referenced in two separate blocks using differential
GPS and only few ground control points (GCPs), a slight height offset was found between
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the aerial and satellite data, yielding disparity differences between the aerial reference and
the satellite stereo pair in the pixel range, but rising up to 4 pixels at the corner of one aerial
block. Since these systematic differences strongly affected training and evaluation of the
networks, a second-order offset surface was fitted to the difference of the airborne reference
disparity map and the satellite disparity map estimated by SGM, on each of the 98 tiles.
The offset was added to the reference disparity map to alleviate the systematic bias which
was reduced from 0.97 to 0.51 pixels.

4.3.2. Visualization and Evaluation on Satellite Stereo Data

In Table 6, we record the performance of GA-Net-Pyramid, GA-Net and SGM. Similar
to the results of airborne data, GA-Net achieves the highest accuracy, after which GA-Net-
PyramidED still acquires the best performance among all the other models. The 1-pixel
accuracy of our GA-Net-PyramidED, without SPN added for post-processing, is only
surpassed by GA-Net by 0.08%. However, the former is around 8 and 13 times faster than
the latter, consuming only 23% and 36% GPU memory in training and test, respectively. In
addition, GA-Net-PyramidED performs better than GA-Net_PyrmaidID, with less GPU
memory consumption but longer training time. SPN also impairs the performance of
the pyramid models which is consistent with our experiments on aerial data. The visual
comparison is in Figure 6, including a vegetation and a building area as well. It is found that
both networks predict a smoother disparity map than SGM, with less erroneous estimation.
Moreover, similar results are obtained between our GA-Net-PyramidED and GA-Net,
considering the reconstruction density and quality.

Table 6. Accuracy and efficiency comparison between GA-Net-Pyramid, including GA-Net-
PyramidED and GA-Net-PyramidID, and GA-Net on satellite data (baseline model: SGM).

Accuracy Training Efficiency Test Efficiency

1 pix 2 pix 3 pix Memory Runtime Memory Runtime

GA-Net-PyramidED 83.76% 90.70% 93.00% 7144 M 23.77 h 5623 M 31.53 s
GA-Net-PyramidED+SPN 82.99% 91.05% 93.34% 7250 M 24.56 h 5623 M 35.93 s

GA-Net-PyramidID 81.45% 89.58% 92.40% 7558 M 19.11 h 6979 M 33.11 s
GA-Net-PyramidID+SPN 80.66% 89.10% 92.00% 7700 M 20.27 h 6979 M 32.87 s

GA-Net 83.84% 91.42% 93.74% 30,514 M 179.19 h 15,685 M 401.91 s
SGM 79.98% 82.74% 83.32% — — — —

Bold font means the best accuracy/efficiency in each group.

4.3.3. Stereo Processing over Mountain Area

In this section, we apply our pyramid network on a stereo pair with a large disparity
range, in order to indicate the model’s ability to process large-scale remote sensing data.
The imagery is from WorldView-2 [64] at a resolution of 50 cm, covering the Matterhorn
mountain, Switzerland. We select a stereo pair with 14◦ conversion angle for which the
disparity varies in range of thousand pixels, due to the very large ground height difference
from 1800 m to 4478 m. The best performing model finetuned in our previous satellite
experiments, GA-Net-PyramidED, is directly used for disparity prediction in this test.
Regarding the evaluation, we follow our processing chain in Section 4.3.1, using an aerial
dataset with good stereo geometry to the same area to generate reference data. The test
region, the reference disparity map, and our stereo results are displayed in Figure 7.

The mountain peak is located at the center of the image with a disparity up to around
1250 pixels; thus, we set the disparity range as [0, 1248]. Note that the model we use
receives no supervision and knowledge regarding the mountain area with that large
disparity difference. However, we achieve a 3-pixel accuracy of 87.34%. There are temporal
inconsistencies between the satellite and reference data, leading to varying snow cover.
Therefore, we use 3-pixel as the threshold. The visual comparison shows very similar results
between our disparity prediction and the reference, considering the reconstruction density,
smoothness, etc. Disparity holes are found from certain regions in our results. According
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to the image content, the regions are in shadow with limited texture information, where
the network suffers from collecting enough information to locate the correspondences.

In the test period, the patch in size of 768 × 6912 is fed to the network for disparity
prediction. Considering the disparity range [0, 1248], GA-Net will theoretically need more
than 200 GB GPU memory to process the same data. Our GA-Net-PyramidED, however,
consumes only around 20 GB.
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Figure 6. Visual comparison on satellite data. Two test cases regarding vegetation and building area
are displayed in subfigure (a,b), respectively. In each subfigure, the reference disparity map and the
stereo results from GA-Net-PyramidED, GA-Net and SGM are displayed from left to right in the
first row. The second row provides the master epipolar image and the corresponding error map of
each model.
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Figure 7. A showcase to indicate the ability of our pyramid network in processing remote sensing
stereo pair with large baseline. The test image and the corresponding stereo reconstruction from
the reference disparity map (lower left) and our pyramid model (lower right) are shown. The
reconstructed region is highlighted by the green rectangle with a size of 19,791 × 15,639 pixels. Test
region: Matterhorn mountain, Switzerland. Test model: GA-Net-PyramidED.

5. Discussion

Based on a pyramid architecture, our GA-Net-Pyramid is able to roughly estimate
the depth from a downsampled feature, and then refine the prediction level by level until
the original resolution is recovered. Thus, the efficiency is significantly enhanced with the
accuracy maintained to be comparable with GA-Net on remote sensing datasets. Some
technical details are found below.

We firstly propose GA-Net-PyramidED which applies the GA-Net model hierarchi-
cally. In our experiments on airborne and satellite data, it is demonstrated that GA-Net-
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PyramidED is able to achieve similar results as GA-Net, nevertheless, consuming much
less GPU memory and runtime for both training and prediction. Considering that only the
pyramid top exploits the absolute disparity range in low resolution to locate the stereo corre-
spondence, GA-Net-PyramidED is capable of processing stereo pairs with wider baselines
if the same GPU memory for GA-Net is available. This is particularly suitable to process
large stereo pairs with high-disparity search ranges in the field of remote sensing, which
usually triggers the bottleneck of most memory-hungry deep neural networks. On the
other hand, the aerial/satellite images mainly focus on large-scale landscapes such as city
areas, for which the local object heights/depths are generally smoother and regular with
fewer occlusions, depth discontinuities, fine structures, etc., compared with the close-range
datasets. Thus, the results from the previous pyramid level can better guide the disparity
estimation on the current level. When a large height variance exists within the scene, e.g., in
mountain areas, a rough depth prediction from lower resolution pyramid level is effective
to limit the search range and avoid influence from ambiguous disparity candidates for
higher resolution level.

Another architecture is designed as GA-Net-PyramidID, which implicitly downsam-
ples the input stereo pair via a U-Net feature extractor to feed each pyramid level using
the intermediate feature map of its decoder. Concerning the close-range datasets, espe-
cially for Scene Flow that contains very complex and non-logical scene structures, both
GA-Net-PyramidED and GA-Net-PyramidID are not competitive with GA-Net (GA-Net-
PyramidID+SPN performs the best among all the pyramid models). The accuracy could be
influenced when details are possibly omitted by the low-resolution level. Moreover, the
residual search range may not support refinement for regions with rapid depth changes
and discontinuities. Although GA-Net outperforms the proposed pyramid approaches on
both close-range datasets, Scene Flow and KITTI, the performance difference is smaller for
the real-world KITTI 2012 data.

SPN is applied on image segmentation to refine the object boundaries. In our experi-
ments on close-range data, better depth estimation is achieved by our pyramid networks
with SPN added, especially for GA-Net-PyramidID. However, it is found that negative
influence from SPN occurs on airborne and satellite data, for both GA-Net-PyramidED and
GA-Net-PyramidID. The reason is that the resolution of aerial/satellite data is relatively
low, with fewer details and depth discontinuities included; thus, the strength of SPN is
not embodied. More importantly, the training of SPN cannot be well supervised, consid-
ering that the number of valid training patches from airborne (987 millions) and satellite
(934 millions) datasets is far less than the close-range datasets (18 billions). The condition to
collect reference data is not as ideal as close-range scenarios using precise LiDAR scanning,
structured light or synthetic labeling. In addition, SPN essentially refers to the input to
improve the output, which are the master epipolar image and the disparity result in our
case, respectively. The natural land texture and shadows, which are not necessarily related
to ground height variation, may confuse SPN to locate the correct depth borders. The
slightly changing and rolling ground height, e.g., in natural regions, could confuse the
disparity post-processing as indicated by the lower 1-pixel accuracy.

6. Conclusions

Nowadays, the rapid development of deep learning and CNNs has made the technique
dominate in the field of dense matching, leading to a sequence of high-rank algorithms in
different close-range benchmarks. Compared to conventional approaches, the depth esti-
mation for ill-posed areas, e.g., textureless regions, occlusions, etc., is better accomplished
resulting in a considerable improvement. However, a large amount of well-annotated
data and a time-consuming training are usually required before a network reaches high
performance. In the field of remote sensing, a huge amount of high-definition data is
supplied by unmanned aerial vehicles, helicopters, airplanes or satellites at all times. The
data cover large areas with varying stereo baselines and image sizes of up to multiple
gigapixels. Hence, a well-performed deep network from the field of computer vision would
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struggle to process the remote sensing data, under a certain time and memory budget.
Since that stereo datasets with reliable ground truth are not available in remote sensing,
we build a dataset consisting of simultaneously acquired 30-cm satellite and 6-cm aerial
imagery which are co-registered to sub-pixel disparity precision. The experimental results
demonstrate that our proposed model can largely enhance the efficiency in training and
test, while maintaining a comparable accuracy. The test on a satellite stereo pair over Mat-
terhorn specifically highlights the significance of our method for processing large baseline
stereo data.

We suggest to use GA-Net-PyramidED for remote sensing stereo processing. With
slightly increased runtime, GA-Net-PyramidED produces better depth results than GA-Net-
PyramidID, while consuming less GPU memory. As for the close-range dataset, GA-Net-
PyramidID with an SPN module to enhance the depth borders is preferred. Regarding the
effect of SPN, it is demonstrated that a minor improvement is obtained on close-range data;
nevertheless, the depth estimation could be impaired using SPN in case of remote sensing
data, especially when the reference data own limited quantity or quality for training.

In future research, more reference data should be collected for urban, rural and moun-
tainous scenarios for remote sensing, in order to better supervise a learning-based model
in stereo prediction. Thus, we can better handle the ill-posed regions in shadows, depth
boundaries, etc., and obtain high-quality geographical measurements for earth observation.

Author Contributions: Conceptualization, Y.X.; data curation, Y.X., P.d. and M.F.R.; funding acquisi-
tion, J.T. and P.R.; investigation, Y.X., P.d., F.F., J.T., M.F.R. and P.R.; methodology, Y.X.; supervision,
P.d., F.F., J.T. and P.R.; validation, Y.X.; visualization, Y.X.; writing—original draft, Y.X.; writing—
review and editing, P.d., F.F., J.T., M.F.R. and P.R. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by “ForDroughtDet” project (FKZ: 22WB410602), from the Wald-
klimafonds, under joint leadership of Bundeslandwirtschafts (BMEL) and Bundesumweltministerium
(BMU). Yuanxin Xia is funded by a DLR-DAAD Research Fellowship (No. 57265855).

Data Availability Statement: The Scene Flow dataset can be accessed in https://lmb.informatik.
uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html/. The KITTI-2012 dataset can be
accessed in http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=stereo/.

Acknowledgments: We are indebted to University of Freiburg, Karlsruhe Institute of Technology,
and Toyota Technological Institute at Chicago for providing the close-range benchmark datasets. We
would like to thank Franz Kurz from the German Aerospace Center (DLR) for providing the aerial
data, and DigitalGlobe and European Space Imaging (EUSI) for providing the satellite data used in
the research.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

GA-Net Guided Aggregation Network
GA-Net-Pyramid GA-Net based on a pyramid architecture
GA-Net-PyramidED GA-Net-Pyramid with Explicit Downsampling
GA-Net-PyramidID GA-Net-Pyramid with Implicit Downsampling
SGM Semi-Global Matching

References
1. Hirschmüller, H. Semi-global Matching—Motivation, Developments and Applications. In Photogrammetric Week; Wichmann

Verlag: Heidelberg, Germany, 2011; Volume 11, pp. 173–184.
2. Kuschk, G.; d’Angelo, P.; Qin, R.; Poli, D.; Reinartz, P.; Cremers, D. DSM Accuracy Evaluation for the ISPRS Commission I Image

Matching Benchmark. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 40, 195–200. [CrossRef]
3. Qin, R.; Huang, X.; Gruen, A.; Schmitt, G. Object-based 3-D building change detection on multitemporal stereo images. IEEE J.

Sel. Top. Appl. Earth Observ. Remote Sens. 2015, 8, 2125–2137. [CrossRef]

https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html/
https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html/
http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=stereo/
http://doi.org/10.5194/isprsarchives-XL-1-195-2014
http://dx.doi.org/10.1109/JSTARS.2015.2424275


Remote Sens. 2022, 14, 1942 22 of 24

4. Xia, Y.; d’Angelo, P.; Tian, J.; Fraundorfer, F.; Reinartz, P. Self-supervised convolutional neural networks for plant reconstruction
using stereo imagery. Photogramm Eng. Remote. Sens. 2019, 85, 389–399. [CrossRef]

5. Bleyer, M.; Breiteneder, C. Stereo matching—State-of-the-art and research challenges. In Advanced Topics in Computer Vision;
Farinella, G.M., Battiato, S., Cipolla, R., Eds.; Springer: London, UK, 2013; pp. 143–179. [CrossRef]

6. Hirschmüller, H. Accurate and Efficient Stereo Processing by Semi-global Matching and Mutual Information. In Proceedings
of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), San Diego, CA, USA,
20–26 June 2005; Volume 2, pp. 807–814. [CrossRef]

7. Rothermel, M. Development of a SGM-Based Multi-View Reconstruction Framework for Aerial Imagery. Ph.D. Thesis, University
of Stuttgart, Stuttgart, Germany, 2017.

8. Zhang, F.; Prisacariu, V.; Yang, R.; Torr, P.H. GA-Net: Guided Aggregation Net for End-to-End Stereo Matching. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 185–194.

9. Kendall, A.; Martirosyan, H.; Dasgupta, S.; Henry, P.; Kennedy, R.; Bachrach, A.; Bry, A. End-to-End Learning of Geometry and
Context for Deep Stereo Regression. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV),
Venice, Italy, 22–29 October 2017; pp. 66–75. [CrossRef]

10. Chang, J.; Chen, Y. Pyramid Stereo Matching Network. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 5410–5418. [CrossRef]

11. Tonioni, A.; Tosi, F.; Poggi, M.; Mattoccia, S.; Stefano, L.D. Real-Time Self-Adaptive Deep Stereo. In Proceedings of the 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 195–204.
[CrossRef]

12. Wang, Y.; Lai, Z.; Huang, G.; Wang, B.H.; van der Maaten, L.; Campbell, M.; Weinberger, K.Q. Anytime Stereo Image Depth
Estimation on Mobile Devices. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal,
QC, Canda, 20–24 May 2019; pp. 5893–5900.

13. Yang, G.; Manela, J.; Happold, M.; Ramanan, D. Hierarchical Deep Stereo Matching on High-Resolution Images. In Proceedings
of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019;
pp. 5510–5519. [CrossRef]

14. Liu, S.; De Mello, S.; Gu, J.; Zhong, G.; Yang, M.H.; Kautz, J. Learning Affinity via Spatial Propagation Networks. In Advances in
Neural Information Processing Systems; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R.,
Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2017; Volume 30, pp. 1520–1530.

15. Mayer, N.; Ilg, E.; Häusser, P.; Fischer, P.; Cremers, D.; Dosovitskiy, A.; Brox, T. A Large Dataset to Train Convolutional Networks
for Disparity, Optical Flow, and Scene Flow Estimation. In Proceedings of the 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 4040–4048.

16. Geiger, A.; Lenz, P.; Urtasun, R. Are We Ready for Autonomous Driving? The KITTI Vision Benchmark Suite. In Proceedings
of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 16–21 June 2012;
pp. 3354–3361. [CrossRef]

17. Le Saux, B.; Yokoya, N.; Hansch, R.; Brown, M.; Hager, G.; Kim, H. 2019 IEEE GRSS data fusion contest: Semantic 3D
reconstruction [Technical Committees]. IEEE Geosci. Remote Sens. Mag. 2019, 7, 103–105. [CrossRef]

18. d’Angelo, P.; Reinartz, P. Semiglobal Matching Results on the ISPRS Stereo Matching Benchmark. In ISPRS—International Archives
of the Photogrammetry, Remote Sensing and Spatial Information Sciences; ISPRS: Hanover, Germany, 2011; Volume XXXVIII-4/W19,
pp. 79–84. [CrossRef]

19. d’Angelo, P. Improving Semi-global Matching: Cost Aggregation and Confidence Measure. In ISPRS—International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences; ISPRS: Prague, Czech Republic, 2016; Volume XLI-B1, pp. 299–304.
[CrossRef]

20. Facciolo, G.; de Franchis, C.; Meinhardt, E. MGM: A Significantly More Global Matching for Stereovision. In Proceedings of
the British Machine Vision Conference (BMVC), Swansea, UK, 7–10 September 2015; Xie, X., Tam, G.K.L., Eds.; BMVA Press:
Swansea, UK, 2015; pp. 90.1–90.12. [CrossRef]

21. Geman, S.; Geman, D. Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Trans. Pattern Anal.
Mach. Intell. 1984, PAMI-6, 721–741. [CrossRef]

22. Pollard, S.B.; Mayhew, J.E.W.; Frisby, J.P. PMF: A stereo correspondence algorithm using a disparity gradient limit. Perception
1985, 14, 449–470. [CrossRef] [PubMed]

23. Barnard, S. Stochastic stereo matching over scale. Int. J. Comput. Vis. 1989, 3, 17–32. [CrossRef]
24. Kolmogorov, V.; Zabih, R. Computing Visual Correspondence with Occlusions using Graph Cuts. In Proceedings of the

Proceedings Eighth IEEE International Conference on Computer Vision (ICCV), Vancouver, BC, Canada, 7–14 July 2001; Volume 2,
pp. 508–515. [CrossRef]

25. Boykov, Y.; Kolmogorov, V. An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision.
IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 1124–1137. [CrossRef]

26. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,
86, 2278–2324. [CrossRef]

27. Zbontar, J.; LeCun, Y. Stereo matching by training a convolutional neural network to compare image patches. J. Mach. Learn. Res.
2016, 17, 1–32.

http://dx.doi.org/10.14358/PERS.85.5.389
http://dx.doi.org/10.1007/978-1-4471-5520-1_6
http://dx.doi.org/10.1109/CVPR.2005.56
http://dx.doi.org/10.1109/ICCV.2017.17
http://dx.doi.org/10.1109/CVPR.2018.00567
http://dx.doi.org/10.1109/CVPR.2019.00028
http://dx.doi.org/10.1109/CVPR.2019.00566
http://dx.doi.org/10.1109/CVPR.2012.6248074
http://dx.doi.org/10.1109/MGRS.2019.2893783
http://dx.doi.org/10.5194/isprsarchives-XXXVIII-4-W19-79-2011
http://dx.doi.org/10.5194/isprs-archives-XLI-B1-299-2016
http://dx.doi.org/10.5244/C.29.90
http://dx.doi.org/10.1109/TPAMI.1984.4767596
http://dx.doi.org/10.1068/p140449
http://www.ncbi.nlm.nih.gov/pubmed/3834387
http://dx.doi.org/10.1007/BF00054836
http://dx.doi.org/10.1109/ICCV.2001.937668
http://dx.doi.org/10.1109/TPAMI.2004.60
http://dx.doi.org/10.1109/5.726791


Remote Sens. 2022, 14, 1942 23 of 24

28. Bromley, J.; Bentz, J.; Bottou, L.; Guyon, I.; LeCun, Y.; Moore, C.; Sackinger, E.; Shah, R. Signature verification using a ”siamese”
time delay neural network. Int. J. Pattern Recognit. Artif. Intell. 1993, 7, 25. [CrossRef]

29. Luo, W.; Schwing, A.G.; Urtasun, R. Efficient Deep Learning for Stereo Matching. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 5695–5703. [CrossRef]

30. Seki, A.; Pollefeys, M. Sgm-nets: Semi-global Matching with Neural Networks. In Proceedings of the 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6640–6649. [CrossRef]

31. Michael, M.; Salmen, J.; Stallkamp, J.; Schlipsing, M. Real-time Stereo Vision: Optimizing Semi-global Matching. In Proceedings
of the 2013 IEEE Intelligent Vehicles Symposium (IV), Gold Coast City, Australia, 23 June 2013; pp. 1197–1202. [CrossRef]

32. Poggi, M.; Mattoccia, S. Learning a General-purpose Confidence Measure based on O(1) Features and a Smarter Aggregation
Strategy for Semi Global Matching. In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA,
USA, 25–28 October 2016; pp. 509–518. [CrossRef]

33. Schönberger, J.L.; Sinha, S.N.; Pollefeys, M. Learning to Fuse Proposals from Multiple Scanline Optimizations in Semi-global
Matching. In Computer Vision—ECCV 2018; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Springer International
Publishing: Cham, Switzerland, 2018; pp. 758–775.

34. Xia, Y.; d’Angelo, P.; Tian, J.; Fraundorfer, F.; Reinartz, P. Multi-label learning based semi-global matching forest. Remote Sens.
2020, 12, 1069. [CrossRef]

35. Dosovitskiy, A.; Fischer, P.; Ilg, E.; Häusser, P.; Hazirbas, C.; Golkov, V.; van der Smagt, P.; Cremers, D.; Brox, T. FlowNet:
Learning Optical Flow with Convolutional Networks. In Proceedings of the 2015 IEEE International Conference on Computer
Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 2758–2766.

36. Guo, X.; Yang, K.; Yang, W.; Wang, X.; Li, H. Group-Wise Correlation Stereo Network. In Proceedings of the 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 3268–3277.
[CrossRef]

37. Zhu, Z.; Guo, W.; Chen, W.; Li, Q.; Zhao, Y. MPANet: Multi-Scale Pyramid Aggregation Network For Stereo Matching. In
Proceedings of the 2021 IEEE International Conference on Image Processing (ICIP), Anchorage, AK, USA, 19–22 September 2021;
pp. 2773–2777. [CrossRef]

38. Xu, H.; Zhang, J. AANet: Adaptive Aggregation Network for Efficient Stereo Matching. In Proceedings of the 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 1956–1965. [CrossRef]

39. Wang, H.; Fan, R.; Cai, P.; Liu, M. PVStereo: Pyramid voting module for end-to-end self-supervised stereo matching. IEEE Robot.
Autom. Lett. 2021, 6, 4353–4360. [CrossRef]

40. Stucker, C.; Schindler, K. ResDepth: Learned Residual Stereo Reconstruction. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 13–19 June 2020.

41. Wu, Z.; Wu, X.; Zhang, X.; Wang, S.; Ju, L. Semantic Stereo Matching with Pyramid Cost Volumes. In Proceedings of the 2019
IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019; pp. 7483–7492.
[CrossRef]

42. Song, X.; Zhao, X.; Fang, L.; Hu, H.; Yu, Y. EdgeStereo: An effective multi-task learning network for stereo matching and edge
detection. Int. J. Comput. Vis. 2020, 128, 910–930. [CrossRef]

43. Cheng, X.; Wang, P.; Yang, R. Learning depth with convolutional spatial propagation network. IEEE Trans. Pattern Anal. Mach.
Intell. 2019, 42, 2361–2379. [CrossRef]

44. Zhang, F.; Qi, X.; Yang, R.; Prisacariu, V.; Wah, B.; Torr, P. Domain-invariant Stereo Matching Networks. In European Conference on
Computer Vision; Springer: Cham, Switzerland, 2019.

45. Zhang, Y.; Chen, Y.; Bai, X.; Yu, S.; Yu, K.; Li, Z.; Yang, K. Adaptive Unimodal Cost Volume Filtering for Deep Stereo Matching. In
Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence, New York, NY, USA, 7 February–12 February 2020.

46. Cheng, X.; Zhong, Y.; Harandi, M.; Dai, Y.; Chang, X.; Li, H.; Drummond, T.; Ge, Z. Hierarchical Neural Architecture Search for
Deep Stereo Matching. In Proceedings of the Advances in Neural Information Processing Systems 34: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS 2020, Vancouver, BC, Canada, 6–12 December 2020.

47. Song, X.; Yang, G.; Zhu, X.; Zhou, H.; Wang, Z.; Shi, J. AdaStereo: A Simple and Efficient Approach for Adaptive Stereo
Matching. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2021, Nashville, TN, USA,
19–25 June 2021.

48. Chang, J.R.; Chang, P.C.; Chen, Y.S. Attention-Aware Feature Aggregation for Real-time Stereo Matching on Edge Devices. In
Proceedings of the Asian Conference on Computer Vision (ACCV), Kyoto, Japan, 30 November–4 December 2020.

49. Gu, X.; Fan, Z.; Zhu, S.; Dai, Z.; Tan, F.; Tan, P. Cascade Cost Volume for High-Resolution Multi-View Stereo and Stereo Matching.
In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA,
13–19 June 2020; pp. 2492–2501. [CrossRef]

50. Hu, Y.; Wang, W.; Yu, H.; Zhen, W.; Scherer, S. ORStereo: Occlusion-Aware Recurrent Stereo Matching for 4K-Resolution Images.
In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic,
27 September–1 October 2021.

51. Hirschmüller, H. Stereo processing by semiglobal matching and mutual information. IEEE Trans. Pattern Anal. Mach. Intell. 2008,
30, 328–341. [CrossRef]

http://dx.doi.org/10.1142/S0218001493000339
http://dx.doi.org/10.1109/CVPR.2016.614
http://dx.doi.org/10.1109/CVPR.2017.703
http://dx.doi.org/10.1109/IVS.2013.6629629
http://dx.doi.org/10.1109/3DV.2016.61
http://dx.doi.org/10.3390/rs12071069
http://dx.doi.org/10.1109/CVPR.2019.00339
http://dx.doi.org/10.1109/ICIP42928.2021.9506705
http://dx.doi.org/10.1109/CVPR42600.2020.00203
http://dx.doi.org/10.1109/LRA.2021.3068108
http://dx.doi.org/10.1109/ICCV.2019.00758
http://dx.doi.org/10.1007/s11263-019-01287-w
http://dx.doi.org/10.1109/TPAMI.2019.2947374
http://dx.doi.org/10.1109/CVPR42600.2020.00257
http://dx.doi.org/10.1109/TPAMI.2007.1166


Remote Sens. 2022, 14, 1942 24 of 24

52. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image
Computing and Computer-Assisted Intervention— MICCAI 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer
International Publishing: Cham, Switzerland, 2015; pp. 234–241.

53. Scharstein, D.; Szeliski, R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis.
2002, 47, 7–42. [CrossRef]

54. Springenberg, J.; Dosovitskiy, A.; Brox, T.; Riedmiller, M. Striving for Simplicity: The All Convolutional Net. arXiv 2016,
arXiv:1606.04038.

55. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.
56. Zabih, R.; Woodfill, J. Non-parametric Local Transforms for Computing Visual Correspondence. In Computer Vision—ECCV’94;

Eklundh, J.O., Ed.; Springer: Berlin/Heidelberg, Germany, 1994; pp. 151–158.
57. Haala, N. The Landscape of Dense Image Matching Algorithms; Wichmann/VDE: Belin/Offenbach, Germany, 2013.
58. Haala, N. Dense image matching final report. Eurosdr Publ. Ser. Off. Publ. 2014, 64, 115–145.
59. Denninger, M.; Sundermeyer, M.; Winkelbauer, D.; Zidan, Y.; Olefir, D.; Elbadrawy, M.; Lodhi, A.; Katam, H. BlenderProc. arXiv

2019, arXiv:1911.01911.
60. Kurz, F.; Rosenbaum, D.; Meynberg, O.; Mattyus, G.; Reinartz, P. Performance of a Real-Time Sensor and Processing System on a

Helicopter. In ISPRS—International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences; ISPRS: Denver,
CO, USA, 2014; Volume XL-1, pp. 189–193. [CrossRef]

61. Hu, F.; Gao, X.; Li, G.; Li, M. DEM Extraction from WorldView-3 Stereo-images and Accuracy Evaluation. In Proceedings of the
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Prague, Czech Republic, 12–19
July 2016; Volume 41.

62. Bosch, M.; Foster, K.; Christie, G.A.; Wang, S.; Hager, G.D.; Brown, M.Z. Semantic Stereo for Incidental Satellite Images.
In Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa Village, HI, USA,
7–11 January 2019; pp. 1524–1532.

63. Michel, J.; Sarrazin, E.; Youssefi, D.; Cournet, M.; Buffe, F.; Delvit, J.M.; Emilien, A.; Bosman, J.; Melet, O.; L’Helguen, C. A New
Satellite Imagery Stereo Pipeline Designed for Scalability, Robustness and Performance. In ISPRS Annals of the Photogrammetry,
Remote Sensing and Spatial Information Sciences; ISPRS: Nice, France, 2020; Volume V-2-2020, pp. 171–178. [CrossRef]

64. Aguilar, M.A.; Bianconi, F.; Aguilar, F.J.; Fernández, I. Object-based greenhouse classification from GeoEye-1 and WorldView-2
stereo imagery. Remote Sens. 2014, 6, 3554–3582. [CrossRef]

http://dx.doi.org/10.1023/A:1014573219977
http://dx.doi.org/10.5194/isprsarchives-XL-1-189-2014
http://dx.doi.org/10.5194/isprs-annals-V-2-2020-171-2020
http://dx.doi.org/10.3390/rs6053554

	Introduction
	Related Work
	Traditional Stereo Methods
	Learning-Assisted Stereo Methods
	Integration of Conventional Stereo Methods and Machine Learning
	End-to-End Stereo Networks


	Methodology
	GA-Net
	GA-Net-Pyramid with Explicit Downsampling
	Pyramid Top
	The Other Pyramid Levels
	Loss

	GA-Net-Pyramid with Implicit Downsampling

	Experiments
	Experiments on Close-Range Stereo Data
	Close-Range Stereo Data
	Visualization and Evaluation on Close-Range Stereo Data

	Experiments on Aerial Stereo Data
	Aerial Stereo Data
	Visualization and Evaluation on Aerial Stereo Data
	Pyramid Setting

	Experiments on Satellite Stereo Data
	Satellite Stereo Data
	Visualization and Evaluation on Satellite Stereo Data
	Stereo Processing over Mountain Area


	Discussion
	Conclusions
	References

