Silylation of Monolithic Resorcinol-Formaldehyde Xerogels

Fabian Henn, René Tannert, Barbara Milow

Institute of Materials Research, Department of Aerogels and Aerogel Composites, German Aerospace Center, Linder Hoehe, 51147 Cologne, Germany

- Aerogels and xerogels based on resorcinol-formaldehyde (RF) polymers have promising properties for applications as filters or catalysts^[1]
- However, free OH groups of the phenolic gels make them hydrophilic
- Previous publications include post-synthetic silylation of RF gels, but only on powdered materials using small silyl reagents^[2-3]

H₂O, Na₂CO₃

Motivatio Our approach is to functionalize monolithic RF xerogels, more specifically to silylate them with sterically demanding silylation reagents to create a long-lasting hydrophobicity.

Silylation using polar aprotic solvents

Addition of external base

Unmodified RF xerogel

RF xerogel absorbs water

Synthesis of silylated RF xerogels

Experimental

Silylated RF xerogel

1.DMF 2. Acetone 3. APD

Removal of residual silylation reagents (washing) and drying

Sample

TMS-A

TMS-B

TBS-A

TIPS-A

TIPS-B

TBDPS-A

Amine base in DMF,

Silylating reagent

Silylation

Si Content

[%] (m/m)

0.61

1.16

1.51

0.20

0.27

1.23

Ambient pressure drying (APD)

80°C

Addition of solvent

Use of sterically demanding silylating reagents Variation of Si-counterion (electronically activated triflate)

Sample	Silyl Reagent	Base
TMS-A	Trimethylsilyl chloride (TMS-Cl)	Imidazole
TMS-B	Trimethylsilyl triflate (TMS-OTf)	2,6-lutidine
TBS-A	tertButyldimethylsilyl chloride (TBS-Cl)	Imidazole
TIPS-A	Triisopropylsilyl triflate (TIPS-OTf)	Imidazole
TIPS-B	Triisopropylsilyl chloride (TIPS-CI)	2,6-lutidine
TBDPS-A	tert Butyldiphenylsilyl	Imidazole

chloride (TBDPS-Cl)

C 1s

hv = 1486.7 eV

Elemental analysis:

- Successful incorporation of silicon could be established
- Silicon is present in quantities <2% by weight
- → Not all free hydroxy groups were silylated
- → Chemical reactivity of the phenolic hydroxyl groups in the gel does not seem to be crucial, but rather their accessibility within the pore network.

SEM-EDX-Characterization:

- SEM-EDX images of an RF xerogel treated with RF-TBS-A
- → observing of rather homogeneous distribution of carbon, oxygen and silicon
- The lower relative abundance of Si agrees with the hypothesis that not all phenolic hydroxy groups are silylated

XPS-analysis:

Results

Ø

Characterization

- Resulting bond energies clearly indicate the presence of silicon-oxygen bonds
- Ratio of Si-O bonds to Si-C bonds correspond to expected 1:3 ratio for trialkylsilyl ethers
- → Formation of covalent Si-O bonds

Determination of wetting behavior

and 10% aq. HCl were more inert

between the silylated variants

compared to the RF reference,

The effect was still pronounced

• The monoliths in liquid water

except for RF-TMS-B.

after 7 weeks

SEM-EDX analysis

XPS analysis Survey hv = 1486.7 eV Binding energy [eV] hv = 1486.7 eVO-C

Microstructural properties:

- Pycnometry revealed slight reduction in porosity for silylated samples
- → the pore network is not significantly affected by the functionalization process
- The treatment with silylating reagents did not significantly affect the microstructure, nor the porous network within the xerogel.

	Density [g·cm ⁻³] Envelope Skeletal		Porosity	Inner Surface Area		
Sample			[%]	[m ² ·g ⁻¹]		
RF	0.3262	1.44525	77.39	0.676 ± 0.003		
RF-TMS-B	0.3213	1.3545	76.28	0.411 ± 0.044		
RF-TIPS-B	0.3239	1.3685	76.33	0.423 ± 0.008		
RF-TMS-B	0.3213	1.3545	76.28	0.411 ± 0.044		

SEM analysis

10% aq. HCl

Period [d]

RF-TBS-A

RF-TIPS-B

Static contact angles, as determined using tangent or the LB-ADSA (in brackets) method

	time exposed to air / months						
	1	2	3	4	5	8	11
sample				contact angle/	/ 0		
RF				n.a.			
RF-TMS-A				n.a.			
RF-TMS-B	139.5±1.8 (147.5±0,7)	137.2±2.9 (143.0±1.1)	136.5±3.7 (137.1±0.7)	135.7±3.4	n. d.	n. d.	n. d.
RF-TBS-A	136.4±3.0 (140.0±2.9)	136.5±1.5 (142.1±1.0)	135.4±2.1 (142.9±2.5)	135.3±2.4	135.0±1.1	134.5±1.5	134.2±1.3
RF-TIPS-A	142.8±1.2	n. d.	142.6±1.7	n. d.	141.1±2.2	137.9±1.9	136.9±1.9
RF-TIPS-B	143.7±2.0 (151.1±1.1)	143.9±0.4 (149.9±0.6)	140.5±1.8 (146.6±1.7)	139.1±1.3	n. d.	n. d.	n.d.
RF-TBDPS-B	138.3±2.2	n. d.	139.3±3.2	n. d.	139.2±2.2	135.1±1.8	133.9±2.5

Dynamic contact angles, as determined using Wilhelmy method

	time exposed to air / months								
		1	2	3	4	5	8	11	
sample contact angle/°									
RF-TMS-B	152.4±1.4	144.9±12.3	143.6±13.0	144.0±1.1	n. d.	n. d.	n. d.		
RF-TBS-A	123.8±15.9	121.6±2.4	123.4±12.8	124.3±2.0	136.1±1.7	132.3±2.9	125.3±16.	5	
RF-TIPS-A	151.9±8.3	n. d.	150.1±7.4	n. d.	146.2±4.8	132.2±2.4	129.8±2.3		
RF-TIPS-B	139.1±8.0	137.9±4.0	138.0±1.9	137.4±1.4	n. d.	n. d.	n. d.		
RF-TBDPS-B	3 101.8±11.3	n. d.	112.5±17.1	n. d.	120.0±6.4	112.8±10.7	119.2±5.9		

n.a. = not applicable (droplet was absorbed by monolith); n.d. = not determined **Static and dynamic contact angles:**

- Static contact angles between surface and the water droplet (tangent method): 133.9 - 143.9°
- Automatized positioning of the tangent using low-bond axisymmetric drop shape analysis (LB-ADSA) consistently achieve higher values (137.1 - 151.1°)
- Contact angles determined by Wilhelmy method in range of 101.8 152.4°

> A procedure for the silylation of monolithic resorcinol-formaldehyde xerogels has been established

- > Sterically and electronically varied silyl reagents including electronically activated triflates could be applied in solution phase using auxiliary amines as external base
- > Xerogels displayed marked hydrophobicity with contact angles consistently exceeding 130°
- > The hydrophobic properties remained when the monoliths are exposed to humid air for several months
- > RF gels with sterically demanding silyl groups sustained water and even dilute hydrochloric acid for weeks^[4]

Water

Period [d]

repels water

Acknowledgement

We gratefully acknowledge funding by the German Aerospace Center for the projects NGC FS II and FFAE.

References

onclusion

- [1] M. A. Aegerter, N. Leventis, M. M. Koebel, Aerogels Handbook, Springer New York, 2011
- [2] S. Schwarz, Organic gels, US6288132B1, E. I. du Pont de Nemours and Company, U.S.A., 2001. [3] I. D. Alonsó-Buenaposada, M. A. Montes-Morán, J. A. Menéndez, A. Arenillas, *Reactive and Functional Polymers*, **2017**, *120*, 92-97
- [4] F. Henn, R. Tannert, Gels, 2022, 8, 304.

