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Abstract

A filter is an essential part of many control systems. For example guidance, navigation and control systems for spacecraft rendezvous
require a robust navigation filter that generates estimates of the state in a smooth and stable way. This is important for a safe spacecraft
navigation within rendezvous missions. Delayed, asynchronous measurements from possibly different sensors require a new filter tech-
nique which can handle these different challenges. A new method is developed which is based on an Extended Kalman Filter with several
adaptations in the prediction and correction step. Two key aspects are extrapolation of delayed measurements and sensor fusion in the
filter correction. The new filter technique is applied on different close-range rendezvous examples and tested at the hardware-in-the-loop
facility EPOS 2.0 (European Proximity Operations Simulator) with two different rendezvous sensors. Even with realistic delays by using
an ARM-based on-board computer in the hardware-in-the-loop tests the filter is able to provide accurate, stable and smooth state esti-
mates in all test scenarios.
� 2022 COSPAR. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

1.1. Background

A filter estimates a time-varying state using a model of
the system dynamics in combination with measurements
collected at discrete times. The measurements are related
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to the state via some measurement model. Both system
model and measurement model are uncertain, and the mea-
surements are afflicted with noise. In control loops, one
uses the state estimation and compares it with a desired
value. Often pure measurements are very noisy and cannot
be used directly. Sometimes not all components of the state
can be measured directly. Therefore, filter methods are
applied to combine knowledge about the underlying system
dynamics with measurements (Simon, 2006; Zarchan and
Musoff, 2000).

Estimation problems have to be solved in many different
disciplines and applications. One application is the control
of aerospace vehicles and spacecrafts (satellites, space sta-
tions, supply vehicles, etc.). Examples are attitude determi-
nation and control of spacecrafts (Wertz, 2002; Zivan and
Choukroun, 2021), orbit control during automated ren-
org/licenses/by/4.0/).
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dezvous and docking (Fehse, 2003), and on-board naviga-
tion (orbit/attitude/trajectory estimation) in manned and
unmanned spaceflight (Grewal and Andrews, 2010; Volpe
et al., 2022). Typical navigation sensors are inertial sensors,
camera systems (for example star trackers or rendezvous
cameras), Radio Frequency (RF) sensors, Light Detection
and Ranging (LiDAR) systems, and Global Navigation
Satellite System (GNSS) receivers (Fehse, 2003; Grewal
and Andrews, 2010; Marchand et al., 2019; Persson et al.,
2006; Volpe et al., 2017; Volpe et al., 2022; Wertz, 2002;
Zhang et al., 2005b; Zivan and Choukroun, 2021).
1.2. Motivation and problem formulation

For state estimation, we consider the following discrete-
time system:

x!kþ1 ¼ f x!k; u!k; tk
� �þ m!k; ð1aÞ

z!k ¼ h x!k; tk
� �þ x!k; ð1bÞ

where x!k 2 Rn denotes the state vector at time

tk 2 0;1½ Þ; u!k 2 Rl the input or control vector, m!k 2 Rn

the system noise modelled as additive noise, z!k 2 Rm the

measurement and x!k 2 Rm the measurement noise.

Further f : Rn � Rl � 0;1½ Þ ! Rn is a possibly non-
linear function which models how the new state depends
on the previous state, on a control vector and on time. f
is called system model. The function h : Rn � 0;1½ Þ ! Rm

is called measurement model. It describes how the measure-
ment depends on the state vector and on time.

In some applications, only part of the state vector can be
measured. In those cases the measurement model is a
reduction of the state vector to a vector containing those
components which can be measured. For example, the state

vector could consist of a 3D position p!k 2 R3 and a 3D

velocity v!k 2 R3 and the measurement is the position only.
Then the state vector can be written as

x!k ¼ p!k; v
!

k

� �T 2 R6 and the measurement as

z!k ¼ p!k 2 R3. But, in general, also a non-linear relation
between state vector and measurement vector can exist.
For example, the measurement of a sensor could be the azi-
muth and elevation angle and the state vector is a 3D
Cartesian position vector. Or the measurement model can
represent a time-dependent coordinate transformation.
This is often the case, for example when a measurement
is given in the sensor frame and the estimate should be
determined in another coordinate frame.

The classical Kalman filter, as presented by Kalman
(1960), provides a special solution to the linear filter prob-
lem. It assumes that f and h are linear and the noise is
Gaussian with zero mean and known covariance. The
Extended Kalman Filter (EKF) similarly provides a
method to estimate the state by linearization around the
current state (see for example Zarchan and Musoff (2000)
for different filter techniques, incl. the EKF). Many filter
techniques use a filter prediction step, where the system
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dynamics model is used to propagate the state from tk to
tkþ1 followed by a filter correction step, where the estima-
tion is updated by using the measurement.

In many filter techniques it is assumed that a measure-

ment z!kþ1 is known when computing the new state esti-

mate x!kþ1. However, this is only an ideal case. In real
applications, the measurement is not necessarily given at
time tkþ1. When the new filter estimate should be com-

puted, a measurement z! tð Þ with t 6 tkþ1 is given. t ¼ tkþ1

is just a rare special case. Often, measurements are pro-
duced via some complex data processing. For example,
when a camera is used as a sensor, measurements are typ-
ically generated via some image processing routine. The
time span from the capturing of the image until the time
when the final measurement is available for the filter can
be several seconds. It typically depends on the communica-
tion path, the interfaces between sensor and processing sys-
tem and on the computer or embedded system which
performs the image processing. The time span
Dt ¼ tkþ1 � t further need not be a multiple of the filter
sample time tkþ1 � tk. The delays do not have to be con-
stant and similarly, the filter does not have to be executed
with fixed sample times.

Another aspect is the size of the measurement vector. We
would like the filter to cope with measurements produced by
different sources or different sensors. The time for data pro-
cessing and the generation of measurements can vary a lot
and measurements of different sensors are usually asyn-
chronous. There canbe sensors andmeasurement techniques
which can provide a measurement in a few milliseconds and
other sensors and techniques need a few seconds. It is not
sensible to wait until the last measurement of all sensors is
ready.When one of themeasurements is completed, the filter
should use it in its next filter execution step. Thus, there can
be steps where no newmeasurement is available, steps where
only a subset of sensors produce measurements, and steps
where all sensor measurements are available. The filter
should cope with all these cases.

The handling of asynchronous measurements is espe-
cially important in multi-threading, exploiting the
increased performance of multi-core computers that are
becoming (and for advanced applications have to become)
more widespread in space.

In summing up, very complex cases and situations can
occur. This motivates us to develop a filter technique which
is not restricted to special cases as often used in pure theo-
retical studies. The filter technique should be robust with
respect to delayed measurements, non-constant measure-
ment delay, non-constant filter frequency, and measure-
ments from multiple different sources available at
different time points.
1.3. State of the art

Existing studies and works considering filter methods
with delayed measurements differ in the way how the
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delayed measurements are included in the Kalman filter.
Our method is mainly based on the method proposed by
Larsen et al. (1998), where a delayed measurement is
extrapolated to the present time. However the authors con-
sider the special case in which the time of the delayed mea-
surement is synchronized with the filter, i.e. that the
measurement is given at some time ti; i 2 1; . . . ; kf g and
used by the filter at time tkþ1. In this paper, we use the main
idea of Larsen et al. (1998) and extend it to more complex
cases. Further, only a theoretical approach is given by
Larsen et al. (1998). No detailed results are presented.

Another approach dealing with delayed measurements is
presented by Bar-Shalom (2002). The focus lies in comput-
ing the exact solution by a retrodiction of the state from the
latest time back to the time of the delayed measurement
and taking the process noise into account. In a later work,
Zhang and Bar-Shalom (2012) present an advanced version
of Bar-Shalom (2002) which deals with out-of-sequence
measurements from multiple sensors. Bar-Shalom (2002),
Zhang and Bar-Shalom (2012) present theoretical examples
but no single example with real sensor data.

Zhang et al. (2005a) consider measurements which are
not time-synchronized with the filter execution times
(‘‘out-of-sequence” measurements). The authors present a
so-called global optimal update, where the measurement
residuum is modified to handle the delay. For this paper,
we will use a similar change of the measurement residuum
and motivate this approach by studying an extrapolation.
Results with real measurement data are not presented by
Zhang et al. (2005a). Their paper is purely theoretical, with
some numerical results. The global optimal update method
presented by Zhang et al. (2005a) reduces to the method of
Bar-Shalom (2002) when limited information is given.

Larsen et al. (1998), Zhang et al. (2005a) and Bar-
Shalom (2002) do not give any implementation details.

A Kalman filter for relative spacecraft position and atti-
tude estimation is presented by Kim et al. (2007) and an
improvement was given by Zhang et al. (2014). The Kal-
man filter is applied to a real space application with
vision-based navigation but the delay case is not
considered.

As mentioned in Section 1.2 the filter has to handle
delayed measurements but also measurements from differ-
ent sources. So the method should easily be extendable to
the case that more than one delayed measurement arrives
at one filter update step, i.e. the size of the measurement
vector varies.

In literature, sensor fusion is performed in different
ways. Tzschichholz et al. (2015) and Klionovska et al.
(2018) take the distance component of a position from
one sensor, and the lateral component from a second sen-
sor. No filter is used. The information from measurement
components not considered with this method may still be
valuable but is lost completely. Both measurements have
to be available at one and the same time step for fusion.
Further, the method cannot be easily extended to the case
of more than two sensors.
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DeKock et al. (2008) present an example where sensor
fusion is performed at Kalman filter level and applied to
relative navigation for autonomous rendezvous and dock-
ing. Sensor measurements such as RF, LiDAR and
vision-based measurements are included in an EKF. The
navigation system is implemented with Matlab/Simulink
and tested in the Flight Robotics Laboratory of NASA.
It is presented how the different measurement vectors are
adapted to the different sensor sources for the special appli-
cation. However more complex cases, with delay and no
time-synchronization of the measurements are not
considered.

In Benninghoff et al. (2014), we present a first version of
an EKF that can handle delayed measurements. However,
the case that a measurement can even be older than the last
filter update time, is not considered by Benninghoff et al.
(2014) and requires an improvement of the method such
that also this case is covered. Benninghoff et al. (2014) pre-
sent a ground-in-the-loop environment and two test cases.
The implementation is done with Matlab/Simulink but the
filter is not yet implemented for real on-board computer
hardware.
1.4. Contribution of the paper

In this paper, we present a navigation filter that incorpo-
rates delayed measurements and sensor fusion which works
also for a variety of special cases, often not covered in lit-
erature: First, the delay need not be a fixed delay. Second,
it need not be a multiple of the filter sample time, i.e. it
need not be time-synchronized with the filter execution
time. Third, the delayed measurement can also be older
than the last filter update step, which requires special care.
Fourth, the filter can handle delayed measurements from
different sensors and performs sensor fusion. The number
of sensor measurements available at one filter execution
step need not be constant. Fifth, a constant filter execution
frequency is not required. All systems (filter, sensors) can
be asynchronous.

In contrast to theoretical papers in literature, we embed
the navigation filter in a Navigation and Control (GNC)
system for close range rendezvous with real physical sen-
sors to prove its applicability and robustness in a
Hardware-in-the-Loop (HiL) scenario. Therefore, we
demonstrate that the filter works in a robust and accurate
way also in presence of real, non-Gaussian, measurement
noise. The measurement noise is affected by different
sources of disturbances. This is why Gaussian measure-
ment noise cannot be assumed (Zhang, 2000). The filter
and the GNC system are tested in a closed-loop environ-
ment. The filter result affects thus the real state and the next
measurement. It is demonstrated that the entire closed con-
trol loop is stable.

In addition, the paper describes how the filter can be
implemented in C++, how the filter states from the past
can be efficiently stored in buffers and how the sensor
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fusion and the available measurements can be managed
using two bitmasks.

The paper is structured as follows: We present the theo-
retical framework in Section 2. It contains a detailed
description of the navigation filter that can handle delayed
measurements and sensor fusion, and a description of the
GNC system. Further some implementation details are
given. In Section 3, the test environment and the HiL test
facility European Proximity Operations Simulator (EPOS)
are described. In Section 4, results of our HiL tests at
EPOS are presented before giving a final discussion and
conclusion in Section 5.

2. Methods

2.1. State estimation with delayed measurements

In Section 1.2 the time-discrete system (1) and the delay
problem are discussed. The method presented in this paper
can be applied to all filtering methods which consist of a
prediction step, where the system model is used to propa-
gate the state, and of a correction step, where the predicted
state is improved by using measurements (measurement
update).

Note that the term measurement in this paper, refers to
an input to the navigation filter which can be a direct out-
put of a sensor but also the output of a data processing
algorithm. The latter is often used in cases when the sensor
delivers raw data like an image which is processed to obtain
a physical quantity like a position, a pose (position and
attitude) or similar.

2.1.1. Example

Fig. 1 visualizes an example with two delayed measure-
ments. Let k be an index for counting the discrete time
points when a filter estimate is computed, tk�1; tk; tkþ1; . . .
Fig. 1. Illustration of the delay problem (black: actual state and time line, r
propagation only, blue: filter estimates by propagation and use of measureme
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denote the corresponding time points. At time tk�1, there
is no new measurement in our example, i.e. the filter cannot
include a measurement to generate an estimation, it com-
putes the prediction step only.

At some time tmeasi 2 tk�1; tkð Þ a new measurement is
started. Here i denotes the index for counting measure-
ments. (Note, that i and k are different indices. For exam-
ple, there can be the filter execution step number k ¼ 100,
but only i ¼ 10 measurements have been taken.).

The sensor which generates measurement data can be
for example a camera which takes an image at the time
point tmeasi . After the image is captured, the raw image data
is used by some image processing routine which needs a
certain, not necessarily constant processing time.

Therefore there is a delay between the time of the image
capturing and the time when the filter can use the resulting
measurement, the image processing result. At time tk in our
example, presented in Fig. 1, this result is not yet available.
However at time tkþ1 the measurement can be used. The
time delay in this case is tkþ1 � tmeasi .

The next measurement is taken at tmeasiþ1 . In our example,
tmeasiþ1 2 tk; tkþ1ð Þ. The measurement is related to a state at a
time before tkþ1. In this example measurement number i

is used by the filter after measurement iþ 1 is started.
We assume that software implementations of measurement
process and filter run in different, parallel tasks. The mea-
surement system starts processing the next image as soon as
the last image processing is finished or by any external trig-
ger, not synchronized to the filter. Sample times of the filter
may not be taken into account.

The filter uses a measurement as soon as it can. If there
is no new measurement, the filter executes the propagation,
i.e. the prediction step, only. In the example visualized in
Fig. 1, the measurement iþ 1 even has a larger delay com-
pared to the previous measurement. It ‘‘arrives” at the filter
shortly before tkþ4 and can be used at time tkþ4.
ed: measurements and measurement times, light blue: filter estimates by
nt), adapted from Larsen et al. (1998).
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This example shows a case where the measurement delay
is not constant and filter and measurement are
asynchronous.

2.1.2. Classical filter

The EKF without delayed measurements computes an

estimation of the filter problem (1) as follows: Let x!est
k be

the last filter estimate, i.e. an estimate of the state x! at time
tk. In the ideal case, if there is no time delay, a measurement

z!kþ1 of the state at time tkþ1 is given. The EKF proposes
the following algorithm (Zarchan and Musoff, 2000):

x!pre
kþ1 ¼ f x!est

k ; u!k; tk
� �

; ð2aÞ
Ppre
kþ1 ¼ F kP est

k F T
k þ Qk; ð2bÞ

Kkþ1 ¼ Ppre
kþ1H

T
kþ1 Hkþ1P

pre
kþ1H

T
kþ1 þ Rkþ1

� ��1
; ð2cÞ

x!est
kþ1 ¼ x!pre

kþ1 þ Kkþ1 z!kþ1 � Hkþ1 x!pre
kþ1

� �
; ð2dÞ

Pest
kþ1 ¼ I� Kkþ1Hkþ1ð ÞPpre

kþ1; ð2eÞ
In (2) x!pre

kþ1 2 Rn denotes the predicted state vector. It is
obtained by using the system model f applied on the previ-

ous filter estimation x!k and on the control vector u!k at
time tk, see sub-Eq. (2a).

The filter estimates both the state and the covariance of
the state. Ppre

kþ1 2 Rn�n denotes the predicted covariance,
computed as described in (2b). F k 2 Rn�n is the Jacobian
matrix containing the partial derivatives of the system
model f with respect to the single components of the state

x! evaluated at time tk. Pest
k is the covariance matrix of

the last filter step. The matrix Qk 2 Rn�n is the covariance

matrix of the system noise m!k 2 Rn.
The matrix Kkþ1 2 Rn�m, a matrix with n rows and m

columns, is called filter gain matrix, see Eq. (2c). It uses
the predicted covariance matrix and the measurement
matrix Hkþ1 2 Rm�n which contains the partial derivatives
of the measurement model h with respect to the state vector

x! evaluated at time tkþ1. The matrix Rkþ1 2 Rm�m is the
measurement covariance matrix, i.e. the covariance matrix

of the measurement noise x!kþ1 2 Rm.

The state prediction x!pre
kþ1 is updated/ corrected using

the measurement z!kþ1 2 Rm as described in Eq. (2d). The

so-called measurement residuum z!kþ1 � Hkþ1 x!pre
kþ1 is

applied on the gain matrix and the result is added to the
predicted state vector. Finally the predicted covariance is
updated as given in Eq. (2e) resulting in a new state covari-
ance matrix Pest

kþ1 (Note that I denotes the n� n identity
matrix.).

For handling delayed measurements we use as basis the
method we proposed in Benninghoff et al. (2014). We
develop some modifications, such that more difficult prob-
lems can be handled: systems with large velocities require a
modification of the filter prediction step; and certain delay
cases require a modification of the filter correction step. We
describe the method in detail in the next sub-sections.
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2.1.3. Filter prediction

Dependent on the application, it can be sufficient for the
accuracy, if the filter performs the prediction step with a
time step of tkþ1 � tk. But, since usually the discrete system
(2a) is a numerical solution of a differential equation, smal-
ler intermediate time steps are required to increase the
accuracy of the predicted state estimate.

We propose to propagate from tk to tkþ1 using smaller
time steps: Let Dtsub be a desired time step. If
tkþ1 � tk < Dtsub we set Dtk;sub ¼ tkþ1 � tk. Else, we compute

the nearest integer below nk ¼ floor tkþ1�tk
Dtsub

� �
and set

Dtk;sub ¼ tkþ1�tk
nk

. (We use a time step size close to Dtsub such

that an integer multiple of the sub time step size is

tkþ1 � tk.) To compute x!pre
kþ1 we iteratively compute nk times

the discrete propagation with time steps Dt ¼ Dtk;sub.

2.1.4. Filter correction

Typically, there can be some time steps, where no new
measurement is available. In this case, the filter propagates

only, no correction can be made. It computes x!pre
kþ1 as

described above, computes (2b) and sets x!est
kþ1 ¼ x!pre

kþ1

and Pest
kþ1 ¼ Ppre

kþ1, since no correction can be done in

absence of new measurements.

If a new measurement z! tmeasð Þ with tmeas 6 tkþ1 is avail-
able, a measurement residuum is computed. The measure-

ment residuum z!kþ1 � Hkþ1 x!pre
kþ1 (see (2d)) can only be

used in the special case tmeas ¼ tkþ1. For the general case,
we use the residuum

z! tmeasð Þ � H tmeasð Þ x!est tmeasð Þ; ð4Þ
where x!est tmeasð Þ is a state estimation and H tmeasð Þ is the
Jacobian matrix of h with respect to the state evaluated

at x!est tmeasð Þ and at time tmeas (see also Zhang et al.,

2005a). The state estimation x!est tmeasð Þ however is not
directly available since the filter is executed at discrete time
points t0; t1; . . . ; tk; tkþ1. However, if a sufficient number of

past filter estimates is stored, the estimation x!est tmeasð Þ
can be computed using estimates close to tmeas. The number
of stored estimates is dependent on the assumed maximum
delay time plus some margin, see also Section 2.4.

It is therefore important to know the time of the mea-
surement. If one would treat a delayed measurement as
instantaneous measurements and if one would compare

such a measurement directly with Hkþ1 x!pre
kþ1 in the mea-

surement residuum like in the classical EKF (see (2d)),
we would compute a difference of two quantities related
to two completely different time points.

In Benninghoff et al. (2014) we mathematically justified
the setting of the measurement residuum (4). It is based on

the following idea: Since no real measurement z!kþ1 is
available, we approximate and replace it with an extrapo-
lated one (Larsen et al., 1998)
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z!extra
kþ1 :¼ z! tmeasð Þ þ Hkþ1 x

!pre
kþ1 � H tmeasð Þ x!est tmeasð Þ: ð5Þ
Eq. (5) can be derived by considering the measurement
equation and by performing a Taylor series expansion.
For more details, we refer to Benninghoff et al. (2014).

Now we focus on the question how to compute

x!est tmeasð Þ including all special cases which can occur. To

handle delayed measurements we do not only store x!k

but also N additional last state estimates (for example using

a ring buffer). Thus the estimates x!est
k�N , . . ., x!est

k�1; x
!est

k are
available. N should be chosen sufficiently large such that all
typical delays can be handled (dependent on the applica-
tion and the average filter execution frequency).

In the following, we distinguish between different delay
cases which can occur in practice:

Case 1. Let s 2 k � N ; . . . ; kf g be an index such that
tmeas 2 ts; tsþ1½ � and ts is newer or equal than the last filter
correction time step. In Benninghoff et al. (2014) we pro-
posed to interpolate linearly between known filter estimates

x!est
s and x!est

sþ1. However the linear interpolation is not
accurate enough. Similarly, as for the filter prediction step
(Section 2.1.3), we should rather use small propagation
steps.

This is visualized in Fig. 2 by a one-dimensional exam-
ple: The black line represents a non-linear state over time.
The light blue line is the filter estimation. Dark blue dots
visualize the time point when a filter correction step is exe-
cuted. Red dots mark measurements. Dashed lines mark
projection of points to the time line or state line
respectively.

In Fig. 2, the filter is executed for the first time at time t0
by using an initial guess to start the iterative process. At a
time tmeas1 2 t0; t1½ � a first measurement is started. As dis-
cussed above, this can be the time when a measurement
Fig. 2. Example A: Two measurements (red, measurements of type case 1) of th
filter corrections (blue). The second measurement is started after the first mea
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source like an image is captured by a sensor. At time t1
the measurement is not yet available and cannot be used.
The filter propagates only. As described in Section 2.1.3,
the interval t0; t1½ � is split into sufficiently small sub-
intervals for the propagation. Here, three intermediate
points between t0 and t1 are used since the linear propaga-
tion with the larger time step size would be too inaccurate.
(The time stamp size for the propagation is application-
dependent/ is a tuning parameter.) Since no correction
can be made in the absence of an available measurement

at t1, the estimation is set to x!est
1 ¼ x!pre

1 .

At time t2 the measurement z! tmeas1

� �
is available and can

be used by the filter. The measurement relates to the time
tmeas1 which is in the past, but it is the most recent measure-
ment and helps improving the state estimation at time t2.
For computing a measurement residuum, the state estimate

x!est
0 is used and via propagation an estimate x!est tmeas1

� �
is

found. The next measurement z! tmeas2

� �
starts in this exam-

ple in the time interval t2; t3½ �. Now, the delay is less than
one filter execution, so in this case, the measurement can
be used at time step t3 and another correction can be done.

As before, an estimate x!est tmeas2

� �
is computed via

propagation.
For case 1 we can formulate in general: for a time step

tkþ1 where a filter update should be computed, we assume
that tmeas 2 ts; tsþ1½ �, for some s 6 k and no filter correction
step has been done since ts. Case 1 occurs in practice, when
measurement data is captured, processed and the result is
used by the filter in the correction step, and only after this
step the next measurement data is captured. If the precon-
dition, that no filter correction step has been done in the
meantime, is not satisfied, then this situation is handled
by case 2.
e state (black) improve the filter propagation value (light blue) and lead to
surement is used by the filter.



Fig. 3. Example B: Two measurements (red, first measurement of type case 1, second measurement of type case 2) of the state (black) improve the filter
propagation value (light blue) and lead to filter corrections (blue). The second measurement is started before the first measurement is used by the filter.
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Case 2. Fig. 3 shows a second example. The measure-
ment at time tmeas1 is similar as in the previous example.
At time t2 it can be used in the filter correction step. Com-
pared to the example of case 1 the timing is a bit different.
In the second case presented in Fig. 3 the second measure-
ment at time tmeas2 2 t1; t2ð Þ was started before the first mea-
surement was used by the filter correction step at time t2.
Situations like in case 2 can occur in practice if measure-
ment system and filter system are not time-synchronized,
for example if they are executed in different independent
tasks or on different computing nodes.

An estimate x!est tmeas2

� �
is now not computed by propa-

gating from x!est
1 . At time t3 when the measurement can

be used, all most recent knowledge about the filter state
should be used including the improvement of the estimate
after the first measurement has been included. The estimate

x!est
2 , obtained after correction, is assumed to be more accu-

rate compared to the predicted value x!pre
2 . This is why we

use the value x!est
2 and propagate backwards from t2 to tmeas2 .

So for case 2 the general rule is: If a filter correction has
been performed at a time ts P tmeas, for s < k þ 1, the esti-

mate x!est tmeasð Þ is computed via backwards propagation
from ts to tmeas.
2.2. Sensor fusion

A Kalman filter like estimator is well suited for sensor
fusion. Measurements of different sensors can be fused in
the filter correction step.

The method described in this paper takes each measure-

ment z! tmeasð Þ as soon as it is provided to the filter and uses
it in the next correction step. The source of the measure-
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ment is not important. Let M 2 N be the number of sen-
sors. Each sensor generates measurements that need not
be time-synchronized. When the filter is executed, there
can be 0; 1; . . . ;M available measurements. In case of zero
measurements, the filter propagates only. In case of only
one measurement at once, the filter correction is done as
described in sub-Section 2.1.4. For 2 or more measure-
ments the correction method has to be slightly adapted.
We note, that the number of available measurements differ
in general from one filter time step to the next.

To handle M measurements, we adapt the size of the
measurement vector, of the measurement matrix and of
the measurement covariance matrix. At time tkþ1 we con-
sider up to M single measurement vectors

z! 1ð Þ tmeasi1

� �
; . . . ; z! Mð Þ tmeasiM

� �
. Each vector is of dimension

m. In general, the measurement times tmeasi1
; . . . ; tmeasiM

6 tkþ1

need not be equal.

Let H 1ð Þ tmeasi1

� �
; . . .H Mð Þ tmeasiM

� �
2 Rm�n be the single mea-

surement matrices obtained by the partial derivatives of the
measurement model for each sensor, evaluated at

x!est tmeasij

� �
and at time tmeasij

, for j ¼ 1; . . . ;M .

We define the so-called main measurement vector
z!kþ1 ¼
z! 1ð Þ tmeasi1

� �
..
.

z! Mð Þ tmeasiM

� �

0
BBBB@

1
CCCCA 2 RM �m; ð6Þ
and the main measurement matrix
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Hkþ1 ¼
H 1ð Þ tmeasi1

� �
..
.

H Mð Þ tmeasiM

� �

0
BBBB@

1
CCCCA 2 R M �mð Þ�n: ð7Þ

For each sensor a measurement covariance matrix

R 1ð Þ tmeasi1

� �
; . . . ;R Mð Þ tmeasiM

� �
2 Rm�m is given. The main mea-

surement covariance matrix is defined as the following
block diagonal matrix:

Rkþ1 ¼

R 1ð Þ tmeasi1

� �
0 . . . 0

0 R 2ð Þ tmeasi2

� �
. . . 0

..

. ..
. . .

. ..
.

0 0 . . . R Mð Þ tmeasiM

� �

0
BBBBBBB@

1
CCCCCCCA

2 R M �mð Þ� M �mð Þ:

ð8Þ
The gain matrix Kkþ1 for filter step tkþ1 is computed as in

(2c), but is of dimension n� M � mð Þ.
It is now simple to handle the case when not all M mea-

surements are available at the same time. If the measure-
ment of sensor j; j 2 1; . . . ;Mf g is not available at tkþ1,

the measurement matrix H jð Þ is set to zero. In this case
the corresponding m lines of the j-th block in the main mea-
surement matrix Hkþ1 are zero.

Up to now, we have assumed that all sensors produce
the same size of measurement vector, i.e. a vector of dimen-
sion m 2 N. However, the method is not restricted to this
case. For example, it can happen that one sensor measures
two physical quantities, and another sensor measures only
one quantity. Or one sensor measures a 3D position,
whereas another sensor measures the distance only. In
the general case, we can assume

z! 1ð Þ tmeasi1

� �
2 Rm1 ; . . . ; z! Mð Þ tmeasiM

� �
2 RmM . The individual

blocks in the main measurement vector z!, in the main
measurement matrix H and in the filter covariance matrix
are not of the same size. But all calculations can be done

the same way as presented above. For each sensor j;H jð Þ

has to be computed by taking the partial derivatives of
the measurement model with respect to the state. The single
sensors can have different measurement models denoted by
the superscript jð Þ.

2.3. Application to rendezvous

In this section we describe how the filter method can be
applied to navigation problems arising during spacecraft
rendezvous. As reference mission, we consider a debris
removal mission where an active spacecraft called chaser
approaches a completely non-cooperative, passive space-
craft, called target.
2881
2.3.1. Coordinate frames

The Local Vertical Local Horizontal (LVLH) system,
also called spacecraft local orbital frame (Fehse, 2003), is
a well suited coordinate system for relative GNC during
rendezvous or proximity operations. In our application,
close range rendezvous with a non-cooperative target, both
our guidance subsystem and our controller use the LVLH
system.

R-bar (z-axis of the LVLH system) points radial from
the spacecraft to the Earth is thus defined by the absolute
position of the target spacecraft. H-bar (y-axis) is obtained
by the cross-product of the target’s absolute position vector
and velocity vector and V-bar (x-axis) completes the right
hand system. Since the target is fully non-cooperative, the
axes V-bar, H-bar and R-bar are a priori not known and
have to be determined. The LVLH frame is not an inertial
frame, it changes over time with the motion of the target in
its orbit around the Earth, so the estimation has to be done
at each execution of the GNC loop.

To get the origin and the axes of the LVLH system, we
estimate therefore the position and velocity of the target in
an inertial frame, the Earth Centered Inertial (ECI) frame.

In addition to LVLH and ECI, the body frames of
chaser and target are involved. The absolute position and
orientation of the spacecrafts determine the transformation
between ECI and body frame and vice versa.

The relative position and attitude between chaser and
target are measured with optical sensors, for example with
cameras (Fehse, 2003; Persson et al., 2006; Benninghoff
et al., 2014). The measurements are the pose, i.e. position
and attitude, of the target in the sensor frame, see Sec-
tion 2.3.2 below. With the knowledge of the fixed transfor-
mation from sensor system to chaser system (determined
by a hand-eye calibration) the measurements of the relative
position and attitude can be transformed from the sensor
coordinate frame to the chaser body frame. The chaser
body frame is very useful to compare measurements of dif-
ferent sensors, or to compare filter estimation with mea-
surements by some post-processing (see Section 4).

2.3.2. State and measurement vectors

During rendezvous to a completely non-cooperative
passive target spacecraft by a chaser the state of the target
should be estimated.

As discussed in Section 2.3.1 we have to estimate the
position and the velocity of the target in ECI to get the ori-
gin and orientation of the LVLH system which is used by
other sub-systems like guidance in the GNC system. Fur-
thermore, the orientation and the attitude rate of the target
are important during close range rendezvous, for example
when a fly-around should be done to approach the target
from a certain geometrical direction with respect to its
body frame. Attitude and attitude rate are also an impor-
tant input for capture of a spinning or tumbling target after
a successful rendezvous.
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In summary, in our application, the state consists of the
absolute position of the target, its velocity, its orientation
and its attitude rate.

The state vector of the target can be written as

x!¼

p!ECI
tar

v!ECI
tar

q!ECI
tar

x!ECI
tar

0
BBB@

1
CCCA 2 R13; ð9Þ

where p!ECI
tar 2 R3 denotes the position vector, v!ECI

tar 2 R3

the velocity vector, q!ECI
tar 2 R4 is the attitude expressed as

quaternion, and x!ECI
tar 2 R3 is the attitude rate.

The sensors determine the pose (i.e. position and atti-
tude) of the target in sensor frame. The measurement vec-
tor can be written as

z!¼ p!sen
tar

q!sen
tar

 !
2 R7: ð10Þ
2.3.3. Orbit and attitude dynamics and kinematics

For the filter propagation step, system dynamic equa-
tions for the orbit and attitude of the target in ECI coordi-
nates have to be solved. To simplify the notation, we use

p!¼ p!ECI
tar and similarly v!; q! and w! in the following.

For our tests, we model the orbit using the two body prob-
lem (Newton’s law of gravity):

d2

dt2
p!¼ �l

p!
k p!k3 þ

F
!
mtar

; ð11Þ

where l ¼ G �MEarth ¼ 398600:4415 � 109m3=s2 is the Grav-

itational constant multiplied with the Earth’s mass, k p!k
denotes the Euclidean norm of the vector p!;mtar is the

mass of the target and F
!2 R3 is an input or disturbance

vector. For the rendezvous problem, F
!

is often unknown.
This is why we often model this uncertainty with additive
noise, see Eq. (1a).

The corresponding discrete linear equations for the posi-
tion and the velocity can be written as:

p!kþ1 ¼ p!k þ tkþ1 � tkð Þ v!k þ m! pð Þ
k ; ð11aÞ

v!kþ1 ¼ v!k � tkþ1 � tkð Þl p!k

k p!kk3
þ m! vð Þ

k ; ð11bÞ

with system noise m! pð Þ
k for the position and m! vð Þ

k for the
velocity. As before, the index k denotes that the value is
evaluated at tk.

From Eq. (11) and the corresponding law for the chaser,
equations of the relative motion can be derived. For circu-
lar orbits, these are the well-known Hill equations:
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d2

dt2
x� 2x

d
dt
z ¼ F x

mcha
ð12aÞ

d2

dt2
y þ x2 d

dt
y ¼ F y

mcha
ð12bÞ

d2

dt2
zþ 2x

d
dt
x� 3x2 d

dt
z ¼ F z

mcha
ð12cÞ

The derivation of the Hill equations can be found in
Fehse (2003) (Appendix A). The main idea is a lineariza-
tion by a Taylor series expansion. In the Hill equations,
x is the angular frequency of the circular target orbit.

p!LVLH
cha ¼ x; y; zð ÞT is the position vector of the chaser in

the local orbital frame of the target, the LVLH-frame with
the axis V-bar (x-axis), H-bar (y-axis) and R-bar (z-axis).

Knowing already V-bar, H-bar and R-bar as well as the
angular frequency x, the Hill equations are often used in
rendezvous applications. Its closed form solution is given
by the so-called Clohessy-Wiltshire equations, see Fehse
(2003).

The attitude dynamics are modeled via the quaternion
differential equation and the Euler equation. The quater-
nion differential equation is given by

d
dt

q!¼ 1

2
X q!; ð13Þ

where X 2 R4�4 is defined by

Q ¼

0 �xx �xy xz

xx 0 xz �xy

xy �xz 0 xx

xz xy �xx 0

0
BBB@

1
CCCA: ð14Þ

The Euler equation is

I
d
dt

x!¼ T
!� x!� Ix!� �

; ð15Þ

where I 2 R3�3 is the matrix containing the moments of

inertia and T
!2 R3 is the torque vector acting on the tar-

get. Similarly, as for the force, the torque vector is typically
unknown in rendezvous applications with passive targets,
so we can set it to zero and add noise vectors.

The corresponding discrete linear equations for attitude
and attitude rate can be written as:

q!kþ1 ¼ q!k þ tkþ1 � tkð Þ 1
2
Xk q!k þ m! qð Þ

k ; ð16aÞ
x!kþ1 ¼ x!k � tkþ1 � tkð ÞI�1 x!k � Ix!k

� �� �þ m! xð Þ
k ; ð16bÞ

with system noise m! qð Þ
k for the attitude and m! xð Þ

k for the

attitude rate. I�1 denotes the inverse of I, i.e. here a linear
equation has to be solved (via QR-method or similar
methods).

In Section 2.1.3 we mentioned that the propagation
should be split in sufficiently small time steps. For the lin-
ear propagation of the orbit (11) we use a time step of 0.004
s, and for the linear propagation of the attitude and atti-
tude rate (16) we use a time step 0.1 s.



Fig. 4. Example showing how bit masks for active sensors and used
sensors are set dependent on activation of sensors and new measurements.
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The selection of the time step sizes were done based on
the used test environment, see Section 3. The command
rate of 250 Hz of our test facility was used for the propa-
gation of the orbit. For the attitude we used a multiple
of the sample time. We did not investigate on optimal time
step sizes or the influence of the time step sizes on the accu-
racy of the propagation, which is beyond the scope of this
paper. In general, however, the reader should be aware that
linear propagation has to be handled with care, as dis-
cussed in textbooks on numerical mathematics such as
the book of Stoer and Bulirsch (2002).

2.4. Implementation details

The method for a navigation filter with delayed mea-
surements and sensor fusion can be implemented in various
ways and programming languages. We have implemented
it as a C++-class which enables us to use it for our C+
+-based guidance, navigation and control library.

As mentioned in Section 2.1.4, a number of previous
state estimates have to be stored to handle measurements
with delay. This can be done by using a ring buffer of a
fixed, sufficiently large size. In our application, a ring buffer
is used which can store 200 elements. A fixed-size ring buf-
fer allows for high performance since its size needs not to
be changed. Using a so-called push-front routine, a new
state is included in the ring buffer at the front of the buffer.
If the buffer is already full, one element at the back of the
buffer is removed (= the oldest one).

Since the time of measurements and states is important
to handle the delay, the state and the measurements are
also implemented as C++-classes, storing the time and
the state/measurement components. Time and other data
can be accessed via ‘‘get” and ‘‘set” functions. Using the
time information, the buffer elements can be found by com-
paring the times of the stored states with the time of the
delayed measurements.

Different combinations of available, new measurements
can occur during sensor data fusion, see Section 2.2. All
sensors can provide new measurements, or only a subset.
Dependent on the application, it may also be interesting
to avoid the use of sensor measurements for some duration.
For example during the initialization phase of a sensor.

To handle these requirements, we use two bit masks.
One bit mask is called active sensors that contains the infor-
mation which sensors are active. The second is called used

sensors that contains the information which sensor data is
actually used in the current filter correction step. The two
bit masks are stored as unsigned integer with 8 bits, since
8 different sensors are sufficient.

Since the guidance, navigation and control system
should be used in the future as on-board software on a
chaser satellite, the bit mask active sensors is configured
via tele-commands. From an on-ground console, the oper-
ator can first start camera image processing and then
switch it to active by two separate tele-commands. When
the second tele-command is sent, the bit in the active sen-
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sors bitmask corresponding to the camera, is set to 1. By
tele-commands each single sensor can be activated and
the bit mask on-board informs the filter which sensor has
been activated.

The used sensors bit mask can be understood as a subset
of the activated sensors, those sensors which provide a new
measurement which has not yet been used by the filter in a
previous step. This is needed, as explained above, because
the filter can be executed more often compared to the gen-
eration of new measurements.

The used sensors bit mask thus typically changes every
filter execution step, whereas the active sensors bit mask
only changes when a tele-command is sent to activate or
deactivate a sensor for the filter.

Fig. 4 presents an example. At the beginning no sensor is
active. Then two sensors, number 2 and 4, are activated
and the corresponding bits are changed to 1. However no
measurement is ready to be used by the filter. Since the
bit mask of used sensors is zero, the filter propagates only.
In the next step, there is a ready measurement of sensor 2.
The corresponding bit mask is set to 1. The filter uses the
measurement in its correction step. In the next step, there
is a new measurement of sensor 4, but no new measurement
of sensor 2. The filter thus uses the measurement of
sensor 4. In the next step, both sensors provide a new



Fig. 6. Overview on the EPOS laboratory, the robots and the control
system.
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measurement. So the filter uses both measurement. In the
last time step, sensor 2 is deactivated and sensor 4 generates
a new measurement and this measurement can be used by
the filter.

3. Test environment

As mentioned in Section 2.3 we apply the navigation fil-
ter with delay and sensor fusion to a rendezvous applica-
tion. We test the filter and the entire guidance, navigation
and control system within a HiL, end-to-end simulation
framework. This section describes the test-environment.

3.1. Simulation facility EPOS 2.0

The space segment of the rendezvous phase of an on-
orbit servicing mission or other spacecraft rendezvous mis-
sion is simulated at European Proximity Operations Simu-
lator (EPOS), a large-scale research facility for HiL-
simulation of rendezvous, inspection and close proximity
scenarios (Benninghoff et al., 2017; Rems et al., 2021).

EPOS is a robotic testbed with two robots, see Fig. 5.
Each robot has six degrees of freedom. One robot is
mounted on a linear slide of 25 m length, see also Fig. 6.
Thus, the final 25 meters of the close range rendezvous
phase can be simulated with 1:1 models (and even larger
distances with scaled models). One of the two EPOS robots
simulates the motion of the chaser spacecraft during the
final rendezvous phase, the other robot simulates the
motion of the target spacecraft.

EPOS can be used for test campaigns (Mühlbauer et al.,
2013; Burri et al., 2021; Rems et al., 2021) and research
projects (Benninghoff et al., 2018; Klionovska and Burri,
2021). A typical setup for rendezvous can be seen in
Fig. 5. One robot carries an adapter board where several
sensors are mounted. The second one carries a mockup
of a target satellite. EPOS can be used for open loop tests,
where the robots follow a predefined trajectory and sensor
data is collected for off-line post-processing and compar-
ison with the EPOS ground-truth. However, we mainly
Fig. 5. The robots at the EPOS facility during a typical rendezvous HiL sim
mockup of a target spacecraft.
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use EPOS in our research projects for closed loop tests

(Benninghoff et al., 2014; Benninghoff et al., 2018): Sensor
data like camera images are processed in real-time, the
result is used by a navigation filter, the guidance delivers
a reference trajectory and the controller, which compares
estimated values with guidance values, computes com-
mands for the actuator system. The actuators and the
spacecrafts’ orbit and attitude dynamics are simulated in
software (satellite simulator) and the resulting motion is
commanded to the facility. The facility has a command rate
of 250 Hz (Benninghoff et al., 2017).
3.2. Rendezvous sensors

At EPOS, different optical sensors can be integrated and
tested. We use two different optical sensors for demonstra-
ulation. One robot carries rendezvous sensors, the second robot carries a



Fig. 7. Sensors used for sensor fusion demonstration: Left: 2D monocular
camera (Prosilica GC-655) and example gray-scaled image. Right:
photonic mixer device camera (Bluetechnix, DLR-Argos 3D-P320 camera
prototype) and example depth image.

Table 1
Characteristics of the rendezvous sensors used for the filter tests

Sensor name Field of view
[deg]

Resolution
[pixels]

2D monocular camera (Prosilica
GC-655)

53 � 41 640 � 480

PMD (Bluetechnix, DLR-Argos
3D-P320)

28.91 � 23.45 352 � 287
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tion of the navigation filter with delay and sensor fusion: a
2D monocular camera and a Photonic Mixer Device
(PMD) sensor, see Fig. 7.
Fig. 8. Sensor adapter plate mounted at one of the EPOS robots with 2D
mono camera and PMD camera.

2885
The 2D camera provides an intensity image with a reso-
lution of 640 x 480 pixels, see Table 1. The PMD camera is
an active sensor which determines the distance by consider-
ing the phase-shift of emitted and reflected signals
(Klionovska et al., 2018). It generates images of intensity
value and measured distance in each frame with a resolu-
tion of 352 x 287 pixels each. Fig. 8 shows one robot of
the EPOS facility with a sensor adapter board.

The two sensors are used at EPOS as rendezvous sensors
for approaches with a 1:1 model of a typical target satellite
(see example images in Fig. 7). The PMD camera is limited
for ranges between 5 m and 8 m only. The upper limit of
8 m is due to the physical measurement principle which is
based on the phase shift between sent and received signal.
Up to 8 m an ambiguity free measurement can be per-
formed in a stable way. The lower limit of 5 m is due to
the field of view of the PMD camera. In a typical test case
we perform the approach starting with the 2D camera as
primary navigation sensor. At 8 m, the PMD camera is also
used by the filter. The second part of the approach is thus
done with sensor fusion.

We can tune the filter slightly by setting the values of the
noise covariance matrices, see Section 2.2. The 2D camera
has a higher resolution compared to the PMD camera. This
is why lateral motions can be measured with higher accu-
racy by the 2D camera compared to the PMD camera.
However, since the PMD sensor directly delivers physical
distance measurements, the accuracy of the distance com-
ponent of the relative position is more accurate using the
PMD camera compared to the 2D monocular camera.

3.3. GNC system

The navigation filter is part of a GNC system for ren-
dezvous with the components guidance, navigation and
control.

The navigation component contains the physical ren-
dezvous sensors, pose estimation software for each sensor
and the navigation filter software. The pose estimation sys-
tems generate measurements of the relative pose of the tar-
get with respect to the chaser. The filter processes these
measurements together with the current absolute position
and orientation of the chaser to generate an estimation of
the state of the target in ECI coordinates.

The guidance component generates a smooth trajectory
in the LVLH system which the chaser should follow. The
LVLH system is defined by the filter output (position and
velocity of the target in ECI determine the axes of the
LVLH system, see Section 2.3.1.) The guidance trajectory
consists of several sub-trajectories whose parameters can
be commanded from ground. Via tele-command, parame-
ters like desired distance to the target, desired approach
velocity, or desired elevation or azimuth angles for a fly-
around can be set. Also the attitude can be changed by
commanding desired roll, pitch or yaw angles. The guid-
ance trajectory with values for each time step is then com-
puted autonomously on-board using the previously
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commanded parameters. At the end of each sub-trajectory
the guidance enters a so-called hold position mode auto-
matically and waits for new commands.

The control component finally computes the necessary
forces and torques for the chaser satellite by comparing
its actual values with the guidance values. The controller
is a linear-quadratic regular with an integration term.

3.4. On-board computer

In this paper, we also present results where the on-board
GNC system is executed on a representable On-Board
Computer (OBC) hardware. For our tests we use the Com-
puting for Space Avionics (ScOSA) OBC (Treudler et al.,
2018; Lund et al., 2022). The ScOSA OBC combines highly
reliable space qualified hardware with highly performant
commercial off-the-shelf (COTS) components called High
Performance Nodes (HPN) based on a Xilinx Z7020
dual-core ARM Cortex-A9. The nodes are connected via
100 Mbit/s Ethernet for the laboratory configuration
(space wire is used for the space configuration). Lund
et al. (2022) present a ScOSA tasking framework such that
applications can be implemented using different tasks inter-
connected by channels. This allows to asynchronously exe-
cute the computational expensive tasks image processing
and pose estimation on a different node than the rest of
the GNC System.

We chose this platform to present and discuss results
with representative computational times and thus for real-
istic sensor delays produced by the image processing and
pose estimation algorithms.

4. Results

In this section the performance of the navigation filter is
presented for different cases: First, we use only one sensor
and test the filter at two different hold points (test case 1
and 2). Next, still using one sensor, we test the system dur-
ing an entire approach (test case 3). We repeat the
approach with sensor fusion, i.e. we use both a monocular
camera and a PMD camera (case 4) and finally, we inves-
tigate the effect of realistic delays produced by executing
the GNC system on the ScOSA OBC (case 5). All cases
are simulated in closed-loop; the filter results are compared
with the guidance trajectory in a controller to generate
actuator commands for the simulated chaser, in turn
Table 2
Overview on test conditions for case 1 (hold point at 15 m), coordinates of
the target in chaser body frame (Euler angle convention 321).

Initial During test case

px [m] 15 approx. constant
py [m] 0 approx. constant
pz [m] 0 approx. constant
eA [deg] �90 spinning 1 deg/s
eB [deg] 0 approx. constant
eC [deg] 180 approx. constant
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changing the chaser’s motion in the EPOS laboratory (cf.
Section 3).
4.1. Case 1: single sensor at hold point at 15 m distance

In the first test scenario the navigation filter receives
measurements of a single sensor. For this test we use the
Prosilica camera, a 2D monocular camera, at EPOS, see
Fig. 7 (left). We analyze results obtained at a fixed hold
point at about 15 m distance to the target. Hold point
means that the guidance value is constant.

Table 2 shows the test conditions. The chaser body
frame (see Section 2.3.1) is used for the table due to presen-
tation reasons and in accordance with most of the follow-
ing figures. The Euler angle convention is 321, i.e. starting
from the chaser frame, the orientation of the target frame is
obtained by a rotation with angle eC around the chaser z-
axis, a rotation with angle eB around the resulting y-axis,
followed by a rotation with angle eA around the resulting
x-axis. The initial orientation of the target frame with
respect to the chaser frame is visualized graphically in
Fig. 9.

As described in Section 2.3.1, the filter estimates the tar-
get’s state in the ECI coordinate frame. Fig. 10 shows the
filter estimates in ECI: the estimation of the position, the
velocity, the attitude quaternion and the attitude rate of
the target.

We discussed in Section 1.4 that orbit dynamics leads to
high velocities of several kilometer’s per seconds (here: at
the start point about 7 km/s in negative z-direction, +/-
2 km/s in x- and y-direction). This is why noise or oscilla-
tions of the filter cannot be observed when looking at the
resulting position and velocity plots in ECI coordinates.
Considering the attitude however, some noise and oscilla-
tions can be recognized. From the attitude rate it can be
seen that the attitude motion in y and z is approximately
zero, and in the x-coordinate there is a motion of approx-
imately 1 deg/s (0.017 rad/s), see also Table 2.

For a better comparison with the raw sensor measure-
ments, the chaser body frame can be used to analyze the
results. The estimation of the target’s pose by the filter in
Fig. 9. Drawing and visualization of the initial orientations of target and
chaser body frame with respect to each other.



Fig. 10. Results at a hold point at 15 m using a monocular camera as sensor - filter estimates of position, velocity, attitude quaternion and attitude rate in
ECI.
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ECI can be transformed to an estimation of the target’s
pose in the chaser body system (denoted with CHA in
the plots) because the chaser’s pose in ECI is known, see
Section 2.3.1. Further, the camera measurement, first
obtained in its camera body frame, can be transformed to
the chaser body system, because the calibration of the cam-
era is known, i.e. the transformation between camera frame
to chaser body frame. Therefore in the following, the
results are presented with respect to the chaser body system
as common coordinate system. Additionally, for post-
processing, we know the ground truth of the EPOS robots.
The ground truth values can also be converted to the posi-
tion and orientation of the target in the chaser frame.

The velocities and attitude rates are estimated by the fil-
ter, but not measured by the camera. Only position and
attitude are available from ground truth. This is why we
convert only the position and attitude of the filter estimates
to the chaser body system.

Fig. 11 shows the absolute position of the raw camera
measurement in one sub-figure for each component x, y
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and z and the values of the filter estimation in chaser body
frame. For comparison we use the ground-truth of the
EPOS robots, that is unknown to the filter.

In our setup the x-axis of the chaser body system points
towards the target, see Fig. 9. From camera images the dis-
tance is difficult to measure, since it has to be computed by
using a model of the target and some triangulation tech-
nique, see also Benninghoff et al. (2018). The measurement
of the translational components (y and z) is more accurate
compared to the distance component (x) which can be
observed in Fig. 11. The highest noise and the largest error
affects the x-measurement and x-filter estimate.

Specifically at this 15 m hold point, the target is rela-
tively small in the camera image. Due to the finite and dis-
crete resolution of the camera image, the measurement has
a significant deviation from the true position. (However, as
we will see later, the error improves when we reduce the
distance to the target.) Keeping in mind that the filter has
no information about the true position of the target but
only the measurement and knowledge about the underlying



Fig. 11. Performance evaluation at a hold point at 15 m using a
monocular camera as sensor - absolute position in chaser body frame
(campe = camera pose estimation, flt = filter, gt = ground truth).
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dynamics, it is clear that a deviation of the measurement
cannot be corrected to 0 by the filter. It has a smoothing
effect, can provide estimates with a higher frequency com-
pared to the measurement rate and can estimate also veloc-
ities and attitude rates. But it cannot clean a significant
deviation.

This case demonstrates that the point at 15 m (x = 15,
y = 0, z = 0) can be held in a stable way.

Similarly, we investigate the performance of the attitude
estimation. For this we express the attitude in Euler angles,
denoted with eA, eB and eC in the following. We use the
convention that the rotation from target body frame to
chaser body frame can be expressed by three consecutive
rotations: first, eA around the x-axis, second, eB around
the resulting y-axis and finally, eC around the resulting z-
axis.

Fig. 12 shows the absolute values of the attitude mea-
surement, the attitude filter estimates and the ground-
truth for comparison. It can well be observed how the tar-
get performs a spinning motion (see eA-component). Its
spinning axis is aligned with the x-axis. The eB-
component is around 0 degrees, and the eC-component is
around 180 degrees.

We now use the ground-truth to compute the filter error
and compare it with the error of the sensor measurement.
Fig. 13 presents the Euclidean error norm between the fil-
ter’s position and the ground truth and between the sensor
measurement and the ground truth.

The attitude error of the filter estimate and the error of
the measurement are shown in Fig. 14. The absolute angles
between the orientations (between measured orientation
and ground truth orientation for the measurement error,
and between filter orientation and ground truth orientation
for the filter error) are plotted. The maximum error is
around 7 degrees. Please note, that this is the estimation
of the attitude of the target at the beginning of the close
range approach. We will see later, that this value improves
when the distance gets smaller. Also note, that this is the
estimation error of the orientation of the non-
cooperative, spinning target - it is not the pointing error
of the chaser. The main contribution to the error is the
error of the eA-component. The value of eA changes con-
tinuously because of the spinning motion and is a challenge
for the pose tracker. The eB- and eC-components are
approximately constant and the estimation is more accu-
rate (error smaller than 2 degrees).

As described in Section 2.4 the filter uses two bitmasks
active sensors and used sensors. Fig. 15 shows an illustra-
tion of the two bitmasks for the first 4 s of the experiment.
We present only a short time span for illustration reasons,
otherwise little would be seen in the plot. The filter is exe-
cuted with approximately 10 Hz, whereas the camera pose
estimation runs with approximately 5 Hz. Every second
execution of the filter, a new camera measurement is avail-
able in this test case.



Fig. 12. Performance evaluation at a hold point at 15 m using a
monocular camera as sensor - absolute attitude in chaser body frame
(Euler angles in degrees, convention 1–2-3) (campe = camera pose
estimation, flt = filter, gt = ground truth).

Fig. 13. Performance evaluation at a hold point at 15 m using a
monocular camera as sensor - error norm of the position in chaser body
frame (campe = camera pose estimation, flt = filter, gt = ground truth).

Fig. 14. Performance evaluation at a hold point at 15 m using a
monocular camera as sensor - attitude error in chaser body frame
(absolute angle between the compared orientations) (campe = camera
pose estimation, flt = filter, gt = ground truth).
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In Fig. 16 the time delay is presented. It is approxi-
mately 0.25 s during this test.
4.2. Case 2: single sensor at hold point at 8 m distance

In the second test case, we analyze the filter performance
at a second hold point at 8 m distance to the target. We
expect that both the measurement and the filter estimation
improve the closer we approach the target.

Table 3 shows the initial conditions and test conditions.
The setup is very similar to test case 1, except that the dis-
tance is now 8 m and the Euler angle eA is at 20 deg, when
the test is started. (Note, that due to the spinning motion,



Fig. 15. Hold point at 15 m using a monocular camera as sensor -
illustration of active and used sensors at simulation time [0, 4].

Fig. 16. Hold point at 15 m using a monocular camera as sensor - time
delay [s] of the camera measurements.

Table 3
Overview on test conditions for case 2 (hold point at 8 m), coordinates of
the target in chaser body frame (Euler angle convention 321).

Initial During test case

px [m] 8 approx. constant
py [m] 0 approx. constant
pz [m] 0 approx. constant
eA [deg] 20 spinning 1 deg/s
eB [deg] 0 approx. constant
eC [deg] 180 approx. constant

Fig. 17. Performance evaluation at a hold point at 8 m using a monocular
camera as sensor - absolute position in chaser body frame (campe= camera
pose estimation, flt = filter, gt = ground truth).
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the angle eA varies. In test case 2, the angle at start of log-
ging was coincidentally at 20 deg.)

Fig. 17 shows the absolute position and Fig. 18 the
absolute attitude at the second hold point at 8 m.

The error is presented in Fig. 19 (position error norm).
Compared to the previous hold point at 15 m distance to
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Fig. 18. Performance evaluation at a hold point at 8 m using a monocular
camera as sensor - absolute attitude in chaser body frame (Euler angles in
degrees, convention 1–2-3) (campe = camera pose estimation, flt = filter,
gt = ground truth).

Fig. 19. Performance evaluation at a hold point at 8 m using a monocular
camera as sensor - error norm of the position in chaser body frame
(campe = camera pose estimation, flt = filter, gt = ground truth).

Fig. 20. Performance evaluation at a hold point at 8 m using a monocular
camera as sensor - attitude error in chaser body frame (absolute angle
between the compared orientations) (campe = camera pose estimation,
flt = filter, gt = ground truth).
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2891
the target, with position errors up to 10 cm - 20 cm, the
measurement of the camera and the filter estimates have
both improved. Fig. 20 shows the attitude error (presented
as angle between the two compared orientations). The atti-
tude errors at 8 m are also much smaller compared to the
attitude errors at 15 m.
4.3. Case 3: single sensor during an approach

We now analyze the performance of the filter during an
entire approach from 15 m to 4 m with an intermediate
hold point at 8 m. As above for the tests at the hold points,



Table 4
Overview on test conditions for case 3 (approach), coordinates of the
target in chaser body frame (Euler angle convention 321).

Initial During test case

px [m] 15 15 to 8 with 2 cm/s, 8 to 4 with 1 cm/s
py [m] 0 approx. constant
pz [m] 0 approx. constant
eA [deg] �110 spinning 1 deg/s
eB [deg] 0 approx. constant
eC [deg] 180 approx. constant

Fig. 21. Performance evaluation during an approach from 15 m to 4 m
using a monocular camera as sensor - absolute position in chaser body
frame (campe = camera pose estimation, flt = filter, gt = ground truth).
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we compare the filter estimates for the position and attitude
with the camera measurements and with the ground truth
of the EPOS robots.

Table 4 shows the initial and test conditions for this test
case.

Fig. 21 shows the absolute position and Fig. 22 the
absolute attitude of the filter estimate, the camera measure-
ment and the ground-truth in the chaser body frame.

Fig. 23 presents the corresponding position error norm
and Fig. 24 the attitude error.

Looking at the x-component of the position (see
Fig. 21), different phases of the rendezvous can be
observed. The approach starts at 15 m distance to the tar-
get. The first phase, until an intermediate hold point at 8 m,
is performed by following a guidance trajectory with 2 cm/s
approach velocity. At the beginning of the approach, the
measurement and the filter estimate in the x-component
of the position are stair-shaped. This is due to the fact that
a camera has a finite and discrete resolution. When we
approach, and the theoretical change of the target’s size
in the image is less than one pixel, a change in the distance
cannot be recognized. This is why we see different constant
levels until the change in the image is larger than 1 pixel
and the measurement of the distance jumps a few centime-
ters. Especially for distances between 15 m and 11 m this
fact can be seen when analyzing Fig. 21, x-component.
Similarly to the observations of a stair-like measurement,
we can observe oscillations in the error norms, see
Fig. 23, especially during the first 200–300 s of the test.

Having reached the intermediate hold point at 8 m, a
second approach to the final hold point of this demonstra-
tion is done. The final hold point is at 4 m distance to the
target. This hold point is selected due to the field of view of
the camera (see Table 1). For closer distances the target
body would be no longer completely within the field of
view of the camera and no measurement can be produced
by the sensor.

We can observe how the filter estimates improve during
the approach. The second phase is executed with 1 cm/s
guidance approach velocity. This is chosen because of
safety considerations: the closer the distance, the smaller
the relative velocity, to have sufficient reaction time in case
of a malfunction.

Considering the eA-component of the attitude, see
Fig. 22 we observe a bit more than 2 full rotations of the
target around its spinning axis during the HiL test. Also
2892



Fig. 22. Performance evaluation during an approach from 15 m to 4 m
using a monocular camera as sensor - absolute attitude in chaser body
frame (Euler angles in degrees, convention 1–2-3) (campe = camera pose
estimation, flt = filter, gt = ground truth).

Fig. 23. Performance evaluation during an approach from 15 m to 4 m
using a monocular camera as sensor - error norm of the position in chaser
body frame (campe = camera pose estimation, flt = filter, gt = ground
truth).

Fig. 24. Performance evaluation during an approach from 15 m to 4 m
using a monocular camera as sensor - attitude error in chaser body frame
(absolute angle between the compared orientations) (campe = camera
pose estimation, flt = filter, gt = ground truth).

Table 5
Overview on test conditions for case 4 (approach with sensor fusion),
coordinates of the target in chaser body frame (Euler angle convention
321).

Initial During test case

px [m] 15 15 to 8 with 2 cm/s, 8 to 4 with 1 cm/s
py [m] 0 approx. constant
pz [m] 0 approx. constant
eA [deg] 125 spinning 1 deg/s
eB [deg] 0 approx. constant
eC [deg] 180 approx. constant
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Fig. 25. Performance evaluation during an approach from 15 m to 4 m
using sensor fusion - absolute position in chaser body frame (campe = cam-
era pose estimation, pmdpe = PMD pose estimation, flt = filter,
gt = ground truth).

Fig. 26. Performance evaluation during an approach from 15 m to 4 m
using sensor fusion - absolute attitude in chaser body frame (Euler angles
in degrees, convention 1–2-3) (campe = camera pose estimation,
pmdpe = PMD pose estimation, flt = filter, gt = ground truth).
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Fig. 27. Performance evaluation during an approach from 15 m to 4 m
using sensor fusion - error norm of the position in chaser body frame
(campe = camera pose estimation, pmdpe = PMD pose estimation,
flt = filter, gt = ground truth).

Fig. 28. Performance evaluation during an approach from 15 m to 4 m
using sensor fusion - attitude error in chaser body frame (absolute angle
between the compared orientations) (campe = camera pose estimation,
pmdpe = PMD pose estimation, flt = filter, gt = ground truth).
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the oscillations of the attitude errors decrease the closer we
approach, see Fig. 24.

For both position and attitude, a decrease of the
errors can be observed with decreasing distance to
the target.

4.4. Case 4: approach with sensor fusion

As described in Section 2.2 the filter can perform sensor
fusion in its filter update step. We therefore demonstrate an
exemplary approach where two sensors are used: the
monocular camera and the PMD camera, see Fig. 7.

Table 5 shows the initial and test conditions for this test
case.

Fig. 25 and Fig. 26 show the absolute values of the posi-
tion and attitude estimates, the measurements of monocu-
lar camera and PMD camera as well as the ground-truth of
the EPOS robots for comparison. All values have been
transformed to the chaser body system as common refer-
ence frame. The operational range of the PMD camera is
from 8 m to 5 m, as explained in Section 3.2. Therefore
only the phase between 8 m and 5 m can be performed with
sensor fusion, the rest is done with the monocular camera
only.

It can be well seen in Fig. 25 and Fig. 26 how the filter
reacts when a second sensor is used and when sensor fusion
is performed (see for example y- and z-coordinate of the
position, or eB- and eC-component of the attitude): In
the first phase (up to approximately 400 s of simulation
time) the filter uses only camera measurements. As soon
as a second measurement is available the filter estimate lies
between the two sensor measurements. The estimates
improves and the controller reacts. Therefore also the
ground truth changes when a second measurement is used
by the filter. The deviation of the ground truth from the
guidance value (here both 0 for the y- and z-component)
can be regarded as the control error.

Fig. 27 shows the error norm of the filter position esti-
mate and the error norm of the sensor measurements from
both sensors, monocular camera and PMD. Similarly,
Fig. 28 shows the attitude error.

Again, we have a look at the two bitmasks active sensors
and used sensors. The monocular camera is active for the
entire approach, whereas the PMD camera is activated
later at the intermediate hold point at 8 m. Fig. 29 visual-
izes the bitmask values. We choose the time span between
444 s and 448 s. At simulation time 445.4 s the PMD sensor
was activated and first used by the filter at 445.5 s.

In Fig. 29 different combinations of new measurements
can be observed.

� two new measurements are available (for example at
time 445.5 s),

� no new measurement is available and the filter propa-
gates only (at 445.6s),

� a new 2D camera measurement is available and no
PMD measurement (at 445.9 s),
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� a new PMD measurement is available and no 2D cam-
era measurement (at 446.0 s).

Further, the measurement frequencies do not have to be
constant. This can be observed looking at the PMD mea-
surements. Sometimes there is one filter execution with
no new PMD measurement, sometimes there are two such
filter executions.

Finally, we investigate the time delay of the sensor mea-
surements visualized in Fig. 30 for the entire approach. The
time synchronization and triggering of the pose estimation
in the GNC system is beyond the scope of the paper, but



Fig. 29. Approach from 15 m to 4 m using sensor fusion - illustration of
active and used sensors at simulation time [444, 448].

Fig. 30. Approach from 15 m to 4 m using sensor fusion - time delay [s] of
the measurements.

Table 6
Overview on test conditions for case 5 (approach with ScOSA OBC),
coordinates of the target in chaser body frame (Euler angle convention
321).

Initial During test case

px [m] 15 15 to 8 with 2 cm/s, 8 to 4 with 1 cm/s
py [m] 0 approx. constant
pz [m] 0 approx. constant
eA [deg] �20 spinning 1 deg/s
eB [deg] 0 approx. constant
eC [deg] 180 approx. constant
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we give some short explanations needed for analysis of
Fig. 30. The camera pose estimation is triggered in fixed
time steps. If no new camera frame can be received one
time step is paused. This is why we see sometimes some
alternation between 0.3 and 0.4 s of time delay. At the
beginning the target’s size in the camera image is smaller
and the image processing is faster compared to later stages.
When we are closer at the target, the computational time of
the image processing increases. There is an intermediate
phase where some images can be finished within 0.3 s, some
other images need a bit longer, so one triggering misses the
next frame. This is why some jumps in the camera delay
can be observed. However alternating time delays do not
lead to instability of the filter.

The PMD pose estimation is implemented in a different
way. Here we see more noise. The processing time also
increases the closer we approach to the target. We can
observe one significant jump around 700 s from about
0.2 s to 0.4 s delay.
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This example demonstrates that quite different types of
delays can occur in practice. However the filter is able to
generate stable pose estimates throughout the entire
approach.
4.5. Case 5: single sensor during an approach with on-board

computer hardware

In Section 3.4 the ScOSA ARM-based OBC has been
presented which we use to test how the filter reacts on more
realistic delays. The image processing routines needed for
the camera measurements are computationally intensive.
It is important to analyze the performance of the filter with
the GNC system, including the filter and the image process-
ing, executed on realistic on-board computer hardware.

We therefore perform another approach from 15 m to
4 m with the GNC system executed on the ScOSA OBC.

Table 6 shows the initial and test conditions for this test
case.

Fig. 31 and Fig. 32 show the results of the position and
attitude estimation. Fig. 33 and Fig. 34 present the position
error and the attitude error. Using the ARM-based OBC
the oscillations are higher compared to the previous test
cases. However the error values decrease, the closer we
approach the target (see for example Fig. 33).

The effect of the OBC can be well seen by Fig. 35 which
illustrates the bitmasks active sensors and used sensors. Two
different time spans are selected, at the beginning of the
approach at time [60, 68] and at the end of the approach
[540, 548]. Using a personal computer (x86 processor) the
camera measurement delivers a new measurement approx-
imately 5 times per second, compare Fig. 15. With the OBC
we have only one measurement each 1.8 s at the beginning
of the approach. As discussed several times in the paper,
the image processing time increases during the approach
to the target because of the increasing size of the target
in the camera image. At the end of the approach we have
only one measurement approximately every 5 s. This is a
much lower measurement rate compared to the previous
test cases. The use of the ScOSA OBC is a very challenging
example and proves that the new filter method presented in
this paper is able to cope with very low measurement
frequencies.

The time delays using the ScOSA OBC (see Fig. 36) are
much larger compared to the results presented in Fig. 16



Fig. 31. Performance evaluation during an approach from 15 m to 4 m
using the ScOSA OBC - absolute position in chaser body frame
(campe = camera pose estimation, flt = filter, gt = ground truth).

Fig. 32. Performance evaluation during an approach from 15 m to 4 m
using the ScOSA OBC - absolute attitude in chaser body frame (Euler
angles in degrees, convention 1–2-3) (campe = camera pose estimation,
flt = filter, gt = ground truth).
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Fig. 33. Performance evaluation during an approach from 15 m to 4 m
using the ScOSA OBC - error norm of the position in chaser body frame
(campe = camera pose estimation, flt = filter, gt = ground truth).

Fig. 34. Performance evaluation during an approach from 15 m to 4 m
using the ScOSA OBC - attitude error in chaser body frame (absolute
angle between the compared orientations) (campe = camera pose
estimation, flt = filter, gt = ground truth).

Fig. 35. Approach from 15 m to 4 m using the ScOSA OBC - - illustration
of active and used sensors at simulation time [60, 68] (top) and [540, 548]
(bottom).

Fig. 36. Approach from 15 m to 4 m using the ScOSA OBC - time delay
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and Fig. 30. The time delay at 15 m using the OBC, i.e. at
the beginning of the approach, is around 2 s, which is
already about 10 times larger than the time delay we
observed in Fig. 16. The time delay continuously increases
with increasing computational load for the image process-
ing. At the end of the approach at 4 m distance the delay is
even around 5 s. This observation matches with the fre-
quency of the measurements that we observed in Fig. 35.

This demonstration shows that the filter is robust
enough with respect to extreme measurement delays. In
all test cases that we analyzed, it stays in a stable state, it
does not diverge and provides a continuous state estima-
tion during the entire rendezvous test.
[s] of the camera measurements.
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5. Discussion and conclusion

The results (see Section 4) demonstrate that the new
navigation filter and thus the resulting control loop are
stable for all presented test cases. As expected, the filter
smoothes the sensor measurements and the performance
improves the closer we approach.

The filter is able to perform sensor fusion. We tested the
fusion with measurements from a 2D monocular camera
and a 3D PMD camera. In principle, all kind of navigation
sensors (see Section 1.1) can be integrated. In our test
setup, the PMD sensor could only be used in the range
between 5 m and 8 m distance to the target. In the future,
we plan to replace the PMD camera by a LiDAR and want
to analyze the performance of the filter in sensor fusion
mode during the entire approach, not only during a sub-
phase. Furthermore, if possible, we would like to test the
filter on a real spaceflight mission or to compare the filter’s
performance with existing flight results of others.

In this paper, we showed that even for large measure-
ment delays in the magnitude of 2-5 s, which occurred dur-
ing the test with the ScOSA OBC, the filter provides stable
state estimates. As expected the large delay led to higher
oscillations and higher errors compared to the cases with
small or moderate time delay. Some adaptations of the
pose estimation could be done to reduce the delay. The cur-
rent pose estimation routine is not yet optimized or
parallelized.

This paper focuses on setting up a first version of a nav-
igation filter which works well for a number of different test
cases. Beyond the scope of the paper is filter tuning: For
example, the performance of the filter is dependent on
the system and measurement noise covariances Qk and Rk

(see Section 2.1.2) which can be tuned. Also the initial esti-

mate x!est
0 significantly influences how quick the filter con-

verges at the beginning. In case of close range rendezvous,
if information from a previous mid range rendezvous phase
is known, this information should be used. If no informa-
tion is available, the position and velocity of the chaser
in ECI seemed to be a good guess for the position of the
target according to tests done by us. The other components
of the state, attitude and attitude rate, converged fast
within a few seconds for arbitrary initial parameters like
unit quaternion for the orientation or zero-3D vector for
the rate. Additionally, also different sample times of the fil-
ter and different step sizes for the propagation should be
tested and tuned. For all tuning parameters, one can per-
form for example Monte Carlo simulations to get some sta-
tistical results about the accuracy and stability of the filter.
Based on that, the parameter setting can be tuned. The set-
up of such Monte Carlo simulations and the evaluation of
the results was however not done in the scope of the paper,
but is important for future research work.

Asynchronous measurements will become more and
more important with more intelligent sensors and sensor
processing methods involved (machine vision). For exam-
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ple, if certain low level pre-processing is integrated, the fil-
ter might receive asynchronous data of events.
Furthermore, extensive real-time processing in connection
with growing usage of multicore on-board computers
require filter techniques that can cope with non-
synchronized measurement output of the different cores.
Apart of sensor fusion and delay handling, one major
advance of the filter method is the handling of asyn-
chronous measurements.

In summary, the new filter method seems to be a promis-
ing advancement compared to existing works (Larsen et al.,
1998; DeKock et al., 2008; Zhang et al., 2014; Benninghoff
et al., 2014). It could cope with a variety of test cases with
different delays, distances and sensors noise characteristics.
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