
CosmoScout VR:

A Modular 3D Solar System Based on SPICE

Simon Schneegans
German Aerospace Center (DLR)

Lilienthalplatz 7
Braunschweig, 38108

simon.schneegans@dlr.de

Moritz Zeumer
German Aerospace Center (DLR)

Lilienthalplatz 7
Braunschweig, 38108

moritz.zeumer@dlr.de

Jonas Gilg
German Aerospace Center (DLR)

Lilienthalplatz 7
Braunschweig, 38108

jonas.gilg@dlr.de

Andreas Gerndt
German Aerospace Center / University of Bremen

Lilienthalplatz 7
Braunschweig, 38108

andreas.gerndt@dlr.de

Abstract—We present CosmoScout VR - a modular 3D Solar
System for interactive exploration and presentation of large
space mission datasets. This paper describes the overall ar-
chitecture as well as several core components of the frame-
work. To foster the application in various scientific domains,
CosmoScout VR employs a plugin-based architecture. This
not only reduces development times but also allows scientists
to create their own data visualization plugins without having
to modify the core source code of CosmoScout VR. One of the
most important plugins — level-of-detail terrain rendering — is
described in greater detail in this paper. Another key feature of
CosmoScout VR is the scene graph which is tightly coupled with
NASA’s SPICE library to allow for high-precision positioning of
celestial objects, such as planets, moons, and spacecrafts. SPICE
is also used for the seamless navigation throughout the Solar
System in which the user automatically follows the closest body.
During navigation, the virtual scene is scaled in such a way, that
the closest celestial body is always within arm’s reach. This
allows for simultaneous exploration of multiple datasets in their
spatial context at diverse scales. However, the navigation uses
all six degrees of freedom which can induce motion sickness. In
this paper, we present some counter measures as well as evaluate
their effectiveness in a user study. CosmoScout VR is open
source, cross-platform, and while it can run on conventional
desktop PCs, it also supports stereoscopic multi-screen systems,
such as display walls, DOMEs or CAVEs.

TABLE OF CONTENTS

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3. ARCHITECTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4. CORE COMPONENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

5. PLUGINS & APPLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . 7

6. EVALUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

7. CONCLUSION & FUTURE WORK . . . . . . . . . . . . . . . . . . 11

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

BIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1. INTRODUCTION

Within the last few decades, European and international Earth
observation and space exploration missions have produced
a wide variety of datasets, and new missions with highly
capable instrument suites are about to be launched. This data

978-1-6654-3760-8/22/$31.00 ©2022 IEEE

may contain answers to fundamental questions for science
and humanity: How did the Solar System evolve? Is there life
on other planets? How will climate change on Earth? Many
answers have only been found by combining various datasets,
showing phenomena that otherwise remain uncovered.

Especially the visualization of data not only from multiple
sources but also at diverse scales offers a significant potential
for scientific discoveries. Usually, this requires using several
visualization tools simultaneously which hinders a greater
understanding as the data cannot easily be contextualized.
Thus, an in-depth exploitation of the available data requires
a holistic visualization framework to establish a common
spatio-temporal reference frame.

Furthermore, visualizing data at interactive frame rates can
foster explorative approaches which are particularly promis-
ing due to the potential for serendipitous findings. If this is
combined with immersive stereoscopic rendering to enhance
perception of complex 3D objects such as observation geome-
tries or trajectories of spacecrafts, such a tool could not only
be used for data analysis but also for space mission planning.
However, this poses not only grand challenges due to the
ever-growing size of the available data, but also due to the
complexity of a human-computer interface which involves
navigation in a dynamic multi-scale environment: our Solar
System. Free navigation in such a virtual environment can
easily induce a significant amount of cybersickness which
hinders the adoption by scientists.

With these opportunities and challenges in mind, we are
developing CosmoScout VR [1], a modular 3D Solar System
for interactive and immersive data exploration. In this paper,
we present the architecture, the core components, and several
plugins for the software. After a state-of-the-art discussion in
Section 2, we present the software architecture in Section 3.
Thereafter, in Section 4, we describe CosmoScout’s scene
graph which provides high precision and seamless navigation
throughout the entire Solar System based on SPICE [2].
We also provide details on the flexible HTML-based user
interface, and our HDR-renderer which is key to produce
realistic images. In Section 5, we present several plugins
of CosmoScout VR with corresponding use cases from var-
ious scientific domains. We describe details of the terrain
rendering plugin as well as a plugin to reduce the amount of
induced cybersickness. Ultimately, we evaluate these aspects
in Section 6 by presenting a cybersickness user study and a
performance evaluation.

1

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current
or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Get the full version at
https://doi.org/10.1109/AERO53065.2022.9843488



Figure 1. Exploring Gale Crater on Mars: Interactive visualization of HiRISE data from the Mars Reconnaissance
Orbiter using 28 projectors of the aixCAVE at RWTH Aachen.

2. RELATED WORK

Over the last decades, several open source visualizations of
detailed planets or even the entire known Solar System have
been created. Not only human fascination for space but also
the added value through interactive data visualization have
been driving factors in the development of these applications.
Some are targeted at desktop-usage, such as the SPICE-

enhanced Cosmographia [3] which is based on Celestia2. A
similar project based on the Unity Game Engine is NASA’s
Eyes on the Solar System [4] with a web version currently in
development. These tools are primarily aimed at educating
the general public about the mechanics of the Solar System
and past, ongoing, and future exploration efforts. Using web
browsers as a target platform provides better accessibility
and thus promises a more widespread application. CesiumJS
[5] is a JavaScript framework for creating web-based virtual
globes which has been used in many projects such as NASA’s

Trek pages3. Similarly, NASA’s World Wind [6] can be
used to explore data for a single planet (primarily Earth) in
a web-based environment. Another promising platform is
virtual reality (VR) as it offers higher engagement through
increased immersion and promises insights into complex data
due to stereo vision. All projects mentioned above are not
specifically designed for virtual reality. A software which is
primarily targeted at planetarium-like setups but also supports
virtual reality is OpenSpace [7]. In fact, OpenSpace is a very
similar project to the one presented in this paper with only
a slightly shifted application focus. However, all features
described in this paper are unique to CosmoScout VR and
thus complement the state-of-the-art.

Regardless of the target platform, there are a number of
challenges in this application area. Due to the extreme spatial
extent, precision handling using floating point arithmetic
gets challenging. Furthermore, 3D-navigation introduces a
set of challenges which are unique to these sparse multi-

2https://celestia.space/
3https://trek.nasa.gov/

scale scenes. In order to deal with the massive amounts
of heterogeneous data, sophisticated level-of-detail rendering
algorithms, client-server processing, and out-of-core data
management is necessary.

Handling of Large Scenes — One cause for the first challenge
is that nowadays GPUs are optimized for 32 bit single preci-
sion floating point numbers which can not sufficiently repre-
sent entire planets in the range of centimeters. A common
solution to this problem is representing the scene at a higher
resolution on the CPU and converting it to user-centered
coordinates with a floating origin for rendering [8]. To
represent the data on the CPU, various approaches have been
proposed over the years. One of the most popular approaches
is using power-scaled coordinates (PSC) [9] which add a
scaling exponent to all 3D coordinates. While this drastically
increases the available coordinate range, it still suffers from a
decreasing precision with increasing distance from the origin
of the scene. As a solution, Axelsson et al. recently proposed
the Dynamic Scene Graph (DSG) [10] which allows for high
precision at arbitrary positions in space. This is primarily
achieved by modifying the standard depth-first scene graph
traversal so it starts at a scene graph node in the vicinity of the
virtual camera and thus avoids large (and hence error-prone)
translation values for objects close to the camera.

In CosmoScout VR, we opted for an approach similar to
the DSG which is based on the hierarchical double precision
coordinate systems of SPICE [2]. While our approach (see
Section 4) provides a similar precision, it is more easy to
integrate in an existing single precision scene graph as no
modification of the traversal scheme is required.

3D-Navigation — Another remarkable challenge of virtual
reality applications is 3D-navigation as it can easily lead
to cybersickness and disorientation. This is especially true
for space simulations: Most of the time, the navigation
must support all six degrees of freedom as there is no clear
ubiquitous reference frame and the concept of up and down

2



changes frequently. At the same time, the Solar System is
a dynamic multi-scale environment in which celestial bodies
move with several thousands of kilometers per hour relative
to each other. A comprehensive overview of existing multi-
scale navigation approaches is given by Argelaguet et al.,
differentiating between discrete and continuous navigation
[11]. In the discrete case, users may choose between a
predefined set of fixed scales to work in. While this is suit-
able for various applications, a continuously changing scale
seams more adequate for explorative navigation in the Solar
System. In the context of astronomical visualizations, Fu et
al. proposed an approach based on power-scaled coordinates
where users can manually adjust the scale of the universe to
fit the task at hand [12]. They also point out that in this
context automatic select-and-go navigation models are very
efficient but may result in a loss of spatial context. McCrae
et al. proposed an approach where the scale of the scene is
automatically adjusted so the closest object is at a fixed draw-
distance [13]. The closest object is determined by rendering
the scene to a low-resolution depth-cubemap in every frame
which comes at a significant performance cost.

For CosmoScout VR, we also implemented an approach
which dynamically adjusts the scene scale according to the
closest object. In addition, the observer automatically fol-
lows the movements of the closest object. Furthermore, we
avoid the additional rendering step by explicitly computing
the distance to all potential objects. This is feasible due
to the sparseness of the Solar System. The details of the
implementation are given in Section 4.

Cybersickness Reduction — Between 30% and 80% of users
encounter cybersickness (or VR-sickness) in some form or
severity during their exposure to virtual environments [14].
To reduce the symptoms while using CosmoScout VR, we
implemented and evaluated popular cybersickness mitigation
techniques based on common theories about the source of
motion- and cybersickness. The postural stability theory
assumes that motion sickness is precedented by periods of
postural instability, where small uncontrolled movements and
changes in the subject’s center of gravity occur [15]. To
combat this, Chang et al. [16] and Duh et al. [17] projected
a grid aligned with the real-world floor into the virtual envi-
ronment to assist the user’s orientation and postural stability.
Another, theory about the origin of motion- and cybersickness
is the sensory conflict theory. It assumes cybersickness
symptoms are caused by the mismatch between the perceived
environment and the subject’s expectations, as hypothesized
by Barret and Thornton in [18]. Vection, the illusion of
self motion, is a commonly experienced phenomenon of this
conflict as analysed by Keshavarz et al. in [19]. It is the result
of the visual system receiving optical flow patterns, while the
vestibular system does not perceive these changes in motion.
This source of potential cybersickness is addressed through
the implementation of a vignette, reducing vection by limiting
the field of view during periods of high visual flow in the
peripheral field as suggested by Fernandes and Feiner in [20].
The details of the implementations are given in Section 5.

The polysymptomatic and polygenic nature of cybersickness
increases the difficulty to develop standardized and effective
methods to reduce cybersickness symptoms, as well as mea-
sure their effectiveness across a diverse group of users. His-
torically, questionnaires have been a popular method to mea-
sure cybersickness due to the internal and subjective symp-
toms, and the large individual differences in symptom profiles
and susceptibility [21]. The Fast Motion Sickness Scale
(FMS) [22] provides a single item questionnaire focussing on

Figure 2. Thanks to software like Vioso’s Anyblend,
CosmoScout VR can be used for planetarium-like

projections. The image shows CosmoScout VR running
in the ”ARENA” science dome of the GEOMAR

Helmholtz Centre for Ocean Research in Kiel, Germany.

nausea and general discomfort, to rate the overall experience
of motion sickness symptoms. This questionnaire can be
used during the exposure to identify sections of increased
risk to cybersickness, while traditional post-exposure ques-
tionnaires like the Simulator Sickness Questionnaire (SSQ)
[23] only identify the most prevalent symptom category. To
complement the subjective data with objective measurements,
Chardonnet et al. analyze sway signals of the center of gravity
in [24] to gather insight into events of motion sickness in vir-
tual reality environments. Using an approach similar to Lim
et al. in [25], we measure the center of gravity and postural
sway via the VR-device’s tracking data in the conducted pilot
user study in Section 6.

Level-of-detail (LoD) Terrain Rendering — All Solar System
simulations which attempt to display highly detailed planets,
moons, and other celestial bodies have at some point to deal
with level-of-detail rendering. This is a very mature field
of research — a good overview of traditional approaches is
given by Pajarola et al. in [26]. While data size and graphics
hardware has changed significantly since then, the underlying
strategies for level-of-detail management are still valid nowa-
days. A solid overview of all aspects of planet-scale terrain
rendering software is presented by Cozzi and Ring in [8].
While discussing several alternatives, they ultimately propose
to use the equirectangular projection for mapping data onto
the globe. For Earth this is reasonable, especially since
there are many datasets available in this format. However,
it suffers from singularities at the poles which lead to triangle
degeneration and performance issues. Yet the poles are of
specific scientific interest on several extraterrestrial bodies,
such as the ice caps on Mars, or the permanently shadowed
craters on our Moon. As a solution, Kooima et al. propose
a globe decomposition based on icosahedrons [27]. This is
however limited by the 32 bit floating point arithmetics on the
GPU which lead to artifacts for details smaller than 2.39 m on
an Earth-sized globe.

Therefore, CosmoScout VR builds upon the work of West-
erteiger et al. [28], using the HEALPix projection [29] which
provides a singularity-free subdivision and a uniform data
density across the entire globe. Novel aspects of our imple-
mentation when compared to the original implementation by
Westerteiger et al. are described in Section 5.

3



3. ARCHITECTURE

The development of CosmoScout VR started about ten years
ago and the software has evolved from a level-of-detail
planet-scale renderer [28] to a multi-scale visualization of
the entire Solar System and beyond. The software has been
made open source and received, for example, contributions in
the field of large-data visualization using high-performance
computing. In this chapter we first describe potential user
groups of CosmoScout VR and deduce requirements and
design decisions therefrom. Then we provide a high-level
architecture overview and outline several aspects which are
then described in greater detail in Section 4.

Target User Groups — The primary user group are sci-
entists working with large spatial datasets. Use cases of
the software include the interactive analysis of large remote
sensing products, in-situ sensor data, and simulation data
in its spatial context, for instance for landing site analysis.
It can also be used to support space mission planning by
immersive visualization of observation geometries and sim-
ulation of time-dependent lighting of the planetary environ-
ment. A second important user group are researchers in the
fields of visualization, computer graphics, and virtual reality.
Hence, CosmoScout VR is also supposed to be a prototyping-
platform which can be used to quickly experiment with new
visualization and interaction techniques. Finally, the general
public benefits from the development of CosmoScout VR, as
it can be used for science communication, personal education,
and interactive presentations.

Requirements and Design Decisions — Primarily, Cos-
moScout VR is supposed to be a real-time rendering system
putting strong emphasis on the applicability for virtual reality.
Consequently, physical correctness will usually be traded for
rendering performance. However — whenever possible —
parameters will be identified which can be used to adjust
this trade-off in one or the other direction. Nevertheless, a
constantly high frame-rate is considered more important than
physical correctness. Furthermore, users cannot be expected
to have much experience with virtual reality. Hence, reducing
the impact of cybersickness is an important goal.

On the development-side, CosmoScout VR should be eas-
ily extensible to allow scientists to implement visualization
modules for specific datasets. This requires a sophisticated
plugin-concept and a modular user interface. In addition,
plugins should be re-loadable at runtime to allow for fast
prototyping. To foster collaboration on this project, Cos-
moScout VR is designed to be cross-platform, open source,
and, whenever possible, established standards should be used
to ease the integration of new datasets.

On the hardware side, CosmoScout VR should support both,
traditional desktop PCs and a wide variety of virtual reality
hardware such as tracking cameras and stereoscopic output
devices ranging from HMDs to multi-pipe rendering clusters.
Figure 1 shows the application running on a rendering cluster,
Figure 2 shows an immersive visualization in a planetarium-
like dome environment.

Software Architecture — Figure 3 gives a high-level overview
of the involved components: CosmoScout VR is based on
external libraries, such as the ViSTA framework [30] for I/O
and cluster synchronization, and SPICE [2] for positioning
of celestial bodies. SPICE was chosen as it is standard in
the space industry. ViSTA was not only chosen for historical
reasons, but also because it is completely open source, and
thus introduces no license or royalty issues. In contrast to

cs-utilsC
o

sm
o

S
co

u
t 

V
R

C
o

re
 L

ib
ra

ri
e

s

ViSTA

cs
p

-t
ra

je
ct

o
ri

e
s

co
sm

o
sc

o
u

t.
e

xe

E
xt

e
rn

a
l

L
ib

ra
ri

e
s

cs-core

cs-graphics

SPICE ...

cs-gui cs-scene

navigation, scene scaling, simulation time control, plugin loading

C
o

sm
o

S
co

u
t 

V
R

E
xe

cu
ta

b
le

cs
p

-s
ta

rs

cs
p

-s
im

p
le

-b
o

d
ie

s

..
.

HDR, texture loading

unit conversions, command line parsing, signal-slot pattern, ...

CEF-wrapping scene graph based on SPICE

scene graph, device support,

network synchronization

positioning of

celestial object

there are other

dependencies

cs
p

-s
h

a
ra

d

cs
p

-u
se

r-
st

u
d

y

cs
p

-l
o

d
-b

o
d

ie
s

cs
p

-a
tm

o
sp

h
e

re
s

C
o

sm
o

S
co

u
t 

V
R

P
lu

g
in

s

Use Case A

E.g. Space Mission PlanningU
se

C
a

se
s Use Case B

E.g. Fire Simulation Visualization

...

Figure 3. CosmoScout VR consists of five core libraries
which are based on several third-party libraries, such as

ViSTA [30] and SPICE [2]. The visualization
functionalities are implemented on top in form of plugins.

most other available engines, it is designed from the ground
to support rendering on CAVEs, tiled displays, and other
clustered setups. Furthermore, during the development of
CosmoScout VR, there are oftentimes long-lived parallel
development branches for specific research projects. From
our experience, using engines such as Unreal or Unity makes
it difficult to maintain multiple versions of the software in
parallel using a version control system.

The core functionality of CosmoScout VR is split into five
core libraries which are built on top of these external depen-
dencies: cs-utils contains frequently used functionality
such as conversions between different units, latitudes, or time
formats. The SPICE-wrapping for positioning of celestial ob-
jects is implemented in cs-scene. The classes required to
built HTML-based user interface elements are implemented
in cs-gui. The rendering loop is part of ViSTA, but
cs-graphics contains specific classes required for ren-
dering 3D objects, shadow computations, and high-dynamic-
range (HDR) rendering. Finally, cs-core contains high-
level functionality using classes of the other libraries, as well
as the algorithms for 3D-navigation. Key aspects of these
core libraries are described in Section 4.

The aforementioned core libraries do not provide any visu-
alization modules. This is rather implemented in form of
plugins which are loaded by the CosmoScout VR executable
at runtime. In fact, if CosmoScout VR is started without any
plugins, the user will only see a black screen with a minimal
user interface. Loading specific visualization functionality
from plugins not only reduces development time since it can
be reloaded at runtime, but also allows for the integration
of novel data visualization methods without affecting core
components of CosmoScout VR. Plugins can bring in their
own third-party dependencies, use all functionality of the core
libraries, and modify the user interface. By design, plugins
cannot communicate with each other. This has not been
required yet and simplifies the implementation significantly
as plugins do not depend upon each other. Some important
plugins of CosmoScout VR are described in Section 5.

4



w
e
ig

h
t

position

1

0
P
Observer C

P
Observer A

P
Mars

P
Phobos

P
Observer B

track position & rotation

track position only

a) b) c)

Figure 4. In CosmoScout VR, each frame a weight is calculated for each celestial body. The weight depends on the
body’s radius and the real-world distance to the user. The body with the highest weight is considered to be the active
body. Any user movement is relative to the SPICE center of the currently active body. If the weight exceeds a given

threshold (marked by the dashed line above), the user will enter the rotation-fixed frame of the active body. This system
allows for automatic and seamless transitions between various navigation scenarios: When being far away from a

planet, a user wants to follow its revolution around the Sun, but not its rotation (a). Any small objects passing between
the planet and the user should not affect the user’s movement (such as Phobos, marked with a circle in image a). If the
user now moves closer to Phobos, its weight will at some point exceed the weight of Mars (b). Hence, the user will now

follow Phobos on its orbit around Mars. Finally, when the user gets very close to the surface of Mars, the assigned
weight will exceed the threshold and the user will start following the surface motion (c). This makes it possible to land
on the surface of any celestial body while it is actually moving quickly through outer space using free navigation only.

4. CORE COMPONENTS

SPICE-Based Scene Graph (cs-scene)

When rendering scenes as large as the Solar System but
contain objects in the range of a few centimeters, precision
issues arise quickly. In computer graphics, the geometric
relations between 3D-objects are typically stored in a scene
graph. This is usually a tree in which transformation nodes
define a coordinate system relative to their parent node. For
example, the poses of individual Lunar rover components
may be specified with respect to the rover’s local coordinate
system which in turn may be expressed relative to the Moon.
The Moon’s pose may be calculated relative to Earth which
is positioned relative to the Sun. During rendering, this tree
is traversed top-to-bottom to compute the absolute transfor-
mations of all nodes. This results in large translation values
which cannot be stored with sufficient precision on today’s
GPUs which are usually limited to 32 bit operations. The so-
lution described in [10] modifies the usual traversal scheme to
start not at the root node but at a transformation node close to
the current user position. This results in small user-centered
transformation values for close-by objects. However, this
required modification is not always possible if an existing 3D
engine is used.

Therefore, we propose an alternative approach to position
objects with high precision in space which is based on the
kernel hierarchies of SPICE [2]. SPICE models geometric
relationships of celestial objects with time-dependent, hier-
archical reference frames in double precision. There are
different reference frame types such as inertial reference
frames which are fixed with respect to the stars, or body-
fixed reference frames which follow the rotation of a celestial
body. In CosmoScout VR, special transformation nodes (so-
called CelestialAnchorNodes) as well as the observer (which
corresponds to the user’s head) are derived from a Celes-
tialAnchor class which stores, in addition to a SPICE frame, a
double-precision position, rotation, and scale relative to that
frame. For example, the individual components of a Lunar
rover can be expressed with single-precision transformation
nodes attached to a CelestialAnchorNode representing the
rover, while the observer is currently positioned relative to the
body-fixed reference frame of the Moon using the additional
position and rotation properties.

To allow for standard scene graph traversal, CelestialAn-
chorNodes are always children of the root node of the scene
graph. Before the traversal, the current relative transfor-
mation between each CelestialAnchorNode and the observer
is computed via SPICE and stored in the single-precision
transformation of each CelestialAnchorNode. This results
in observer-centered coordinates for each scene graph node
during rendering. However, special attention has to be paid to
large objects such as planets. These need to be decomposed
into smaller parts which are transformed to observer-centered
coordinates individually.

Due to the additional double-precision position, rotation, and
scale, it is also possible to transition a CelestialAnchor from
one SPICE frame to another without affecting its absolute
position in space. This allows for seamless reference frame
transitions during navigation.

Seamless Navigation in the Solar System (cs-core)

CosmoScout VR has several characteristics making free nav-
igation an especially challenging topic and thus requiring
special attention. First, in contrast to most other virtual reality
applications, the navigation must fully support all six degrees
of freedom as the concept of up and down changes frequently.
Second, since the scene is dynamic and celestial bodies move
all the time, there is a need for a system which manages the
transitions between reference frames automatically. Finally,
the Solar System is a multi-scale environment covering many
magnitudes of scale. This requires a system which automati-
cally adjusts the users’ movement speed so that they can cover
the vast distances in outer space as well as maneuver between
rock formations on the surface of a celestial body. Such a
navigation with support for all six degrees of freedom can
easily lead to cybersickness. To mitigate this, we developed
a dedicated plugin which is described in more detail in
Section 5 and evaluated in Section 6.

When used in virtual reality, CosmoScout VR primarily
employs a control scheme similar to the one-handed flying
described by [31]. When the user initiates a movement by
pulling the hair trigger of the controller, the current pose of
the controller is saved. As long as the trigger stays pulled,
the observer’s movement direction corresponds to the vector
from the initial position to the current position. The vector’s

5



50'000

draw distance in [m]

∞1.70

real-world distance to closest celestial body in [m]

0.5

1.7

Figure 5. The virtual scene is scaled towards the user’s
head so that the closest body is drawn at a specific visual
distance. This is computed according to the graph above
(which can be adjusted in the settings). In this example,

the scene is drawn at a 1:1-scale if the user is on the
surface. In outer space, the scene is scaled down to draw

the celestial body within arm’s reach.

magnitude is mapped to the velocity of the observer. At the
same time, the observer’s rotational movement is determined
by the angular difference between the initial and the current
pose of the controller. As this is a rate-controlled navigation
scheme where the differences are mapped to velocities, the
user does not need to twist the controller in uncomfortable
positions but can gradually navigate the simulation with
precise movements.

In order to seamlessly navigate from the surface of one
celestial body to the surface of another, while both are moving
through space, the reference frame of the observer has to
change at some point. This is done by computing a weight
wbody for each celestial body at each simulation-time step.
This weight depends on the bodies’ radius rbody and its
distance to the observer d.

wbody =
rbody

rbody +max(0, d)
(1)

This function yields a weight of one at the surface and a
decreasing weight with increasing observer distance. The
body with the highest weight is considered to be the active
body. Whenever the active body changes, the observer will
change to an inertial reference frame centered at this body
and thus follow its movement automatically. If the weight of
the active body exceeds a configured threshold, the observer
will change to a body-fixed frame to also follow the bodies’
rotation. Note that, because the active body is not necessarily
the closest body, this system allows smaller objects such
as moons or spacecrafts pass between the observer and the
active body without unexpected reference frame changes. An
example of this system is provided in Figure 4.

A well-proven approach for navigating huge multi-scale en-
vironments is scaling either the user or the scene in such
a way, that the closest surface is drawn at a comfortable
distance [13]. This allows inspecting details of small objects
as well as covering large distances between objects quickly.
In CosmoScout VR, this visual distance to the surface of
the closest celestial body is computed based on the real-
world distance of the observer to that body (Figure 5). If the
observer is only a few meters above the surface of a planet,

the surface is drawn below the observer’s feet to prevent
penetration of the virtual content. If the observer is in the
orbit of a celestial body, the surface can be drawn closer to
allow for inspection and efficient interaction. Consequently,
celestial bodies are drawn closer to the observer if they are
farther away in real-world. While this seems counter-intuitive
at first, it allows for realistic 1:1-rendering when standing on a
celestial body’s surface, and simultaneously making efficient
use of the parallax space when navigating in outer space. This
is implemented by scaling the observer so that the closest
celestial body is drawn at an appropriate distance. Note that
this scaling happens with respect to the closest body which is
not necessarily the same as the active body introduced before.
This ensures that the user never penetrates the virtual content.

With this approach, ground following is implicitly imple-
mented. As the observer is automatically scaled to touch the
planetary surface, users will always perceive themselves as
standing on the surface of the planet. When moving closer to
the surface, the surface will not appear to be moving towards
the user but will be scaled up instead. As the scaling center is
the cyclops position between the user’s eyes, the difference
is only noticeable due to the not-changing parallax of the
planetary surface. See Figure 6 for an example how this
special type of ground following works.

HTML-Based User Interface (cs-gui)

The cs-gui core library contains classes required to build
a graphical user interface (GUI) based on web technology
such as HTML, CSS, and JavaScript using the Chromium

Embedded Framework (CEF4). There are several advantages
and disadvantages of using such technology in a virtual
environment. The key advantage is the rich ecosystem of
open source libraries for creating all kinds of GUIs allowing
developers to easily create complex, interactive GUI elements
such as graphs, timelines, or 2D-maps. Furthermore, the
development cycle of the user interface is comparably fast,
as changes can be previewed in a web browser without any
recompilation of the software. In fact, it is also possible
to connect to a running instance of CosmoScout VR and
inspect, modify, and debug the GUI elements remotely via
web sockets. On the other hand, a lot of complexity is added
to the code as the GUI is rendered in a separate process and
thus special attention has to be paid to the communication

4https://bitbucket.org/chromiumembedded/cef/src

Physical Space

Virtual Terrain

Figure 6. In the vicinity of a celestial body, the scene is
scaled so the bodies surface is right below the user’s feet
(left image). The scaling center is the user’s head and the

scaling factor is updated each frame. Hence, when the
user steps into a valley, the scene will be scaled towards

the head until the feet are on the ground again (right
image). This scaling is imperceptible with a

non-stereoscopic output device. With a stereoscopic
display, only the parallax of the terrain changes, not its

projected position on the screen.

6



Figure 7. A central element of CosmoScout’s user interface is an interactive timeline. The upper overview-timeline is
usually hidden and can be expanded by clicking the arrow-button on the right-hand side. This overview can be

dragged and zoomed independently of the main timeline at the bottom. Temporal events are shown with colored circles
or bars. The simulation speed can be adjusted with the slider below the timeline.

with the main thread of CosmoScout VR. Additionally, there
is the need to transfer the rendered frames of the user interface
to the GPU which causes a bottleneck for large screens.

GUI elements can either be placed in screen space or can be
attached to scene graph nodes. The former is used when Cos-
moScout VR is started in desktop mode, the latter is useful
in virtual reality where the GUI is positioned in 3D space
relative to the user. Each GUI element runs in a separate
process and the CosmoScout VR executable and the plug-
ins communicate with it via inter-process communication.
This happens bidirectionally — messages are sent to execute
JavaScript code in the context of the GUI element, and there
is a set of functions available on the JavaScript side which
trigger callbacks in the main thread of CosmoScout VR. A
theoretical problem of this system arises in a clustered setup:
There is no way to synchronize the state of the GUI elements
which means all cluster nodes have their own state of the user
interface which is not necessarily equal. Also, the callbacks
emitted in the main thread are not guaranteed to arrive in
the same frame. As all input sent to the GUI elements
is synchronized however, this has never been a problem
in practice. Nevertheless, any non-deterministic JavaScript
code, such as using random numbers or doing web requests,
should be avoided.

The GUI of CosmoScout VR consists of several core com-
ponents which can be extended by plugins. An expandable
sidebar contains most of the configuration possibilities, and
at the bottom left, an integrated JavaScript console allows
for interactive scripting. Another central component is an
interactive timeline, which allows the user to adjust the
simulation speed, jump to specific time points, or adjust the
current simulation time continuously by dragging the timeline
(see Figure 7). Other examples of the GUI can be seen in
Figure 1 and Figure 8.

Rendering with Photometric Quantities (cs-graphics)

Many use cases of CosmoScout VR — such as training
for on-orbit servicing or image synthesis for testing optical
navigation algorithms — require the simulation of lighting
conditions as realistic as possible. For this, CosmoScout VR
includes an optional high-dynamic-range (HDR) rendering
pipeline. In order to achieve coherent lighting in a virtual
universe, all light sources must be modelled with their correct
radiation ratios which vary in our Solar System by several
orders of magnitude. Therefore, CosmoScout VR uses pho-
tometric units such as Lumen, Lux and Candela throughout
the optional high-dynamic-range rendering pipeline.

If HDR rendering is enabled, plugins can query the direction
towards the Sun and the Sun-based illuminance for any
point in space. With this information, plugins can compute
appropriate luminance values for the rendered geometry. The
actual shading computation differs from plugin to plugin.

When all scene geometry has been rendered, the average
luminance of the current frame is computed by a series of par-
allel reductions using compute shaders. As CosmoScout VR
may run on a cluster of rendering nodes, the local values
need to be collected by the cluster master node. The global
average luminance values are then distributed to the clients
which finally use them to compute an auto-exposure value.
This exposure is adapted gradually using the algorithm from
[32] to mimic the adaption of human eyes to changes in
illumination. Ultimately, a tonemapping operator is applied
to reduce the dynamic range before showing the image to
the user. Different tonemapping operators can be used, per
default CosmoScout VR uses filmic tonemapping [33].

5. PLUGINS & APPLICATIONS

As mentioned before, a central aspect of CosmoScout VR’s
architecture is outsourcing as much functionality as possi-
ble to plugins. Plugins can use all previously described
functionality from the core libraries but cannot communicate
with each other. This ensures that they only contain well-
encapsulated functionality. On the down-side, it is sometimes
necessary to move functionality which is required by multiple
plugins to a core library in order to prevent code duplication.

While there are numerous plugins available in the source
code repository of CosmoScout VR [1], we will focus on
two of them and their use cases in this chapter: cybersickness
reduction and level-of-detail terrain rendering.

Reducing Cybersickness (csp-vr-accessibility)

Many use cases of CosmoScout VR are prone to induce
cybersickness as they involve free navigation in the Solar
System. The means to reduce cybersickness described in
Section 2 are implemented in a plugin, so they can be added to
hardware setups where they are needed and left out otherwise.
Both the grid and the vignette are designed as customizable as
possible, as cybersickness is very subjective, and the studies
presented earlier suggest a wide range of user preference.

The floor grid (left image of Figure 9) provides a stable frame
of reference coinciding with the real world floor. This is
done to improve postural stability at the cost of presence and
immersion. The grid is implemented as a large quad attached
to the origin of the tracking space. This allows the tracked
user to move relative to the grid. A vertical offset can be
configured so the grid properly matches the real world floor.
Additionally, the extent of the grid is customizable to change
the size of the grid platform the user is standing on. To allow
the user to fully adapt the grid to their needs, the texture of the
grid is interchangeable, and its scaling factor can be adapted
to determine the coarseness of the grid. Lastly, the grid’s
color and opacity can be changed as well.

7



Figure 8. All visualization capabilities of CosmoScout VR are loaded from plugins, some of which are shown in the
images above: The first shows a close-up on the south pole of the dwarf planet Vesta. This can be visualized without

problems by the level-of-detail terrain rendering plugin thanks to the HEALPix projection (the terrain tile boundaries
are overlaid in turquoise color). Some plugins are rather generic and can be used for various use cases such as
rendering of 3D satellites using the GLTF standard (second image). Others are dedicated to specific use cases

visualizing special sensor types such as subsurface radar data (third image). The final image shows several
terrain-measurement tools which are also implemented as a plugin.

The field-of-view vignette (right image of Figure 9) reduces
peripheral visual flow when the observer is moving. It is
realized as a post-processing shader drawing a 2D vignette
effect over the rendered scene. The inner and outer radii of the
vignette are adjustable. Additionally, there are configurable
upper and lower velocity thresholds, setting the limits within
which the vignette is active. It is not shown below the lower
threshold, and it is fully closed to the inner radius above the
upper threshold. The vignette can be toggled between a static
and a dynamic mode. In the dynamic mode, the radius of
the vignette is adjusted gradually according to the observer
speed. The static vignette uses an opening and closing
animation when the user passes the velocity thresholds to
automatically open or close the vignette. Lastly, the color of
the vignette is customizable, and an additional toggle exists
to switch between a circular vignette and a vertical vignette.
The vertical vignette mimics the natural human vision by not
limiting the horizontal field of view. In addition, the vertical
limitation is asymmetrical as humans have a larger field of
view towards the floor [25].

In Section 6, a pilot user study is presented to evaluate
the implemented means for cybersickness mitigation. The
main goals were to assess their effectiveness, to find optimal
default settings, and to guide future development.

Figure 9. In order to reduce cybersickness,
CosmoScout VR includes a dedicated VR-accessibility
plugin. This offers a transparent floor grid to provide a

stable reference frame with respect to the real world (left
image) and a configurable vignette to limit one’s field of

view during rapid movements (right image).

Level-of-Detail Terrain Rendering (csp-lod-bodies)

This plugin contains a key feature of CosmoScout VR: Pre-
cise rendering of planet-scale terrain datasets (elevation and
imagery) without singularities at the poles. This is interesting
for extraterrestrial bodies like Mars or the Moon where the
poles are of high scientific interest. In the first image of
Figure 8, the south pole of the asteroid Vesta is rendered.

The approach is based on previous work by Westerteiger et al.
[28]. Planets and moons are subdivided into twelve base tiles
according to the HEALPix [29] projection (Figure 10). They
represent the root nodes of twelve quad-trees in which each
node covers the same spatial extend as its child nodes but with
half the resolution. During rendering, nodes are recursively
subdivided until they meet a specific split criterion. The
current implementation uses an upper limit for the projected
screen space size of the tile’s bounding box as split criterion.
This limit is adjusted automatically to ensure that the frame
rate stays above the screen’s refresh rate. While this is a
very basic criterion, we found that it works well in practice
and requires no preprocessing such as computing geometric
differences between quad-tree levels. This is important, as
it allows us to extend the original implementation by West-
erteiger et al. to use the Web Map Service (WMS) protocol
standardized by the Open Geospatial Consortium (OGC) for
retrieval of elevation and imagery data.

For each tile, a 256x256 pixel image is requested via HTTP
from a map server following the WMS standard. This request
includes information on the required datasets, the spatial
extent, and the target image format (e.g. 24 bit RGB for
imagery and 32 bit grey scale for elevation data). The raw
data is then loaded by the map server and reprojected to
HEALPix on-the-fly. To add support for this projection to
the map server, some changes to the HEALPix projection

of the underlying PROJ library5 were necessary and are
included therein since version 6.3.0. The changes include the
possibility to rotate the HEALPix space by 45°: This way,
all tiles become axis-aligned and can therefore retrieved as
square-shaped images (right image of Figure 10). Finally, the
images are streamed to the application and cached locally.
This approach requires nearly no preprocessing of the raw
datasets (apart from standard optimizations to enable fast data
loading by the map server), and thus new datasets can be
integrated easily.

5https://proj.org/

8



50

0

10 2 3 4

1

2

3

4

5

Figure 10. The original HEALPix implementation
projects geographical data to the twelve base tiles shown

in the left chart. To store the tiles as images, the
projection is modified so that the projected image is

rotated by 45°. An additional scaling and offset aligns the
base patch bounds with integer values (right chart).

During rendering, the same fixed square grid of vertices is
drawn for each tile. This grid consists of 257 vertices on
each edge (that is 256 vertices to match the tiles data reso-
lution plus one for stitching with the neighboring patches).
All vertices are then vertically displaced along the geodetic
normal according to the elevation data and textured with the
image data. The required elevation and imagery data for all
currently visible tiles is stored in two texture arrays on the
GPU. Consequently, each tile has access to all visible data
when being drawn. This allows us to extend the original
implementation with terrain stitching to prevent visible seams
in the terrain due to t-junctions where different tile resolutions
meet: For edges between two tiles with different resolution,
elevation data is always sampled from the lower resolution
neighbor. When the resolution of both tiles is the same, data
is always sampled from the western neighbor.

If vertex positions are transformed from geographic to Carte-
sian coordinates on the GPU, jittering artifacts due to in-
sufficient floating point precision arise when the camera is
close to the virtual surface of a large celestial body. This is
solved similarly as described in [7]: If the virtual camera is
so close to a terrain tile that jittering would be noticeable, the
four corners of the tile are transformed to double-precision
camera-centric coordinates on the CPU, and linearly inter-
polated on the GPU using single-precision arithmetics. This
means, that the surface of the ellipsoidal globe is at some
point approximated by a series of piecewise linear patches.
However, the resulting error is small: The center altitude
of linearly interpolated 1x1 km tiles differs from the real
ellipsoidal surface by about 1 cm for an Earth-sized globe.

Figure 11. These images show the trajectory of Mars
Express at the same simulation time but with different
reference frames. The inertial J2000 frame centered

around the parent body is useful when visualizing orbits
(left). For ground tracks, a body-fixed non-inertial frame
centered around the parent body (center) is useful. For
interplanetary cruise, an inertial frame centered at the

Solar System’s barycenter can be used (right).

An exemplary use case for this plugin is Landing Site Eval-
uation. It was actually the initial goal of CosmoScout VR
to support planetary researchers in the evaluation of po-
tential landing sites for future space exploration missions.
To this end, significant development happened during the
EU-funded project CROSSDRIVE [34] which was about
collaborative rover mission planning. During this project,
the csp-lod-bodies plugin was extended to support ad-
vanced terrain visualizations such as slope shading. Ded-
icated data visualization plugins were added, for example
visualizing subsurface radar data (third image of Figure 8).
In addition, virtual tools were developed which allow geolo-
gists to measure profile lines, dip and strike angles, landing
ellipses, surface areas, or volumes (last image of Figure 8).
In order to contextualize the data, spacecrafts are positioned
based on SPICE data with csp-satellites (second
image of Figure 8). Their trajectories through space are
also drawn by a dedicated plugin: csp-trajectories
(Figure 11). To complete the virtual environment, stars are
loaded from the Tycho, Tycho2 and the Hipparcos catalogues
by csp-stars and atmospheres around celestial bodies are
visualized by csp-atmospheres using single Mie- and
Rayleigh scattering [35].

A completely different use case is the simulation of onboard
cameras for testing terrain-relative navigation algorithms.
While CosmoScout VR primarily aims at interactive analysis
of remote sensing products in conjunction with other large-
scale datasets, we are investigating the possibility to use it
for emulating a camera on board of a Lunar lander. The
goal is to create artificial images of the Lunar surface which
can then be used in closed-loop simulations for testing au-
tonomous landing algorithms. Therefore, CosmoScout VR
must generate as realistic images as possible in real-time (see
Figure 12). For this project, the csp-lod-bodies plugin
was extended to support the Oren-Nayar [36] and the Hapke
[37] model reflectance model for shading the Lunar surface.
For integration into the simulation loop, CosmoScout VR
requires an interface which on the one hand allows remote-
controlling the application state (e.g. changing the camera
position and attitude, the simulation date, or the Sun direc-
tion) and on the other hand streaming of rendered frames to a
third-party application. To enable this, we added a plugin
called csp-web-api, which allows remote execution of
JavaScript code via an HTTP interface. This allows to
modifying the application state from a third-party application
such as a script or a dedicated control interface. In addition,
it allows capturing of color and depth images and streaming
them via HTTP to a third-party application.

Figure 12. The left image is a cropped and rectified
photograph taken by the SpaceIL Beresheet Lander. The

camera’s pose and intrinsic parameters were obtained
from a single image, using crater landmarks detected by
[38]. The right image is a corresponding image rendered
with CosmoScout VR using LOLA elevation data. While

the geometric similarities are apparent, quantitative
image comparisons are future work.

9



0 ms

5 ms

10 ms

15 ms

20 ms

25 ms

 User Interface Compute Glare Compute Scene Luminance TrajectoriesTone Mapping MiscellaneousStars AtmospheresEarth Mars

30 ms

35 ms

0

50

100

150

200

250

300

350

F
ra

m
e

 T
im

e

R
e

n
d

e
re

d
 T

il
e

s

Figure 13. The graph shows exemplary GPU timings for a journey through the Solar System over the course of about
2000 frames. At the beginning, the camera is stationary on the surface of Earth, then it travels backwards to show the
entire planet and later an overview of the Solar System. It moves towards Mars and finally lands in Gale Crater. The
stacked area chart shows the contribution of various components to the overall frame time. The thin line indicates the

amount of terrain tiles rendered by the csp-lod-bodies plugin for Earth and Mars respectively. The measurements
were performed on a laptop equipped with a NVidia Quadro P3200, an Intel Core i9-8950 HK, and a full HD screen.

6. EVALUATION

In this chapter, we evaluate the performance of the aforemen-
tioned plugins as well as present a pilot user study to assess
the effectiveness of the cybersickness mitigation methods.

Performance

In order to illustrate the rendering performance of Cos-
moScout VR and its plugins, Figure 13 shows represen-
tative GPU timings when run on a contemporary laptop.
The graph shows GPU timings only, as CosmoScout VR
is GPU-bound on most hardware setups. In addition to
the csp-lod-bodies plugin, other plugins for rendering
stars, atmospheres, and trajectories were enabled. Most of the
frames stayed well below the dotted line of 16.67 ms, only
a few dropped when Mars came into view quickly. This is
expected, as the level of detail of the planets is automatically
adjusted to keep the frame time below this value. When
approaching the surface of Mars, the number of rendered tiles
peaked at about 250 (which corresponds to about 32.8 million
triangles) but was automatically reduced to ascertain a stable
frame rate of 60 frames per second. The ”Compute Scene
Luminance”, ”Compute Glare”, and ”Tone Mapping” steps
are only required if the HDR rendering path is enabled.
This means, if HDR is disabled, the level of detail will
automatically increase using the gained frame time.

A potential performance bottleneck of CosmoScout VR’s
GUI is the data transfer from main memory to GPU memory.
However, updated regions of the user interface are transferred
from the GUI processes to GPU memory using persistently
mapped buffers of OpenGL 4.4, which proved to be very fast.
For the 2000 frames shown in Figure 13, the average CPU
time required for communicating with the GUI processes and
transferring the image data was x̄CPU = 1.237ms with a
standard deviation of σCPU = 0.165ms. The same part
of the code required only x̄GPU = 0.779ms / σGPU =
0.138ms on the GPU.

User Study

A pilot user study was conducted to measure the effectiveness
of the implemented cybersickness-mitigation methods and to
identify potential for future improvements. In the within-
subject study, we use the Fast Motion Sickness Scale (FMS)
instead of the historically popular Simulator Sickness Ques-
tionnaire (SSQ), since the single item FMS allows discrete
sampling of cybersickness symptom severity during the ex-
posure, instead of a single post-exposure questionnaire like
the SSQ. In addition to the subjective FMS scores, center of

gravity measurements, similar to the head dispersion mea-
sured by Lim et al. [25], are used to collect the subject’s pos-
tural stability at discrete points during the exposure. Lastly,
questionnaires are used to assess user satisfaction on a seven-
point Likert scale.

Procedure — The pilot user study starts with an introduction,
where data about experience with motion sickness and virtual
reality is collected. Afterwards, each subject performs a short
tutorial to get used to the virtual environment. In the main
part, each subject navigates through three scenarios, each
time with either the vignette, the grid, or no feature enabled.
The order of the scenarios is counterbalanced to compensate
for confounding factors like increasing acclimatization to the
virtual environment and competency with the control scheme.
In each scenario, the user has to follow the same path through
a series of checkpoints, some of which measure the subject’s
postural stability while others ask for an FMS rating (see
Figure 14). Each scenario pass is followed by a five-minute
break from the virtual environment and a questionnaire to
assess each subject’s satisfaction. Finally, a questionnaire for
comparison of the vignette feature, the grid feature, and the
featureless version is presented.

Participants — The pilot study was conducted with 21 partic-
ipants (15 male, 6 female), the average age was 32 (±7) years.
All subjects indicated a low incidence or rare cases of motion
sickness from other sources (i.e. sea/car sickness), except
for motion sickness originating from simulators which was
reported more often, but may be caused by more provocative
stimuli. On average, the subjects reported low experience
with virtual reality (between less than once a month down
to less than once a year or never). Out of the 21 subjects, 4
decided to abort the pilot study due to feeling unwell, 3 of
them aborted during the first scenario, 1 aborted during the
second scenario (2 during the scenario with the grid, and one
each during the vignette and featureless scenario).

Subjective Results — We use the Friedman Test [39] to
find significant differences between the three scenarios in the
answers for the comparative questionnaire. The results are
shown in Figure 15. The Friedman Test reports significant
differences for cybersickness symptoms (Question 3, Q =
8.05, p = 0.018), with a medium to large effect size (Cohen’s
d = 0.75) between the featureless scenario (w/o) and the
vignette scenario (V). Additionally, there is a significant
difference in enjoyment (Question 1, Q = 8.0, p = 0.018),
with a medium effect size (Cohen’s d = 0.51) between the
grid scenario (G) and the featureless scenario (w/o).

10



Figure 14. Subjects had to navigate through a series of
checkpoints, starting on the Moon (top left), moving
through space (top right) and ending on the Martian
surface. At about one-minute intervals, checkpoints

measured the user’s center of gravity (bottom left) and
requested an FMS rating (bottom right).

Objective Results — The Fast Motion Sickness Scale (FMS)
and balance measurements (COG) indicate similar findings,
however, the differences between scenarios are not signifi-
cant. This may be a result of difficulties to precisely measure
the center of gravity, as we reduced the 30 seconds balance
measurement proposed by Chardonnet et al. in [24] down to
10 seconds to avoid the subject getting impatient during the
measurements, as they are done more frequently. The FMS
measurements may not show significant differences due to
the strong influence of other factors like time spent inside the
virtual environment and the 5-minute break being insufficient
to regulate the overall accumulation of cybersickness.

Discussion — The outcome shows that the vignette provides
best results, reducing cybersickness symptoms noticeably.
Furthermore, it was not obstructing or annoying for users
less susceptible to cybersickness and thus not in need of
the feature. This flexibility suggests the vignette can be
turned on in default settings for all users, albeit with a higher
inner radius, reducing its notability without sacrificing its
effectiveness, in response to feedback from several subjects.

The grid received mixed results, with both positive, but also
negative feedback from subjects regarding its effectiveness
and obstructiveness. Subjects less susceptible to cybersick-
ness tend to find the grid occluding their view or annoying.
On the other side, subjects who experienced cybersickness
symptoms seem to be split into two groups: Subjects who felt
comfortable with the controls mostly reported the grid to be
helpful, providing a stable floor and a reference to help align
the virtual to the real world floor. Subjects who appeared less
confident with the controls showed difficulties adjusting the
observer’s orientation, resulting in a slanted virtual horizon
which was not aligned with the grid. Those users often
reported that the grid felt unaligned with the real world floor
and that this perceived misalignment resulted in increased cy-
bersickness symptoms and reduced postural stability. Rolling
movements and an angular mismatch between the virtual
horizon and the floor grid appear to be the most common
cause for cybersickness inside the simulation. Additionally,
several users reported problems or negative feedback when
the grid is displayed while moving.

In conclusion, we found the vignette to be a robust and
flexible method of cybersickness mitigation when 6-degrees-

AgreeDisagree

I enjoyed the expe-

rience of the scenario.

I had difficulties 

navigating in scenario.

I experienced cyber-

sickness symptoms 

during the scenario.

I think the feature is 

useless / annoying.

w/o

G

V

w/o

G

V

w/o

G

V

G
V

Figure 15. The qualitative feedback showed that users
preferred the vignette (V) over the grid (G). Opposed to
the grid, the vignette does not seem to influence the user

experience negatively when compared to the scenario
without any aid (w/o). In addition, users reported a

reduced amount of cybersickness symptoms.

of-freedom navigation cannot be avoided or limited. The grid,
however, appears to be highly subjective and useful only in
specific situations. Therefore, the grid should be used based
on personal preference. We gathered additional feedback
and information to further improve and develop the grid, like
an option to automatically hide the grid while moving, or a
method to automatically level the horizon when it is close
to the real-world horizon. Finally, an additional, alternative
navigation scheme like a world-in-miniature overview with
teleportation navigation may also be beneficial to the user
experience and cybersickness.

7. CONCLUSION & FUTURE WORK

In this paper, we presented the architecture of Cos-
moScout VR, as well as several core components of the
framework. We have shown the modularity of the open source
software which fosters its application in various scientific
domains. It can be used to gain insight into large space
mission datasets through contextualization and explorative
analysis in an immersive virtual environment. This approach
is not only valuable for data analysis, but can also be used to
effectively communicate scientific findings to colleagues and
the general public.

While the developed framework has already proven to be
valuable and reliable in practice, there is much potential for
future work. For instance, the user study provided valuable
insights on how we can further improve the user experience
in virtual reality. The development of additional domain-
specific plugins is another promising aspect and we are
currently collaborating in various projects to visualize large-
scale datasets such as mantle convection data, oceanic flow
data, or wildfire simulation data. Furthermore, a quanti-
tative comparison of generated images with corresponding
photographs will be conducted in the future. There is also
a lot of potential for performance improvements, especially
in the HDR rendering path.

Overall, CosmoScout VR has matured significantly over the
years and as it became more stable it will serve as a solid
basis for a lot of upcoming research regarding novel scientific
data visualization techniques, new navigation and interaction
methods, and efficient computer graphics algorithms.

11



ACKNOWLEDGMENTS

This work is partially funded and supported by the European
Commission grant H2020-FETHPC-2017 ”VESTEC” (ref.
800904).

REFERENCES

[1] S. Schneegans, M. Flatken, and A. Gerndt,
“CosmoScout VR 1.4.0,” March 2021. [Online].
Available: https://doi.org/10.5281/zenodo.4646924

[2] C. H. Acton, “Ancillary data services of NASA’s Nav-
igation and Ancillary Information Facility,” Planetary
and Space Science, vol. 44, no. 1, pp. 65 – 70, 1996.

[3] B. Semenov, “WebGeocalc and Cosmographia: Modern
tools to access OPS SPICE data,” in 2018 SpaceOps
Conference, 2018, p. 2366.

[4] K. Hussey, “”Eyes On The Solar System” a real-time,
3D-interactive experience for planetaria and beyond,”
in European Planetary Science Congress, vol. 1, 2010,
p. 50.

[5] P. Cozzi and D. Bagnell, “A WebGL globe rendering
pipeline,” GPU Pro, vol. 4, pp. 39–48, 2013.

[6] F. Pirotti, M. A. Brovelli, G. Prestifilippo, G. Zamboni,
C. E. Kilsedar, M. Piragnolo, and P. Hogan, “An open
source virtual globe rendering engine for 3D appli-
cations: NASA world wind,” Open Geospatial Data,
Software and Standards, vol. 2, no. 1, pp. 1–14, 2017.

[7] K. Bladin, E. Axelsson, E. Broberg, C. Emmart,
P. Ljung, A. Bock, and A. Ynnerman, “Globe brows-
ing: Contextualized spatio-temporal planetary surface
visualization,” IEEE Transactions on Visualization and
Computer Graphics, vol. 24, no. 1, pp. 802–811, 2017.

[8] P. Cozzi and K. Ring, 3D engine design for virtual
globes. CRC Press, 2011.

[9] C.-W. Fu and A. J. Hanson, “A transparently scal-
able visualization architecture for exploring the uni-
verse,” IEEE Transactions on Visualization and Com-
puter Graphics, vol. 13, no. 1, pp. 108–121, 2006.

[10] E. Axelsson, J. Costa, C. Silva, C. Emmart, A. Bock,
and A. Ynnerman, “Dynamic scene graph: Enabling
scaling, positioning, and navigation in the universe,” in
Computer Graphics Forum, vol. 36. Wiley Online
Library, 2017, pp. 459–468.

[11] F. Argelaguet and M. Maignant, “GiAnt: stereoscopic-
compliant multi-scale navigation in ves,” in Proceed-
ings of the 22nd acm conference on virtual reality
software and technology, 2016, pp. 269–277.

[12] C.-W. Fu, A. J. Hanson, and E. A. Wernert, “Navigation
techniques for large-scale astronomical exploration,” in
Visualization and Data Analysis 2006, R. F. Erbacher,
J. C. Roberts, M. T. Gröhn, and K. Börner, Eds., vol.
6060, International Society for Optics and Photonics.
SPIE, 2006, pp. 179 – 188.

[13] J. McCrae, I. Mordatch, M. Glueck, and A. Khan, “Mul-
tiscale 3D navigation,” in Proceedings of the 2009 sym-
posium on Interactive 3D graphics and games, 2009,
pp. 7–14.

[14] L. Rebenitsch and C. Owen, “Review on cybersickness
in applications and visual displays,” in Virtual Reality,
2016, pp. 101–125.

[15] G. E. Riccio and T. A. Stoffregen, “An ecological theory

of motion sickness and postural instability,” Ecological
Psychology, pp. 195–240, 1991.

[16] E. Chang, H. InJae, H. Jeon, Y. Chun, K. H. Taek, and
C. Park, “Effects of rest frames on cybersickness and
oscillatory brain activity,” in 2013 International Winter
Workshop on Brain-Computer Interface (BCI), 2 2013,
pp. 62–64.

[17] H. B. L. Duh, D. E. Parker, and T. A. Furness, “An
”independent visual background” reduced balance dis-
turbance evoked by visual scene motion: Implication for
alleviating simulator sickness,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, 01 2001, pp. 85–89.

[18] G. V. Barrett and C. L. Thornton, “Relationship between
perceptual style and simulator sickness.” Journal of
Applied Psychology, pp. 304–308, 1968.

[19] B. Keshavarz, A. E. Philipp-Muller, W. Hemmerich,
B. E. Riecke, and J. L. Campos, “The effect of visual
motion stimulus characteristics on vection and visually
induced motion sickness,” Displays, pp. 71–81, 2019.

[20] A. S. Fernandes and S. K. Feiner, “Combating VR
sickness through subtle dynamic field-of-view modifi-
cation,” in 2016 IEEE Symposium on 3D User Inter-
faces (3DUI), 2016, pp. 201–210.

[21] M. E. McCauley and T. J. Sharkey, “Cybersickness:
Perception of self-motion in virtual environments,” in
Presence: Virtual and Augmented Reality, 1992, pp.
311–318.

[22] B. Keshavarz and H. Hecht, “Validating an efficient
method to quantify motion sickness,” Human Factors,
pp. 415–426, 2011.

[23] R. S. Kennedy, N. E. Lane, K. S. Berbaum, and M. G.
Lilienthal, “Simulator sickness questionnaire: An en-
hanced method for quantifying simulator sickness,” The
International Journal of Aviation Psychology, pp. 203–
220, 1993.

[24] J.-R. Chardonnet, M. A. Mirzaei, and F. Merienne, “Vi-
sually induced motion sickness estimation and predic-
tion in virtual reality using frequency components anal-
ysis of postural sway signal,” in International Confer-
ence on Artificial Reality and Telexistence Eurographics
Symposium on Virtual Environments, Kyoto, Japan, 10
2015, pp. 9–16.

[25] K. Lim, J. Lee, K. Won, N. Kala, and T. Lee, “A novel
method for VR sickness reduction based on dynamic
field of view processing,” Virtual Reality, 7 2020.

[26] R. Pajarola and E. Gobbetti, “Survey of semi-regular
multiresolution models for interactive terrain render-
ing,” The Visual Computer, vol. 23, no. 8, pp. 583–605,
2007.

[27] R. Kooima, J. Leigh, A. Johnson, D. Roberts, M. Sub-
baRao, and T. A. DeFanti, “Planetary-scale terrain
composition,” IEEE Transactions on Visualization and
Computer Graphics, vol. 15, no. 5, pp. 719–733, 2009.

[28] R. Westerteiger, A. Gerndt, and B. Hamann, “Spher-
ical terrain rendering using the hierarchical HEALPix
grid,” in Visualization of Large and Unstructured Data
Sets: Applications in Geospatial Planning, Modeling
and Engineering-Proceedings of IRTG 1131 Workshop
2011. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, 2012.

[29] K. M. Gorski, E. Hivon, A. J. Banday, B. D. Wan-
delt, F. K. Hansen, M. Reinecke, and M. Bartel-

12



mann, “HEALPix: A framework for high-resolution
discretization and fast analysis of data distributed on the
sphere,” The Astrophysical Journal, vol. 622, no. 2, p.
759, 2005.

[30] I. Assenmacher and T. Kuhlen, “The ViSTA virtual
reality toolkit,” Proceedings of the IEEE VR SEARIS,
pp. 23–26, 2008.

[31] A. Drogemuller, A. Cunningham, J. Walsh, M. Cordeil,
W. Ross, and B. Thomas, “Evaluating navigation tech-
niques for 3D graph visualizations in virtual reality,” in
2018 International Symposium on Big Data Visual and
Immersive Analytics (BDVA). IEEE, 2018, pp. 1–10.

[32] S. N. Pattanaik, J. Tumblin, H. Yee, and D. P. Green-
berg, “Time-dependent visual adaptation for fast real-
istic image display,” in Proceedings of the 27th An-
nual Conference on Computer Graphics and Interactive
Techniques, 2000, p. 47–54.

[33] H.-P. Duiker, “Filmic tonemapping for real-time render-
ing,” Proceedings of ACM SIGGRAPH Courses. ACM,
2010.

[34] A. S. Garcı́a, T. Fernando, D. J. Roberts, C. Bar,
M. Cencetti, W. Engelke, and A. Gerndt, “Collaborative
virtual reality platform for visualizing space data and
mission planning,” Multimedia Tools and Applications,
vol. 78, no. 23, pp. 33 191–33 220, 2019.

[35] P. Collienne, R. Wolff, A. Gerndt, and T. Kuhlen, “Phys-
ically based rendering of the martian atmosphere,” in
Workshop der GI-Fachgruppe VR/AR. Shaker Verlag,
Aachen, 2013, pp. 97–108.

[36] M. Oren and S. K. Nayar, “Generalization of lambert’s
reflectance model,” in Proceedings of the 21st annual
conference on Computer graphics and interactive tech-
niques, 1994, pp. 239–246.

[37] B. Hapke, Theory of reflectance and emittance spec-
troscopy. Cambridge University Press, 2012.

[38] B. Maass, S. Woicke, W. M. Oliveira, B. Razgus, and
H. Krüger, “Crater navigation system for autonomous
precision landing on the moon,” Journal of Guidance,
Control, and Dynamics, vol. 43, no. 8, pp. 1414–1431,
2020.

[39] M. Friedman, “The use of ranks to avoid the assumption
of normality implicit in the analysis of variance,” Jour-
nal of the american statistical association, vol. 32, no.
200, pp. 675–701, 1937.

BIOGRAPHY[

Simon Schneegans received his M.Sc.
degree in Computer Science and Media
from Bauhaus University Weimar. Since
2016, he is employed as research sci-
entist at the German Aerospace Center
in the Institute for Software Technology.
His research domain is real-time com-
puter graphics with a focus on natural
phenomena like atmospheric scattering
or photorealistic terrain rendering.

Moritz Zeumer received his M.Sc. de-
gree in applied Computer Science in
2021 from the University of Applied Sci-
ences and Arts Hanover. Since then,
he is employed as a research scientist
at the German Aerospace Center in the
Institute for Software Technology. His
research domain is visualization and
human-computer-interaction with a fo-
cus on cybersickness in vr-applications.

Jonas Gilg received his M.Sc. degree
in Applied Computer Sciences from the
University of Applied Sciences and Arts,
Hanover in 2019. Since then, he is em-
ployed as a research scientist at the Ger-
man Aerospace Center in the Institute
for Software Technology. His research
domain is visual analytics with a focus
on georeferenced data.

Prof. Dr. Andreas Gerndt received his
degree in computer science from Tech-
nical University, Darmstadt, Germany
in 1993. In the position of a research
scientist, he also worked at the Fraun-
hofer Institute for Computer Graphics
(IGD) in Germany. Thereafter, he was a
software engineer for several companies
with focus on Software Engineering and
Computer Graphics. In 1999 he contin-

ued his studies in Virtual Reality and Scientific Visualization
at RWTH Aachen University, Germany, where he received
his doctoral degree in computer science. After two years of
interdisciplinary research activities as a post-doctoral fellow
at the University of Louisiana, Lafayette, USA, he returned
to Germany in 2008 to head a department at the German
Aerospace Center (DLR). Since 2019, he is also Professor
in High-Performance Visualization at University of Bremen,
Germany.

13


