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Abstract

Concentrating Solar Power (CSP) technologies are a promising alternative to fossil fuel,

in which direct solar radiation is focused via mirrors on a receiver to heat up a Heat

Transfer Fluid (HTF) that is used to generate electrical or thermal energy. Parabolic

Trough Collectors (PTC) are a type of these technologies and incorporate Rotation and

Expansion Performing Assemblies (REPAs), which connect the rotating receiver tubes

with the piping of the power plant. REPAs are among the most stressed and critical

components of PTCs, as they have to withstand around 10,000 sun tracking cycles during

their lifetime, which is equivalent to 30 years of operation. All tests were done on the REPA

test facility at Plataforma Solar de Almeŕıa (PSA), erected in a collaboration between the

German Aerospace Center (DLR) and the Spanish Center for Energy, Environmental and

Technological Research (CIEMAT).

For PTC power plants, a reactive maintenance strategy is applied and the REPAs are

replaced after a malfunction is detected. This thesis focuses on a different strategy, con-

sisting in the condition monitoring of the swivel joint as part of flexible pipe connectors,

which are a type of REPA. In condition monitoring based maintenance parameters of a

component are continuously measured to determine its state, so that the component can be

exchanged before a failure occurs. However, condition monitoring presents a challenge be-

cause the swivel joints do not show explicit wear signs. Vibration measurements, which are

widely used in the industry for being reliable, affordable and non-intrusive, are deployed

for promising results in terms of REPA monitoring.

Cycles with different HTF pressures are performed to study the effect of pressure on the

vibration behavior of the swivel joint. Short Time Fourier Transform (STFT), one of the

most popular frequency analysis methods in signal processing, is used to generate spectro-

grams to investigate the frequencies included in the vibration signal. Clear differences are

seen in the vibration behavior at different HTF pressures.

An accelerated aging test of 10,000 cycles is performed simultaneously on two REPAs at the

REPA test rig. REPAs’ swivel joints’ vibrations are recorded, compared and analyzed using

spectrograms. A machine learning model, including principal component analysis (PCA)

and support vector machine (SVM), is proposed to classify the vibration at different stages

of the aging process. The proposed machine learning model achieves high classification

accuracy when applied to the measured data.

The results show that vibration is a suitable parameter to determine the swivel joint’s

status.
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1. Introduction and Motivation

Energy consumption is increasing at a fast rate in our present-day society. This is due to

a lot of factors such as industrialization, higher living standard and a growing population.

Nowadays, and despite world awareness and climate change policies, fossil fuels still remain

the main energy source around the world. As a result, the amount of CO2 and other

greenhouse gases emitted into the atmosphere keeps increasing. [8] Besides greenhouse

gases, there are also other pollutants that have a negative impact on the environment and

human health. In fact, air pollution is the cause of many diseases that greatly affect the

respiratory system and other systems of the body. [39]

To tackle these issues, it is important to further improve and use more renewable energy

technologies. One of them is Concentrating Solar Power (CSP), in which the direct solar

radiation is used to heat up a Heat Transfer Fluid (HTF). The heat is used for thermal

energy that can be used afterwards, e.g. to supply industrial processing heat, and to

generate electricity in conventional power plants. This technology presents the advantage

of energy storage and 24h electrical production. The most widely deployed CSP technology

is the Parabolic Trough Collector (PTC). [39]

This thesis focuses on the condition monitoring of a highly stressed key component for

PTC power plants, which is called Rotation and Expansion Performing Assembly (REPA).

Affordable technologies are available for condition monitoring and predictive maintenance.

In contrast with the traditional preventive and reactive maintenance strategies, sensors are

implemented to find out if parts are about to fail for example. To characterize a part, many

parameters can be measured, such as temperature, humidity, vibration, image, noise, etc.

[12]

A test rig for REPAs was built at the Plataforma Solar de Almeŕıa (PSA). It is owned

by the Spanish Center for Energy, Environmental and Technological Research (CIEMAT),

which is located in the Tabernas Desert in South Eastern Spain. The test rig is a joint

collaboration between the German Aerospace Center (DLR) and CIEMAT, and it is used

for accelerated aging of REPAs as well as testing REPAs’ behavior under different opera-

tion conditions, e.g. different temperatures and pressures. [32] The REPAs are monitored

with a variety of sensors such as force, torque, pressure, temperature and vibration.

The objective of the thesis is to set up a monitoring system to measure the vibrations

produced by the REPA’s swivel joint. The recorded signals are then analyzed and inter-

preted to obtain a correlation between the available data and the state of the swivel joint.

A machine learning model is built that tries to define the condition of the swivel joint.
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2. State of the Art

In this chapter, a general overview of different CSP technologies is given. The PTC

technology is looked at in detail, since it is the one that contains the REPA. Finally,

different maintenance strategies are explained and also vibration analysis for fault and

wear detection is addressed.

2.1. Concentrating Solar Power

The sun is the biggest source of energy, taking into account that all forms of available

energy directly or indirectly derive from it. One way of producing electricity is converting

the solar energy into heat and then using that heat in conventional power plants (e.g.

Rankin cycle), which is feasible using CSP technologies. [39] However, only direct normal

irradiation (DNI) can be used for this purpose. DNI is the irradiance that arrives directly

from the sun without being diffused. [23] In figure 2.1 the average worldwide DNI is shown.

Locations with higher DNI are more suitable for CSP power plants.

Figure 2.1.: Long-term average of DNI worldwide [40]

In general terms, a CSP technology system basically comprises a concentrator and a re-

ceiver. The concentrator focuses the direct solar radiation on the receiver. For this, optical

systems (reflectors) are used and the sun is tracked, so that the concentrator can be placed

accordingly. The receiver absorbs the direct solar radiation, resulting in high temperatures

and thus an increase in thermal energy. This thermal energy is delivered to a heat transfer

fluid (HTF), which can further be used for electricity generation or simply for the stor-

age of thermal energy. CSP technologies can be divided into two groups: point-focusing

and line-focusing systems. Point-focusing systems include Central Tower Receivers, also
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2.2. Parabolic Trough Collector (PTC)

known as Solar Towers, and Solar Dishes. Line-focusing include Linear Fresnel Collect-

ors and Parabolic Trough Collectors. [39] The latter is explained in detail in the next

subsection. 2.2

2.2. Parabolic Trough Collector (PTC)

PTC systems are the most deployed and mature CSP technology. PTCs consist of parabolic-

shaped concentrators containing reflectors made of silvered-glass mirrors or aluminum.

A schematic of PTCs is shown in figure 2.2. Single-axis tracking is used to follow the

sun throughout the day. The collectors can be oriented in a north-south direction or an

east-west direction. Overall, north-south oriented collectors dispatch slightly more energy

throughout the year, whereas east-west oriented PTCs collect more energy during the

winter, hence the orientation depends on the application. [28]

Figure 2.2.: Schematic of a Parabolic Trough Collector (PTC) [39]

The receiver is a tube located in the focal axis of the concentrators parabola that absorbs

the reflected direct solar radiation. The receiver is encapsulated in an evacuated glass cover

to reduce heat losses. Furthermore, the glass envelope features non-reflective coating to

reduce reflection of the radiation and to realize a very high transmissivity. Both the receiver

tube and the glass cover are connected by metallic bellows to achieve the vacuum-tight

enclosure and to compensate for the thermal expansion differences of both components. A

schematic of such a receiver tube can be seen in figure 2.3. [39]

The concentrated radiation is thereby absorbed by the Heat Transfer Fluid (HTF) that is

being pumped through the receiver tube. An HTF is typically a synthetic oil, but molten
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2.3. Rotation and Expansion Performing Assemblies (REPAs)

Figure 2.3.: Schematic of a receiver tube of a Parabolic Trough Collector (PTC) [33]

salts or steam can also be used. The maximum temperature that can be achieved during

operation depends on the HTF. For synthetic oil it goes up to 400 °C, while for molten

salts it can go up to 540 °C. [28] Finally, the acquired heat can be used in conventional

power plants to generate electricity e.g. Rankine, Brayton, or combined cycle. [39]

2.3. Rotation and Expansion Performing Assemblies (REPAs)

During a sunny day, the collectors of PTC plants rotate from where the sun rises (ϕstart)

to where it sets (ϕstop), tracking the sun according to the one-axis tracking system. At the

end of the day they move back to the stow position (ϕstow), which is the position in which

the PTC is situated when the collector is not operating, e.g. during the night, a cloudy

day or maintenance campaign. The tracking system uses either algorithms to approximate

the solar position or measurement technologies to set an angle value of the collector. If

the current collector angle differs from the set value, the position of the PTC is adjusted.

This procedure happens every 20-40 seconds, meaning that the PTC does not perform a

continuous rotation. [32] The rotation movement is visualized in figure 2.4.

Rotation and Expansion Performing Assemblies (REPA) are the part of a PTC plant that

ensure the transition between the static rotation axis and the moving focal line of the

collectors. At both ends of the PTC, a fixed pipe is connected to the receiver tube by

a REPA to enable the rotation of the receiver tube. In addition, as the receiver tube is

heated or cooled, its length changes due to thermal expansion or contraction, respectively.

[38] REPAs are among the most stressed components that are prone to failure. They have

to withstand temperatures up to 393 °C, pressures up to 35 bar and torques and forces

that come from both the rotation and thermal expansion/contraction. [32] The average

service lifetime of a PTC plant is 25-30 years [4] in which the REPAs perform around

10,000 sun tracking cycles.

There are two types of REPA: Ball Joint Assemblies (BJA) and Rotary Flex Hose Asssem-

blies (RFHA).
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2.4. Maintenance strategies

Figure 2.4.: Typical rotation cycle of a PTC during a day [37]

As seen in figure 2.5, the BJA consists of three ball joints that are connected by tubes,

thereby compensating for the rotational and translational movements. Reinforced graphite

is used as a sealant in the ball joints to reduce friction and prevent leakage. Since the

reinforced graphite may wear off, it needs to be refilled regularly. This can be done under

PTC operation because it does not normally require a shutdown. [32]

On the other hand, RFHAs consist of a corrugated metal hose, a swivel joint and an

interface for transmitting torque from the collector, which is often called torque sword,

given that it is usually a flat steel beam. The part of the swivel joint that is connected

to the fixed pipe stays stationary during operation, while the other part that is connected

to the corrugated metal hose is moved by the torque sword, which in turn is driven by

the drive unit of the PTC. Consequently, the swivel joint compensates for the rotational

movement, while the hose compensates for the translational movement. [37] A RFHA can

be seen in figure 2.6.

As mentioned above, failures of the REPA lead to HTF leakages which, in addition to

environmental hazard, can provoke a shut down and part replacement, thus increasing the

operation and maintenance costs. [5]

2.4. Maintenance strategies

There exist four main maintenance strategies, listed as follows from the easiest to the

most complex to be implemented. When correctly applied, the downtime and spare part

management can be drastically improved [10]:
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2.4. Maintenance strategies

Figure 2.5.: Uninsulated ball joint assembly (left) and schematic of a ball joint [37]

Figure 2.6.: Rotary flex hose assembly (RFHA) [32]
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2.5. Vibration analysis for fault and wear detection

• Reactive Maintenance

• Preventive Maintenance

• Condition-based Maintenance

• Predictive Maintenance

When reactive maintenance is implemented, maintenance work (e.g. a part is replaced)

is only done when a malfunction occurs. Here the wear reserve is used to its full ex-

tent, however this leads to significant time losses and thus the cost also rises. A reactive

maintenance strategy should only be used in specific situations, for example if a part can

quickly and easily be changed because there are plenty of parts for replacement or it is not

technically feasible to implement the other strategies. [10]

The other three strategies are proactive, which implies that maintenance work is done

before a failure occurs. This can be advantageous if the replacements are planned, so that

all the needed resources can be prepared before the replacement, which leads to shorter

downtimes and anticipation of unplanned events. [10]

When preventive maintenance is implemented, maintenance work is done at set intervals.

For instance, maintenance work can be done after a certain time period or after a certain

number of products was manufactured. The downside to this strategy (and proactive

maintenance in general) is that parts are not used to their full potential and may be

replaced even if they still could be used. Therefore, more parts are needed, which means

that the costs also rise. [10]

Condition-based maintenance addresses this issue. In this strategy, the state of a part is

considered using condition monitoring. Sensors are implemented to monitor some paramet-

ers, such as temperature, humidity, vibration, image, noise, etc. [12] However, surveying

a part and measuring all the needed parameters can also lead to costs. Condition-based

maintenance should only be done if measuring and collecting the necessary data is afford-

able and technically feasible. [10]

If the system is too complex predictive maintenance is used. This strategy implements

either statistical analysis methods or simulation methods. Statistical analysis methods are

used to recognize specific patterns in the measured parameters to predict an error or a

failure before it actually occurs [49], whereas simulation methods are used to compare the

measured parameters with simulated results to achieve the same goal. [2]

2.5. Vibration analysis for fault and wear detection

Vibration analysis is a common strategy for predictive maintenance in different fields and

systems. These systems can include shafts, gears, bearings, electrical machines such as

motors and generators or bladed machines, e.g. rotating fans, HTF pumps, compressors

and turbines. [34] Vibration analysis is also used in systems without rotating parts, includ-

ing railway point devices [24] and curved beams in planes [30]. Simple statistical features
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2.5. Vibration analysis for fault and wear detection

(e.g. root mean square (RMS)), frequency analysis and machine learning models can be

used in vibration analysis to detect possible faults, wear and anomalies. [43]

Among all the existing frequency analysis methods in vibration analysis, the most used ones

are the Fourier Transfrom (FT), Short Time Fourier Transform (STFT) [24][50], Wavelet

Transform [1] [29] [44] and Hilbert-Huang-Transform (HHT) [13], the latter combining

the Empirical Mode Decomposition [51] and Hilbert Transform [47]. [43] These methods

represent the frequencies and their amplitudes in the processed signal. In recent years,

higher order statistical methods are being developed for vibration analysis, such as the

bi-spectrum analysis, which shows how the frequencies in the processed signal are coupled.

[48] FT and STFT are explained in detail in section 4.1.

In a subsequent step of the vibration analysis, features that are extracted from the meas-

ured vibrations are used to make statements about the condition of the system studied.

These features can be calculated using statistics or frequency analysis. To that end, simple

rules can be applied, e.g. if a calculated value is above or under a certain threshold the

system is considered defect, at risk, should be repaired or replaced [50]. Nevertheless, more

complex methods can be used for this purpose, such as machine learning methods. These

include principal component analysis (PCA) [24], support vector machines (SVM) [21][44],

artifical neural networks (ANN) [21][44], deep neural networks (DNN) and convolutional

neural networks (CNN). [43] PCA and SVM are explained in more detail in sections 4.2

and 4.3.2, since they have been implemented in this work.
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3. Experimental Setup

3.1. REPA Test Rig

The REPA test rig has been designed for temperatures up to 450 °C and pressures up to

40 bar. For a representative operational reason, the tests carried out in this thesis were

done with the HTF Therminol®VP-1, at 393 °C and 35 bar.

Figure 3.1.: Isometric view of the REPA test rig at PSA [37]

A view of the test rig can be seen in figure 3.1. It can be divided into the HTF cycle and

the main assembly. The HTF cycle includes a magnetic coupled pump that can reach flows

up to 40 m3/h and nine electric band heaters of 3500 W of power each. An expansion

vessel absorbs the HTF’s thermal expansion and is filled with nitrogen to reach the desired

pressure. [37]

The main assembly, shown in figure 3.2, consists of a traverse with the HTF piping and

a kinematics unit (KU) . While the HTF flows through the assembly the KU moves the

traverse and the two flexible hoses of the REPAs. The rotation of the traverse is done by

two hydraulic cylinders that are positioned in the drive pylon. The traverse is connected to

the KU via two steel arms. Between the two steel arms are two other hydraulic cylinders

that perform translation movement of the traverse to simulate the collectors receivers
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3.1. REPA Test Rig

Figure 3.2.: CAD model of the Kinematics Unit (no REPAs included; configuration for
testing RFHA) [32]

thermal expansion on the REPAs. The distance between the traverse and the KU’s axis

of rotation is equivalent to the distance between the receiver and the axis of rotation at

a PTC’s collector. This distance can change from a collector design to another, for that

reason the arm length can be modified from 1.5 to 2.3 m. [37]

The KU and the HTF unit of the test rig are controlled using a Supervisory Control and

Data Acquisition (SCADA) system. An overview can be seen in figure 3.4. It includes a

SIMATIC S7-300, which is a Programmable Logic Controller (PLC) that controls the HTF

pump speed, heat band resistances, gathers measurement data, sends orders and inputs

to the servo controller, which controls the speed of the motors of the hydraulic system.

An Open Platform Communications server (OPC server) is used to read and write the

variables in the PLC. The OPC server is connected to a graphical user interface (GUI)

that is programmed in LabVIEW and is used to operate the REPA test rig. [11]

A servo drive system actuates the rotation and an inverter drive system actuates the

translation as can be seen in figure 3.5. 4/3 directional control valves regulate if a cylinder

piston is pushing or pulling. This way the direction of the traverse movement can be set.

In table 3.1 the cylinder configuration for the cylinder pistons that rotate the traverse is

shown during a cycle. [37] During cylinder piston switch points at around 35° and 133°,
when a cylinder piston changes from pushing to pulling or vice versa, the movement of the

traverse slows down.
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3.1. REPA Test Rig

Figure 3.3.: REPA test rig at PSA

Figure 3.4.: Overview of the SCADA system [11]

Table 3.1.: Cylinder piston configuration for movement from the starting position to the
end position and from the end position to the starting position

Rotation section West cylinder East cylinder

starting position (e.g -20°) to 35° pull/push pull/push

35° to 133° pull/push push/pull

133° to end position (e.g 180°) push/pull push/pull
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3.2. Vibration sensors

Figure 3.5.: Overview of the hydraulic control unit [11]

3.2. Vibration sensors

Piezoelectric accelerometers with a voltage output, also called IEPE Sensors (Integrated

Electronics Piezo-Electric Sensors), are used to measure the vibrations. There are other

types of accelerometers, such as piezoelectric ones with a charge output (also known

as “charge mode accelerometers”), and micro electro mechanical system accelerometers

(MEMS accelerometers). Using the IEPE sensors leads to lower costs but they can not be

used for monitoring vibrations of low frequencies. Another restriction is that they have a

temperature limit of 163 °C. Conversely, charge mode sensors have a higher temperature

range in which they can be used, whereas MEMS accelerometers can measure acceleration

at low frequencies and have a lower temperature limit. [19]

3.2.1. Piezoelectric accelerometers

In this type of accelerometers, the acceleration is measured using the piezoelectric effect.

When a force is vertically applied to the surface of a piezoelectric material, a charge dis-

placement happens inside, which can be measured as a voltage. This voltage is proportional

to the applied force. As seen in figure 3.6, an accelerometer includes a seismic mass that

is connected to a piezoceramic disc. When the seismic mass is accelerated by vibrations,

it exerts a force upon the piezoceramic disc due to inertia. Given that the seismic mass

has a known fixed value, the acceleration can be simply calculated according to Newton’s

law (Eq. 3.1), and thus the voltage is also proportional to the acceleration. [46]

F = ma (3.1)

The proportionality factor between the voltage and the acceleration is called voltage sens-

itivity.

Bua =
u

a
(3.2)
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3.2. Vibration sensors

Figure 3.6.: Basic operating principle of a piezoelectric accelerometer [46]

The most important parameters that need to be considered when choosing piezoelectric

sensors are introduced below. These parameters include the frequency response, the meas-

urement range, the temperature range and the temperature influence on the measurement

precision.

Frequency Response

The whole sensor, including the piezoceramic disc, seismic mass and other flexible parts,

builds a spring-mass-system that has a resonant frequency. Because of that, there is a

limit to the highest frequency that the measured vibration can have. There is also a limit

to the lowest measurable frequency, depending on the electronics that are used to process

the signal from the sensor. [46]

Figure 3.7 shows a typical frequency response of piezoelectric accelerometers, although it

may vary depending on the specific accelerometer. The measured deviation can be read

from the frequency response. For example, in figure 3.7 at around 1/5 of the resonance

frequency, the measured deviation is at 5%. [46] In the data sheets of piezoelectric ac-

celerometers, the frequency range, in which the measured deviation is under 5%, is often

given.

Transverse Sensitivity

An accelerometer is only supposed to react to accelerations in one direction. However, they

have a sensitivity to acceleration in other directions. This means that an accelerometer

will have a voltage output even if acceleration is only applied perpendicular to the main

axis. The transverse sensitivity is the ratio of the sensitivity in the perpendicular direction

of the main axis and the sensitivity in the direction of the main axis. [46]

Measurement Range

Accelerometers can only be used in a certain measurement range. As a result, maximum

acceleration in both positive and negative directions are normally given. A short exposure
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Figure 3.7.: Typical frequency response of a piezoelectric accelerometer [46]

to an acceleration outside of the measurement range will not break the sensors. Often a

destruction limit is also given at which the sensor will break irreversibly. [46]

Temperature Influence

Accelerometers can only be used within a certain temperature range. IEPE Sensors can

be used up to 163 °C, while there are some charge mode sensors that can even be used

up to 649 °C. The reason for this is that IEPE Sensors include electronics that are prone

to break at higher temperatures, while the charge mode sensors are connected to these

electronics with a cable, so that they avoid being at the measured spot. The temperature

also influences the measurement. Figure 3.8 shows an example of measurement deviation

depending on the temperature. The precision sensitivity to temperature is also dependent

on the sensor type.

Given the importance of the temperature influence on accelerometers, a temperature

verification test was done at another facility of the PSA called PROMETEO owned by

CIEMAT. The aim was to check the real temperatures that can be obtained at the loca-

tions where the sensors will be installed, and also corroborate if IEPE sensors can be used

for the purpose of predictive maintenance using vibration analysis at PTC facilities. To

that end, three type K thermocouples were used as shown in figures 3.9 and 3.10. The

locations were selected as far away from the swivel joint as possible, in order to reduce

exposure to high temperatures. The thermocouples were connected to an ALMEMO®
2890-9 data logger shown in figure 3.11. The table 3.2 shows the results of the temperature

verification test, as well as other parameters that may affect the temperature, such as HTF

temperature, air temperature and wind velocity. The highest temperature measured was

101.8 °C, which is significantly lower than the maximum temperature of 163°C that IEPE
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Figure 3.8.: Example of sensitivity deviation over temperature of an IEPE sensor [14]

sensors can withstand. This means that IEPE sensors can be viable sensors for measuring

vibrations of the swivel joint at other PTC facilities for predictive maintenance purposes.

Figure 3.9.: Location of the type K thermocouples on the swivel joint at the PROMETEO
facility owned by CIEMAT

3.3. Experimental Setup

For the vibration measurements at the REPA testrig, two types of IEPE sensors were used,

namely KS95B.100 from IDS Innomic Schwingungsmesstechnik GmbH and 320C52 from

PCB Synotech GmbH. The setups for both sensor types are presented in the following

subsections.

3.3.1. Setup with the sensors KS95B.100

The initial setup included three sensors of the type KS95B.100. One major disadvantage

of this type of sensors is a high sensitivity deviation at temperatures over 80°C, which
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Figure 3.10.: Closeup of the type K thermocouples on the swivel joint at the PROMETEO
facility owned by CIEMAT

Figure 3.11.: ALMEMO® 2890-9 data logger

Table 3.2.: Results of the temperature measurements of the swivel joint at PROMETEO
owned by CIEMAT

Day Time T(HTF) T(air) Wind velocity T(#1) T(#2) T(#3)
[°C] [°C] [m/s] [°C] [°C] [°C]

07.04 13:20 - 13:25 420 - - 90.0 71.8 19.9

07.04 14:57 - 14:59 431 - - 95.3 76.5 25.2

08.04 14:14 - 14:16 434 21 0.9 - 2.12 101.8 88.8 25.2
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was the case at the sensors position on the swivel joint. The sensitivity deviation over

temperature for the sensor KS95B.100 is given in figure 3.12.

Figure 3.12.: KS95B.100 sensor (left) and its sensitivity deviation over temperature (right)
[27]

As seen in figure 3.13, one sensor KS95B.100 was screwed to the swivel joint located on

the east side of the test bench, and two sensors were screwed to the swivel joint on the

west side of the facility. The sensors were connected to an InnoBeamer L2, which is a data

acquisition (DAQ) device shown in figure 3.15. Then, the InnoBeamer L2 is connected to

a laptop that records and saves the vibration data.

Figure 3.13.: One accelerometer KS95B.100 screwed to the east swivel joint (left) and two
accelerometers KS95B.100 screwed to the west swivel joint (right)

3.3.2. Setup with the sensors 320C52

Because of the aforementioned disadvantage of sensors type KS95B.100, the initial setup

was replaced by a new one, that includes four sensors type 320C52. The biggest advantage

using the sensors 320C52 is their stable and low sensitivity deviation over temperature, as

can be seen in figure 3.16. As shown in figure 3.17, two sensors were screwed to the east

swivel joint and two sensors were installed at the west swivel joint.
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Figure 3.14.: Closeup of accelerometer KS95B.100 screwed to the swivel joint

Figure 3.15.: Data acquisition device InnoBeamer L2[16]

Figure 3.16.: 320C52 sensor (left) and its sensitivity deviation over temperature (right)
[15]
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Figure 3.17.: Two accelerometers 320C52 screwed to the east swivel joint (left) and two
accelerometers 320C52 screwed to the west swivel joint (right)

Figure 3.18.: Closeup of accelerometer 320C52 screwed to the swivel joint
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3.3.3. Calibration test

Due to the significant uncertainty of the measurements at high temperatures with KS95B.100

sensors, a calibration test was designed and performed. For this purpose, KS95B.100

sensors were screwed on a piece of metal plate, as shown in figure 3.19. Two 320C52

sensors, which had been already calibrated by the manufacturer, were also screwed on the

metal plate, next to the KS95B.100 sensor that is being tested. The 320C52 sensor closest

to the KS95B.100 is chosen as the reference sensor. A drilling machine is used to drill

into a point that is equally distant from the reference sensor and the KS95B.100 sensor,

while the produced vibrations are logged. The same procedure is followed for all three

KS95B.100 sensors.

Figure 3.19.: Calibration setup

In addition, Fourier Transform is performed on the measured signal after the calibration.

The resulted spectra are shown in figures 3.20, 3.21 and 3.22. A spectrum shows which

frequencies are present in a signal and their amplitudes. It can be seen that all three

KS95B.100 sensors measured the same frequencies as the reference sensor. However, for

some frequencies the amplitudes are slightly lower which can be due to the fact that the

sensors are not at the same position and therefore slight differences in the vibrations are

expected. All things considered, the calibration test was successful and the measurements

of KS95B.100 sensors could be validated for the tests that were performed at ambient

temperature.
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Figure 3.20.: Spectrum of signal measured by 320C52 reference sensor (top) and spectrum
of signal measured by first KS95B.100 sensor (bottom)

Figure 3.21.: Spectrum of signal measured by 320C52 reference sensor (top) and spectrum
of signal measured by second KS95B.100 sensor (bottom)
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3.3. Experimental Setup

Figure 3.22.: Spectrum of signal measured by 320C52 reference sensor (top) and spectrum
of signal measured by third KS95B.100 sensor (bottom)

3.3.4. Temperature verification test at the REPA test rig

After the successful calibration of the KS95B.100 sensors a temperature verification test

was done at the REPA test rig at operation with an HTF temperature of 393 °C. The
goal was to check the real temperatures during the test cycles that can be obtained at the

locations where the sensors were installed. The thermocouples were connected close to the

sensors that were screwed on perpendicular to the REPAs, as these are the sensors closest

to the swivel joint. Figure 3.23 shows the position of the thermocouple on the east swivel

joint.

The highest measured temperature on the east swivel joint was 164.8 °C and on the west

swivel joint it was 157.5 °C, which is significantly higher than the maximum temperature of

120 °C the KS95B.100 sensors are supposed to withstand. For this reason all measurements

that were done with the KS95B.100 sensors during operation at an HTF temperature of

393 °C were discarded.
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3.3. Experimental Setup

Figure 3.23.: Thermocouple on the east swivel joint close to the accelerometer screwed on
perpendicular to the REPA
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4. Vibration Analysis

Generally, when vibrations are analyzed or used in condition monitoring the following

steps are at least partially included. [43]

Figure 4.1.: Typical steps included in condition monitoring using vibrations [44]

The result of this process is a trained classifier that can be used to make predicitons. [44]

Pre-processing can be done during the vibration measurement e.g. the use of filters to avoid

aliasing, explained in section 4.1.1, [34] or after the vibration measurement e.g. denoising

[6]. The steps feature extraction and selection, classification and model comparison are

explained in the following. Features are parameters that describe the samples that are

measured. So, in the given case a sample is a fragment of the measured vibrations and a

feature could be e.g. the mean of the sample.

4.1. Feature Extraction

Features are extracted to describe the signal. These features include information about the

frequency domain or statistical parameters. In the following section Short Time Fourier

Transform (STFT), one of the most used methods of time-frequency analysis, is introduced

as well as statistical parameters that characterize a signal. Another feature introduced is

the spectral energy which is calculated using the Power Spectral Density (PSD).

4.1.1. Short Time Fourier Transform (STFT)

The STFT uses the Fourier Transform to calculate which frequencies are present in the

signal over time. Firstly, the Fourier Transform is explained to be able to understand the

calculations that are made in the STFT.

Fourier Transform

The Fourier Transform (Eq. 4.1) transforms a function from the time domain into the

frequency domain. The Fourier Transform calculates which frequencies are present in a

given signal. [34]

G(f) =

∫ ∞

−∞
g(t)e−j2πftdt (4.1)

When dealing with real signals, the measurements are not continuous and the recordings

are not finite either. The Discrete Fourier Transform (DFT) is used for this purpose (Eq.

4.2). In this case, the frequencies for which results are calculated are also discretized. [34]
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4.1. Feature Extraction

G[k] = (1/N)
N−1∑
n=0

g[n]e
−j2πkn

N (4.2)

where k are the discretized frequencies and N is the length of the signal.

In numerical calculations the Fast Fourier Transform (FFT) is used. The FFT is an

algorithm that efficiently calculates the DFT of a signal. [34]

The following simple examples are given to explain a few concepts concerning the Fourier

Transform. Figure 4.2 shows an example of a signal (Eq. 4.3) that consists of a sum of

three sinus functions with frequencies 10 Hz, 30 Hz and 100 Hz with the amplitudes 2, 5

and 3 respectively. The signal is generated with a sampling frequency of fs = 1000 Hz and

a duration of 2 seconds.

y(t) = 2 sin(2π ∗ 10t) + 5 sin(2π ∗ 30t) + 3 sin(2π ∗ 100t) (4.3)

Figure 4.2.: Example of a signal (Eq. 4.3) that consists of a sum of three sinus functions

It would be very difficult to understand the signal only from the information given by

figure 4.2. In figure 4.3 the frequency spectrum of the given example is shown. A frequency

spectrum shows which frequencies are present in a signal and also their amplitudes. The

results for the spectrum were calculated using the FFT. By looking at the spectrum in

figure 4.3, it can be seen that the signal consists of three sinus functions with frequencies

10 Hz, 30 Hz and 100 Hz with the amplitudes 2, 5, and 3 respectively.

Nevertheless, there are some issues when using the FFT that lead to false results. These

include aliasing and spectral leakage, which are introduced in the following.

When digitizing a signal, the discrete sequence is free of distortion (also known as aliasing)

when the highest frequency present in the signal is lower than the Nyquist frequency, fN ,
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4.1. Feature Extraction

Figure 4.3.: Spectrum of the given signal (Eq. 4.3)

which is equal to half of the sampling rate. If aliasing occurs during the digitizing of a

signal, higher frequencies will appear as lower frequencies when processing the digitized

signal. [26]

In figure 4.4 there is an example given for a signal (Eq. 4.4) that consists of a sinus function

with a frequency of f1 = 700 Hz and an amplitude of 1. The signal is generated with a

sampling frequency of fs = 1000 Hz and a duration of 2 seconds. In this case aliasing

will occur as the highest frequency in the signal is higher than the Nyquist frequency

f1 >= fN = fs/2.

y(t) = sin(2π ∗ 700t) (4.4)

Even though the signal only includes a sinus function with a frequency of f = 700 Hz,

the spectrum calculated with the FFT, shown in figure 4.5, also shows us that the signal

includes a sinus function with a frequency of f = 350 Hz, which is not correct.

For this reason, when measuring data, anti-aliasing filters are used before the signal is

digitized. An anti-aliasing filter would ideally only let frequencies lower than the Nyquist

frequency pass. But a practical anti-aliasing filter either permits some aliasing to occur or

it lets the frequencies right under the Nyquist frequency get distorted. [26]

Spectral leakage depends on the length of the signal on which the Fourier Transform is

performed. If the signal contains an integer number of periods of a sinusoid, spectral

leakage will not occur. When this is not the case, energy from a single frequency will

spread or “leak” to the neighbouring frequencies. [34]

In the following, an example is given for a signal that consists of two sinus functions (Eq.

4.5) and is constructed with a sample rate of fs = 1000 Hz.
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4.1. Feature Extraction

Figure 4.4.: Example of a signal (Eq. 4.4) that consits of one sinus function with a fre-
quency of f1 = 700 Hz. The signal is generated with a sampling frequency of
fs = 1000 Hz. Aliasing is occuring as f1 is higher than the Nyquist frequency
fN = fs/2.

Figure 4.5.: Spectrum of the given signal (Eq. 4.4), which only consits of a sinus function
with the frequency of f1 = 700 Hz. The signal is generated with a sampling
frequency of fs = 1000 Hz. Aliasing occurs as the frequency of the signal is
higher than the Nyquist frequency.
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4.1. Feature Extraction

y(t) = sin(2π ∗ 7t) + sin(2π ∗ 13t) (4.5)

In figure 4.6, the previous signal is shown for a duration of 2 seconds (left side) and its

Fourier Transform is depicted (right side). In this case, spectral leakage is not present

since the signal contains an integer number of periods of the sinusoids.

Figure 4.6.: Signal (y(t) = sin(2π ∗ 7t) + sin(2π ∗ 13t)) that lasts 2 seconds (left), Fourier
Transform of that signal: spectral leakage is not present (right)

In figure 4.7, the same signal (left side) and its Fourier Transform (right side) are given

but now the duration of the signal is 1.5 seconds. In this case, spectral leakage occurs

because the signal does not contain an integer number of periods of the sinusoids.

Figure 4.7.: Signal (y(t) = sin(2π ∗ 7t)+ sin(2π ∗ 13t)) that lasts 1.5 seconds (left), Fourier
Transform of that signal: spectral leakage is present (right)

One approach to reduce spectral leakage is to multiply window functions with the signal.

Window functions reduce the effect of discontinuity and make the signal periodic. In

figure 4.8 a Hanning window is shown, which is known as a good window for general

purpose. Moreover, other windows such as Kaiser-Bessel window, Hamming window and

Flat-Top window are also used, having all of them their corresponding advantages and

disadvantages. [34]

Figure 4.9 shows the Fourier Transform of the same signal (Eq. 4.5) for 1.5 seconds but

this time it is multiplied with a Hanning window. Compared to the result in figure 4.7,

in which the window function was not used, there is a reduction of the noise around the

peaks. The peaks decreased but the relative magnitude stayed the same. In conclusion,

although window functions do not completely solve the problem of spectral leakage, they

do reduce it.
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4.1. Feature Extraction

Figure 4.8.: Hanning window

Figure 4.9.: Signal (y(t) = sin(2π ∗ 7t) + sin(2π ∗ 13t)) that lasts 1.5 seconds multiplied
with a Hanning window (left), Fourier Transform of the signal multiplied with
a Hanning window (right)

Short Time Fourier Transform (STFT)

In the frequency spectra, calculated with the Fourier Transform, the frequencies that are

present in the signal are given but not the time when these frequencies appear. Here is an

example to illustrate this.

The following signal (Eq. 4.6) is given. In the first second it includes two sinus functions

with the frequencies 7 Hz and 13 Hz with amplitudes of 1, while in the following second

it includes two sinus functions with the frequencies 5 Hz and 15 Hz with amplitudes of 2.

y(t) =

sin(2π ∗ 7t) + sin(2π ∗ 13t), 0 ≤ x ≤ 1

2 sin(2π ∗ 5t) + 2 sin(2π ∗ 15t), 1 < x ≤ 2
(4.6)

In figure 4.10 the signal and its frequency spectrum are given. In the frequency spectrum

it can only be seen that there are peaks at 5, 7, 13 and 15 Hz and that the peaks at 5

and 15 Hz are twice as high. However, it can not be deduced when these frequencies are

present in the signal.

To get time information, the STFT (shown in Eq. 4.7) moves a short time window along the

signal and calculates the frequency spectrum for each window using the Fourier Transform.

[34]

S(f, τ) =

∫ ∞

−∞
x(t)w(t− τ)e−j2πftdt (4.7)
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4.1. Feature Extraction

Figure 4.10.: Example of a signal that changes over time 4.6 (left), frequency spectrum of
that signal (right)

where w(t) is a window function that is moved along the signal. The window function can

for example be a Hanning window.

For real signals the discrete STFT is used [36], as shown in Eq. 4.8:

S[k,m] =

N−1∑
n=0

g[n]w[n]e−j2πkn (4.8)

The following graphs show how the STFT is calculated. In figure 4.11, a window with the

length of 1 second is moved along the signal. There is no overlap between the windows

(top graphs). The corresponding frequency spectra are below the signals. Here it can be

seen that in the first second only frequencies of 7 and 13 Hz are present while in the next

second only frequencies of 5 and 15 Hz are present (bottom graphs). This way, not only

the frequencies of the signal are given, but also the times when they occur.

Figure 4.11.: Example of how windows are used: window selection along the signal (top),
frequency spectrum of the signal that is inside the window (bottom).

Spectrograms are used to visualize the results of the STFT. In figure 4.12, a spectrogram

of signal 4.6 is shown. Along the x-axis the time is given, along the y-axis the frequencies
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4.1. Feature Extraction

are given and the colormap describes the amplitudes of the given frequencies. [44] In the

given case, in the first second there are frequencies present with 7 and 13 Hz and in the

subsequent second there are frequencies present with 5 and 15 Hz.

Figure 4.12.: Spectrogram of the signal given in equation 4.6

According to the uncertainty principle, the time resolution is reciprocal to the frequency

resolution. This means that the smaller the length of the window is, the higher the time

resolution gets, but at the same time frequency resolution gets lost. [34]

Often the Power Spectral Density (PSD) is given. The PSD is calculated using the square

of the Fourier Transform. A PSD for the signal given in equation 4.6 is shown in figure

4.13.

Figure 4.13.: Power Spectral Density of the signal given in equation 4.6
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4.1.2. Spectral Energy

A feature that can be extracted using frequency analysis is the spectral energy. [22] For

this, the PSD is used. The PSD is the square of the STFT. An example of PSD is given

in figure 4.14, which shows the power over frequency and time. Power in this case is

acceleration squared divided by the sample rate with the unit of (m/s2)2/Hz. Spectral

energy is the power integrated over time and has the unit s · (m/s2)2/Hz. [34]

Figure 4.14.: Example of a Power Spectral Density

Spectral energy can be integrated over all frequencies or over a specific frequency bin. As

the PSD shows discrete values, the integration becomes a summation of the values over

time and over frequencies.

Figure 4.15.: Power Spectral Density with marked frequency bins
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4.1. Feature Extraction

Figure 4.15 shows the same PSD as in figure 4.14 but only for a few seconds. From 21

to 22 seconds all the frequencies are marked. From 23 to 24 seconds the frequencies are

divided into five equally wide frequency bins. To calculate the energy of all frequencies for

one second for example, all the values of the PSD during this second have to be added up

as shown in the PSD from 21 to 22 seconds. To calculate the energy of a frequency bin

for one second for example, all the values of the PSD during this second and within this

frequency bin have to be added up as shown in the PSD from 23 to 24 seconds.

The spectral energy of all the frequencies for the PSD in figure 4.14 is shown in figure

4.16. The spectral energy was calculated by integrating the power for each second. The

spectral energy for the frequency bin from 600 to 800 Hz is shown in figure 4.17.

Figure 4.16.: Spectral energy for each second of the given example from figure 4.14

Figure 4.17.: Spectral energy for each second in the frequency bin from 600 Hz to 800 Hz
of the given example from figure 4.14
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4.1. Feature Extraction

4.1.3. Statistical Features

A signal can also be characterized by the distribution of the instantaneous values. These

include signal range, mean value, standard deviation, variance, skewness, kurtosis, crest

factor, among others.

The formulas for the most used statistical features are given in the following [22].

• Range: Range is the difference between the maximum and minimum values of a

signal.

• Mean value: Mean value µ is the average value of a signal.

µ =
1

N

N∑
i=1

xi (4.9)

• Standard deviation: Standard deviation σ is a measure of variance in a sequence of

values. The lower the standard deviation is, the closer the values tend to be to the

mean.

σ =

√√√√(
1

N − 1

) N∑
i=1

(xi − µ)2 (4.10)

• Variance: Variance σ2 is the square of the standard deviation.

σ2 =

(
1

N − 1

) N∑
i=1

(xi − µ)2 (4.11)

• Skewness: Skewness S is a measure of asymmetry of a probability distribution.

S =
1

N

N∑
i=1

(xi − µ)3 (4.12)

• Kurtosis: Kurtosis K is a measure of ”tailedness” of a probability distribution.

K =
1
N

∑N
i=1(xi − µ)4

σ2
(4.13)

• Root Mean Square: Root Mean Square is the square root of the mean of the square

values.

xrms =

√√√√ 1

N

N∑
i=1

x2i (4.14)

• Crest Factor: The crest factor is the ratio between the peak value and the root mean

square of a sequence.

xCF =
xpeak
xrms

(4.15)
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4.2. Feature Reduction

4.2. Feature Reduction

If too many features are extracted, it can negatively influence the accuracy of the classi-

fication that is done in the next step. For this reason, the most important features are

selected or the number of features is reduced before implementing classification methods.

[41] In addition, by reducing the number of features, samples can be plotted and viewed,

thus making it possible to visually analyze the given samples. [35] The most prominent

method in machine learning for reducing dimensionality in a data set is Principal Compon-

ent Analysis (PCA). This algorithm is explained in detail in the next subsection, however

there are also other methods such as Linear Discriminant Analysis (LDA), which will not

be covered in this thesis. [25]

4.2.1. Principal Component Analysis (PCA)

The PCA is used to reduce the number of dimensions in the data set while maintaining

most of the variation. To achieve this, the PCA finds directions along which the variation

in the data is maximal. These directions are called Principal Components (PCs), which

are linear combinations of the features given in the data set. [35]

z = aTx =
N∑
i=1

aixi (4.16)

where z are the PCs, xi are the features that are included in the given samples, ai are the

constants that describe the principal components and N is the number of features. [41]

There are multiple algorithms to calculate the PCA. One of the most implemented al-

gorithms uses Singular Value Decomposition [3] of the data matrix. [45]

The first step in the algorithm is to standardize the data matrix, so that all samples

have a mean of zero [45] and variance of one [18]. This is done to overcome the effects

that happen because of features having different units or some features having a higher

variance. Variables with a higher variance would influence the results of the calculated

principal components more, which is often not what is wanted. [18]

The output of the PCA are the principal components in order from highest variance to

lowest variance that is accounted for by the principal component.

In figure 4.18 an example of samples is given. PC1 is the first principal component, which

has the maximum variance when the samples are projected onto it. This way, the number

of dimensions can be reduced, e.g. in the given case to one dimension. This can also be

helpful if the samples have more than 3 dimensions. In such cases, there is no way to

visualize the data unless the number of dimensions is reduced to 3 or less.

As a result, it has to be chosen how many PCs should be calculated. If too few PCs

are calculated, the necessary information will get lost, resulting in a poor model. If too

many PCs are calculated, there will be too many parameters in the classification step.

There are multiple ways to choose an adequate number. One of them is by looking at
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4.3. Classification

Figure 4.18.: Samples and their projections on the first principal component (left), same
samples on the first principal component, number of dimensions is reduced
to one (right)

the cumulative percent variance (CPV) shown in equation 4.17. A number of PCs is then

chosen so that the CPV is higher than a set value (e.g. 90 %). The optimal value depends

on the implemented case. [45]

CPV =

r∑
i=1

λi

n∑
i=1

λi

(4.17)

where λi is the ratio of the variance of the i-th principal component PCi to the sum of

variances of all principal components.

4.3. Classification

In this section some basic concepts in classification problems are explained. Afterwards,

Support Vector Machines (SVM) are explained as an algorithm used in classification.

Although there are other algorithms such as Artifical Neural Networks (ANN) and Con-

volutional Neural Networks (CNN) [43], only SVM was used in the scope of this thesis.

4.3.1. Classification problems

In classification problems samples are available that can be divided into categories or

classes. The goal of classification problems is to assign a label to unlabeled samples. For

this a classification model is trained and validated. The data set is divided into a training

and testing data set. The model is trained using the training data set and then validated

using the testing data set. The ratio for the training and testing data sets can for example

be 75:25. To validate a model the accuracy (Eq. 4.18) [42] can be calculated. [20]
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4.3. Classification

accuracy =
correct predictions

all predictions
(4.18)

Another validation method is the n-fold cross-validation. Here the data are divided into n

subsets with equal sizes. A model is then trained n times and every time another subset is

used for validation. For every model a classification accuracy is calculated and the average

is considered to be the final accuracy. [20] Figure 4.19 shows an example of 4-fold cross

validation.

Figure 4.19.: Example of 4-fold cross validation: The data set is divided into four equally
sized subsets. The model is trained four times while every time another
subset is used as the testing data set for the validation. [20]

A problem that occurs while training a classification model is overfitting. Overfitting

happens when a found model classifies the training data with little error but classifies

the testing data with a much higher error. In this case the model is very well fitted for

the training data but does not find a rule that generally can classify the data overall.

Overfitting can occur for example if the model is too complex. [20] Therefore reducing the

number of features by using e.g. PCA can lead to better models as overfitting is avoided.

4.3.2. Support Vector Machine

Support Vector Machine (SVM) is a training algorithm for classification and regression.

[17]

In the following the four concepts that are incorporated in SVM will be explained: the

separating hyperplane, the maximal margin hyperplane, the soft margin and the kernel

function.

A hyperplane is a line that separates two groups of samples. The hyperplane has one

dimension less than the feature space. For a feature space with two features the hyperplane

is a line, for a feature space with three features the hyperplane is a two-dimensional plane

and so forth. Usually a lot of hyperplanes exist that meet this condition. The SVM finds
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the maximal margin hyperplane. From all the existing hyperplanes the maximal margin

hyperplane has the maximal distance from any of the given samples. The samples that

are the closest to the hyperplane are called support vectors. [31]

The hyperplane can be described like this [17]:

wTx+ b = 0 (4.19)

where w is the weight vector and b the bias and the following applies.

wTxi + b ≥ 1, for all xi ∈ P (4.20)

wTxi + b ≤ −1, for all xi ∈ N (4.21)

where xi are the samples and P and N are the two groups into which the samples can be

divided. An example of a one-dimensional hyperplane is shown in figure 4.20.

Figure 4.20.: Maximal margin hyperplane (blue) that divides the two groups of samples.
The samples that lie on the other two lines are called support vectors. [17]

Until now it was assumed that the two groups of samples can be linearly separated. Very

often this is not the case. To deal with this, a soft margin can be used that allows some

samples to end up on the side of the other group. The soft margin is controlled by a

parameter C. The higher C is set, the smaller the soft margin is and the better the found

hyperplane fits the given data set, meaning less samples ending up on the wrong side of the

hyperplane. [7] However, high values for C may lead to overfitting and the computational

cost is higher. [9]

Another approach to deal with this would be to use a kernel function. The kernel function

adds new dimensions to the feature space and projects the samples into a space of higher
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dimension. The two groups of samples might be separable in the higher dimensional space,

however for this the right kernel function has to be chosen. For any given data set it is

possible to find a kernel function that projects the samples in to such a dimension space in

which the samples can be linearly separated. However, this leads to overfitting if too many

dimensions are added. [31] Using the kernel function is also called the ”Kernel Trick”. [17]

In figure 4.21 an example of the kernel trick is given. At first there are two groups of

samples with only one dimension. The two groups are not linearly separable. After using

the kernel function and adding a new dimension the two groups become linearly separable.

In this case the kernel function is just the square of the first dimension.

Figure 4.21.: Two groups of samples that are not linearly separable (left), the two groups
of samples can be linearly separated after adding a new dimension using the
kernel function (right) [31]
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5. Methodology

5.1. Characteristics of a traverse cycle

In this section traverse cycle’s most important characteristics and parameters are ex-

plained. Figure 5.1 shows the traverse angle over time while performing a complete cycle,

starting from -23.5°, reaching 187° and ending back at -23.5°. These angles are marked

with horizontal dotted lines. At the angles 35° and 133° one of the piston changes its

movement from pulling to pushing and vice versa. To avoid oscillations the rotation of the

traverse is slowed down around these angles, marked with red circles.

Figure 5.1.: Traverse rotation angle of a cycle

The translation angle of the traverse can also be changed. This is done to simulate the

thermal expansion of the receiver tube. However, the consequences of this movement were

not studied in this thesis.

To study the vibration behavior of the swivels, spectrograms were calculated with the help

of STFT. An example of the spectrogram of a traverse cycle is shown in figure 5.2. As the

sample rate of the accelerometers is 10,000 Hz, only the amplitudes of frequencies up to

the Nyquist frequency of 5000 Hz can be calculated. In figure 5.2, one can see that almost

no vibrations are recorded from 2000 to 5000 Hz, consequently a range of 0 to 2000 Hz

has been selected as a reference for the following spectrogram analysis.

One of the features calculated to characterize the vibration is the spectral energy for

different frequency bins as shown in section 4.1.2. Note that frequencies under 5 Hz were

discarded as the accelerometers are not designed for this bandwidth. The frequency bins for

which the spectral energy is calculated can be chosen arbitrarily e.g. divide the frequencies

into equally wide frequency bins. However, pertinent frequency bins can be defined after
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5.1. Characteristics of a traverse cycle

Figure 5.2.: Spectrogram of a cycle

looking at spectrograms and seeing how the vibrations evolve depending on the condition

that is analyzed.

To make this point clearer the energy of the vibration from 172 seconds to 190 seconds for

the cycle in figure 5.2 is calculated for the frequency bin from 680 to 1180 Hz. The result

is shown in figure 5.3. For this frequency bin the energy remains somewhat constant.

Figure 5.3.: Spectral energy per second from 172 seconds to 190 seconds for the cycle shown
in figure 5.2 of the frequency bin from 680 to 1180 Hz

However, if this frequency bin is divided into two frequency bins, one from 680 Hz to 930

Hz and the other one from 930 Hz to 1180 Hz, additional information can be extracted.

Figure 5.4 shows the energy for the frequency bin from 680 Hz to 930 Hz and figure 5.5

shows the energy for the frequency bin from 930 Hz to 1180 Hz. An energy shift can be
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5.1. Characteristics of a traverse cycle

observed from the first frequency bin to the second one from 177 seconds till 184 seconds.

This behavior can not be seen in figure 5.3.

Figure 5.4.: Spectral energy per second from 172 seconds to 190 seconds for the cycle shown
in figure 5.2 of the frequency bin from 680 to 930 Hz

Figure 5.5.: Spectral energy per second from 172 seconds to 190 seconds for the cycle shown
in figure 5.2 of the frequency bin from 930 to 1180 Hz

This is an example of how a classification model can be improved by choosing more suitable

features.

Another aspect to take into account is that the vibration behavior differs depending on

the traverse angle. To compare vibrations of the swivel joint for different conditions (e.g.

different pressures or during aging of the swivel joint) and not to compare vibrations for

different angles, short angle ranges showing similar vibration behavior must be defined.

The angle ranges can be chosen arbitrarily but this would lead to a weaker accuracy
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performance later on when the machine learning model is trained.

5.2. Procedure

In this section the code that was used for the calculations in the next chapter is explained.

All code was written on python.

At first the code is explained, which calculates the STFT of the vibrations and plots the

results in spectrograms. The spectrograms are used to compare the vibration behavior of

different cycles. After this a machine learning model is presented to classify the vibrations

of cycles at different conditions.

5.2.1. Spectrograms

Figure 5.6 shows the steps to plot the spectrograms of the cycles.

Figure 5.6.: Steps to plot spectrograms of cycles

The input includes the vibration data from the accelerometers described in the section

3.3.1 or 3.3.2 and the data from the SCADA. It contains the traverse angle over time.

Figure 5.7 shows a plot of the position and vibration data. Using the traverse angle, the

start and end positions of the cycles are found. This way the vibration during these cycles

is extracted.

For the extracted vibration data the STFT is performed, which calculates the frequencies

and their amplitudes over time. This information is then plotted in spectrograms. An

example for a spectrogram is given in figure 5.8.

5.2.2. Spectrograms over traverse angle

The previous spectrograms show the frequencies over the cycling time and do not give

any information about the traverse position, which is the main independent variable for

this work. To allow a better comparison of spectrograms for different cycles, code to plot

spectrograms over the traverse angle is necessary. The steps to do so are described in

figure 5.9.

The first steps are similar to the previous ones. Vibration and position data are used to

differentiate forth and back movements of the cycles before the STFT is performed. Move-

ment forth means the traverse movement from the starting position to the end position,
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Figure 5.7.: Traverse angle (top) and vibration data (bottom) for a traverse cycle over
time. Orange dashed lines show when a cycle starts and green dashed lines
show when a cycle ends.

Figure 5.8.: Example of spectrogram showing the frequencies and amplitudes over time of
a cycle
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Figure 5.9.: Steps to plot spectrograms of cycles showing frequencies and their amplitudes
over traverse angle

while movement back means the traverse movement from the end position towards the

starting position. Figure 5.10 shows a plot of the position and vibration data, in which

the start and end of the movement forth and back are marked.

Figure 5.10.: Traverse angle (top) and vibration data (bottom) aligned. Orange dashed
lines show when the traverse starts moving away from the starting position,
grey dashed lines show when the traverse stops moving to the end position,
purple dashed lines show when the traverse starts moving from the end po-
sition and green dashed lines show when the traverse stops moving to the
starting position.

STFT is performed on these two fragments per cycle. To plot the results in spectrograms

over the traverse angle, the traverse angle data has to be interpolated, so that it includes

as many values as there are windows that were calculated with the STFT. For instance,

if the sample rate of the traverse angle data is one second and the STFT calculates two

Fourier Transforms per second, there are double as many windows as there are traverse

angle values. To assign a traverse angle to every window, the traverse angle data has to

be interpolated to add more traverse angle values matching the windows.
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Afterwards the two spectrograms are plotted for the movements forth and back. Figure

5.11 shows an example of such spectrograms. Here the same cycle is represented as in

figure 5.8 but now the angle information is clearly given.

Figure 5.11.: Spectrograms over traverse angle for the movement from the starting position
to the end position (left) and for the movement from the end position to the
starting position (right)

5.2.3. Machine Learning Model

Spectrograms are useful to visualize vibration during traverse cycling and with enough

know-how, conclusions can be drawn about the swivel joint’s condition (e.g. HTF pressure

or traverse cycling) by comparing them under different conditions. However, another

approach to classify the swivel joint’s condition is implemented using machine learning

methods PCA and SVM, described in sections 4.2.1 and 4.3.2. This way a vibration

measurement can be done and the machine learning model will draw out conclusions

about the swivel joint without needing know-how on the user’s part.

Figure 5.12 shows the structure of the model that classifies the vibration for different

conditions. The model is divided into four steps: At first samples and their features are

extracted from the vibration data. Then these samples are divided into angle ranges and

subsets. The first division is done to compare vibrations in certain angle ranges. The

latter division is done to do the n-fold cross validation. Then PCA is used to reduce the

number of features to avoid overfitting in SVM.

Figure 5.12.: Structure of the model using machine learning methods

Feature extraction

Figure 5.13 shows the steps used in feature extraction. The vibration data during cycling is

divided into samples of a set length. They will be used in the further process of the machine
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learning model. The length of the samples is arbitrary and an optimal length needs to be

found. The longer a sample is, the more information it includes but the less samples there

are to be used for the machine learning methods. If the samples are shorter, the more

samples there are for the machine learning methods, which could improve the classification

accuracy. However, if the samples are shorter they include less information, so multiple

lengths have to be tried out. Then the features of the samples are calculated and saved

to be used in later steps. Table 5.1 shows how the result of the feature extraction looks

like. Statistical features as well as features calculated using frequency analysis presented

in section 4.1 can be used here.

Figure 5.13.: Steps to extract features for the machine learning model

Table 5.1.: Representation of samples after feature extraction

Class Angle Forth or back Statistical feature 1 ... Frequency feature 1 ...

class1 -19.9474 forth statistical feature11 ... frequency feature11 ...

class1 -17.5377 forth statistical feature21 ... frequency feature21 ...

... ... ... ... ... ... ...

Sample division into angle ranges and folds

The samples are divided into different angle ranges. Appropriate angle ranges are selected

after analyzing the spectrograms. The output is the samples with their features and

corresponding angle ranges. Table 5.2 shows how the samples look like after the division

into angle ranges. After this the samples are divided into subsets that will build the folds

dividing the subsets into a training data set and a testing data set as shown in section

4.3.1. The next steps, PCA and SVM, are done for every angle range separately and for

every fold of subsets.

Table 5.2.: Representation of samples after sample division into angle ranges

Class Angle range Forth or back Statistical feature 1 ... Frequency feature 1 ...

class1 (-20°)-20° forth statistical feature11 ... frequency feature11 ...

class1 (-20°)-20° forth statistical feature21 ... frequency feature21 ...

... ... ... ... ... ... ...

class1 20°-60° forth statistical feature21 ... frequency feature21 ...

... ... ... ... ... ... ...
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Principal Component Analysis (PCA)

Once the samples have been prepared, PCA can be implemented. Figure 5.14 shows the

steps to get the results from the PCA.

Figure 5.14.: Steps to perform PCA

Only the training set is used to calculate the principal components. Afterwards the samples

from the training and the testing set are projected onto the principal components. The

samples are plotted in a 2D graph using the first two principal components to visualize the

results. In some cases, clustering can be already seen in these graphs. Figure 5.15 shows

an example of such a graph, in which the training and testing sets are represented using

different shapes. In this case, samples were used with 18 features.

Figure 5.15.: Example of a 2D Graph using two principal components. Training set is
represented with circles and the testing set is represented with crosses.

Cumulative percent variance (CPV) graphs are also plotted to check how many principal

components should be used for the SVM algorithm. An example of a CPV graph is given

in figure 5.16, corresponding to the same example given in figure 5.15. Looking at this
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graph, one might decide to use 4-6 principal components for the SVM depending on how

much variance is desired to be included in the data used for the SVM. For example, using

4 principal components would include more than 92 % of variance.

Figure 5.16.: Example of a graph showing the cumulative percent variance (CPV) depend-
ing on the number of principal components (PCs)

The principal components are saved as linear combinations of the features to see which

features vary the most.

Support Vector Machine (SVM)

SVM is finally used as a soft margin classifier to separate the extracted samples. The steps

involved are shown in figure 5.17.

Figure 5.17.: Steps to perform SVM

The SVM algorithm is performed on the training set projected onto the principal compon-

ents calculated by the PCA. The number of principal components to be used is decided

after evaluating the CPV graph. Another parameter that needs to be set is the parameter

C that controls the soft margin, as shown in section 4.3.2. In this case, multiple values

have to be tried out to find an optimal value. After the hyperplane, separating the samples

of different classes, was found, the testing set is used to calculate a classification accuracy.

It is used to determine how the parameters, which can be set in the machine learning

model, affect the classification performance.
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6. Results

6.1. Classification of cycles at different pressures

Cycles at different pressures were performed to better understanding the behavior of the

swivel joint and its vibrations, and test the pertinent methods found during the literature

research. Two cycles were performed at 0 bar, 10 bar, 20 bar, 30 bar and 35 bar, at

ambient temperature. The starting position was set to -20° and the end position was set

to 180°. To reduce external variables, translation movement was not considered during

the cycles. Sensors KS95B.100 and their associated setup were used. The positions of the

accelerometers can be seen in figure 3.13. In this section the sensors are referred to as

followed:

• Sensor 1: accelerometer that was screwed to the east swivel joint perpendicular to

the REPA

• Sensor 2: accelerometer that was screwed to the west swivel joint perpendicular to

the REPA

• Sensor 3: accelerometer that was screwed to the west swivel joint in the opposite

direction of the REPA

The following figures (6.1, 6.2, 6.3, 6.4, 6.5) show, for each pressure, the frequencies and

their amplitudes of the swivel joint’s vibration over the traverse angle. The results were

calculated using the measurements of sensor 3. For better visualization, the spectrograms

frequency range is set to 500 Hz.

Figure 6.1.: Spectrogram for a cycle at 0 bar showing the frequencies and their amplitudes
over the traverse angle.

The vibration behavior changes for higher pressures. For 0 bar, multiple peak acceleration

frequencies can be observed, but this changes the higher the pressure is set. For 35 bar, no

clear main frequencies can be distinguished. Increasing the pressure, peak energy changes

from well-defined and segregated on certain frequencies to blurrier and scattered to other

frequencies.

The comparison of different cycle’s spectrograms is complex even if differences can be seen.

To simplify the comparison the power of vibration is looked at. Figures 6.6, 6.7 and 6.8
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Figure 6.2.: Spectrogram for a cycle at 10 bar showing the frequencies and their amplitudes
over the traverse angle.

Figure 6.3.: Spectrogram for a cycle at 20 bar showing the frequencies and their amplitudes
over the traverse angle.

Figure 6.4.: Spectrogram for a cycle at 30 bar showing the frequencies and their amplitudes
over the traverse angle.
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Figure 6.5.: Spectrogram for a cycle at 35 bar showing the frequencies and their amplitudes
over the traverse angle.

show the mean power of the vibration of the whole cycle and the power of the vibration for

specific angles for the three sensors. Even though sensor 1 and sensor 2 are on the same

position of the different swivel joints, the power of the measured vibrations of sensor 1 is

more than ten times higher than that of sensor 2. One reason to explain this is that there

might have been still some crystallized HTF left in the east swivel joint. For the sensors

1 and 2, the mean power over the whole cycle is the highest at 20 bar and gets lower for

higher pressures. For sensor 3, the mean power over the whole cycle is the highest at 10

bar and gets lower for higher pressures. As the vibration behavior does not remain the

same over the traverse cycle, the vibration power at certain angles (20°, 90° and 160°) is

looked at. However, for these angles there is no clear trend for the power. The power at

different angles does not behave like the mean power. For example, for sensor 3 the mean

power at 10 bar is slightly higher than at 20 bar but the power at 20° is lower at 10 bar

than at 20 bar. A clear correlation between the HTF pressure and the vibration power was

not found. Therefore, more cycles at different HTF pressures would be needed to make

clearer statements.

In the following, the machine learning model described in subsection 5.2.3 is used to classify

the cycles according to pressure and to try out different values for parameters that can be

chosen. The features used in the model include statistical features, as well as features that

can be calculated using frequency analysis. The statistical features include signal range,

mean value, variance, standard deviation, skewness, kurtosis and crest factor. To calculate

features using frequency analysis, the frequency domain is divided into 10 equally wide

frequency bins from 0 Hz to 2000 Hz. The features calculated using frequency analysis

include the spectral energy and the ratios of spectral energy of each bin to the sum of

spectral energy of the frequency bins. In total, 18 features are extracted per sample. The

vibration signal of the cycles is divided into samples with the length of one second and

two seconds to test which length is going to lead to better classification accuracy. The

samples are divided into the following angle ranges:

• Movement from the starting position to the end position: 0°-31°, 36°-62°, 62°-100°,
100°-128°, 135°-155°, 155°-178°

• Movement from the end position to the starting position: 160°-137°, 132°-110, 100°-
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Figure 6.6.: Mean power and power of vibration for the angles 20°, 90°, 160° of the vibration
measured by sensor 1 for different pressures

Figure 6.7.: Mean power and power of vibration for the angles 20°, 90°, 160° of the vibration
measured by sensor 2 for different pressures
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Figure 6.8.: Mean power and power of vibration for the angles 20°, 90°, 160° of the vibration
measured by sensor 3 for different pressures

40°, 25°-(-15)°

These angle ranges were selected after analyzing the spectrograms, because it was found

that the vibration behavior in these angle ranges is continuous and homogeneous.

The samples are divided into four equally large subsets. The model is trained four times, in

which every time another fold is used as shown in section 4.3. PCA is performed after the

samples are prepared. At first results are shown for samples of the vibrations measured

with sensor 3 with the length of one second. Figures 6.9 and 6.10 show the samples

projected onto the principal components. Already with only two principal components,

some sample clustering is observed, e.g. 0 bar samples can linearly be separated from the

other samples.

The CPV graphs reveal that 8 PCs include from 94 % - 98 % of variance depending on

the sensor and the angle range. Figure 6.11 shows a CPV graph for the PCs calculated

for sensor 3 in the angle range of 0° to 31° (forth).

SVM is applied after the samples are projected onto the PCs. To decide which value to

set for parameter C, SVM is performed using different values for C. The calculations are

done using 8 PCs and for the sample length of one second. The results are shown in the

appendix in table B.1. In 16 cases, C = 10 gives the best result, in 18 cases, C = 100

gives the best result and in 15 cases, C = 1000 gives the best result. Therefore, there is no

obvious choice for the parameter C. However, for the following calculations the parameter

C = 100 is chosen.

SVM was performed on the samples trying out different numbers of PCs. The accuracies

are shown in table B.2 in the appendix. In 5 cases, an accuracy above 95 % is reached.

An optimal number of PCs is not obvious, as in some cases overfitting is happening when
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Figure 6.9.: Samples from the vibration measured with sensor 3 for the angle range from
0° to 31° (forth) projected onto the first two principal components

Figure 6.10.: Samples from the vibration measured with sensor 3 for the angle range from
36° to 62° (forth) projected onto the first two principal components
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Figure 6.11.: CPV graph for the PCs calculated for sensor 3 in the angle range of 0° to 31°
(forth)

too many PCs are used, e.g. for sensor 2, in the angle range from 100° to 128° (forth), the
highest accuracy is achieved when 16 PCs are used instead of 18.

The same calculations were done for samples with the length of two seconds. The results

are shown in table B.2 (appendix). In 3 cases, an accuracy above 95 % is achieved.

Overfitting is also happening in some cases here. In general, using samples with the length

of two seconds decreases the classification accuracy, however there are exceptions.

The results show that there is no optimal set of parameters that can be selected. Depending

on the location of the sensor and the angle range, multiple values for the sample length,

number of PCs and parameter C must be tried out. However, it is shown that the machine

learning model presented is a promising approach to determine the swivel joint’s condition.

6.2. Classification of cycles over aging process

10,000 cycles were performed with HTF at 393°C and 35 bar for the aging test of the

REPAs. The starting position was set to -23.5° and the end position was set to 187°.
Translation movement was also included and went from -4.74° to 14.24° and back during

the cycle movement. At first, the sensors KS95B.100 were used until the 3900th cycle,

and then they were exchanged for the sensors 320C52. In this section, only the data

measured by the sensors 320C52 is considered, because the sensors KS95B.100 were found

to be unsuitable for the temperatures reached during the test at the measurement area

(see section 3.3.4). The positions of the accelerometers can be seen in figure 3.17. In this

section, the sensors are referred to as followed:

• Sensor 1: accelerometer that was screwed to the east swivel joint perpendicular to

the REPA
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• Sensor 2: acclerometer that was screwed to the east swivel joint in the opposite

direction of the REPA

• Sensor 3: accelerometer that was screwed to the west swivel joint perpendicular to

the REPA

• Sensor 4: accelerometer that was screwed to the west swivel joint in the opposite

direction of the REPA

The same procedure as in the previous section 6.1 is applied to compare the vibration

behavior of the 4000th cycle, 7000th cycle and 10,000th cycle. The following figures (6.12,

6.13, 6.14, 6.15, 6.16, 6.17) show the spectrograms of the cycles (forth and back) measured

by sensor 1 and sensor 2, i.e. the sensors on the east swivel joint. The spectrograms show

the frequencies and their amplitudes of the vibration up to 2000 Hz.

Figure 6.12.: Spectrogram of the 4000th cycle showing the frequencies and their amplitudes
of the vibrations that were measured with sensor 1 (perpendicular to the
REPA) over the traverse angle.

Figure 6.13.: Spectrogram of the 4000th cycle showing the frequencies and their amplitudes
of the vibrations that were measured with sensor 2 (in opposite direction of
the REPA) over the traverse angle.

The vibration behaviors for the different cycles have many similarities, although clear

differences can be seen. A short overview of the vibration behavior of the 4000th cycle is

given, and then the vibration behaviors of the 7000th and 10,000th cycles are compared

with it.
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Figure 6.14.: Spectrogram of the 7000th cycle showing the frequencies and their amplitudes
of the vibrations that were measured with sensor 1 over the traverse angle.

Figure 6.15.: Spectrogram of the 7000th cycle showing the frequencies and their amplitudes
of the vibrations that were measured with sensor 2 over the traverse angle.

Figure 6.16.: Spectrogram of the 10,000th cycle showing the frequencies and their amp-
litudes of the vibrations that were measured with sensor 1 over the traverse
angle.
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Figure 6.17.: Spectrogram of the 10,000th cycle showing the frequencies and their amp-
litudes of the vibrations that were measured with sensor 2 over the traverse
angle.

When the traverse starts moving either from the starting position or from the end position,

the vibration includes the highest power. Until 78° (forth) the vibration includes multiple

frequency bins with higher power, while the vibration in REPA direction is more continuous

and homogeneous than the vibration perpendicular to the REPA. From 78° (forth) to the

end position, the power of the vibration gets reduced drastically and every few angles high

energy appears over the frequency bin from 0 Hz to 2000 Hz. On the rotation back to the

starting position similar frequency bins are included in the vibration.

Along the 7000th cycle, the vibrations have significantly less power than the vibrations

in the 4000th cycle. For some angle ranges, some frequencies disappear in the 7000th

cycle, e.g. in the angle range from 56° to 78° (forth) the frequencies from 800 Hz to 1300

Hz disappear in the vibration perpendicular to the REPA. Also, in the angle range from

78° (forth) to the end position the number of angles in which high energy appears gets

reduced.

Along the 10,000th cycle the vibrations have slightly less power than along the 7000th

cycle. In fact, in a few angle ranges some frequencies disappear, e.g. in the angle range

from 61° to 78° (forth) the frequencies from 1000 Hz to 1100 Hz disappear earlier in the

vibration in the REPA direction.

Similar changes of the vibration behavior can be seen for the data measured by the other

two sensors on the west swivel joint. The corresponding spectrograms are included in the

appendix in figures A.1, A.2, A.3, A.4, A.5 and A.6. Consequently, the vibration is a suit-

able parameter to distinguish cycles at different stages of the aging process, corroborated

by the clear differences in their vibration behavior.

In the following figures (6.18, 6.19, 6.20 and 6.21), the mean power of vibration over

kinematic unit cycle number is shown. The power for specific traverse angles is also given.

The mean power is the highest at the 4000th cycle, decreases at the 5000th cycle, increases

at the 6000th cycle and then decreases again and settles around a certain value for the

other given cycles until the 10,000th cycle. Unlike the mean power, the power at some

traverse angles does not follow the same pattern. Since a clear trend can not be seen, a

first approach with machine learning is tried as follows.

59



6.2. Classification of cycles over aging process

Figure 6.18.: Power of vibration measured by sensor 1 over kinematic unit cycle number
for specific traverse angles, and the mean value for the specified cycle.

Figure 6.19.: Power of vibration measured by sensor 2 over kinematic unit cycle number
for specific traverse angles, and the mean value for the specified cycle.
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Figure 6.20.: Power of vibration measured by sensor 3 over kinematic unit cycle number
for specific traverse angles, and the mean value for the specified cycle.

Figure 6.21.: Power of vibration measured by sensor 4 over kinematic unit cycle number
for specific traverse angles, and the mean value for the specified cycle.

61



6.2. Classification of cycles over aging process

The machine learning model described in subsection 5.2.3 is used to classify the vibration

behavior for the following categories:

• Once 4000 cycles were performed

• Once 7000 cycles were performed

• Once 10,000 cycle were performed

To increase the number of samples, 20 cycles are used for every category. This is a viable

approach, as the vibration behavior remains similar in the span of 20 cycles. In figure

6.22, spectrograms for the 4000th cycle and for the 4020th cycle are shown, in which the

same frequency bins are included in the vibration. Therefore, the samples are extracted

from the 4000th to 4020th cycles, from the 7000th to 7020th cycles and from the 9980th

to 10,000th cycle.

Figure 6.22.: Spectrograms of the 4000th cycle (top, sensor 1 left, sensor 2 right) and
spectrograms of the 4020th cycle (bottom, sensor 1 left, sensor 2 right)

The same process is being followed as in the previous section 6.1. The vibration signal

of the cycles is divided into samples with the length of one second and two seconds. The

samples are then divided into the following selected angle ranges:

• Movement from the starting position to the end position: (-21)°-(-14)°, (-14)°-(-3)°,
(-1)°-11°, 11°-20°, 20°-32°, 35°-79°, 79°-131°, 133°-187°

• Movement from the end position to the starting position: 185°-179°, 170°-155°, 155°-
135°, 135°-115°, 115°-105°, 105°-79°, 76°-47°, 47°-36°, 34°-14°, 14°-0°, 0°-(-23.5)°

At first, PCA is used. In some cases, depending on the sensor position and angle range,

two PCs are already enough to see sample clustering. Figure 6.23 shows the samples in the
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angle range from 115° to 105° (back) that were measured with sensor 3, in which clustering

can be clearly observed.

Figure 6.23.: Samples from the vibration measured with sensor 3 for the angle range from
115° to 105° (back) projected onto the first two principal components

Using C = 100, SVM was performed on the samples trying out different numbers of PCs.

The accuracies for every case are calculated by averaging the accuracies of the four models

that were trained using different folds as shown in 4.3.1.

Figure 6.24 explains the whole machine learning process. It is executed two times, i.e. once

with the sample length of one second and once with the sample length of two seconds, in

order to study the influence of the sample length.

The accuracies for the models that use samples with the length of one second are given

in the tables 6.1 and 6.2. Out of 76 calculated cases (4 sensors times 19 angle ranges),

in 44 cases the model achieves an accuracy above 95 % and in one case it even achieves

an accuracy of 100 %. The worst performing angle ranges are the ones from 79° to 131°
(forth) and 133° to 187° (forth). These are the angle ranges with low power vibrations and

short surges of energy over all the frequencies. The best accuracy is achieved for sensor

3 and the angle range from -14° to -3° (back). Models that use vibrations measured by

sensors 1, 2 and 3 perform well in the angle ranges between -14° and 32° (forth) as well as
115° and 36° (back). Models that use vibrations measured by sensor 4 do not perform well

in the angle ranges between -14° and 32° (forth), but perform well in angle ranges between

115° and 36° (back). Models that use vibrations measured by sensors 3 and 4 also perform

well in angle ranges between 170° and 115° (back). In short, this means that there are

suitable and unsuitable angle ranges to detect changes in the vibration due to aging of the

swivel joint.

The model accuracies that use two-second-long samples are given in the appendix in the

tables C.4 and C.5. Out of 76 calculated cases, in 55 cases the model achieves an accuracy
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Table 6.1.: Accuracies of classification of cycles in different stages of aging: after 4000
cycles, after 7000 cycles, after 10,000 cycles. Sample length is one second.
Vibrations taken from the sensors on the swivel joint on the east side.

Sensor Angle Range 6 PCs 8 PCs 10 PCs 12 PCs 14 PCs 16 PCs 18 PCs

1 (-21°)-(-14°) 87.0 93.8 91.0 93.2 93.8 94.4 94.9

1 (-14°)-(-3°) 94.7 95.1 95.8 94.7 93.3 94.0 95.8

1 (-1°)-11° 97.3 97.6 98.0 99.7 99.7 99.7 99.7

1 11°-20° 96.8 95.8 95.8 96.3 97.7 97.7 97.7

1 20°-32° 95.7 95.7 96.3 95.5 94.4 96.8 96.8

1 35°-79° 83.9 89.5 90.0 89.7 90.6 91.6 91.9

1 79°-131° 58.3 59.0 61.8 63.8 65.8 65.8 65.6

1 133°-187° 75.3 80.8 81.2 85.8 85.6 85.5 85.9

1 185°-179° 91.5 88.3 92.2 92.2 95.5 94.8 94.8

1 170°-155° 91.3 90.4 91.5 94.3 94.3 93.7 93.7

1 155°-135° 82.7 82.4 80.4 84.2 85.6 85.4 85.8

1 135°-115° 84.9 88.4 90.2 91.5 92.6 92.5 93.0

1 115°-105° 92.4 95.1 96.3 93.9 96.4 96.4 96.4

1 105°-79° 89.6 92.1 93.5 95.1 94.9 95.1 95.3

1 76°-47° 90.9 93.3 93.5 94.3 95.8 98.3 98.3

1 47°-36° 93.2 92.9 92.9 94.0 95.8 99.0 98.7

1 34°-14° 91.1 94.1 94.7 94.4 95.0 97.3 97.1

1 14°-0° 97.1 96.3 96.2 96.0 96.9 97.1 97.1

1 0°-(-23.5°) 90.7 92.2 94.4 95.0 95.0 94.8 94.8

2 (-21°)-(-14°) 89.2 93.2 92.1 94.3 94.3 94.9 94.3

2 (-14°)-(-3°) 89.0 90.1 91.9 95.0 93.3 94.3 93.6

2 (-1°)-11° 93.9 96.3 96.3 99.0 98.6 98.6 98.6

2 11°-20° 84.7 91.2 92.1 96.8 98.6 98.6 98.6

2 20°-32° 83.2 88.2 89.1 96.0 95.5 95.7 95.7

2 35°-79° 91.8 93.1 94.1 94.0 94.4 95.6 97.4

2 79°-131° 66.0 69.1 68.9 71.2 74.2 76.7 76.7

2 133°-187° 68.4 70.9 75.7 79.1 79.7 81.2 81.1

2 185°-179° 96.1 95.5 96.1 94.8 96.1 96.7 96.7

2 170°-155° 76.2 79.0 82.0 80.0 86.6 87.7 88.0

2 155°-135° 88.4 88.1 87.4 90.4 90.6 90.9 91.1

2 135°-115° 85.7 85.6 87.2 87.5 87.4 88.4 88.7

2 115°-105° 91.8 93.6 96.4 96.7 95.8 95.5 95.5

2 105°-79° 89.3 95.1 97.2 97.5 97.9 98.8 98.8

2 76°-47° 91.6 96.6 97.7 97.5 98.6 98.8 98.9

2 47°-36° 93.5 94.0 98.2 98.4 98.4 99.0 99.0

2 34°-14° 91.1 93.1 94.7 95.3 95.4 96.7 96.5

2 14°-0° 91.0 93.5 94.2 94.2 95.0 94.2 93.3

2 0°-(-23.5°) 89.5 91.9 95.1 95.2 96.4 96.1 96.1
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Table 6.2.: Accuracies of classification of cycles in different stages of aging: after 4000
cycles, after 7000 cycles, after 10,000 cycles. Sample length is one second.
Vibrations taken from the sensors on the swivel joint on the west side.

Sensor Angle Range 6 PCs 8 PCs 10 PCs 12 PCs 14 PCs 16 PCs 18 PCs

3 (-21°)-(-14°) 89.3 91.0 89.8 89.8 91.0 89.3 91.5

3 (-14°)-(-3°) 99.3 100.0 100.0 100.0 100.0 100.0 100.0

3 (-1°)-11° 92.6 95.6 97.0 98.0 98.0 98.7 98.7

3 11°-20° 93.1 94.0 93.5 92.6 94.0 94.0 94.0

3 20°-32° 89.8 90.9 93.6 94.1 94.1 95.2 96.0

3 35°-79° 85.5 94.2 95.0 96.2 96.5 97.7 97.9

3 79°-131° 61.3 66.4 70.2 76.5 80.8 81.7 81.7

3 133°-187° 78.0 84.5 85.8 87.4 87.6 89.2 89.4

3 185°-179° 91.6 90.9 92.2 93.5 94.2 94.8 94.8

3 170°-155° 94.3 94.5 94.8 94.8 96.5 97.8 97.8

3 155°-135° 97.0 96.8 95.2 95.9 95.9 96.1 96.1

3 135°-115° 99.5 98.7 98.9 98.9 99.2 99.2 99.2

3 115°-105° 99.1 99.1 99.1 98.8 98.8 98.8 98.8

3 105°-79° 92.7 93.0 92.9 93.8 93.9 93.4 94.5

3 76°-47° 90.0 91.1 90.9 91.2 93.5 92.8 93.0

3 47°-36° 97.1 96.9 95.8 96.6 96.3 97.6 97.4

3 34°-14° 95.7 94.7 94.5 96.0 95.5 95.7 95.8

3 14°-0° 72.9 79.2 79.2 82.3 87.7 85.8 84.8

3 0°-(-23.5°) 64.7 71.9 75.7 75.0 84.2 85.0 85.6

4 (-21°)-(-14°) 83.6 85.8 88.1 89.8 92.1 90.4 89.8

4 (-14°)-(-3°) 94.0 93.3 92.9 93.6 94.7 95.4 94.7

4 (-1°)-11° 88.9 92.3 91.6 91.6 92.3 92.6 92.6

4 11°-20° 85.2 83.3 83.8 85.2 87.0 84.3 84.3

4 20°-32° 82.4 83.4 83.4 86.6 91.7 89.8 89.8

4 35°-79° 80.7 86.4 90.3 91.4 94.5 95.0 94.7

4 79°-131° 59.7 61.4 63.1 69.1 69.4 71.3 71.8

4 133°-187° 70.6 73.7 75.9 76.4 80.0 80.4 81.2

4 185°-179° 84.4 83.8 88.3 90.3 92.2 91.6 91.6

4 170°-155° 96.7 97.0 97.0 97.5 96.7 96.7 96.7

4 155°-135° 94.5 95.7 94.3 93.2 95.0 95.0 95.0

4 135°-115° 94.3 94.1 96.1 96.2 96.2 97.1 97.1

4 115°-105° 98.8 97.9 98.8 98.8 98.5 98.2 98.2

4 105°-79° 99.0 98.9 98.9 99.4 99.2 99.3 99.3

4 76°-47° 92.8 93.5 93.3 93.8 94.1 95.4 95.5

4 47°-36° 98.2 99.2 99.5 99.7 99.7 99.7 99.7

4 34°-14° 90.1 92.1 92.4 92.1 92.7 92.2 92.5

4 14°-0° 81.7 82.9 83.8 84.2 83.8 83.5 84.2

4 0°-(-23.5°) 68.5 67.3 69.9 71.2 71.1 70.9 70.6
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6.2. Classification of cycles over aging process

Figure 6.24.: Preparation process of the data set for the machine learning model. The
data set includes samples with the extracted features. These are divided into
angle ranges and folds. The machine learning model, consisting of PCA and
SVM, is trained and a classification accuracy is calculated.

above 95 %, and in 13 cases it even achieves an accuracy of 100 %. In this case the worst

performing angle ranges are also from 79° to 131° (forth) and 133° to 187° (forth). The

best performing angle ranges are the same when a sample length of one second is used,

however in most cases classification accuracy is increased. This shows that a sample length

of two seconds leads to a better classification performance.

The high accuracies achieved indicate that the proposed machine learning model is a

promising approach for vibration analysis of the swivel joints.
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7. Summary and Outlook

Rotation and Expansion Performing Assemblies (REPAs), are among the most critical

components in Parabolic Trough Collectors (PTCs). They have to withstand forces and

torques due to the rotation and thermal expansion/contraction of the receiver tube. REPAs

perform around 10,000 sun tracking cycles in their lifetime.

Within the scope of this work, vibration sensors were implemented for condition monitoring

based maintenance of the REPAs. First, a vibration analysis and predictive maintenance

literature research was presented. Some of the most implemented algorithms in this area,

Short Time Fourier Transform (STFT), principal component analysis (PCA) and support

vector machine (SVM), were described and later used to analyze the measured vibration.

Both pressure and aging tests were carried out for two swivel joints and rotation flex hose

assemblies (RFHAs). Vibrations were recorded online and spectrograms through the use

of STFT were produced. Studying those, it was shown that both pressure and cycling have

an affect on the vibration measurement. Therefore, vibration analysis was demonstrated

to be a suitable tool for condition monitoring swivel joints and RFHAs.

A machine learning model was proposed to classify samples of the vibration signal depend-

ing on the swivel joint’s condition. The classification accuracy was found depending on

several variables, namely traverse angle ranges, sample lengths, number of principal com-

ponents (PCs) and the parameter C while executing Support Vector Machine (SVM). For

these variables, multiple values and ranges were tried out. The machine learning model

achieved a high accuracy classifying samples at different stages of the aging process.

Despite the relevant contributions achieved in this master thesis, there are some aspects

that could be further developed. For instance, along the 10,000 cycles no swivel joint

malfunction occurred. Therefore, the vibration behavior at a failure was not investigated.

Given that the swivel joint’s vibration behavior depends on many parameters such as

pressure, temperature, piston change angles, geometry of the PTC and more, the vibrations

recorded at the REPA test rig can not be compared to vibrations in other PTC facilities.

However, the methods presented in this work are valid and can be applied.

More data need to be gathered to further analyze vibrations. Especially the ones of REPA

failures to investigate how the vibration behavior evolves before malfunction. Without such

data, predictive maintenance is not possible. A way of doing this is installing sensors on

multiple swivel joints in a real PTC power plant, in which the swivel joints are operated

under the same conditions. This can be achieved by using a setup with Raspberry Pi

devices to log the data, for example. This way, it would be easier to track the changes of

vibration behavior online.
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Appendix

A. Spectrograms of the west swivel joint during the aging test

Figure A.1.: Spectrogram of the 4000th cycle showing the frequencies and their amplitudes
of the vibrations that were measured with sensor 3 (perpendicular to the
REPA) over the traverse angle.

Figure A.2.: Spectrogram of the 4000th cycle showing the frequencies and their amplitudes
of the vibrations that were measured with sensor 4 (in opposite direction of
the REPA) over the traverse angle.
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A. Spectrograms of the west swivel joint during the aging test

Figure A.3.: Spectrogram of the 7000th cycle showing the frequencies and their amplitudes
of the vibrations that were measured with sensor 1 over the traverse angle.

Figure A.4.: Spectrogram of the 7000th cycle showing the frequencies and their amplitudes
of the vibrations that were measured with sensor 2 over the traverse angle.

Figure A.5.: Spectrogram of the 10,000th cycle showing the frequencies and their amp-
litudes of the vibrations that were measured with sensor 3 over the traverse
angle.
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A. Spectrograms of the west swivel joint during the aging test

Figure A.6.: Spectrogram of the 10,000th cycle showing the frequencies and their amp-
litudes of the vibrations that were measured with sensor 4 over the traverse
angle.
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B. Classification accuracies of cycles at different pressures

B. Classification accuracies of cycles at different pressures

Table B.1.: Classification of cycles at different pressures for different parameters C. Sample
length is one second and 8 PCs are used.

Sensor Angle range C=10 C=100 C=1000

1 0°-31° 0.968 0.968 0.968

1 36°-62° 0.858 0.858 0.858

1 62°-100° 0.906 0.877 0.87

1 100°-128° 0.886 0.896 0.896

1 135°-155° 0.932 0.932 0.932

1 155°-178° 0.956 0.956 0.956

1 160°-137° 0.879 0.857 0.89

1 132°-110° 0.569 0.55 0.55

1 100°-40° 0.829 0.819 0.819

1 25°-(-15°) 0.813 0.813 0.813

2 0°-31° 0.732 0.748 0.748

2 36°-62° 0.653 0.638 0.653

2 62°-100° 0.659 0.649 0.645

2 100°-128° 0.847 0.836 0.83

2 135°-155° 0.684 0.693 0.693

2 155°-178° 0.658 0.671 0.671

2 160°-137° 0.857 0.802 0.813

2 132°-110° 0.766 0.776 0.785

2 100°-40° 0.691 0.691 0.689

2 25°-(-15°) 0.644 0.648 0.64

3 0°-31° 0.938 0.929 0.929

3 36°-62° 0.882 0.89 0.89

3 62°-100° 0.797 0.804 0.801

3 100°-128° 0.847 0.853 0.853

3 135°-155° 0.838 0.803 0.795

3 155°-178° 0.937 0.943 0.937

3 160°-137° 0.823 0.845 0.844

3 132°-110° 0.618 0.589 0.599

3 100°-40° 0.706 0.708 0.708

3 25°-(-15°) 0.764 0.779 0.775
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B. Classification accuracies of cycles at different pressures

Table B.2.: Accuracies of classification of cycles at different pressures: 0 bar, 10 bar, 20
bar, 30 bar and 35 bar. Sample length is one second.

Sensor Zone 6 PCs 8 PCs 10 PCs 12 PCs 14 PCs 16 PCs 18 PCs

1 0°-31° 94.4 96.8 97.6 96.8 96.8 96.8 96.8

1 36°-62° 85.8 85.8 83.5 86.6 88.2 88.2 88.2

1 62°-100° 89.5 87.7 90.2 92.8 93.1 94.9 94.9

1 100°-128° 79.2 89.6 94.5 95.6 96.2 96.7 96.7

1 135°-155° 89.7 93.2 94.0 94.0 95.7 95.7 95.7

1 155°-178° 93.1 95.6 95.0 96.9 96.2 96.2 96.2

1 160°-137° 79.1 85.7 86.9 89.1 89.1 89.1 90.2

1 132°-110° 52.9 55.0 65.7 64.7 70.5 69.5 69.5

1 100°-40° 76.3 81.9 81.7 79.6 80.5 81.9 82.2

1 25°-(-15°) 77.5 81.3 80.5 79.0 82.0 81.6 80.9

2 0°-31° 73.3 74.8 74.1 82.0 82.7 82.7 81.9

2 36°-62° 60.6 63.8 64.6 63.8 63.0 62.2 61.4

2 62°-100° 59.8 64.9 65.2 69.6 68.1 69.2 71.4

2 100°-128° 80.3 83.6 84.1 84.7 82.5 84.1 83.0

2 135°-155° 66.7 69.3 65.9 64.1 68.4 72.6 73.5

2 155°-178° 66.4 67.1 71.5 73.4 79.7 83.6 83.6

2 160°-137° 76.9 80.2 83.4 82.3 81.2 81.2 81.2

2 132°-110° 67.7 77.6 80.5 82.4 77.5 77.6 76.6

2 100°-40° 68.2 69.1 71.5 74.1 73.9 75.1 74.6

2 25°-(-15°) 57.3 64.8 69.7 70.0 71.9 73.4 73.4

3 0°-31° 89.8 92.9 96.1 96.1 96.1 96.9 96.9

3 36°-62° 85.9 89.0 85.9 84.2 82.6 81.0 81.0

3 62°-100° 76.8 80.4 83.0 82.2 81.9 80.8 80.8

3 100°-128° 82.5 85.3 84.7 83.6 82.5 84.2 85.3

3 135°-155° 71.0 80.3 86.3 86.3 88.9 88.1 88.1

3 155°-178° 87.4 94.3 89.9 92.4 91.8 93.7 93.7

3 160°-137° 88.9 84.5 84.5 86.7 86.8 87.8 87.8

3 132°-110° 65.8 58.9 65.7 69.7 67.7 66.7 65.7

3 100°-40° 67.7 70.8 77.4 77.7 75.5 80.0 80.3

3 25°-(-15°) 73.4 77.9 81.3 83.1 82.8 83.9 83.2
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C. Classification accuracies of cycles over aging process

Table B.3.: Accuracies of classification of cycles at different pressures: 0 bar, 10 bar, 20
bar, 30 bar and 35 bar. Sample length is two seconds.

Sensor Zone 6 PCs 8 PCs 10 PCs 12 PCs 14 PCs 16 PCs 18 PCs

1 0°-31° 86.2 93.8 90.7 90.7 90.8 90.8 90.8

1 36°-62° 89.4 84.8 89.4 89.4 89.4 89.4 89.4

1 62°-100° 89.1 91.3 91.3 92.0 92.7 92.0 92.0

1 100°-128° 82.6 89.1 90.2 90.2 92.4 95.7 95.7

1 135°-155° 96.7 95.0 95.0 96.7 95.0 95.0 95.0

1 155°-178° 94.7 88.1 90.7 92.0 92.0 92.0 92.0

1 160°-137° 60.6 58.3 64.8 60.4 66.7 66.7 66.7

1 132°-110° 55.6 71.8 71.8 73.9 79.8 79.8 79.8

1 100°-40° 81.1 83.4 84.9 88.7 85.3 85.8 86.7

1 25°-(-15°) 83.7 82.2 83.7 85.2 81.5 80.7 80.7

2 0°-31° 75.8 84.7 80.4 78.8 78.9 80.3 81.8

2 36°-62° 63.3 55.6 57.2 58.8 63.4 63.4 64.9

2 62°-100° 65.2 65.9 65.9 73.2 65.2 68.8 69.5

2 100°-128° 78.3 82.6 85.9 89.1 91.3 90.2 90.2

2 135°-155° 68.3 65.0 66.7 71.7 70.0 71.7 71.7

2 155°-178° 70.7 70.7 67.8 79.9 82.7 86.7 86.7

2 160°-137° 75.4 79.7 73.3 75.4 77.7 77.7 77.7

2 132°-110° 67.9 82.1 82.1 82.1 80.1 80.1 80.1

2 100°-40° 72.5 73.9 75.8 74.4 73.4 73.4 73.9

2 25°-(-15°) 59.2 67.4 67.4 71.1 74.1 73.3 71.1

3 0°-31° 86.2 93.9 95.4 95.4 95.4 95.4 95.4

3 36°-62° 91.0 89.4 84.7 84.7 83.2 83.2 83.2

3 62°-100° 76.8 75.4 81.9 80.5 78.3 79.7 79.0

3 100°-128° 78.3 87.0 83.7 87.0 85.9 83.7 82.6

3 135°-155° 75.0 85.0 91.7 91.7 88.3 88.3 88.3

3 155°-178° 85.3 90.8 89.3 86.7 89.4 88.1 89.4

3 160°-137° 79.9 82.2 75.6 75.4 73.3 73.3 73.3

3 132°-110° 68.1 70.4 74.0 76.3 76.3 76.3 74.4

3 100°-40° 67.8 69.6 72.5 72.0 76.3 79.6 78.2

3 25°-(-15°) 74.1 73.4 80.0 79.3 80.8 79.3 80.1
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C. Classification accuracies of cycles over aging process

Table C.4.: Accuracies of classification of cycles in different stages of aging: after 4000
cycles, after 7000 cycles, after 10,000 cycles. Sample length is two seconds.
Vibrations taken from the sensors on the swivel joint on the east side.

Sensor Angle Range 6 PCs 8 PCs 10 PCs 12 PCs 14 PCs 16 PCs 18 PCs

1 (-21°)-(-14°) 94.3 94.3 98.9 97.7 97.7 97.7 97.7

1 (-14°)-(-3°) 99.2 98.5 99.2 99.2 99.2 99.2 99.2

1 (-1°)-11° 99.3 98.0 95.3 99.3 99.3 99.3 99.3

1 11°-20° 99.1 98.1 100.0 100.0 100.0 100.0 100.0

1 20°-32° 97.8 97.3 97.8 98.4 98.4 98.4 98.4

1 35°-79° 90.1 89.7 93.1 93.5 93.9 94.9 94.5

1 79°-131° 67.2 70.2 72.9 73.6 73.3 74.4 73.9

1 133°-187° 88.7 89.9 90.3 91.3 90.5 90.1 90.5

1 185°-179° 91.7 90.3 88.9 90.3 90.3 90.3 90.3

1 170°-155° 90.4 91.5 91.5 94.1 94.1 93.6 93.6

1 155°-135° 87.0 88.8 86.0 85.6 91.9 90.1 90.1

1 135°-115° 88.5 90.1 94.7 95.7 94.7 96.1 96.1

1 115°-105° 95.7 95.1 95.7 95.1 95.7 95.7 95.7

1 105°-79° 96.5 96.9 97.1 96.9 96.5 95.8 95.8

1 76°-47° 93.6 94.5 94.9 97.2 99.3 99.3 99.3

1 47°-36° 92.5 92.5 93.0 94.5 96.5 98.0 98.0

1 34°-14° 91.2 96.6 98.6 98.3 98.0 99.1 99.1

1 14°-0° 100.0 100.0 100.0 100.0 100.0 100.0 100.0

1 0°-(-23.5°) 93.6 97.7 98.6 97.7 98.4 98.2 98.2

2 (-21°)-(-14°) 92.0 92.0 95.5 92.0 93.2 92.0 92.0

2 (-14°)-(-3°) 91.7 93.9 97.0 94.7 95.5 94.7 94.7

2 (-1°)-11° 93.2 93.9 92.6 95.3 95.9 95.9 95.9

2 11°-20° 89.0 90.0 92.8 94.6 95.5 95.5 95.5

2 20°-32° 82.6 83.2 90.2 89.1 90.2 94.6 94.6

2 35°-79° 92.2 95.9 96.6 96.3 96.3 98.2 97.9

2 79°-131° 79.4 79.2 78.8 80.1 80.9 81.6 81.6

2 133°-187° 81.5 82.7 85.1 87.9 88.2 88.1 87.9

2 185°-179° 97.2 97.2 97.2 97.2 97.2 97.2 97.2

2 170°-155° 87.2 93.6 92.6 94.1 93.1 93.6 93.6

2 155°-135° 91.0 91.9 92.3 90.5 89.6 88.2 88.2

2 135°-115° 90.5 90.5 90.8 93.1 92.8 94.4 94.4

2 115°-105° 93.9 94.5 94.5 95.7 96.3 96.3 96.3

2 105°-79° 91.4 95.4 96.5 96.2 98.1 98.5 98.5

2 76°-47° 95.7 97.9 98.2 98.2 99.8 99.8 99.8

2 47°-36° 99.0 98.5 99.0 99.5 100.0 100.0 100.0

2 34°-14° 92.3 92.6 94.0 95.7 96.3 96.0 96.0

2 14°-0° 93.5 95.4 97.0 98.9 97.7 98.1 98.1

2 0°-(-23.5°) 91.7 97.2 96.8 96.3 95.6 96.3 96.6
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C. Classification accuracies of cycles over aging process

Table C.5.: Accuracies of classification of cycles in different stages of aging: after 4000
cycles, after 7000 cycles, after 10,000 cycles. Sample length is two seconds.
Vibrations taken from the sensors on the swivel joint on the west side.

Sensor Angle Range 6 PCs 8 PCs 10 PCs 12 PCs 14 PCs 16 PCs 18 PCs

3 (-21°)-(-14°) 97.7 98.9 100.0 100.0 100.0 100.0 100.0

3 (-14°)-(-3°) 100.0 100.0 100.0 100.0 100.0 100.0 100.0

3 (-1°)-11° 94.6 95.9 98.6 100.0 100.0 100.0 100.0

3 11°-20° 92.7 98.1 100.0 99.1 99.1 99.1 99.1

3 20°-32° 91.8 94.6 94.6 95.7 96.2 97.8 97.3

3 35°-79° 95.0 95.9 96.5 97.0 98.4 98.7 98.7

3 79°-131° 68.0 71.6 74.6 83.3 88.8 89.3 89.5

3 133°-187° 82.4 88.0 87.7 89.5 89.8 91.6 91.8

3 185°-179° 97.2 98.6 97.2 97.2 98.6 98.6 98.6

3 170°-155° 97.9 98.4 98.4 100.0 100.0 99.5 99.5

3 155°-135° 96.8 98.6 98.2 99.5 99.1 99.1 99.1

3 135°-115° 98.0 99.0 98.7 99.3 99.3 99.7 99.7

3 115°-105° 100.0 100.0 100.0 100.0 100.0 100.0 100.0

3 105°-79° 96.7 96.9 96.3 97.1 96.0 95.6 95.4

3 76°-47° 95.2 93.8 94.5 94.9 95.2 95.9 95.9

3 47°-36° 97.0 96.0 96.5 97.0 98.0 98.0 98.0

3 34°-14° 97.1 97.1 96.9 97.7 98.6 97.7 97.7

3 14°-0° 85.1 87.8 92.4 93.5 96.9 97.0 97.0

3 0°-(-23.5°) 77.7 83.2 86.4 89.0 89.4 88.3 89.2

4 (-21°)-(-14°) 90.9 95.5 95.5 97.7 97.7 97.7 97.7

4 (-14°)-(-3°) 97.0 97.0 99.2 98.5 99.2 99.2 99.2

4 (-1°)-11° 92.6 96.6 95.3 95.3 94.6 95.3 95.3

4 11°-20° 75.3 79.0 85.4 84.4 84.5 82.6 82.6

4 20°-32° 85.3 90.2 91.8 94.0 95.1 95.1 95.1

4 35°-79° 83.1 92.5 95.6 96.7 96.9 97.0 96.9

4 79°-131° 66.4 69.0 72.6 78.7 79.4 81.9 81.7

4 133°-187° 78.7 81.6 84.3 83.9 84.8 86.6 86.7

4 185°-179° 88.9 90.3 90.3 91.7 90.3 90.3 90.3

4 170°-155° 100.0 100.0 100.0 100.0 99.5 99.5 99.5

4 155°-135° 97.8 97.7 98.2 99.1 99.1 99.5 99.5

4 135°-115° 96.4 99.0 98.7 98.4 99.3 99.3 99.3

4 115°-105° 99.4 100.0 99.4 100.0 100.0 99.4 99.4

4 105°-79° 99.8 99.8 99.8 99.8 99.8 99.8 99.8

4 76°-47° 96.3 95.4 96.6 96.1 97.5 97.5 97.5

4 47°-36° 98.5 99.5 100.0 100.0 100.0 100.0 100.0

4 34°-14° 93.7 93.7 94.0 93.5 94.9 96.6 95.7

4 14°-0° 88.2 89.7 88.5 92.4 92.0 94.3 94.3

4 0°-(-23.5°) 81.8 82.5 84.6 85.8 85.1 85.7 84.8
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