
Machine Learning Applications in Secure Software Engineering

Design

•Software Architecture
Reconstruction

Implementation

•Clone Bug Detection

•Vulnerability Detection

•Software Quality Model

Operation

• Integrated Modular
Avionics Monitoring

• Infrastructure Health
Monitoring

Vulnerability Detection

With Control Flow Graphs + GCN

• A control flow graph (CFG) represents all possible execution
orders of uninterruptible code blocks.

• Suitable for modeling certain vulnerabilities:
• Insufficient control flow management,
• business logic errors, and
• behavioral problems.

• A graph convolutional network
(GCN) can process CFGs directly.

• Can distinguish non-vulnerable and
three classes of vulnerabilities @87.5% accuracy.

Alternatives to and Challenges of ML in SSE

Challenges
• Machine learning tools and models are not constructed with

software engineering data types in mind:
• Source code, binaries, process artifacts (issues, commits…)
• Documentation

• Benchmarks are scarce and are often built in ways that
go against ML best practices. We frequently observe:
• Label inaccuracy, data leakage
• Inappropriate measures, sampling bias

• Security-relevant tools are typically applied in the context of a
risk management framework. ML-based solutions carry novel
hard to calculate risks which reduces acceptance.

Alternatives
• Static and dynamic analysis security testing based on rules or

„fuzzing“.
• Security by design: careful planning and security

consideration during design can alleviate the need for later
security testing efforts somewhat.

Integrated Modular Avionics

Aerospace application require considerable verification efforts for
safety reasons. Ideally, safety-crititcal programs are verified and
proven to perform as intended at design time. This is not always
possible for sufficiently complex code. Hence, runtime
verification is an accepted alternative. However, verifying formal
specification satisfaction in real-time is resource-intensive and
might still not cover rich applications with AI-based decision
making or computer vision components.

Because it is not always possible to specific operating conditions
formally and in a measurable way, we propose a runtime
monitoring approach based on anomaly detection and a
human-in-the-loop.

We apply this approach in the RESILIENZ project where we help
develop an integrated modular avionics demonstrator. Our
health monitor offers a continuous estimate of the expected
performance and quality of software components.

Infrastructure Health Monitoring

Security incidents are increasing over time, which requires
developing innovative protection methods. We are using ML
techniques to build intrusion detection systems able to identify
intrusions (cyberattacks) that a conventional protection system
(e.g. firewall) would have difficulties identifying.
The trained model identifies signatures of previously classified
malicious activities and also detects new abnormal traffic that
may be an indication of criminal activities (unknown attack).
Input data:
• Network-based and host-based log files are gathered and

analyzed to build a training dataset.
Challenges:
• Building models with high detection performance and minimal

false alarm rates.
• Effective identification of zero-day attacks.

B.-E. Bouhlal, B. Gruner, T. Sonnekalb, C.-A. Brust | Secure Software Engineering Group „SST“ | DLR Institute of Data Science

s.DLR.de/sse @DLRdatascience

With Assembly Language and Transformers

With Semantic Knowledge Integration

• Classification tasks typically consider classes mutually exclusive
and don‘t consider any relations between them.

• Some classes are more similar than others.

• There is a hierarchy of vulnerability types in the common
weakness enumeration (CWE).

• Knowledge integration of the
hierarchy into a model can
improve results.

• Model does not have to learn
relations from data.

• Heavily relies on correctness.

• Augmented assembly language is a
rich text representation of programs.

• We use large language models to
detect 91 types of vulnerabilities in the
Juliet benchmarkt suite.

• CodeBERT+AAL: 96.9% accuracy.

Tao Wen et al., ASVC: An Automatic Security […], J. Commun., 2015.

Clone Bug Detection

Imagine copying a piece of code from StackOverflow that initially does its job, but only later turns out to contain an error. In the meantime,
however, the code snippet has been used in several places in the project. The task of clone bug detection is to find the same bugs across
the entire software project. Often these bugs are semantic code clones, i.e. code snippets that have the same function but differ greatly
in their notation.
We frame clone bug detection as a binary classification task. For this purpose, we use the Juliet Test Suite dataset, which we have prepared
to contain code pairs that are both clones and bugs or vulnerabilities. As a benchmark, we compare ourselves to classical codeclone
detection methods as well as vulnerability detection methods.

Analyzed programming languages: C, Java

Challenges:
- find a good representation for smenatic clones
- expand the task from classification to information retrieval

Architectures:
- Graph Convolutional Networks
- Transformer Networks

CodeBERT, GraphCodeBERT, CodeT5, ...

Software Quality Model

Code metrics can be used to give developers feedback on code
that has already been written and to point out areas in need of
improvement. A combination of code metrics can be summarized
as a model to draw conclusions about the security and software
quality of a project.
The aim of this project is to find out the aspects that make up
software quality and to identify the appropriate metrics to
calculate a general quality score that can be integrated into our
developer dashboard.

Software Architecture Reconstruction

Many security-related vulnerabilities arise already during the
software architecture and design stage, even before the
implementation phase begins. Automated architectural threat
modeling makes it possible to identify, assess, prioritize, and
mitigate threats. Due to agile development and changing
requirements, the software architecture changes constantly, and
requires regular threat model updates. Architectural reconstruction
can generate an abstract representation of the source code as
input for threat modeling. It is crucial to utilize the source code to
assess the actual risks because there are often discrepancies
between the actual and planned architectures.

In architecture reconstruction, the data flow diagram (DFD) is
often laboriously created manually or semi-automatically. Some
promising approaches attempt to create the DFD using machine
learning. The challenge is that there are no benchmark datasets to
train or evaluate the methods. Due to the lack of data,
unsupervised clustering methods that group source code elements
based on similarities are mainly applied. An open challenge is to
transform the resulting output into a complete DFD that can be
used as input for threat modeling. This requires mapping the
detected clusters to a component type in the DFD (e.g. database)
and adding elements, such as trust boundaries.

Security is important throughout the development lifecycle – how can ML help?

