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▪ Airborne condition monitoring of solar collector fields

▪ Data driven flux density prediction 

▪ Dispatch optimization of power production considering weather forecast 
uncertainties

4. Conclusions
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CHARATERISTICS OF CSP 



In a nutshell: How does a solar thermal power plant work?

▪ ... a linear receiver
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▪ ... a central receiver
▪ ver

Special mirrors focus direct sunlight and reflect it onto...



CSP best suitable in areas with high direct normal radiation 
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In a nutshell: From high temperatures to electric current
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Thermal Storage vs.  Electric Storage

CSP with thermal storage and fossil back provides reliable dispatchable power 

at no additional cost

2000 h

+2000 h

 >95 %

 = 75 %

200 h

Firm 

capacity
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CSP / PV complement each other -
Security of supply around the clock cheaper than with oil, gas, and coal

▪CSP power plants with storage deliver 
cheaper power than CSP power plants 
without storage 

▪For PV systems, a system without 
storage always has the lowest 
electricity costs.

▪Hybrid systems (CSP + PV) offer the 
lowest cost of electricity when electricity 
is also needed at night
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Market potential of CSP technologies for industrial process heat 

▪ Mature technology with more than 

800 MW installed worldwide

▪ Temperature range up to 400 °C 

fully commercial

▪ Round-the-clock operation through 

integrated thermal energy storage

▪ Low cost compared to fossil fuels 

▪ Growing number of European 

companies committed to rapid 

deployment
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Energy yield of solar collectors in Germany
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Advantages of concentrating collectors

▪ More yield from approx. 80 °C collector outlet temperature

▪ Reaches the desired storage temperature at any time of the year

▪ Operation also of heat networks with 130 °C flow temperature

80 °C

Payback time < 3 years 

at current gas price of 

140 €/MWh
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STATUS AND PERSPECTIVES



Current Market Overview CSP: 6.2 GW operational around the world
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https://www.solarpaces.org/csp-technologies/csp-projects-around-the-world



Strong cost degression in CSP at relatively low total deployment

Source: IRENA, RENEWABLE POWER GENERATION COSTS IN 2019, Figure 1.11 The global weighted-average LCOE and Auction/PPA price learning curve trends for solar PV, CSP,
onshore and offshore wind, 2010 – 2021/23

PV/CSP Chile 

(2021bid)

PV/CSP Marokko (2020 bid)
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Possible CSP growth scenarios of IEA 2020-2040
(in conjunction with growing capacities of PV and Wind)

Capacity (GW)        Electricity Generation (TWh)

STEPS: Stated Policies; SDS: Sustainable Development (<1,5 °C)
Source Data from IEA-WEO 2020, Table A.3

15 - 25 % annual growth rate estimated 
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40 x 

10 x 



Cost reduction scenario of DOE 

Source: DoE
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ADVANCED METHODS TO OPERATE A CSP PLANT 
EFFICIENTLY AND AUTONOMOUSLY



Autonomous CSP Plant Control based on Artificial 
Intelligence
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• Improved energy yield

• Reduced OPEX

• Avoidance of harsh

working conditions
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AIRBORNE CONDITION MONITORING OF SOLAR 
FIELDS



Deviations of the ideal shape of curved mirrors for CSP 

applications can have a significant impact on the optical 

efficiency and thus the performance of the power plant. 

Critical  measure  is slope deviation, not shape deviation:

-> slope needs to be measured accurately,

shape is only secondary

Introduction: Shape and Slope Deviations
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TARMES (Trough Absorber Reflection Measurement System):
Basic idea and set-up of measurement system
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Measurement:
Turning of collector with camera at close distance (~17 m)
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Evaluation
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• Correction of 

lens 

distortion

• Image 

rectification

• Image 

treatment

• Edge 

detection

• Input of 

geometrical 

set-up

• Calculation 

of slope 

errors



Example       Parabolic Trough Shape Accuracy
QFly Data Acquisition
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Example       Parabolic Trough Shape Accuracy
QFly Results: Solar Field
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needs

further

investigation

Slope Deviation SDx,eff for the whole collector (SCA) in mrad
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Example       Parabolic Trough Torsion/Tracking
QFly Results: Collector (SCA)
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Example       Parabolic Trough HCE Quality Screening

▪ Measurement of glass envelope temperature by IR camera

▪ Measurement accuracy ~2 K
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Raw-data: Non adjusted emittance

PROMETEO, PSA

2



Example       Parabolic Trough HCE Quality Screening
QFly Results: Collector (SCA)

▪ Measurement of glass envelope temperature by IR camera

▪ Measurement accuracy ~2 K
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Glass envelope temperature in °C

• Automatic location of 

receivers in solar field 

and reporting

• Automatic evaluation for 

glass temperature 

• Also applicable to other 

piping
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Example      Soiling Maps 
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Soiled regions are brighter
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Creating soiling maps
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DATA DRIVEN FLUX DENSITY PREDICTION



Motivation - flux density distribution 

▪ The flux density distribution on the 

receiver is the power distribution 

caused by the concentration of the 

solar radiation

▪ This flux density should maintain 

requirements for materials and 

homogeneity
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Therefore a more precise knowledge of the flux density allows 

▪ a more efficient control 

▪ longer durability of the components

Flux density distribution



Flux spot of a single heliostat

▪ The flux density consists of the 

superposition of the focal spots of the 

individual heliostats of the field

▪ The focal spots can have different sizes 

and shapes and vary with the position of 

the sun 

➢We want to predict the focal spots of the 

individual heliostats at any sun position
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Focal spots of individual heliostats

Flux density distribution

…



State of the art: Stripe deflectrometry
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Sun position Ԧ𝑠

Predictions

calculate surface deformations

Use surface within a raytracer to 

get flux predictions

Pictures of heliostat from stripe 

deflectrometry measurement

[Automated high resolution measurement of heliostat slope errors, Ulmer et al.]



Sun position Ԧ𝑠

Idea: Use existing data to improve flux predictions

Measured data from target of

single heliostats during calibration

process

Use data to train a heliostat model

Use trained model to predict any

future flux density distribution

Predictions

heliostat model

Measured train data: Flux 𝑿(Ԧ𝑠)
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Train data

ℎ1

ℎ2

ℎ𝑖

…

Physical vs. data driven heliostat model
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Physical heliostat models

• Size

• Position

• Surface deformations

• Canting 

• …

heliostat space flux space

parameter 

fitting

simulation

a physical heliostat model can 

be fitted to the data and then 

used to calculate future fluxes Predictions

ℎ1

ℎ2

ℎ𝑖

…

Different heliostats



Train data

ℎ1

ℎ2

ℎ𝑖

…

Physical vs. data driven heliostat model
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heliostat space flux space

parameter 

fitting

simulation

Non-unique mapping, underdetermination

Model assumptions/simplifications

Information level

Predictions

ℎ1

ℎ2
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…

Physical heliostat models

• Size

• Position

• Surface deformations

• Canting 

• …



Latent heliostat models

• Fully learned from data

• No physical description

• Unique for each heliostat

Train data

ℎ1

ℎ2

ℎ𝑖

…

Predictions

ℎ1

ℎ2

ℎ𝑖

…

Physical vs. data driven heliostat model
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heliostat space latent space
flux space

parameter 

fitting

simulation

𝑮

𝑮−𝟏

Mapping function G

Physical heliostat models

• Size

• Position

• Surface deformations

• Canting 

• …



Train data

ℎ1

ℎ2

ℎ𝑖

…

Predictions

ℎ1

ℎ2

ℎ𝑖

…

Physical vs. data driven heliostat model
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latent space• Instead of a physical model a 

unique abstract latent model for 

each heliostat is learned

• without the physical regularization, 

there is less information lost when 

mapping to the heliostat model

• The mapping function G is also 

learned from the data

• Because both G and the latent 

models are learned form data, we 

are able to find a more suitable 

representation for the flux space

flux space

Latent heliostat models

• Fully learned from data

• No physical description

• Unique for each heliostat

𝑮

𝑮−𝟏



Data driven heliostat model and generator
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Flux 𝑿

Generative neural network 𝐺
Generator is learned with data of all 

heliostats

Sun position

is the condition to predict the flux

for different points in time

Latent heliostat

vectors 𝐺

Ԧ𝑠

෨ℎ1

…

𝑿 = G(Ԧ𝑠, ෨ℎ)

෨ℎ𝑖
෨ℎ = 𝐺−1(Ԧ𝑠, 𝑿)

Train data

ℎ2

ℎ𝑖

…

ℎ1One vector is learned

per heliostat

▪ Generator learns generalizing flux prediciton for all heliostats

➢ Heliostats profit from each others data

➢ Heliostat specific features get extractet to latent vector

Predictions

ℎ1

ℎ2

ℎ𝑖

…



Results:
Predictions for new unseen sun positions for different heliostats

Model is able to 

▪ extract heliostat specific features to latent vector

▪ predict flux for unseen future sun positions

40



Accuracy of flux predictions as a function of distance

▪ Further distances lead to less 

information about the heliostat in the 

flux density

➢ the model is able to correctly predict the 

flux density for these heliostats

➢Error ~5 % 

➢The error becomes smaller even for 

increasing distance

➢which is due to the fact that those focal 

spots are easier to predict and better 

conditioned for pixelwise loss
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Predictions of heliostat vector trained with 1 picture

▪ Even from 1 training picture the model is 

able to predict other focal spots with 

different shapes

➢Generator is able to transfer knowledge 

between heliostats
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Training picture

Predictions
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DISPATCH OPTIMIZATION OF POWER PRODUCTION 
CONSIDERING WEATHER FORECAST UNCERTAINTIES



How to operate a CSP power plant? 
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Goal : Include weather forecast uncertainty to find best schedule 
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CSP Probabilistic Scheduling
The Dispatch Optimizer Tool
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Uncertainty

Post-processing
Final Production 

Schedule

Forecast 

accuracy

Plant 
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Machine learning uncertainty post-processing

DLR.de  •  Folie 48

Why?

• Use of one or more possible schedule forecasts

• Use of historical data

• Use of several parameters related to the uncertainties

How?

• Fuzzy Decision Tree approach

Results?

• Easy-to-understand

• Fast

• Improves the schedule quality?



Conservative

Strategy

Probabilistic

Forecast

Price Input

Output

CSP Probabilistic Scheduling
Simulation Results
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Change in 

Scheduling Strategy

Conservative Audacious

DLR.de  •  Chart 50



Audacious

Strategy

Probabilistic

Forecast

Price Input

Output

CSP Probabilistic Scheduling
Simulation Results
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CSP Probabilistic Scheduling
Value of Forecast and Uncertainty Treatment
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-0.41%
+7.13% +5.12%

Probabilistic Forecast

+16%
Comparison

Value



Summary 

▪ CSP is a mature technology that complements PV electricity to enable  reliable 
electricity supply around the clock.

▪ process heat supply @T>100°C. 

▪ Cost reduction until 2030

▪ < 5 $cents/kWh for dispatchable electricity 

▪ < 3 $cents/kWh for 24/7 PV/CSP hybrids 

▪ < 1$Cent/kWh for process heat 

▪ Smart CSP is one key for cost reduction due to

▪ performance increase 

▪ lifetime increase

▪ maintenance cost reduction 

▪ DLR is operating a full scale CSP power plant in Germany to develop, implement 
and prove the smart technology approaches in real scale to transfer it to the market.
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Spin-off History
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Spin-off Business Case Impact

2007 Optimizing Solar Field Performance and maximizing 

plant lifetime

500 successful projects, resulting 

in a contribution to more than 90% 

of all installed CSP solar fields 

worldwide 

2011 Solar Water Treatment Plants

Demonstrated successfully at DLR 

Lampoldshausen, project for ESA 

in Kourou under preparation

2016
Software, network and hardware: »Custom-designed 

mechatronic systems for sustainable technologies« 
New heliostat design and control

2017
Commercialization of Centrec® particle receiver 

technology developed by DLR

24/7 Low cost electricity and 

process heat based on high 

temperature technology

2019
We automate building analyses through a 

measurement that takes only 2seconds per room

Energy efficient refurbishment of 

buildings worldwide

2020
Fully automated condition monitoring of CSP and PV 

plants - Get actionable analytics for your solar field 

based on a digital twin

Improve performance and increase 

profitability of solar power plants

2022
Digital materials research and development for fast 

& sustainable materials development

Speed-up the search for new 

materials, especially for chemical 

industry 
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