SMART CSP

HOW ARTIFICIAL INTELLIGENCE CAN
SUPPORT CONCENTRATING SOLAR

TECHNOLOGIES
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Outline #
DLR

1. Characteristics of CSP

2. Status and Perspectives

3. Advanced methods to operate a CSP plant efficiently and autonomously
= Airborne condition monitoring of solar collector fields
= Data driven flux density prediction

= Dispatch optimization of power production considering weather forecast
uncertainties

4. Conclusions
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In a nutshell: How does a solar thermal power plant work? A#y
DLR

Special mirrors focus direct sunlight and reflect it onto...

= .. alinear receiver = .. acentral receiver
PARABOLIC SOLAR TOWER
TROUGH " .
enftral
receiver

& Heliostat

Reflector

Absorber e AA [.]L.j "

Solar field pipin
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CSP best suitable in areas with high direct normal radiation 4#7

DLR
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In a nutshell: From high temperatures to electric current

¥

Heliostats

Thermal storage
cold tank

Solar tower with receiver

Thermal storage
hot tank

B

Steam generator

Hot salt

Cooled-down
Salt
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Turbine

Power generator

Water
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Thermal Storage vs. Electric Storage ‘#7
DLR

CSP with thermal storage and fossil back provides reliable dispatchable power
at no additional cost




CSP / PV complement each other - A#y
DLR

Security of supply around the clock cheaper than with oil, gas, and coal

» CSP power plants with storage deliver
cheaper power than CSP power plants
without storage

» For PV systems, a system without
storage always has the lowest
electricity costs.

The storage is large
- enough to allow 24/7

Electricity cost per kWh

» Hybrid systems (CSP + PV) offer the
lowest cost of electricity when electricity
IS also needed at night

»
|

Storage capacity



Market potential of CSP technologies for industrial process heat #

Mature technology with more than
800 MW installed worldwide

Temperature range up to 400 °C
fully commercial

Round-the-clock operation through
Integrated thermal energy storage

Low cost compared to fossil fuels

Growing number of European
companies committed to rapid
deployment

DLR

W Indusiry

M Transport Low-temp heat
. . (below 150 °C)

B Residential Boiling, pasteurising,

sterilising, cleaning, drying,
washing, bleaching, steaming,
pickling, cooking.

B oOther

Medium-temp heat
(150 to 400 °C)

Distilling, nitrate melting,
dyeing, compression.

High-temp heat
(above 400 °C)

Material transformation
processes.

E] = Exajoule

‘ Total final energy consumption 2014 (EPP 2017)



Energy yield of solar collectors in Germany
DLR

COLLECTOR

80 °C
HIIT WATER
A solar thermal collsctor caplures solar radiation

gimr::ﬁ:ﬁiumiﬁa absorher, 10 heat a fluid in o , o 700 ! —e—Parabolic trough collector (PTC)
: —=—Flat plate collector (FPC)
COLLECTOR TYPES = 600 i —+—Vacuum tube with CPC
*
Stationary NE 500 |
Fixed tilt or seasonall = i
adjusted = |
£ 400 |
~ ]
 Flat plate collector » Vacuum tube collactor e |
« Vaeuum tube eolector with compound parabolic 2 300 :
4 concanirator (CPC) > |
Tracking ) = ! ;
Linear of tuo-axis 2 200 g Payback time < 3 years
* oo | at current gas price of
; 140 €/MWh
0 i
0 - 100 200 300 400 500

= Parabolic trough collector » Linaar Fresnal collector » Concentrating dish collector

Advantages of concentrating collectors
= More yield from approx. 80 °C collector outlet temperature

Mean operation temperature / °C

» Reaches the desired storage temperature at any time of the year
= QOperation also of heat networks with 130 °C flow temperature
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Current Market Overview CSP: 6.2 GW operational around the world

CANADA -1 MW

USA - 1740 MW

MEXICO - 14 MW

. P
.

=

WORLDWIDE - 10267 MW

~ 2592

CHILE - 1210 MW

‘I!o

1100

1437

EUROPE - 96 MW
14

SPAIN - 2304 MW 32‘
. % \.(
MENA - 1280 MW

50.310

910

MOROCCO - 1330 MW

ZAMBIA - 200 mMw
0

SOUTH AFRICA - 700 MW

200
500

Technology
Collaboration

Programme
by 10Q

http:/fwww.nrel gov/espfsolarpaces!

B OPERATIONAL = UNDER CONSTRUCTION

CHINA - 1034 MW
514 . 520

THAILAND -5 MWtﬂ

® A

INDIA - 200 MW

AUSTRALIA - 152,5 MW

2,5
.

/ SolarPACES

Solar Power & Chemical Energy Systems

¥ DEVELOPMENT  Last updated April 2021

https://www.solarpaces.org/csp-technologies/csp-projects-around-the-world



Strong cost degression in CSP at relatively low total deployment

2019 USD/kWh

0.500
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@® Concentrating solar power @ Offshore wind Onshore wind Solar photovoltaic

Source: IRENA, RENEWABLE POWER GENERATION COSTS IN 2019, Figure 1.11 The global weighted-average LCOE and Auction/PPA price learning curve trends for solar PV, CSP,
onshore and offshore wind, 2010 — 2021/23
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Possible CSP growth scenarios of IEA 2020-2040 4#7
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(in conjunction with growing capacities of PV and Wind)

15 - 25 % annual growth rate estimated

Capacity (GW) Electricity Generation (TWh)
300 900

. Szenario STEPS |—| Szenario STEPS

. Szenario SD5S . Szenario SD5S
250 750
200 / 600
150 450

40 x
100 300
10 x
50 150
o —mm 1 0 —mm —i 1
2019 2025 2030 2040 Jahr 2019 2025 2030 2040 Jahr

STEPS: Stated Policies; SDS: Sustainable Development (<1,5 °C)
Source Data from IEA-WEO 2020, Table A.3




Cost reduction scenario of DOE

10.3¢ 2.3¢

2017 Real LCOE (U.S. Cents/kWh)

9¢

¢

5¢

2017 Baseline Low Cost Solar
Field (350/m?)

and Site
Improvement

($10/m?)

*Assumes a gross to net conversion factor of 0.9

Low Cost Power High Efficiency
Block and BOP Power Cycle
($900/kWe) (50% net)*

Low Cost TES
($15/kWht),
Receiver
($120/kWt),
0&M ($40/kWe-yr)

SunShot
2030
CSP Goal

Source: DoE
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Autonomous CSP Plant Control based on Artificial

Intelligence

Heliostat
calibration
Measuring
AR drone
o \/ —
Calibration
equipment
Radiation flux
measuring device
' Field
closed loop
Energy Heliostat
independence closed loop
[ B |

Drive &
sensors

Control Box incl.
Control board

Heliostat

Heliostat
measurment

e

Nowcasting Error search

% (A

Automatic
0&M
Nowcasting Real-time
i simulation ,
equipment p

Field
distribiution |:]

/ =

Control center

System
control

Online

?$ ? monitorng
[eq

Control room

]

ITroom

III

Receiver

DLR

* Improved energy vyield
* Reduced OPEX

« Avoidance of harsh
Recelver working conditions

control

§

Integration of
power plant data

7

Power block

TES i :

Storage control

@

Cabels







Introduction: Shape and Slope Deviations

DLR

Deviations of the ideal shape of curved mirrors for CSP
applications can have a significant impact on the optical
efficiency and thus the performance of the power plant.

Critical measure is slope deviation, not shape deviation:

e miime)
SN Iy

receiver

-> slope needs to be measured accurately,
shape is only secondary

i e neel
SIIrasy




TARMES (Trough Absorber Reflection Measurement System):
Basic idea and set-up of measurement system

camera

/
Aoy /
/
a

reflector

/
/ dahs
/

n

AX

i DLR



Measurement:
Turning of collector with camera at close distance (~17 m) DLR




Evaluation

lens
distortion

~ <Image

rectification

*Image
treatment

*Edge
detection

* Input of
geometrical
set-up

« Calculation
of slope
errors

—

S ——

DLR



Example @ Parabolic Trough Shape Accuracy A#y
QFly Data Acquisition DLR

A\

AR




Example @ Parabolic Trough Shape Accuracy
QFly Results: Solar Field

Additional Information on SCA

22

|

RMS_SDx 2.37
RMS_FDx 9.47
atrack_SurveyMinusLOC 5.05
dtrack_SurveyMinusTarget 6.83
dtrack_RMSWithinSCArel2Drive | 1.65

Directions: To here - From here

“llllliiﬁsl'llllli::

DLR
needs
further
investigation
a |
3 4 ; 6

RMS SDxeff [mrad]



Example @ Parabolic Trough Torsion/Tracking A#y
QFly Results: Collector (SCA) DLR

QFly

\L 1546 1556 1566 1576 1586 15€




Example @ Parabolic Trough HCE Quality Screening

= Measurement of glass envelope temperature by IR camera

= Measurement accuracy ~2 K e

R

"-" " o "L ¥

Raw-data: I\'f(‘f)n adjuéted emittance




Example & Parabolic Trough HCE Quality Screening A#y
QFly Results: Collector (SCA) DLR

= Measurement of glass envelope temperature by IR camera
Envelope Tube 110103-110104
* Measurement accuracy ~2 K

. . 0 5 10 1I5 2|0 2|5 30 35
* Automatic evaluation for Glass envelope temperature in °C
glass temperature
« Automatic location of
receivers in solar field
and reporting

 Also applicable to other
piping
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X
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Example@ Soiling Maps




Creating soiling maps

- g o4 ol 100
,l v - e O
B O . e
% o 80
‘@-L. 3 e
60
40
20

background
point absorber tube

background

diffuse light

reflection on mirror
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Motivation - flux density distribution

» The flux density distribution on the
receiver is the power distribution
caused by the concentration of the
solar radiation

Flux density distribution

» This flux density should maintain
requirements for materials and

homogeneity

Therefore a more precise knowledge of the flux density allows

= a more efficient control
» longer durability of the components




Flux spot of a single heliostat

* The flux density consists of the
superposition of the focal spots of the
Individual heliostats of the field

* The focal spots can have different sizes
and shapes and vary with the position of
the sun

»We want to predict the focal spots of the
iIndividual heliostats at any sun position

Focal spots of individual heliostats




State of the art: Stripe deflectrometry A#y
DLR

Pictures of heliostat from stripe
deflectrometry measurement

t//// . /}\‘; / :\\‘\\ .
B =4 calculate surface deformations
0\*:;;)\\;;\\: g {;f %

Use surface within a raytracer to
get flux predictions

Sun position §

[Automated high resolution measurement of heliostat slope errors, Ulmer et al.]



ldea: Use existing data to improve flux predictions

Measured train data: Flux X(s)

Measured data from target of
single heliostats during calibration
process

N

heliostat model Use data to train a heliostat model

Predictions \/

Use trained model to predict any
future flux density distribution

Sun position §




Physical vs. data driven heliostat model #
DLR

Different heliostats
heliostat space : flux space /

- Train data
] ] - parameter o' \
Physical heliostat models fitting ;h1\
| !
. Size | 10 0 0 0
» Position I L
+ Surface deformations : | | o o 0o o
« Canting | a physical heliostat model can
. | be fitted to the data and then
| used to calculate future fluxes Predictions
I
| hy
" ™ s e= simulation a0 O 0 0




Physical vs. data driven heliostat model #
DLR

heliostat space

| flux space
Train data
_ _ - parameter o
Physical heliostat models fitting h1
_ I
* Size Non-unique mapping, underdetermination g0 000
* Position |
» Surface deformations )
. Canting Information level 4o o oo
° < I
: Predictions
| hy
\\ - Model assumptions/simplifications e 0 0 0
O e U »~ simulation wh 0 0 0 0
I



Physical vs. data driven heliostat model #
DLR

heliostat space : latent space : flux space
I Train data
_ _ <« Parameter | °
Physical heliostat models fitting i h1
| Gl }—e
. Size | 1 N0 0 0 0
« Position | _ |
. Surfa-‘ce deformations : Latent heliostat models : Ae o 0o o
« Canting | |
. |  Fully learned from data |
I * No physical description I Predictions
: « Unique for each heliostat : "
1
R | NI © © 0 ©
R o000

> Ny

= Simulation

I Mapping function G



Physical vs. data driven heliostat model #
DLR

Instead of a physical model a latent space flux space

I

unique abstract latent model for | :
I Train data
I

e 8 @ o

A0 0 0 0

each heliostat is learned

there is less information lost when
mapping to the heliostat model

without the physical regularization, 1 Gl \—e

Latent heliostat models nAe 0O 0 0O

The mapping function G is also
learned from the data

No physical description
Unique for each heliostat

Predictions

Because both G and the latent
models are learned form data, we I
are able to find a more suitable

representation for the flux space

I
I
I
I
Fully learned from data |
I
I
I

hq

PN © © 0 ©

0000

h;



Data driven heliostat model and generator #
DLR

Flux X
Train data
One vector is learned Generative neural network G hl
per heliostat Generator is learned with data of all _

heliostats 20 00 0

h;. ~ 5
1 f~l h = G_l(S,X)

l

. Mo o oo

G
‘ Predictions
X=GGh |

O © 0 0

Latent heliostat
vectors

»
>

Sun position
is the condition to predict the flux Hﬁ

for different points in time

0000

h;

s
» (Generator learns generalizing flux prediciton for all heliostats

» Heliostats profit from each others data
» Heliostat specific features get extractet to latent vector



Results:
Predictions for new unseen sun positions for different heliostats DLR

Model is able to

» extract heliostat specific features to latent vector
= predict flux for unseen future sun positions

ho hl hz h3 h4 h5 h6

0o 0 o O O O 0O
O 00 00 OO0 OO

Truth

Pred

Predicted flux by model (lower row) compared to groundtruth (upper row) for different heliostats h;



Accuracy of flux predictions as a function of distance

E 35
S
AV
< 307
» Further distances lead to less E
information about the heliostat in the 5 |
flux density 5 20- E
»the model is able to correctly predictthe 3 - o :
flux density for these heliostats X SRRk
[ | o o ; ::é;;.'. [
> Error ~5 % g 10 : ke
>_The error be_comes smaller even for <0 100 100 00 eo 200 350
Increasing distance / | | \ N G
> which is due to the fact that those focal “** g2 . Sl . i e

spots are easier to predict and better
conditioned for pixelwise loss

00000

Truth

00000

Pred



Predictions of heliostat vector trained with 1 picture

Training picture

= Even from 1 training picture the model is
able to predict other focal spots with
different shapes

» Generator is able to transfer knowledge

between heliostats

Predictions

Truth

Pred

v elevation in degree

i DLR

& Train
& Bs

—40

=20 0 20
azimuth in degree

40

oo OO0 0a0C

O 0O 000000 0 0O
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- DISPATCH OPTIMIZATION OF POWER PRODUCTION
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How to operate a CSP power plant? A#y
DLR

Renewable Energies:
High penetration in electricity grids

~

FPower block trajectory

B ~ Dispatch
@ Weather Forecast Optimi zer W

Production
Schedule A Storage trajectory

$ Electricity Price 4 J—_\_\

r g

algorithm that derives a plant operation schedule for the upcoming 48 hours

Goal : Include weather forecast uncertainty to find best schedule



The Dispatch Optimizer Tool

CSP Probabilistic Scheduling 4#7
DLR

Plant Model
Heuristic
Optimization
/ A X
° /[ | \
G / \
e [\
5 7
E / \ W
o

Time




CSP Probabilistic Scheduling
The Dispatch Optimizer Tool

2 Forecast

Plan-t Market
operat|on .
penalties
........ strategy
Uncertainty Final Production
Post-processing Schedule
/
/

/

Power to Grid

Pow erﬁ

A

Time

Time



Machine learning uncertainty post-processing

Why?
« Use of one or more possible schedule forecasts
« Use of historical data
« Use of several parameters related to the uncertainties

i DLR

How?
* Fuzzy Decision Tree approach
Results?
« Easy-to-understand L Aajacted Schodute
Perfect Scheduled
 Fast 140 : . . |

120
100

« Improves the schedule quality?

N I I I |

16:00

00:00



CSP Probabilistic Scheduling
Simulation Results

Financial Profile

T

30-Nov-2016

Solar Resource Forecast

01-Dec-2016

-50
29-Mov-2016

Electrical Power [MW] Thermal Power [MW] Market Price [€/MWh]
2
=
[

| = = = Mean Forecast
Min-Max Forecast
Observed
! N ]
/ -
| -~ -
30-Nov-2016 01-Dec-2016
Conservative Case: Scheduled and Delivered Electrical Output Power
|
- —
1 — Pgr'iﬂ Dl erad
30-Nov-2016 = = = Py Scheduled 01-Dec-2016
Day of the Year Possible Rangeof Py,

Price Inpu

' $

Probabilistic N e
Forecast

Conservative
Strategy
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Change in
Scheduling Strategy

- JEN $Ps

Conservative Audacious




CSP Probabilistic Scheduling ‘#7
Simulation Results DLR

Financial Profile
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CSP Probabilistic Scheduling
Value of Forecast and Uncertainty Treatment

Comparison
Value +16%

+7.13% ' C 1004

&
o
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o
=)
=)
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Annual Income [M€]
i N
o
o

0.00
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Summary ‘#7
DLR

= CSP is a mature technology that complements PV electricity to enable reliable
electricity supply around the clock.

= process heat supply @T>100°C.

= Cost reduction until 2030
» <5 $cents/kWh for dispatchable electricity
= < 3 $cents/kWh for 24/7 PV/CSP hybrids
» < 1$Cent/kWh for process heat

= Smart CSP is one key for cost reduction due to
» performance increase
» lifetime increase
" maintenance cost reduction

* DLR is operating a full scale CSP power plant in Germany to develop, implement
and prove the smart technology approaches in real scale to transfer it to the market.



Spin-off History

2007 cspservices

2011 & SOWARLA’

2016 HELIOKON

20 1 7 @ HEAT
=

2019 tumoview

O
2020 | 29

7

Volateq

2022 EXoMatter

Optimizing Solar Field Performance and maximizing

plant lifetime

Solar Water Treatment Plants

Software, network and hardware: »Custom-designed
mechatronic systems for sustainable technologies«

Commercialization of Centrec® particle receiver

technology developed by DLR

We automate building analyses through a
measurement that takes only 2seconds per room

Fully automated condition monitoring of CSP and PV
plants - Get actionable analytics for your solar field

based on a digital twin

Digital materials research and development for fast

& sustainable materials development

500 successful projects, resulting
in a contribution to more than 90%
of all installed CSP solar fields
worldwide

Demonstrated successfully at DLR
Lampoldshausen, project for ESA
in Kourou under preparation

New heliostat design and control

24/7 Low cost electricity and
process heat based on high
temperature technology

Energy efficient refurbishment of
buildings worldwide

Improve performance and increase
profitability of solar power plants

Speed-up the search for new
materials, especially for chemical
industry

DLR
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