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Abstract

The main restricting factor of airport capacity are aircraft separations. These separations
exist to avoid potentially hazardous wake vortex encounters (WVEs). Especially during
the final approach, this hazard is of great concern since aircraft follow the same glide path.
The severity of wake vortex encounters depends on the generating and the encountering
aircraft, thus dynamic pairwise aircraft separations, which adapt depending on prevail-
ing weather conditions, are desired. Light Detection and Ranging (LiDAR) scans are
suggested for monitoring Wake Vortex Advisory Systems due to their fast-time strength
and location characterization of wake vortices. The first approaches to automating such
characterizations were made with multi-layer perceptrons (MLP) and convolutional neu-
ral networks (CNN). Those were shown to be sufficient for wake vortex characterization
but could not yet compete with traditional methods in terms of accuracy. For that rea-
son, this work proposes a machine-learning pipeline that uses bounding box predictions
by a YOLOv4 network to restrict the input to single vortices for the following CNN
to achieve higher accuracy. The LiDAR scans used for training contain radial velocity
measurements made at Vienna International Airport. After preprocessing and testing
feature engineering, those LiDAR scans are transformed into images as required input
for YOLOv4. Afterward, the bounding box predictions are used to cut out individual
vortices from the original scans. The individual vortices are then used to train a CNN to
enhance localization and the vortex strength estimation further. The evaluation shows
that a prediction pipeline is superior to a single CNN approach. The localization error
was decreased by more than 90% and the vortex strength estimation by up to 31% to a
localization error as low as 2.87 m and a vortex strength error as low as 20.88. Further-
more, the precision of detecting hazardous wake vortices was increased by 7.51% to gain
a precision of 96.11%. This pipeline can be executed while maintaining a sufficiently low
computation time.
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1 Introduction

1.1 Motivation

One of the most critical flight phases of an aircraft is its final approach. Close vicinity to
the ground can cause severe accidents when the aircraft is subject to unexpected, abrupt
disturbances. Wake vortices generated by previous aircraft hovering above the runway are
one type of disturbance which can cause this undesirable condition [1]. The possibility
of a wake vortex encounter (WVE) is given during any flight stage for an aircraft [2].
Nevertheless, the most problematic flight stage is during the approach and landing since
the proximity to the ground leaves little room for flight path corrections. A WVE can
induce a rolling moment onto the aircraft. The severity of impact and the resulting rolling
moment is influenced by factors such as through which part of the vortex the aircraft
flies. WVEs are not unusual nor unlikely, given that aircraft commonly follow similar
flight paths during approach - unlike for take-offs. In the worst case, an encounter can
lead to a severe accident of the aircraft. In January 2017 a CL604 lost approximately 9
000 ft of altitude after encountering wake vortices of an A380 that passed overhead in
the opposite direction [3].

The severity of a WVE depends not only on the encountering aircraft but also on
the aircraft generating the vortices. When the Boeing 747 came into service in the
1970s, serious problems with wake vortices were first considered [4]. To mitigate the
possibilities of a WVE;, the International Civil Aviation Organization (ICAO) introduced
landing separations that take wake vortices into account [4]. Three aircraft categories
were introduced, light, medium, and heavy, where the following and leading aircraft pair
categories determine the separation. Studies have shown that these landing separations
are too conservative for a variety of meteorological situations [4] and leads to a capacity
bottleneck and congestion at airports. Although the traffic volume has declined due to
the COVID-19 pandemic, it is expected to recover until 2025, or latest, 2027 [5, 6]. With
a five-year delay, we can expect roughly 1.5 million unaccommodated flights by 2045,
according to Eurocontrol predictions from 2018 [7].

To address this problem, several ideas exist to increase airport capacity. The most
forward solution would be to increase the number of runways. With new runways, sub-
stantial environmental issues arise. Thus an approach to increase the capacity is to reduce
the aircraft separation standards and adjust them to different scenarios, while maintaining
or even increasing safety standards. A recategorization program (RECAT) for that need
was introduced by the Federal Aviation Administration (FAA) that aims to refine aircraft
categorization by including more involved wake-related parameters [8]. The RECAT pro-
gram follows three phases, where the ultimate goal is to achieve dynamic pairwise aircraft
separations [8]. In the first phase, six new aircraft categories are introduced, taking into
account the strength of the generated wake vortices and the vulnerability of the follow-
ing aircraft besides only using the aircraft’s weight. The second phase introduces static
pairwise aircraft separations, and phase three aims at turning these separations dynamic,
adjusting the separations to prevailing meteorological conditions [8]. An airport relies
on real-time knowledge of the position and strength of wake vortices to achieve dynamic



pairwise separations. For that reason, a Wake Vortex Monitoring System (WVMS) is
desirable.

Furthermore, the development of devices to reduce the strength and durability of wake
vortices could lead to a decrease in aircraft separation. To evaluate the effectiveness
of such devices, measurement campaigns are conducted. For example, a measurement
campaign at Vienna International Airport was conducted to measure the success of so-
called plate lines [9]. With current methods, the evaluation of large data sets takes a long
time. Thus, the need for automatic fast-time evaluation methods is given.

Implementing a fast-time automatic wake vortex parameter characterization algo-
rithm could evaluate these wake vortex measurements and be included in WVMSs. In
recent years the focus shifted from traditional algorithms to machine learning approaches
to achieve fast-time computations. A first approach on the characterization of wake
vortex parameters was done in [10].

1.2 Goal

The goal of this thesis is to make use of the first approach of wake vortex parameter char-
acterization with a convolutional neural network (CNN) from [10] and combine this idea
with new approaches to wake vortex detection using artificial neural networks (ANNs)
for object detection. We aim to develop a prediction pipeline that first detects single
vortices and then characterizes these individually. A sketch of the prediction pipeline can
be found in Figure 1. The object detection and characterization accuracy are studied
individually and, in the end, compared to the CNN only approach of [10].

Single Vortex

Vortex characterization ‘

m Vortex detection

Single Vortex

Figure 1: Sketch of the prediction pipeline.

Vortex characterization ‘

1.3 Overview

In chapter 2, a brief introduction to the fluid dynamics, basic wake vortex principles and
measurement techniques of wake vortices is given.

A literature review in chapter 3 gives rise to the open research questions of this thesis
based on traditional wake vortex detection algorithms, and recent ANN approaches to
the problem.

After that, we continue with the essential machine learning tools necessary for this
thesis in chapter 4. An introduction to artificial neural networks (ANNs), particularly
convolutional neural networks (CNNs), is given. We describe the basic idea behind object
detection networks, and continue with the essential machine learning tools needed for the
work on this thesis in chapter 4.



In the following chapter 5, the data sets and the ANNs we work with are introduced.
The network architecture and essential components of YOLOv4 are explained. The same
goes for the CNN regression we use.

A detailed evaluation of the networks is given in chapter 6 for the YOLOv4 network
and in chapter 7 for the CNN regression. This evaluation contains tests on data prepro-
cessing mechanisms and hyperparameter tuning. The obtained networks are validated,
and the results are discussed. A comparison of the resulting prediction pipeline with
state-of-the-art approaches on wake vortex characterization is given in chapter 8.

In the final chapter 9, a conclusion of the results and answers to the research questions
are given. Furthermore, an outlook on future research is presented.



2 Wake Vortex Principles

One uses conservation laws to describe fluid flow with the help of a velocity field, such
as conservation of mass, momentum, and energy. In the most general case, considering
a viscous flow, the momentum equations are called Navier-Stokes (2.2) equation and for
an inviscid flow Euler equation [11, p.135]. The continuity and Navier-Stokes equations
read [12, p. 86 & 104]

dp
1oAY 1
P\ 5 TV VV) =Vt pf+ pAV + 5V (V- V). (2.2)

In equations (2.1) and (2.2), p describes the pressure, p the density, V the velocity, f body
forces and p the viscosity. To simplify those equations, we can use the assumption of
incompressible flow. With the assumption of an incompressible flow, meaning a constant
density, the conservation of mass or continuity equation (2.1) and Navier-Stokes eqution
(2.2) reduce to [12, p. 86 & 104]

V-V=0 (2.3)

oV
p (E +V. VV) = —Vp+ pf + pAV. (2.4)

Assuming incompressibility leading to equations (2.3) and (2.4) is sufficient for a flow
with speeds less than approximately 100 m/s at sea level [12, p. 86]. During aircraft
approach this requirement is met [13].

2.1 Basic Vortex

In fluid dynamics, four elementary flows are considered to be superimposed to form more
complex flows. Uniform, source, and doublet flow can be superimposed to obtain a non-
lifting flow. To get a flow with finite lift, the vortex flow has to be introduced [11, p. 262].
A potential vorter or vortex flow is a two-dimensional flow, thus can be described by V,
and V,, as velocity components. In a vortex flow, all streamlines are concentric about a
given point and constant along a given streamline. Hence, to describe the flow velocity,
a radial V, and a tangential Vj component are used. The radial velocity is V. = 0, and
the tangential velocity is given by Vp = C'/r with a constant C' [11, p. 262]. A potential
vortex with origin O is sketched in in Figure 2.

To understand the flow of a vortex and calculate the constant C', we take the circu-
lation I' around a given circular streamline C of radius r into account. The integral can
be evaluated as

r= 7{ V- ds = Vy(2mr). (2.5)
C
Hence the constant is C' = I'/27 and the tangential velocity Vyp = I'/(27r) [11, p. 263].

4



Figure 2: A sketch of a basic potential vortex flow around origin O.

With the help of Stoke’s theorem, we can rewrite the integral in (2.5) even further
[14] to get

F:j{CV-ds:/S(VxV)dS:/SawndS. (2.6)

The curl of the velocity is called vorticity w = V x V and is used in (2.6) to abbreviate
the equation even further.

2.2 Wake Vortex

To describe the flow around an airfoil, we introduce a line vortex, also called vortex
filament, based on the potential vortex. A line vortex can be seen as an extension of a
potential vortex perpendicular to its circulation plane. Helmholtz’s vortex theorems state
that the strength of a vortex filament is constant along its length, and it cannot end in
a fluid [15]. Those vortex filaments can be combined to form a vortex sheet describing
the airflow over an airfoil by combining with a uniform flow and replacing the airfoil’s
surface with a vortex sheet of variable strength v(s) [11, p. 328f]. The total circulation
strength T" of the vortex sheet replacing the airfoil can be calculated by adding up the
circulations of the single vortex filaments 7(s) according to (2.8). The Kutta-Joukowski
lift theorem (2.7) [11, p. 239] describes how the circulation around an aircraft’s wing
enables it to develop lift. This theorem states that the lift force per unit span L’ is
directly proportional to the circulation with flight speed V,, and air density pu..

L/ = IV pa, ,with (2.7)
I'= /yds (2.8)

So far, we only have considered infinite airfoils. In reality, the wings of an aircraft
are finite. The pressure difference between the lower pressure side and the upper suction
side leads to a fluid acceleration in a spanwise direction, which leads to vortex sheets
shedding off and rolling up [13]. The spanwise velocity difference at the top and bottom



of the airfoil leads to the roll-up process along the entire length of the wing. Those small
vortices roll up to eventually form a counter-rotating vortex pair [15]. This detachment of
the vortex sheet and bending along the free stream direction leads to a so-called horseshoe
vortex. To model the flow around a finite airfoil, multiple horseshoe vortices are used, as
depicted in Figure 3. As Helmoltz’s vortex theorem states that the strength of a vortex

[_wmg T T,

-
1

circulation r !

distribution | T, (i:

ol ixg
1 |]
I |
l I tp Vortex
=
L3

Figure 3: Sketch of a finite wing with circulation distribution and vortex sheet forming
a horseshoe vortex (taken from [16, p. 646]).

1

filament is constant, the vortex circulation strength of the trailing vortices is the same as
the initial vortex circulation I'y [15]. If we consider an individual aircraft with maximum
landing weight M, wing span B and final approach speed V., the circulation of the
generated wake vortices can be calculated by

- [;\gﬁ, with by = %B, (2.9)
where p., is the air density for the standard atmosphere at sea level and g is the gravi-
tational constant [17]. The initial vortex spacing by, is a standard referencing length in
the research on wake vortices. The equation for by in (2.9) assumes an elliptically loaded
wing [17]. Due to significant regions of concentrated streamwise and cross-stream per-
turbations on a wing, e.g., control surfaces, flaps, spoilers, landing gear, more than one
vortex pair can develop [1]. We consider the combination of wing and flap tip vortices as
primary wake vortices, resulting from fully extracted flaps during approach and landing
[18].

The wake vortex evolution can be split into four phases [13]. The shedding of the
vortex sheet and roll up of the primary vortex structures occurs in the near field. In the
extended near field, the flap-tip vortex pair and wing-tip vortex pair merge to form two
counter-rotating wake vortices - the primary vortices. The counter-rotating vortex pair
mutually induces descent velocity in the mid to far field. The fourth phase is the decay
phase. A significant reason for the decay is the so-called Crow instability [19], which
comes from mutual interactions between the sinusoidally deformed vortices leading to
the linking of the vortex pair, and thus the decay of the vortex strength resulting from
the opposite circulation [1]. While Crow instability is a long-wavelength instability, a
shortwave instability inside the vortex cores, termed elliptic instability, accelerates vortex
decay further [20].

During the landing of an aircraft, another decay mechanism factors in. When an air-
craft flies below an altitude of its wingspan, ground effects appear [13]. The trajectories

Lo
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of the descending vortices follow an outward-going hyperbola close to the ground tending
to an altitude of by/2 [1]. The ground proximity of the primary vortices leads to the cre-
ation of countersign secondary vortex structures detaching from the ground and wrapping
around the primary vortices [1]. The emergence of secondary vortices is caused by the
formation of a boundary layer beneath each primary vortex of opposite-signed vorticity
[20]. Once the adverse pressure gradient in this boundary layer is strong enough, the
secondary vortices detach and wrap around the primary vortices [20]. Furthermore, the
secondary vortices induce an upward motion onto the primary vortex causing a rebound
effect [21].

The vortex trajectories alter in the presence of crosswinds. A crosswind, approxi-
mately equal to the initial descent speed, can cause the upwind vortex to stall over the
runway [1]. A frontal view of the wake vortex trajectories of a landing aircraft can be
seen in Figure 4.

crosswind
——

< secondary

vortex induced vorticity
shear layer

~a—~ — — -

boundary layer

Figure 4: The trajectories of primary wake vortices and the formation of secondary
vortices. The evolution is according to LES simulations from [22] and the trajectories
according to [23](taken from [24]).

The creation of strong secondary vortices can be enhanced by obstacles on the ground
intensifying the decay of the primary vortices [25]. This led to the development of so-
called plate lines placed below the glide path of a landing aircraft in front of the runway.
With simulations and field experiments, an enhanced decay of wake vortices could be
verified [25, 26]. More on plate lines can be found in Section 5.1.

2.3 Measurement

Several techniques for measuring wake vortices exist. They can be split into active and
passive detection methods. Radio Detection and Ranging (RADAR), Light Detection



and Ranging (LiDAR), Sonic Detection and Ranging (SoDAR) represent active detec-
tion methods. Passive detection methods include microphone systems, optoacoustic and
ultrasonic detection of circulation [27].

The most common techniques are RADAR and LiDAR. Pulsed coherent Doppler
LiDARs (PCDLs) and Continuous Wave LIDARS (CWLs) are used for wake vortex de-
tection. While CWLs send out a continuous wave of electromagnetic energy and measure
simultaneously, PCDLs send out short bursts of electromagnetic energy and then listen
for their return [27]. We use a data set measured with PCDLs. In wake vortex application
PCDLs are preferred over CWLs, given the higher possible spatiotemporal resolution [27,
28]. Only with high spatiotemporal resolution can the wake vortex evolution over time
be measured.

2.4 LiDAR

The essential components of a LIDAR are a transmitter, and a receiver [29, p. 3|. The
transmitter emits laser beams to capture the movement of air particles, so-called aerosols.
The backscattered signal is measured by the receiver and compared with the emitted
signal. The information retrieval works as follows [30]: The emitted laser pulse replicates
a normal distribution, thence not measuring a distinct point but a measurement volume.
The measurement’s range gate must be retrieved from the time of flight. Given that a
time series of intensities are measured, the Fourier transformation is used to obtain a
frequency spectrum. The Doppler shift fp between the emitted and received signal is
used to calculate the radial velocity according to equation (2.10). Given the Doppler
shift fp, the radial velocity is

v, = 222 (2.10)

where A is the optical wavelength of the emitted laser beam [31].

A LiDAR emits several laser pulses along a so-called Line of Sight (LOS). Spherical
coordinates can describe a LOS. The azimuth angle 6 describes the horizontal rotation,
the elevation angle ¢ the vertical rotation, and the range R the distance from the LiDAR.
In Figure 5, a sketch of a LIDAR measurement can be found. The azimuth angle in this
Sketch is constant, and only a change in the elevation angle is illustrated. This measure-
ment gives a Range Height Indicator (RHI) scan type. This reflects the measurement
scenario from the Vienna campaign [9], from which the data for this thesis originates.

Along each LOS, multiple measurements are done at different ranges and elevation an-
gles. The result is a radial velocity profile of the aerosols at a cross-section perpendicular
to the landing aircraft.

The quality of LIDAR measurements is rated by a Carrier-to-Noise Ratio (CNR) [32].
The CNR measures the energy the backscattered signal carries about filtered atmospheric
noise. A high CNR can be interpreted as a high amount of information in the measure-
ment, while unrealistically high CNR values can result from hitting hard targets. In
contrast, low CNR values can be interpreted as noisy measurements [32]. Given that the
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Figure 5: Sketch of an aircraft flying through a LIDAR measurement plane with counter-
rotating wake vortices (inspired by [10]).

LiDARs used are calibrated to have a focal point of 500 m, the measurements outside
that focal point are prone to noise leading to inaccuracies [10].

Inaccuracies in LiDAR measurements not only originate from the focal point, at-
mospheric turbulence, or not measuring a distinct point. The evaluation in cartesian
coordinates also leads to measurement inaccuracies due to a conversion from polar coor-
dinates and the loss of constant step sizes in coordinate directions. Hence the resolution
further away from the LiDAR is lower, giving the need for interpolation.

Although this inaccuracies can lead to errors in evaluating the LiDAR scans, machine
learning approaches are said to be able to adopt and generalize well. Furthermore, by
first applying an object detection to treat wake vortices individually afterward is assumed
to help focus on the important part and ignore most of the inaccuracies.



3 Literature Review

3.1 Traditional Wake Vortex Detection

On the one hand, there are predictive models such as the Probabilistic Two-Phase Wake
Vortex Decay Model (P2P) developed at the German Aerospace Center (DLR) [23]. The
P2P performs real-time wake vortex location and strength prediction based on theoreti-
cal models, aircraft configuration knowledge, meteorological data, and ground proximity
information. The drawback of predictive models is the limited amount of real-world data,
leading to inaccuracies [23, 33]. To account for such inaccuracies, fusion models were pro-
posed that combine model predictions and sensor measurements [33]. Although sensor
measurements like LIDAR measurements can account for physical turbulence detection,
this comes at high computational costs and leads to errors like over- or underestimation,
as well as the failure of recognizing mature vortices [33]. The combination of LiDAR
measurements and a probabilistic model mitigates both systems’ stand-alone usage draw-
backs. An example is the Wake Vortex Prediction and Monitoring System (WSVBS) [17].
The WSVBS suggests utilizing LIDAR measurements to monitor and validate the wake
vortex prediction of P2P [17]. A fast-time vortex detection and tracking algorithm is
needed to integrate a conflict detection module that may issue warnings or adapt the
WSVBS predictions [17]. Furthermore, the predictive models can not be used to evaluate
large measurement campaigns such as the Vienna campaign [9)].

On the other hand, characterization models characterize wake vortices in measure-
ments. One characterization method is the Velocity Envelope (VE) method [34]. The
reported characterization errors are a standard deviation of 9 m for the vertical, 13 m
for the horizontal coordinates with a median absolute distance error of 7.91 m, and an
absolute error of 13 m?/s for the circulation [35, 10]. Another characterization method
is the Radial Velocity (RV) method [36], explained in further detail in chapter 5.1. The
advantage of the RV method over the VE method is the ability to be used for different
kinds of LiDARs, i.e., the RV method can also operate on LiDARs with a lower CNR
than needed for the VE method [28]. For higher accuracy measurements, LiDARs with a
shorter wavelength are preferred. The accuracy of the RV method is given as root mean
squared error for the elevation angle of 0.21°, range gate of 1.8 m and 10.3 m?/s for the
circulation [36]. The accuracy of the RV method in terms of vortex center estimation is
comparable to the VE method, but the circulation estimation of the VE method is supe-
rior [36]. Due to the semi-automatic nature of the RV method, the computation time for
a single LiDAR scan is approximately 6 s [32]. Thus, the RV method is insufficient for
the fast-time detection and tracking of wake vortices needed for WSVBS. Although the
characterization models could be used to evaluate single LiDAR scans, they are not fast
enough to evaluate large amounts of data from measurement campaigns. This gave rise
to the research on new approaches to wake vortex detection such as artificial intelligence

(AD).
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3.2 Artificial Intelligence for Wake Vortex Detection

The topic of Al nowadays finds its way into any application. AI can also be found in
applications of fluid dynamics [37]. Furthermore, the usage of Al in aviation safety is
of interest, such that the European Union Aviation Safety Agency (EASA) just recently
has published a concept paper “EASA Concept Paper: First usable guidance for Level
1 machine learning applications” [38]. This paper lays out a guideline of objectives one
should address while developing and deploying Al into safety-related or environment-
related applications in all domains covered by the EASA Basic Regulation (Regulation
(EU) 2018/1139) [38]. Objectives taken into account can be grouped into trustworthiness
analysis, learning assurance, explainability, and safety risk mitigation.

In the field of wake vortex characterization, there are three different tasks where Al
finds application. The identification of wake vortices being present, the detection of
single wake vortices, and the characterization of wake vortex parameters. To identify
a LiDAR scan containing wake vortices, support vector machines (SVM) [39], random
forest (RF) [40], and VVGNet [41] were used. A machine learning model, including other
measurement data, was proposed using a CNN-LSTM approach [42]. An attention-based
model is the most recent approach to wake vortex identification [43].

The second task is to detect wake vortices in a LiDAR scan. For that task, faster
R-CNN [44], and YOLOv3 [45] were used. The faster R-CNN model was trained to detect
vortices but not to classify the vortex type [44]. With a YOLOv3 approach, only the tail
vortices (port) were trained [45] and achieved an accuracy of 94%.

All those approaches did not classify specific vortex parameters like vortex center
or circulation strength. The first approach to classify those vortex parameters used
a feedforward neural network (FNN) and a convolutional neural network (CNN) [10].
Experiments showed that a CNN model is superior to a FNN model [10]. Although this
model could classify wake vortex parameters for different vortices in a LiDAR scan, it
was trained on detecting a vortex pair leading to issues with scans containing more or
fewer vortices. This can happen when a vortex of a previous overflight stalls over the
runway due to crosswind or when aircraft land close to each other such that the vortex
pair of the preceding aircraft has not yet vanished [1, 10]. Thus, it is desirable to detect
and characterize the wake vortices individually. The goal is to use YOLO as an object
detection ANN to detect individual vortices and employ a CNN for wake vortex parameter
characterization on those vortices individually.
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3.3 Reasearch Questions

Based on the literature review, the following research questions arise:

1. Can a bounding box detection network, in particular YOLO, accurately detect wake
vortices in a LiDAR scan independent of the number of vortices being present in
the respective LiDAR scan?

2. Can we use YOLO to detect vortices and classify port and starboard vortices ac-
cordingly?

3. Is the bounding box prediction of YOLO already sufficiently accurate to identify
the vortex center?

4. Can an additional CNN improve the vortex center prediction based on the bounding
box prediction?

5. Can we improve the vortex circulation prediction with a CNN used on the bounding
box output compared to a CNN used on the complete scan?

6. Is a pipeline of using first YOLO and afterward a CNN still fast enough for fast-time
prediction?

12



4 Artificial Neural Networks Theory

Artificial neural networks (ANN) were invented by McCulloch and Pitts [46] in 1943.
Since then, the development of ANNs has become increasingly involved and transitioned
from basic feedforward neural networks feedforewar(FNNs) to convolutional neural net-
work CNNs proposed by Fukushima [47] and further developed in [48]. The basic idea of
convolutional neural networks nowadays is still prominent in most neural networks.

In this chapter, we first introduce the basic idea of FNNs to then extend that idea
toward CNNs. Afterward, the training mechanism is explained, and fundamental ideas
of object detection networks are introduced.

4.1 Feedforward Neural Network

The underlying idea of a FNN is to approximate a function f* that fulfills a particular
task, for example, classification or regression [49, p. 164]. To find such a function, the
FNN has to learn parameters p that define f*. A FNN is built by collecting multiple
neurons to a layer and stacking multiple layers on top of each other to form a network.
The general definition of an FNN is:

Definition 4.1 (Feedforward Neural Network [50]). Suppose L € N is the number of
layers and n; is the number of neurons of the I-th layer, with [ € {1,2,..., L}. Moreover,
let the network be a mapping from R™ to R"™:. Furthermore, let the weight matriz be
Wl e Rurr*m with wj[{]k being the weight applied to the output of the j-th neuron of
layer [ by the k-th neuron of layer [ + 1. The bias of the [-th layer is defined similarly
by bl € R™. The activation function of the I-th layer is called o and is applied
componentwise to the output of each neuron of the [-th layer. The output of the neural
network with input x is

a[l] =xeR™
M= Wl e R p e {1,2,... L1} (4.1)

Al .= ol (10,

We call the first layer input layer, the last layer output layer, and the layers in between
hidden layers. More details on the activation function in the next chapter.

The term feedforward originates from the behavior of the data fed forwardly through
the network. In Figure 6a, one can see a simple example of such a network. In this
example, the FNN consists of four layers, with the input layer consisting of three neurons,
the hidden layers of four neurons, and the output layer of two neurons. This network
represents a function mapping an input vector x € R? to an output vector al¥l € R2.
An illustration of the connection between the input layer and the second layer can be
found in Figure 6b with the corresponding weights written on the connections to the first
neuron of the second layer. Since the outputs of one layer are connected to every neuron
of the next layer, those layers are called fully connected layer or dense layer.
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Figure 6: (a) Example of a FNN with two hidden layers mapping an input vector of
length three to an output vector of length two. (b) Illustration of how one neuron has
information fed forward from the previous layer. [51]

4.2 Activation Functions

The task of the activation function is to mimic some decision boundary at which a neuron
is activated [52]. The aforementioned bias shifts that decision boundary, thus the name.
A principal idea is whether a neuron fires or not. The use of the Heaviside function (4.2)
can accomplish this idea.

H(z) = {0 & <l (4.2)

1 ,2>0

Over time multiple different activation functions were intoduced [52]. The activation
functions employed in this thesis are the logistic function o, the rectified linear unit
(ReLU)[53], leaky ReLU|[54] (LReLU) and Mish[55]. The logistic function, LReLU and
Mish are the activation functions used in YOLOv4. The activation function used in the
base model of our CNN regression network is ReLU.

The logistic function can be seen as a continuous version of the Heaviside function
(4.2). It is sigmoidal as the logistic function approaches zero for the negative limit
lim,,_ o(z) = 0 and approaches one for the positive limit lim, ,,, o(x) = 1 [56]. This
leads to the universal approximation theorem by Cybenko [56], stating that a network with
a single hidden layer can uniformly approximate any continuous function of n variables
with support in the unit hypercube ([0, 1]") when using a sigmoidal activation function. A
similar result was proven by Leshno et al. [57] for a wider variety of activation functions,
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particularly for ReLLU. In Table 1, the activation functions used are displayed with their
respective first derivative.

Table 1: Activation functions and their derivative. In the derivative of Mish,
w=4(x + 1) +4e*® + 3 + e%(4z + 6) and § = 2" + ** + 2.

Activation function First derivative
Logistic o(x)=(1+e*)! o'(x) =o(x)(1—o(z))
Mish [55] | Mish(z) = z - tanh (In (1 + €*)) Mish'(z) = &%
ReLU [53] | ReLU(z) = x - H(z) = max(0,z) | ReLU'(z) = H(x), x #0
LReLU [54] | LReLUu(z) = {Z j;ﬁo ;| LReLUG) = {; Z >§ %

We can introduce a so-called shape parameter to the logistic function ending up with
og(x) = o(Bz). The shape parameter changes the slope of the logistic function at zero
to 5/4. In Figure 7, one can see the different activation functions plotted on an interval
of [—1,1].

L H(x)
—o5(2)
0.75 1" | — Mishs () |
— 45| [T RELUG) |
L U9 | LReLU,, ()
=
0.25| l
0 -
| | |
~1 —0.5 0 0.5 1

z [-]

Figure 7: Heaviside-function (orange), Logistic function with shape parameter § = 5
(blue), Mish (red), ReLU (green), and LReLU (light green). The shape parameter is
chosen to be 5 only for visualization purposes.

The choice of activation function depends on different features. The logistic function is
an analytical function. Thus we do not have problems with differentiation. Furthermore,
it is bounded from above and below. The image of the logistic function lies in the interval
of (0,1). Thus, it is often used to display some probability or binary classification task.
The ReLU activation function is most prominently for computer vision task [58]. It is
differentiable almost everywhere and bounded from below and unbounded above. Due to
the clipping of negative values, an optimization only feeds back the values of an active
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neuron. However, this is only occasionally desired, thus LReLLU overcomes that problem
but is unbounded above and below. The Mish activation function is similar to ReLLU
bounded from below and unbounded above but preserves a small amount of negative
information [55]. Furthermore, it is continuously differentiable everywhere, often a desired
feature in gradient-based optimization [55].

4.3 Optimization

Typical tasks of an ANN are regression or classification. This thesis focuses only on
supervised learning since the data sets introduced in Section 5.1 are labeled, i.e., the data
has corresponding targets, also called annotations. Furthermore, we aim at mapping input
LiDAR scans to specific targets like bounding boxes, vortex center and vortex strength
which can be achieved with supervised learning [59, p. 94]. In contrast, unsupervised
learning exists, where a data set without annotations is used. Unsupervised learning is
most common in tasks like data denoising, compression, or visualization, where the basic
idea is to find properties of the underlying data set [59, p. 94].

We assume that a labeled data set with D data points is given. For each data point
x{ there exists a label y{"' with 4 € {1,2,...,D}. Such a labeled data set makes it
possible to formulate a loss function. The widely used loss function for regression tasks
is the mean squared error (MSE) loss function [59, p. 91]

D
Lp) = 5 D17 (. p) — y O (13
=1

Let vector p € R?® contain all the weights and biases of the network. Then the loss
function is a mapping L : R®* — R. We aim to find the optimal weights and biases to
minimize the MSE. This process is also called learning. To do so the basic idea is to
use the stochastic gradient descent (SGD) [60], which is based upon the gradient descent
method described by

p < p —1nVL(p). (4.4)

In the machine learning context, the step size n is also known as learning rate. Since the
MSE consists of a sum running over our data set, the gradient of the MSE can also be
split into the sum of gradients. One summand of the MSE is

L; = [|/*(x1, p) — y'|5. (4.5)
Thus the gradient of (4.3) can be calculated with the help of (4.5)

VL(p) =+ > VL(p). (4)

The idea of the SGD (4.7) is now not to consider all samples of a data set like in (4.6) -
as an update - but instead only consider a single data point chosen uniformly at random,
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such that the update becomes

p < p —nVLi(p). (4.7)
Alternate variants based on this idea exist. For instance, we can employ so-called mini-
batches [61], where a random set of data points Z C {1,2,..., D} is chosen to calculate
the gradient ending up with the update
p<p—nY VL(p). (4.8)
i€

A method based on (4.8) is sometimes referred to as mini-batch gradient descent.
Another choice of loss function used by YOLOv4 is the binary-crossentropy loss
(4.9)[62, p. 206], which is often implemented in binary classification tasks in combination
with a logistic activation function in the last layer [59, p. 60]. As binary-crossentropy
measures the distance between two probability distributions it is favorable in case of
predicting class probabilities [59, p. 73]. The binary-crossentropy is defined as

H(p) = —% Zy{”’ log(f*(x',p)) + (1 — y'™) log(1 — f*(x', p)). (4.9)

The optimization algorithm used in this thesis is ADAM, it has shown promising per-
formance in preceding works [10]. The idea behind ADAM is to employ decay parameters
B1 < s < 1, which adjust the learning rate. For more details, see “ADAM: A Method
for Stochastic Optimization” by Kingma and Ba [63].

To update the weights and biases individually we need the derivative of the loss func-
tion. To calculate the derivative, FNN suggests an efficient way via backpropagation
developed by Rumelhart et al. in “Learning Internal Representations by Error Propaga-
tion” [64].

4.4 Convolutional Neural Network

To get an idea of spatial dependence, Convolutional Neural Networks (CNNs) were intro-
duced. Typical CNNs are comprised of five types of layers, explained in this section. The
layers are convolutional layers, batch normalization layers, pooling layers, flatten layers,
and fully-connected layers.

Convolutional Layer

The main building block of a CNN is the convolutional layer. It is based on the linear
operation convolution defined in (4.10).

Definition 4.2 (Discrete 2D-Convolution). Let x, w € [*(Z?) and =: [*(Z?*) x I"(Z?) —
1M(2?), where INZ?%) = {f: Z* - R : >, 5 |f(k)| < co}. The discrete convolution of x
with the convolutional kernel w is then defined by

f(k) = (xxw) (k) =Y _w(k - j)x(j).k € Z*. (4.10)

JE€Z?
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In the context of machine learning, x is called input, w is called kernel or sometimes
also referred to as filter, and the output of the convolution is called feature map [49]. In
our case, the convolutional kernel w € R**¥ is a finite real square matrix, and x € R*»*™
corresponds to the LIDAR scans, which are also represented by a finite real-valued matrix
thus (4.10) becomes

k—1 k-1

fi= )Y WerXi_gjr , with (i,j) € {1,2,...m} x {1,2,...n}. (4.11)

=0 r=

=}

From (4.11), we can get the notion of a weighted sum of neighboring pixel values. Thus
a spatial representation is given. There is also strided convolution with stride s € N such
that (4.11) becomes

k—1 k-1

fi5=> ) WorXaigajr » with (i,5) € {1,2,...m} x {1,2,...n}. (4.12)

q=0 r=0

Strided convolution is sometimes used instead of pooling for dimensionality reduction.

In both convolution cases, the finite dimension of x leads to the problem of missing
values outside the domain. Close to the edge, it occurs such that values outside of the
matrix domain are needed. To provide those values, in machine learning, one uses zero-
padding, extending the matrix dimension by p € N and filling in the new values with zero
before applying the convolution [65]. The output shape of a convolutional layer depends
on the input size, the kernel size, the zero-padding, and stride. The most used padding
cases are called valid padding, which corresponds to no padding, and same padding. The
latter corresponds to zero-padding such that the input shape does not change. While the
former causes a shrinkage of the original matrix depending on the kernel size ending up
with f € Rr—stixm=s+l [g5],

The number of trainable parameters of a convolutional layer Pgp, depends on the
number of input channels ciyput, the number of output channels coutput, i-€., the number
of filters in the input layer and output layer as well as the kernel size kj, x k,,. The formula
for calculating the number of trainable parameters of a convolutional layer is then defined
by

PCL = Coutput * (Cinputkhkw) + Coutput . (413)
number of weights number of biases

Batch Normalization

A regularisation method sometimes used in CNNs is batch normalization introduced
in [66]. Since the input of each layer follows a different distribution, training can be
challenging as layers have to always adapt to that distribution [66]. The idea behind
batch normalization is to scale each batch with a mean of 0 and a standard deviation
of 1. To accomplish that, each batch’s mean and standard deviation is calculated. Let
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B ={x1,...,2,} be a batch. The mean and standard deviation are given by

1 « 1 «
mB = E ZZIZL’I and oB = E Z(l’, — /LB)Q. (414)

=1

Batch normalization is now performed by normalizing each data point from the batch
accordingly to (4.15). With the help of (4.14) the normalization of z; is given by

L _Ti— M8
% O'B‘i‘g’

0<e. (4.15)
We avoid dividing by zero by adding a small value ¢.

Pooling Layer

Another option for dimensionality reduction is using a pooling layer. A pooling layer
combines values in small regions to summarize. Mostly pooling layers are utilized after
the activation of a convolutional layer and help to make the representation approximately
invariant to small translations of the input [49]. There are several pooling methods, but
the one used in this thesis is maz pooling [67], which filters out the maximal value in a
fixed-size neighbourhood. Another pooling option is average pooling [67], which averages
over a local region. Max pooling can detect subtle local features which average pooling
would miss [67]. In most CNNs, max pooling with a filter of size 2 x 2 and a stride of 2
is used, hence also applied in this thesis [68].

Flatten Layer

The flattten layer is used right before the fully connected layer and after the convolutional
layers. It flattens the multidimensional output array to a one-dimensional vector, which
the fully connected layers can use. This is orchestrated by concatenating each row of
a specific feature map one after another, ending up with a large one-dimensional vector
and thus having no trainable parameters.

Fully Connected Layer

The desired output in most applications of ANNs is a vector encoding some information.
Hence as the output layer of a CNN, in most cases fully connected layers are chosen.
An example of a fully connected layer can was previously depicted in Figure 6b. Each
neuron of a fully connected layer is connected with each neuron of the previous layer.
The input to a fully connected layer is a one-dimensional vector. Let a € R™»eut he the
input to a fully connected layer and y € R™vu»ut the output of the fully connected layer.
The number of trainable parameters Prcr, of such a layer is

PFCL = Noutput * Minput + Noutput . (416)
—_——— ——

number of weights  number of biases
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4.5 Object Detection

The task of object detection is not only to classify objects in an image but also to localize
those objects. ANNs performing object detection aim to mark existing objects in any
image with a rectangular bounding boz [69]. We define a bounding box as follows.

Definition 4.3 (Bounding Box). Let (z.,y.,w,h) € R* with (z.,y.) being the center
point and (w, h) being the dimension defining the rectangular bounding box B as

w w
B = R?:0,— —<a<x.+—,y,— —
{(a:,y)e T 2_x_a:+2,y 5

héyéyc+%}. (4.17)

There are two main machine learning approaches to object detection. The first ap-
proach starts with a network that proposes regions for interest, the region-proposal net-
work (RPN). A second network - of detection type - then classifies objects in those regions
of interest [70]. Networks following this approach are called two-stage detectors. Promi-
nent state-of-the-art models following this approach are R-CNN [71], fast R-CNN [72],
faster R-CNN [73], mask R-CNN [74] and FPN [75]. The second approach is the one-stage
detectors. One-stage detectors accomplish regression and classification in a single shot.
The most prominent one-stage detectors are YOLO [76], YOLO9000 [77], YOLOv3 [78],
YOLOv4 [79], RetinaNet [80] and SSD [81].

Because the one-stage detectors do not need an RPN, they are faster than the two-
stage detectors enabling fast-time detection. In case of WVMSs and wake vortex tracking
fast-time detection is crucial. For that reason, the chosen object detection network will
be YOLOv4!. It outperformed other state-of-the-art object detection networks in terms
of accuracy and speed|[79].

Despite the difference of having two stages or only one to do object detection, modern
object detection networks consist of three main parts, the backbone, the neck, and the
head illustrated in Figure 8 [79]. The backbone network, in most cases, is pretrained
for the ImageNet [82] classification task [83]. The task of the backbone is to extract
higher-level features of an image. The role of the neck is to collect feature maps from
different stages of the backbone and is generally composed of several top-down-paths and
bottom-up-paths. The idea is to let lower-level features and higher-level features interact
[84]. The head predicts the bounding boxes and classification.

Figure 8: Sketch of general object detectors (taken from [79]).

'During this thesis, YOLOv7 was published, which is superior to YOLOv4 but could not be adapted
to in time.
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5 Data Sets, YOLO and Regression Network

The focus of this thesis is on the data acquired during the Vienna measurement campaign
[9]. This data set was generated with LIDAR measurements at Vienna International Air-
port from May 2019 until November 2019 by DLR. The data contains the radial velocity
RHI LiDAR scans. Another data set based on vortex models is used for testing purposes.
This data set contains artificial proxy scans that aim to model LiDAR measurements.
The scans in the LiDAR data set from Vienna include atmospheric effects, secondary
vortices, noise, and measurement errors. The proxy data set, in comparison, contains
immaculate data but does not reflect real-life scenarios as it lacks crosswind and other
atmospheric effects. Therefore this data set was only used to evaluate whether YOLOv4
is suitable for detecting different numbers of vortices in scans.

Both data sets also contain corresponding labels with the vortex center locations
in polar coordinates, Ry, ¢, € R>g and vortex circulation I'y € R>g. Hence labels for
supervised training and evaluation are given. The data set used to train the regression net
contains cut-out vortices only from the LiDAR data set. We set up a predicition pipeline
to obtain the individual vortices from the YOLOv4 prediction and input those into the
CNN. Throughout this thesis, we use the terms prediction and estimation equivalently.
In essence, prediction does not represent a prediction in time.

5.1 LiDAR Data Set

Since the Vienna measurement campaign was conducted to evaluate the effectiveness
of plate lines in wake vortex mitigation, the data set contains measurements with and
without plate line usage. Hence in some scans, plate line effects are present. In the
following, a summary of the measurement campaign is given based on “Mitigating Wake
Turbulence Risk During Final Approach via Plate Lines” [9] by Holzépfel et al. [9].

Figure 9 depicts the setup of the measurement instruments at the runway of the Vienna
International Airport. During the campaign, two plate lines were installed consisting of
eight and nine plates of dimension 4.5 m x 9 m displayed by red dashes. For the radial
velocity measurement, at most three Leosphere Windcube 200S (1.543 pm) micro-PCDLs
were used at once, positioned at three out of five possible positions (L1-L5). The three
measurement plane combinations used were: (L1, L2, 13), (L2, L3, L4) and (L3, L4, L5)
[25]. At positions A-C, additional meteorological instruments were placed. The runway
is at the bottom of Figure 9, and the aircraft approaches from the top. The average flight
altitudes above ground at LiDAR planes are 40.8 m at L1, 45.8 m at L2, 54.3 m at L3,
64.8 m at L4, and 74.5 m at L5 with a standard deviation of 4.9 m [25].

The LiDAR measured the radial velocities at discrete points along each LOS per-
pendicular to the runway. As the campaign analysis focused only on landings at weak
crosswinds of 1.5 m/s [9], it can be assumed that the vortices shared the same plane as
the LiDAR’s LOSs. Each LOS has 151 measuring points, called range gates, starting at
a range of Ry, = 80 m to a range of R, = 530 m with a step size of AR =3 m. The
minimum and maximum elevation angles used depend on the LiDAR position adjusted to
the average flight altitudes at the different LIDAR positions. The elevation angle step size
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Figure 9: Vienna measurement campaign setup of instrumentation with L1-L5 being the
LiDAR positions, A-C being additional meteorological instruments, and the red dashes
being the plates (taken from [9]).

was Ay = 0.2° for all positions. The corresponding minimum and maximum elevation
angles used can be found in Table 2. A list of three-tuples can therefore describe a raw

LiDAR scan
(Ria Spja VV'(R7J Spj)) € Rg'

The polar coordinates (R;, ;) represent at which the corresponding radial velocity V, (¢;, R;)
was measured, with ¢ € {0,1,...,150} and j € {0,1,... Hyq}-

Table 2: The elevation angles covered correspond to each LiDAR position and the
number of LOSs needed.

LiDAR position | ¢ range | Hyq number of LOS beams
L1 0° — 25° 125
L2 0° —20° 100
L3 0° —18° 90
L4 1° —28° 135
L5 0° —29° 145

An example of a raw LiDAR scan can be seen in Figure 10a with the corresponding
scan transformed to cartesian coordinates in Figure 10b. The grid in polar coordinates
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is equidistant. Hence transforming to cartesian coordinates, one loses this property. In
Figure 10c and Figure 10d proxy scans with two and four vortices, respectively, are
illustrated.
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Figure 10: (a) Example of a raw LiDAR scan. (b) Example of a raw LiDAR scan
transformed to cartesian coordinates. (c),(d) Example of a proxy scan containing two
and four vortices in cartesian coordinate system.

YOLOvV4 needs bounding box labels, thus we focus on scans in cartesian coordinates,
explained in more detail in section 6.1.1. The input format required for YOLOv4 is that
of images. Thus we have to transform the polar coordinates to an equidistant cartesian
grid, which requires data interpolation. This may lead to inaccuracies, especially for high
range gate values, since the distance between two grid points at the same range gate but
with different elevation angles increases with the range gate.

Another source of inaccuracies is the time a single measurement takes. Changing the
LOSs takes 50 ms. Hence a LiDAR scan cannot be instantaneous. This time difference
results in radial velocities, measured with a maximal time difference of 7.25 s [32]. The
LiDAR scans were initiated at either end of the elevation angle interval. Consequently,
the resulting data set contains roughly an equal amount of data with a time distortion
from top to bottom and vice versa. Thus this effect can be considered negligible [32].
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5.2 Labels - Radial Velocity Method

The labels for the data set originate from the assessment of the measurement campaign,
which used micro-PCDLs hence the RV method [36] was used. The idea behind the
RV method is first to estimate the center of the vortices and afterward estimate the
circulations via minimizing a functional. The RV method is described as an example for
two vortices. To estimate the range gate of the vortex center R¢,, the maxima of

Biiq

D(Ry) = ZW(Rk,¢j)2 (5.1)

are sought [36]. One example plot of (5.1) can be seen in Figure 11b with the underlying
LiDAR scan in Figure 11a. The corresponding angles can be found by calculating the
mean of the angle ¢in(R¢,) of minimal radial velocity and ¢pax(Re;) at the estimated
range gate center [36]. A functional

Byiqa

p(Ti) = _(Vi(Re,, ) = Vi(Rey, 055 T1,T2))? (5.2)

J=0

is minimized to fit the best circulation. This functional (5.2) describes the difference
between the radial velocities at the axis of the center range gate of the true LiIDAR scan
Vi (Re,, ;) and a modeled scan V,.(Rg¢,, ¢;;'1,T'y) calculated theoretically with arbitrary
circulations I'; and I'y [85].
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Figure 11: (a) An arbitrary LiDAR scan. (b) D(R) for the LiDAR scan from (a) (taken
from [36]).

During the measurement campaign, 9 473 approaches were measured with approxi-
mately 20 scans per overflight [9]. Since the targets for the data set were constructed
by the RV method, which is time-consuming, only a fraction of the data can be used for
training, ending up with a data set of 16 349 samples in the complete data set used in
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three different variants. The total numbers of the samples per data set can be found in
Table 3 with the corresponding splitting of the data set into training and validation data
sets.

Table 3: The number of data samples contained in each data set used for training and
validation of YOLOv4

Plate Line status ‘ Train ‘ Validation ‘ Total number

up 5 994 958 6 963
down 8 428 969 9 386
both 14 422 1927 16 349

An internal DLR python package by Grigory Rotshteyn was used to create the proxy
data. It uses the Lamb-Oseen vortex model [86] and places it inside a LiDAR scan
field corresponding to LiDAR position L3 (see Table 2). The initial vortex separation
corresponds to an A320 with by = 26.8 m. We place the vortices randomly such that
the vortex center is still contained in the proxy scan. In the case of four vortices, we use
two counter-rotating vortex pairs. In the case of three vortices, we use a counter-rotating
vortex pair and a remaining starboard vortex in the first quarter of the scan. In Figure
10c, a resulting proxy scan with two vortices is depicted, and in Figure 10d, one with
four vortices.

5.3 YOLO

First, object detection is employed to detect wake vortices in the overall LiDAR, scans,
in order to tackle the problem of detecting different numbers of wake vortices in different
LiDAR scans. The name YOLO is an abbreviation for “You Only Look Ones”, which
reflects the nature of a one-stage detector. We use the original YOLOv4? written in

C/C++ [87].

5.3.1 Network architecture

Like all object detectors, YOLOv4 consists of three parts: the backbone, the neck, and
the head (see Section 4.5). As backbone YOLOv4 uses CSPDarknet-53 [88]. In the neck,
spatial pyramid pooling (SPP) [89] and path-aggregation network (PAN) [90] are used.
For the detection head, YOLOv3 [78] is used. The basic building blocks of YOLOv4 are
illustrated in Figure 12.

CSPDarknet-53 is an update to Darknet-53 [78] incorporating so-called cross-stage
partial (CSP) connections. A CSP block contains convolutional layers with batch nor-
malization and Mish as an activation function, thus abbreviated with CBM. The first
CBM layer in a CSP block uses a stride of two to downsample the input. After that,
the output is copied and fed through another CBM layer, N residual blocks, illustrated
in Figure 12a, and another CBM layer before being concatenated with the second copy

Zhttps://github.com/AlexeyAB/darknet
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which was only fed through a CBM layer. The concatenation is then again fed through
a CBM layer. An illustration of that process can be found in Figure 12b.

The PAN block combines features extracted at lower layers with features at higher
layers. It uses bottom-up paths to make low-layer information easier to propagate [90].
In Figure 13, PAN is marked by the red connections. The difference between the PAN
YOLOvV4 uses to the originally proposed PAN is the usage of the concatenation of feature
maps instead of addition [79].

The SPP block added after the CSPDarknet-53 backbone is used to significantly in-
crease the network’s receptive field and separate out the most significant context features
[79]. This is accomplished using three different max pooling layers, each with a different
pooling size, namely 5 x 5, 9 x 9, and 13 x 13. The SPP block is illustrated in Figure 12c.

CBM
Resx N
[0
CBM
Res | CBM [ CBM [CsPN |: Stgf;“ﬁz — CBM
(a) (b) (c)

Figure 12: The basic building blocks of the YOLOv4 Network. (a) Residual Block with
CBM blocks. (b) CSP block with N residual blocks. (c¢) SPP block.

Instead of the Mish activation function, YOLOv4 uses LReLU in the neck and the
head of the network. After the convolution, batch normalization is also performed in the
neck and head. Those blocks are abbreviated by CBL.

The detection head used is based on the anchor box idea from YOLOv3 [78, 79]. The
functionality of the detection mechanism will be explained in more detail in the next
section. The entire network of YOLOvV4 can be seen in Figure 13.

Backbone

Neck with SPP and PAN (red connections) YOLOv3 Head

3 R e R TP PSR p PP PP PR PP 1\ Output 1 3
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Figure 13: An illustration of the architecture of the YOLOv4 network. When the paths
split up, the output is copied. When two paths join, the dot represents the concatenation
of the inputs.
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YOLOv3 Head

As detection head YOLOv4 uses the YOLOv3 detection head [79]. The prediction in
the YOLOv3 detection head is made at three different scales, such that we have three
outputs [78]. Each detection head’s prediction is based on a grid of different sizes such
that objects of different sizes can be detected. The grid dimensions can be found in Table
4 and a LiDAR scan with the corresponding grids in Figure 14.

200 300 400
y [m] y [m]

(a) (b) (c)

Figure 14: Three different grids used in the detection head of YOLOv3. (a) Fine grid:
56 x 32. (b) Medium grid: 28 x 16. (c¢) Coarse grid: 14 x 8.

To predict the position and dimension of a bounding box, YOLOv3 uses anchor box
priors [78] with width p, € N and height p, € N. At each scale, YOLOvV3 uses three
anchor box priors, such that a total of nine anchor box priors are used. Different object
shapes can be represented by using different anchor box priors. For each anchor box
and grid cell, an offset, as well as a class and objectness, is predicted. In our case, there
are two classes: port and starboard. The objectness predicts the intersection over union
(IoU) (5.3) of the ground-truth and the proposed box [77]. A metric to measure how
much a predicted box and a ground-truth box match IoU is defined as follows.

Definition 5.1 (Intersection over Union [91]). Let B be a bounding box defined by
(x,y,w, h) and By be another bounding box defined by (2, Ygt, Wet, gt ), corresponding
to Definition 4.3. The intersection over union (IoU) of B and By is then defined by

B |B N By

IOU(B, Bgt) = m
g

(5.3)

The operation |B| corresponds to the cardinality of the finite set B, which is under-
stood as the number of elements a set contains. With IoU and the probability of an
object existing in the predicted bounding box B objectness is defined by [76]

C(B) :== P(object)loU(B, Bgy). (5.4)

The offset prediction of YOLOv3 is made by predicting coordinates t,,%,,t.,ts repre-
senting the center, width, and height offset, respectively. Furthermore, the objectness t,
and a probability for each class ., is activated by the logistic function o to represent a
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probability. The bounding box is then calculated with respect to the center of a grid cell,
defined by the offset of ¢,, ¢, from the origin at the top left corner, by

by =0(ty) + ¢y

by = a(ty) + ¢y

bw = pwetw
by = ppet® (5.5)
C(B) =a(to)

P(class;) = 0(teass;) @ € {1,2}.

At the testing time, the objectness is multiplied by a conditional class probability
P(class;|object) to give a class-specific confidence score. In that way, the probability of
class ¢ appearing in the bounding box and the quality of bounding box fitting is encoded
[76]. Figure 15 is a sketch of the positioning and scaling of an anchor box to a predicted
bounding box.

Pn
: ﬂa(ty)

: pre't

(L)} (bs,b,)

Anfchar Box

Bounding Box

Figure 15: The process of transforming bounding box predictions from an anchor box
prior to a predicted bounding box. (Inspired by [77])

With that knowledge, we can calculate the output dimension of each detection head.
Let the detection head divide the image into a S; x S5 grid and let each grid cell predict
Bium bounding boxes. Let furthermore be Cp,,, be the number of classes to predict. The
dimension of the detection head output can then be calculated by

Sl X SQ X [Bnum( <4// + \1// + Cnum)]- (56)
bounding box coordinates  confidence score
In our case, the detection heads are after the 139th layer, the 150th layer, and the 161st
layer. Each detection head uses three anchor boxes, i.e., Byun = 3. Recalling that we
aim to distinguish between the port and starboard vortices, two classes are used, i.e.,
Chum = 2. In Table 4, the output dimensions for each detection head are calculated
according to equation (5.6).

Since each grid cell predicts three bounding boxes, some large objects or objects

near the border of multiple cells can be well localized by multiple cells [76]. The tool
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Table 4: The dimension of the output tensors from the three different detection heads
and the corresponding anchor boxes.

Detection Head Layer ‘ Output Tensor Dimensions ‘ Anchor Box Dimensions
139 56 x 32 x 21 12 x 16, 19 x 36, 40 x 28
150 28 x 16 x 21 36 x 75, 76 x 55, 72 x 146
161 14 x 8 x 21 142 x 110, 192 x 243, 459 x 401

to mitigate that problem is non-maximum suppression (NMS). YOLOv4 uses greedy
NMS [79]. The idea behind greedy NMS is to select a bounding box with the highest
objectness and suppress all other bounding boxes that have an IoU above a given threshold
Tams € [0, 1][92]. To assign a predicted bounding box to the correct ground-truth box, an
IoU threshold of 0.231 is used [79].

5.3.2 YOLOv4 Loss Function

The loss function for all versions of YOLO can be split into three parts. The first
part evaluates the bounding box prediction, the second part evaluates the objectness
prediction, and the last part evaluates the class predictions. The loss function used by
YOLOV4 is an updated version of the loss function from YOLOv3. For the bounding box
regression, instead of the MSE loss, complete IoU (CIoU) [91] loss is used [79]. The CloU
loss not only considers the MSE between the bounding box predictions but considers the
overlapping area, the distance between center points, and the aspect ratio [91].

Definition 5.2 (CloU Loss [91]). Let B, = B(b, wy, h;) be a predicted bounding box
and By, = B(bgt, wgt, hyt) the ground-truth bounding box. Furthermore, let the center
of the bounding boxes be b and by, respectively. The consistency of the aspect ratio is
measured by

4 w wy
vi=— (arctan —8% _ arctan —p> : (5.7)
™ hgt hhp

The ClIoU loss is then defined, with a trade-off parameter o € Rs( and the diagonal
c € R5 of the smallest enclosing box covering B, and By, by

b — b.||?
H gt” + o

‘CCIOU(B7 Bgt) = ]_ - IOU(B, Bgt) + CQ

v. (5.8)

The objectness is evaluated with binary-cross entropy loss (4.9) split up into the cases
of an object being present in a grid cell for each bounding box and the case of no object
being present. This is done to force the objectness to be zero if no object is present.
Finally, the classification task is also measured with binary-cross entropy loss (4.9).

The training of YOLOv4 was performed on the TUHH cluster using an NVIDIA
A100-80 GPU. The training of YOLOv4 took aproximately 5 h for the proxy data set
and 7 h for the LiIDAR data set.
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5.3.3 Accuracy Measurement

To evaluate object detectors, we count the true positive (TP), false positive (FP), and
false negative (FN) predictions. In classification problems recall and precision are used
as a measure of success. Recall measures the ratio of TP predictions out of all positive
samples, i.e., a low recall hints at many FN predictions [93, p. 87]. Precision measures
the ratio of TP predictions out of all samples predicted as positive, i.e., a low precision
hints at many FP predictions [93, p. 87]. The formulas to calculate precision and recall
are [93, p. 86

TP TP

Precision = T‘]D—F—Z?P Recall = m—m (59)
To assign a class to a bounding box, YOLO uses a class probability, i.e., for each class,
a probability of that class being present in a bounding box is predicted. To finally label
that bounding box with a class, a threshold 7" € [0, 1] is used at which probability a class
prediction is used. To find the best threshold and the best compromise between high recall
and high precision, a precision-recall curve is used . The precision-recall curve plots the
precision against the recall for all thresholds T € [0, 1] [93]. The average precision (AP)
for a given class now is defined as the area under the precision-recall curve [58]. For each
class we want to detect, the AP is calculated. The mean average precision (mAP) is the
mean of the AP per class and the metric used to evaluate YOLOv4. The mAP can be
calculated for different IoU thresholds at which a prediction is considered positive also to
reflect the quality of the bounding box.

5.4 Regression Network

The regression network is employed after the YOLOv4 bounding box prediction on the
predicted LiDAR scan sections, where vortices can be found. The task is to enhance the
localization and include a circulation strength estimation for each vortex.

5.4.1 Network Architecture

As base architecture, we use the CNN from “Characterizing aircraft wake vortex position
and strength using LiDAR measure