
Artificial Neural Networks for Individual
Tracking and Characterization of Wake

Vortices in LiDAR Measurements

Masterthesis

Lars Stietz

November 7, 2022

Studiengang: Technomathematik
Matrikelnummer: 6965877
Erstprüfer: Prof. Dr. Daniel Ruprecht
Zweitprüfer: MEng Niklas Wartha (DLR)

Eidestattliche Erklärung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit im Masterstudi-
engang Technomathematik selbstständig verfasst und keine anderen als die angegebenen
Hilfsmittel – insbesondere keine im Quellenverzeichnis nicht benannten Internet-Quellen
– benutzt habe. Alle Stellen, die wörtlich oder sinngemäß aus Verö↵entlichungen ent-
nommen wurden, sind als solche kenntlich gemacht. Ich versichere weiterhin, dass ich
die Arbeit vorher nicht in einem anderen Prüfungsverfahren eingereicht habe und die
eingereichte schriftliche Fassung der auf dem elektronischen Speichermedium entspricht.

Ort, Datum Unterschrift

iii

iv

Abstract

The main restricting factor of airport capacity are aircraft separations. These separations
exist to avoid potentially hazardous wake vortex encounters (WVEs). Especially during
the final approach, this hazard is of great concern since aircraft follow the same glide path.
The severity of wake vortex encounters depends on the generating and the encountering
aircraft, thus dynamic pairwise aircraft separations, which adapt depending on prevail-
ing weather conditions, are desired. Light Detection and Ranging (LiDAR) scans are
suggested for monitoring Wake Vortex Advisory Systems due to their fast-time strength
and location characterization of wake vortices. The first approaches to automating such
characterizations were made with multi-layer perceptrons (MLP) and convolutional neu-
ral networks (CNN). Those were shown to be su�cient for wake vortex characterization
but could not yet compete with traditional methods in terms of accuracy. For that rea-
son, this work proposes a machine-learning pipeline that uses bounding box predictions
by a YOLOv4 network to restrict the input to single vortices for the following CNN
to achieve higher accuracy. The LiDAR scans used for training contain radial velocity
measurements made at Vienna International Airport. After preprocessing and testing
feature engineering, those LiDAR scans are transformed into images as required input
for YOLOv4. Afterward, the bounding box predictions are used to cut out individual
vortices from the original scans. The individual vortices are then used to train a CNN to
enhance localization and the vortex strength estimation further. The evaluation shows
that a prediction pipeline is superior to a single CNN approach. The localization error
was decreased by more than 90% and the vortex strength estimation by up to 31% to a
localization error as low as 2.87 m and a vortex strength error as low as 20.88. Further-
more, the precision of detecting hazardous wake vortices was increased by 7.51% to gain
a precision of 96.11%. This pipeline can be executed while maintaining a su�ciently low
computation time.

v

Contents

Abstract v

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Motivation . 1
1.2 Goal . 2
1.3 Overview . 2

2 Wake Vortex Principles 4
2.1 Basic Vortex . 4
2.2 Wake Vortex . 5
2.3 Measurement . 7
2.4 LiDAR . 8

3 Literature Review 10
3.1 Traditional Wake Vortex Detection . 10
3.2 Artificial Intelligence for Wake Vortex Detection 11
3.3 Reasearch Questions . 12

4 Artificial Neural Networks Theory 13
4.1 Feedforward Neural Network . 13
4.2 Activation Functions . 14
4.3 Optimization . 16
4.4 Convolutional Neural Network . 17
4.5 Object Detection . 20

5 Data Sets, YOLO and Regression Network 21
5.1 LiDAR Data Set . 21
5.2 Labels - Radial Velocity Method . 24
5.3 YOLO . 25

5.3.1 Network architecture . 25
5.3.2 YOLOv4 Loss Function . 29
5.3.3 Accuracy Measurement . 30

5.4 Regression Network . 30
5.4.1 Network Architecture . 30
5.4.2 Training . 31
5.4.3 Accuracy Measurement . 31

vii

6 YOLOv4 for Wake Vortex Detection 32
6.1 Data Preprocessing . 32

6.1.1 Label Transformation . 32
6.1.2 Conversion of LiDAR Scans to Image Format 33

6.2 YOLOv4 Evaluation . 35
6.2.1 Training . 35
6.2.2 Data Set evaluation . 36
6.2.3 Detection Parameter Setting . 37
6.2.4 Accuracy . 38

7 Regression Network for Wake Vortex Characterization 40
7.1 Data Preprocessing . 40
7.2 Radial Velocity Preprocessing . 41
7.3 Regression Network Evaluation . 42

7.3.1 Hyperparameter Studies . 42
7.3.2 Circulation . 44
7.3.3 Localization . 45
7.3.4 Physical Evaluation . 46

7.4 Explainable AI . 46
7.5 Complete Prediction Pipeline . 48

8 Comparison with the state-of-the-art 50

9 Conclusion 52
9.1 Accomplishments . 52
9.2 Outlook . 52

Bibliography 54

Acknowledgments 62

viii

List of Figures

1 Sketch of the prediction pipeline. 2
2 A sketch of a basic potential vortex flow around origin O. 5
3 Sketch of a finite wing with circulation distribution and vortex sheet form-

ing a horseshoe vortex (taken from [16, p. 646]). 6
4 The trajectories of primary wake vortices and the formation of secondary

vortices. The evolution is according to LES simulations from [22] and the
trajectories according to [23](taken from [24]). 7

5 Sketch of an aircraft flying through a LiDAR measurement plane with
counter-rotating wake vortices (inspired by [10]). 9

6 (a) Example of a FNN with two hidden layers mapping an input vector of
length three to an output vector of length two. (b) Illustration of how one
neuron has information fed forward from the previous layer. [51] 14

7 Heaviside-function (orange), Logistic function with shape parameter � = 5
(blue), Mish (red), ReLU (green), and LReLU (light green). The shape
parameter is chosen to be 5 only for visualization purposes. 15

8 Sketch of general object detectors (taken from [79]). 20
9 Vienna measurement campaign setup of instrumentation with L1-L5 being

the LiDAR positions, A-C being additional meteorological instruments,
and the red dashes being the plates (taken from [9]). 22

10 (a) Example of a raw LiDAR scan. (b) Example of a raw LiDAR scan
transformed to cartesian coordinates. (c),(d) Example of a proxy scan
containing two and four vortices in cartesian coordinate system. 23

11 (a) An arbitrary LiDAR scan. (b) D(R) for the LiDAR scan from (a)
(taken from [36]). 24

12 The basic building blocks of the YOLOv4 Network. (a) Residual Block
with CBM blocks. (b) CSP block with N residual blocks. (c) SPP block. 26

13 An illustration of the architecture of the YOLOv4 network. When the
paths split up, the output is copied. When two paths join, the dot repre-
sents the concatenation of the inputs. 26

14 Three di↵erent grids used in the detection head of YOLOv3. (a) Fine grid:
56⇥ 32. (b) Medium grid: 28⇥ 16. (c) Coarse grid: 14⇥ 8. 27

15 The process of transforming bounding box predictions from an anchor box
prior to a predicted bounding box. (Inspired by [77]) 28

16 The CNN used for the regression tasks with the output dimensions of each
block. The final output dimension depends on whether the vortex center
or vortex circulation strength is predicted. 31

17 Coordinate transformation from a cartesian LiDAR scan to image coordi-
nates. 32

18 (a) A graph of the precision and recall, as well as a graph of the average IoU
and the mAP with respect to the IoU threshold used. (b) Precision-Recall
curve with the optimal precision-recall pair marked. 37

ix

19 Three consecutive LiDAR scans from the same overflight with YOLOv4
bounding box predictions. (a) Correctly predicted bounding box according
to RV method. (b)-(c) False detection of starboard vortex according to RV
method. 38

20 Relationship between the ADE of the YOLOv4 prediction and circulation
�t of the respective vortex. 39

21 Histogram of the maximal absolute radial velocity in every vortex of the
data set. The spike at 30 m/s originates from clipping all velocities above
30 m/s for illustration purposes. 42

22 Radial velocity clipping experiment on localization CNN training (a) and
circulation CNN training(b). 42

23 Training evaluation with validation data and the respective metric. DA
experiment on localization (a) and circulation (b). First layer filter size
experiment on localization (c) and circulation (d). 43

24 (a) Relationship between AE and circulation �t of the respective vortex.
(b) Relationship between PE and circulation �t of the respective vortex. 45

25 Relationship between the ADE of the localization CNN and circulation �t

of the respective vortex. 46
26 (a) Relationship between the AE of predicted Circulation � and vortex

age relative to first detection. (b) Relationship between the ADE of the
predicted vortex center and vortex age relative to the first detection. . . . 47

27 (a) The starboard vortex employed to visualize first layer activations. Lo-
calization CNN:(b) The first feature map activation output and (c) the
input maximizing the response of the first feature map. Circulation CNN:
(d) The first feature map activation output and (e) the input maximizing
the response of the first feature map. 47

28 An illustration of the complete prediction pipeline excluding the initial
preprocessing step. 49

x

List of Tables

1 Activation functions and their derivative. In the derivative of Mish, ! =
4(x+ 1) + 4e2x + e3x + ex(4x+ 6) and � = 2ex + e2x + 2. 15

2 The elevation angles covered correspond to each LiDAR position and the
number of LOSs needed. 22

3 The number of data samples contained in each data set used for training
and validation of YOLOv4 . 25

4 The dimension of the output tensors from the three di↵erent detection
heads and the corresponding anchor boxes. 29

5 The mAP of YOLOv4 trained on proxy scans. 36
6 The mAP of YOLOv4 for the three di↵erent validation data sets after

training with the respective training data sets. The highest mAP for each
validation data set is marked in green. 36

7 MADE as well as MAE for y- and z-coordinates evaluated separately for
each plate line scenario. 39

8 Evaluation of predicted bounding box width and height. 29 829 bounding
box predictions are used for evaluation. 40

9 MAE of the validation data set from the data set cropped by labels and
the data set cropped by YOLOv4’s prediction. 44

10 MADE as well as MAE for y- and z-coordinates separately for each plate
line scenario by the CNN regression. 45

11 Comparison of YOLOv4+CNN with the CNN approach from [10] for both
plate line scenarios and vortex classes separately. 50

12 The absolute and relative improvement of the YOLOv4+CNN approach
compared to the CNN only approach. 51

xi

xii

1 Introduction

1.1 Motivation

One of the most critical flight phases of an aircraft is its final approach. Close vicinity to
the ground can cause severe accidents when the aircraft is subject to unexpected, abrupt
disturbances. Wake vortices generated by previous aircraft hovering above the runway are
one type of disturbance which can cause this undesirable condition [1]. The possibility
of a wake vortex encounter (WVE) is given during any flight stage for an aircraft [2].
Nevertheless, the most problematic flight stage is during the approach and landing since
the proximity to the ground leaves little room for flight path corrections. A WVE can
induce a rolling moment onto the aircraft. The severity of impact and the resulting rolling
moment is influenced by factors such as through which part of the vortex the aircraft
flies. WVEs are not unusual nor unlikely, given that aircraft commonly follow similar
flight paths during approach - unlike for take-o↵s. In the worst case, an encounter can
lead to a severe accident of the aircraft. In January 2017 a CL604 lost approximately 9
000 ft of altitude after encountering wake vortices of an A380 that passed overhead in
the opposite direction [3].

The severity of a WVE depends not only on the encountering aircraft but also on
the aircraft generating the vortices. When the Boeing 747 came into service in the
1970s, serious problems with wake vortices were first considered [4]. To mitigate the
possibilities of a WVE, the International Civil Aviation Organization (ICAO) introduced
landing separations that take wake vortices into account [4]. Three aircraft categories
were introduced, light, medium, and heavy, where the following and leading aircraft pair
categories determine the separation. Studies have shown that these landing separations
are too conservative for a variety of meteorological situations [4] and leads to a capacity
bottleneck and congestion at airports. Although the tra�c volume has declined due to
the COVID-19 pandemic, it is expected to recover until 2025, or latest, 2027 [5, 6]. With
a five-year delay, we can expect roughly 1.5 million unaccommodated flights by 2045,
according to Eurocontrol predictions from 2018 [7].

To address this problem, several ideas exist to increase airport capacity. The most
forward solution would be to increase the number of runways. With new runways, sub-
stantial environmental issues arise. Thus an approach to increase the capacity is to reduce
the aircraft separation standards and adjust them to di↵erent scenarios, while maintaining
or even increasing safety standards. A recategorization program (RECAT) for that need
was introduced by the Federal Aviation Administration (FAA) that aims to refine aircraft
categorization by including more involved wake-related parameters [8]. The RECAT pro-
gram follows three phases, where the ultimate goal is to achieve dynamic pairwise aircraft
separations [8]. In the first phase, six new aircraft categories are introduced, taking into
account the strength of the generated wake vortices and the vulnerability of the follow-
ing aircraft besides only using the aircraft’s weight. The second phase introduces static
pairwise aircraft separations, and phase three aims at turning these separations dynamic,
adjusting the separations to prevailing meteorological conditions [8]. An airport relies
on real-time knowledge of the position and strength of wake vortices to achieve dynamic

1

pairwise separations. For that reason, a Wake Vortex Monitoring System (WVMS) is
desirable.

Furthermore, the development of devices to reduce the strength and durability of wake
vortices could lead to a decrease in aircraft separation. To evaluate the e↵ectiveness
of such devices, measurement campaigns are conducted. For example, a measurement
campaign at Vienna International Airport was conducted to measure the success of so-
called plate lines [9]. With current methods, the evaluation of large data sets takes a long
time. Thus, the need for automatic fast-time evaluation methods is given.

Implementing a fast-time automatic wake vortex parameter characterization algo-
rithm could evaluate these wake vortex measurements and be included in WVMSs. In
recent years the focus shifted from traditional algorithms to machine learning approaches
to achieve fast-time computations. A first approach on the characterization of wake
vortex parameters was done in [10].

1.2 Goal

The goal of this thesis is to make use of the first approach of wake vortex parameter char-
acterization with a convolutional neural network (CNN) from [10] and combine this idea
with new approaches to wake vortex detection using artificial neural networks (ANNs)
for object detection. We aim to develop a prediction pipeline that first detects single
vortices and then characterizes these individually. A sketch of the prediction pipeline can
be found in Figure 1. The object detection and characterization accuracy are studied
individually and, in the end, compared to the CNN only approach of [10].

LiDAR scan Vortex detection

Single Vortex

...
Single Vortex

Vortex characterization

...
Vortex characterization

Figure 1: Sketch of the prediction pipeline.

1.3 Overview

In chapter 2, a brief introduction to the fluid dynamics, basic wake vortex principles and
measurement techniques of wake vortices is given.

A literature review in chapter 3 gives rise to the open research questions of this thesis
based on traditional wake vortex detection algorithms, and recent ANN approaches to
the problem.

After that, we continue with the essential machine learning tools necessary for this
thesis in chapter 4. An introduction to artificial neural networks (ANNs), particularly
convolutional neural networks (CNNs), is given. We describe the basic idea behind object
detection networks, and continue with the essential machine learning tools needed for the
work on this thesis in chapter 4.

2

In the following chapter 5, the data sets and the ANNs we work with are introduced.
The network architecture and essential components of YOLOv4 are explained. The same
goes for the CNN regression we use.

A detailed evaluation of the networks is given in chapter 6 for the YOLOv4 network
and in chapter 7 for the CNN regression. This evaluation contains tests on data prepro-
cessing mechanisms and hyperparameter tuning. The obtained networks are validated,
and the results are discussed. A comparison of the resulting prediction pipeline with
state-of-the-art approaches on wake vortex characterization is given in chapter 8.

In the final chapter 9, a conclusion of the results and answers to the research questions
are given. Furthermore, an outlook on future research is presented.

3

2 Wake Vortex Principles

One uses conservation laws to describe fluid flow with the help of a velocity field, such
as conservation of mass, momentum, and energy. In the most general case, considering
a viscous flow, the momentum equations are called Navier-Stokes (2.2) equation and for
an inviscid flow Euler equation [11, p.135]. The continuity and Navier-Stokes equations
read [12, p. 86 & 104]

@⇢

@t
+r · (⇢V) = 0 (2.1)

⇢

✓
@V

@t
+V ·rV

◆
= �rp+ ⇢f+ µ�V+

µ

3
r (r ·V) . (2.2)

In equations (2.1) and (2.2), p describes the pressure, ⇢ the density, V the velocity, f body
forces and µ the viscosity. To simplify those equations, we can use the assumption of
incompressible flow. With the assumption of an incompressible flow, meaning a constant
density, the conservation of mass or continuity equation (2.1) and Navier-Stokes eqution
(2.2) reduce to [12, p. 86 & 104]

r ·V = 0 (2.3)

⇢

✓
@V

@t
+V ·rV

◆
= �rp+ ⇢f+ µ�V. (2.4)

Assuming incompressibility leading to equations (2.3) and (2.4) is su�cient for a flow
with speeds less than approximately 100 m/s at sea level [12, p. 86]. During aircraft
approach this requirement is met [13].

2.1 Basic Vortex

In fluid dynamics, four elementary flows are considered to be superimposed to form more
complex flows. Uniform, source, and doublet flow can be superimposed to obtain a non-
lifting flow. To get a flow with finite lift, the vortex flow has to be introduced [11, p. 262].
A potential vortex or vortex flow is a two-dimensional flow, thus can be described by Vx

and Vy as velocity components. In a vortex flow, all streamlines are concentric about a
given point and constant along a given streamline. Hence, to describe the flow velocity,
a radial Vr and a tangential V✓ component are used. The radial velocity is Vr = 0, and
the tangential velocity is given by V✓ = C/r with a constant C [11, p. 262]. A potential
vortex with origin O is sketched in in Figure 2.

To understand the flow of a vortex and calculate the constant C, we take the circu-
lation � around a given circular streamline C of radius r into account. The integral can
be evaluated as

� ⌘
I

C

V · ds = V✓(2⇡r). (2.5)

Hence the constant is C = �/2⇡ and the tangential velocity V✓ = �/(2⇡r) [11, p. 263].

4

O

r
V✓

Figure 2: A sketch of a basic potential vortex flow around origin O.

With the help of Stoke’s theorem, we can rewrite the integral in (2.5) even further
[14] to get

� =

I

C

V · ds =
Z

S

(r⇥V)dS =

Z

S

! · ndS. (2.6)

The curl of the velocity is called vorticity ! = r⇥V and is used in (2.6) to abbreviate
the equation even further.

2.2 Wake Vortex

To describe the flow around an airfoil, we introduce a line vortex, also called vortex
filament, based on the potential vortex. A line vortex can be seen as an extension of a
potential vortex perpendicular to its circulation plane. Helmholtz’s vortex theorems state
that the strength of a vortex filament is constant along its length, and it cannot end in
a fluid [15]. Those vortex filaments can be combined to form a vortex sheet describing
the airflow over an airfoil by combining with a uniform flow and replacing the airfoil’s
surface with a vortex sheet of variable strength �(s) [11, p. 328f]. The total circulation
strength � of the vortex sheet replacing the airfoil can be calculated by adding up the
circulations of the single vortex filaments �(s) according to (2.8). The Kutta-Joukowski
lift theorem (2.7) [11, p. 239] describes how the circulation around an aircraft’s wing
enables it to develop lift. This theorem states that the lift force per unit span L0 is
directly proportional to the circulation with flight speed V1 and air density ⇢1.

L0 = �V1⇢1 ,with (2.7)

� =

Z
�ds (2.8)

So far, we only have considered infinite airfoils. In reality, the wings of an aircraft
are finite. The pressure di↵erence between the lower pressure side and the upper suction
side leads to a fluid acceleration in a spanwise direction, which leads to vortex sheets
shedding o↵ and rolling up [13]. The spanwise velocity di↵erence at the top and bottom

5

of the airfoil leads to the roll-up process along the entire length of the wing. Those small
vortices roll up to eventually form a counter-rotating vortex pair [15]. This detachment of
the vortex sheet and bending along the free stream direction leads to a so-called horseshoe
vortex. To model the flow around a finite airfoil, multiple horseshoe vortices are used, as
depicted in Figure 3. As Helmoltz’s vortex theorem states that the strength of a vortex

Figure 3: Sketch of a finite wing with circulation distribution and vortex sheet forming
a horseshoe vortex (taken from [16, p. 646]).

filament is constant, the vortex circulation strength of the trailing vortices is the same as
the initial vortex circulation �0 [15]. If we consider an individual aircraft with maximum
landing weight M , wing span B and final approach speed V1, the circulation of the
generated wake vortices can be calculated by

�0 =
Mg

⇢1b0V1
, with b0 =

⇡

4
B, (2.9)

where ⇢1 is the air density for the standard atmosphere at sea level and g is the gravi-
tational constant [17]. The initial vortex spacing b0, is a standard referencing length in
the research on wake vortices. The equation for b0 in (2.9) assumes an elliptically loaded
wing [17]. Due to significant regions of concentrated streamwise and cross-stream per-
turbations on a wing, e.g., control surfaces, flaps, spoilers, landing gear, more than one
vortex pair can develop [1]. We consider the combination of wing and flap tip vortices as
primary wake vortices, resulting from fully extracted flaps during approach and landing
[18].

The wake vortex evolution can be split into four phases [13]. The shedding of the
vortex sheet and roll up of the primary vortex structures occurs in the near field. In the
extended near field, the flap-tip vortex pair and wing-tip vortex pair merge to form two
counter-rotating wake vortices - the primary vortices. The counter-rotating vortex pair
mutually induces descent velocity in the mid to far field. The fourth phase is the decay
phase. A significant reason for the decay is the so-called Crow instability [19], which
comes from mutual interactions between the sinusoidally deformed vortices leading to
the linking of the vortex pair, and thus the decay of the vortex strength resulting from
the opposite circulation [1]. While Crow instability is a long-wavelength instability, a
shortwave instability inside the vortex cores, termed elliptic instability, accelerates vortex
decay further [20].

During the landing of an aircraft, another decay mechanism factors in. When an air-
craft flies below an altitude of its wingspan, ground e↵ects appear [13]. The trajectories

6

of the descending vortices follow an outward-going hyperbola close to the ground tending
to an altitude of b0/2 [1]. The ground proximity of the primary vortices leads to the cre-
ation of countersign secondary vortex structures detaching from the ground and wrapping
around the primary vortices [1]. The emergence of secondary vortices is caused by the
formation of a boundary layer beneath each primary vortex of opposite-signed vorticity
[20]. Once the adverse pressure gradient in this boundary layer is strong enough, the
secondary vortices detach and wrap around the primary vortices [20]. Furthermore, the
secondary vortices induce an upward motion onto the primary vortex causing a rebound
e↵ect [21].

The vortex trajectories alter in the presence of crosswinds. A crosswind, approxi-
mately equal to the initial descent speed, can cause the upwind vortex to stall over the
runway [1]. A frontal view of the wake vortex trajectories of a landing aircraft can be
seen in Figure 4.

Figure 4: The trajectories of primary wake vortices and the formation of secondary
vortices. The evolution is according to LES simulations from [22] and the trajectories
according to [23](taken from [24]).

The creation of strong secondary vortices can be enhanced by obstacles on the ground
intensifying the decay of the primary vortices [25]. This led to the development of so-
called plate lines placed below the glide path of a landing aircraft in front of the runway.
With simulations and field experiments, an enhanced decay of wake vortices could be
verified [25, 26]. More on plate lines can be found in Section 5.1.

2.3 Measurement

Several techniques for measuring wake vortices exist. They can be split into active and
passive detection methods. Radio Detection and Ranging (RADAR), Light Detection

7

and Ranging (LiDAR), Sonic Detection and Ranging (SoDAR) represent active detec-
tion methods. Passive detection methods include microphone systems, optoacoustic and
ultrasonic detection of circulation [27].

The most common techniques are RADAR and LiDAR. Pulsed coherent Doppler
LiDARs (PCDLs) and Continuous Wave LiDARS (CWLs) are used for wake vortex de-
tection. While CWLs send out a continuous wave of electromagnetic energy and measure
simultaneously, PCDLs send out short bursts of electromagnetic energy and then listen
for their return [27]. We use a data set measured with PCDLs. In wake vortex application
PCDLs are preferred over CWLs, given the higher possible spatiotemporal resolution [27,
28]. Only with high spatiotemporal resolution can the wake vortex evolution over time
be measured.

2.4 LiDAR

The essential components of a LiDAR are a transmitter, and a receiver [29, p. 3]. The
transmitter emits laser beams to capture the movement of air particles, so-called aerosols.
The backscattered signal is measured by the receiver and compared with the emitted
signal. The information retrieval works as follows [30]: The emitted laser pulse replicates
a normal distribution, thence not measuring a distinct point but a measurement volume.
The measurement’s range gate must be retrieved from the time of flight. Given that a
time series of intensities are measured, the Fourier transformation is used to obtain a
frequency spectrum. The Doppler shift fD between the emitted and received signal is
used to calculate the radial velocity according to equation (2.10). Given the Doppler
shift fD, the radial velocity is

Vr =
�fD
2

, (2.10)

where � is the optical wavelength of the emitted laser beam [31].
A LiDAR emits several laser pulses along a so-called Line of Sight (LOS). Spherical

coordinates can describe a LOS. The azimuth angle ✓ describes the horizontal rotation,
the elevation angle ' the vertical rotation, and the range R the distance from the LiDAR.
In Figure 5, a sketch of a LiDAR measurement can be found. The azimuth angle in this
Sketch is constant, and only a change in the elevation angle is illustrated. This measure-
ment gives a Range Height Indicator (RHI) scan type. This reflects the measurement
scenario from the Vienna campaign [9], from which the data for this thesis originates.

Along each LOS, multiple measurements are done at di↵erent ranges and elevation an-
gles. The result is a radial velocity profile of the aerosols at a cross-section perpendicular
to the landing aircraft.

The quality of LiDAR measurements is rated by a Carrier-to-Noise Ratio (CNR) [32].
The CNR measures the energy the backscattered signal carries about filtered atmospheric
noise. A high CNR can be interpreted as a high amount of information in the measure-
ment, while unrealistically high CNR values can result from hitting hard targets. In
contrast, low CNR values can be interpreted as noisy measurements [32]. Given that the

8

'

R

y

z

lz
ly
L

Port
vortex

zc

ycPrt

Starboard
vortex

ycStr

Figure 5: Sketch of an aircraft flying through a LiDAR measurement plane with counter-
rotating wake vortices (inspired by [10]).

LiDARs used are calibrated to have a focal point of 500 m, the measurements outside
that focal point are prone to noise leading to inaccuracies [10].

Inaccuracies in LiDAR measurements not only originate from the focal point, at-
mospheric turbulence, or not measuring a distinct point. The evaluation in cartesian
coordinates also leads to measurement inaccuracies due to a conversion from polar coor-
dinates and the loss of constant step sizes in coordinate directions. Hence the resolution
further away from the LiDAR is lower, giving the need for interpolation.

Although this inaccuracies can lead to errors in evaluating the LiDAR scans, machine
learning approaches are said to be able to adopt and generalize well. Furthermore, by
first applying an object detection to treat wake vortices individually afterward is assumed
to help focus on the important part and ignore most of the inaccuracies.

9

3 Literature Review

3.1 Traditional Wake Vortex Detection

On the one hand, there are predictive models such as the Probabilistic Two-Phase Wake
Vortex Decay Model (P2P) developed at the German Aerospace Center (DLR) [23]. The
P2P performs real-time wake vortex location and strength prediction based on theoreti-
cal models, aircraft configuration knowledge, meteorological data, and ground proximity
information. The drawback of predictive models is the limited amount of real-world data,
leading to inaccuracies [23, 33]. To account for such inaccuracies, fusion models were pro-
posed that combine model predictions and sensor measurements [33]. Although sensor
measurements like LiDAR measurements can account for physical turbulence detection,
this comes at high computational costs and leads to errors like over- or underestimation,
as well as the failure of recognizing mature vortices [33]. The combination of LiDAR
measurements and a probabilistic model mitigates both systems’ stand-alone usage draw-
backs. An example is the Wake Vortex Prediction and Monitoring System (WSVBS) [17].
The WSVBS suggests utilizing LiDAR measurements to monitor and validate the wake
vortex prediction of P2P [17]. A fast-time vortex detection and tracking algorithm is
needed to integrate a conflict detection module that may issue warnings or adapt the
WSVBS predictions [17]. Furthermore, the predictive models can not be used to evaluate
large measurement campaigns such as the Vienna campaign [9].

On the other hand, characterization models characterize wake vortices in measure-
ments. One characterization method is the Velocity Envelope (VE) method [34]. The
reported characterization errors are a standard deviation of 9 m for the vertical, 13 m
for the horizontal coordinates with a median absolute distance error of 7.91 m, and an
absolute error of 13 m2/s for the circulation [35, 10]. Another characterization method
is the Radial Velocity (RV) method [36], explained in further detail in chapter 5.1. The
advantage of the RV method over the VE method is the ability to be used for di↵erent
kinds of LiDARs, i.e., the RV method can also operate on LiDARs with a lower CNR
than needed for the VE method [28]. For higher accuracy measurements, LiDARs with a
shorter wavelength are preferred. The accuracy of the RV method is given as root mean
squared error for the elevation angle of 0.21�, range gate of 1.8 m and 10.3 m2/s for the
circulation [36]. The accuracy of the RV method in terms of vortex center estimation is
comparable to the VE method, but the circulation estimation of the VE method is supe-
rior [36]. Due to the semi-automatic nature of the RV method, the computation time for
a single LiDAR scan is approximately 6 s [32]. Thus, the RV method is insu�cient for
the fast-time detection and tracking of wake vortices needed for WSVBS. Although the
characterization models could be used to evaluate single LiDAR scans, they are not fast
enough to evaluate large amounts of data from measurement campaigns. This gave rise
to the research on new approaches to wake vortex detection such as artificial intelligence
(AI).

10

3.2 Artificial Intelligence for Wake Vortex Detection

The topic of AI nowadays finds its way into any application. AI can also be found in
applications of fluid dynamics [37]. Furthermore, the usage of AI in aviation safety is
of interest, such that the European Union Aviation Safety Agency (EASA) just recently
has published a concept paper “EASA Concept Paper: First usable guidance for Level
1 machine learning applications” [38]. This paper lays out a guideline of objectives one
should address while developing and deploying AI into safety-related or environment-
related applications in all domains covered by the EASA Basic Regulation (Regulation
(EU) 2018/1139) [38]. Objectives taken into account can be grouped into trustworthiness
analysis, learning assurance, explainability, and safety risk mitigation.

In the field of wake vortex characterization, there are three di↵erent tasks where AI
finds application. The identification of wake vortices being present, the detection of
single wake vortices, and the characterization of wake vortex parameters. To identify
a LiDAR scan containing wake vortices, support vector machines (SVM) [39], random
forest (RF) [40], and VVGNet [41] were used. A machine learning model, including other
measurement data, was proposed using a CNN-LSTM approach [42]. An attention-based
model is the most recent approach to wake vortex identification [43].

The second task is to detect wake vortices in a LiDAR scan. For that task, faster
R-CNN [44], and YOLOv3 [45] were used. The faster R-CNN model was trained to detect
vortices but not to classify the vortex type [44]. With a YOLOv3 approach, only the tail
vortices (port) were trained [45] and achieved an accuracy of 94%.

All those approaches did not classify specific vortex parameters like vortex center
or circulation strength. The first approach to classify those vortex parameters used
a feedforward neural network (FNN) and a convolutional neural network (CNN) [10].
Experiments showed that a CNN model is superior to a FNN model [10]. Although this
model could classify wake vortex parameters for di↵erent vortices in a LiDAR scan, it
was trained on detecting a vortex pair leading to issues with scans containing more or
fewer vortices. This can happen when a vortex of a previous overflight stalls over the
runway due to crosswind or when aircraft land close to each other such that the vortex
pair of the preceding aircraft has not yet vanished [1, 10]. Thus, it is desirable to detect
and characterize the wake vortices individually. The goal is to use YOLO as an object
detection ANN to detect individual vortices and employ a CNN for wake vortex parameter
characterization on those vortices individually.

11

3.3 Reasearch Questions

Based on the literature review, the following research questions arise:

1. Can a bounding box detection network, in particular YOLO, accurately detect wake
vortices in a LiDAR scan independent of the number of vortices being present in
the respective LiDAR scan?

2. Can we use YOLO to detect vortices and classify port and starboard vortices ac-
cordingly?

3. Is the bounding box prediction of YOLO already su�ciently accurate to identify
the vortex center?

4. Can an additional CNN improve the vortex center prediction based on the bounding
box prediction?

5. Can we improve the vortex circulation prediction with a CNN used on the bounding
box output compared to a CNN used on the complete scan?

6. Is a pipeline of using first YOLO and afterward a CNN still fast enough for fast-time
prediction?

12

4 Artificial Neural Networks Theory

Artificial neural networks (ANN) were invented by McCulloch and Pitts [46] in 1943.
Since then, the development of ANNs has become increasingly involved and transitioned
from basic feedforward neural networks feedforewar(FNNs) to convolutional neural net-
work CNNs proposed by Fukushima [47] and further developed in [48]. The basic idea of
convolutional neural networks nowadays is still prominent in most neural networks.

In this chapter, we first introduce the basic idea of FNNs to then extend that idea
toward CNNs. Afterward, the training mechanism is explained, and fundamental ideas
of object detection networks are introduced.

4.1 Feedforward Neural Network

The underlying idea of a FNN is to approximate a function f ⇤ that fulfills a particular
task, for example, classification or regression [49, p. 164]. To find such a function, the
FNN has to learn parameters p that define f ⇤. A FNN is built by collecting multiple
neurons to a layer and stacking multiple layers on top of each other to form a network.
The general definition of an FNN is:

Definition 4.1 (Feedforward Neural Network [50]). Suppose L 2 N is the number of
layers and nl is the number of neurons of the l-th layer, with l 2 {1, 2, . . . , L}. Moreover,
let the network be a mapping from Rn1 to RnL . Furthermore, let the weight matrix be
W [l] 2 Rnl+1⇥nl with w[l]

j,k being the weight applied to the output of the j-th neuron of
layer l by the k-th neuron of layer l + 1. The bias of the l-th layer is defined similarly
by b[l] 2 Rnl . The activation function of the l-th layer is called ↵[l] and is applied
componentwise to the output of each neuron of the l-th layer. The output of the neural
network with input x is

a[1] := x 2 Rn1

z[l] := W [l]a[l] + b[l] 2 Rnl+1 , l 2 {1, 2, . . . , L� 1}
a[l+1] := ↵[l](z[l]).

(4.1)

We call the first layer input layer, the last layer output layer, and the layers in between
hidden layers. More details on the activation function in the next chapter.

The term feedforward originates from the behavior of the data fed forwardly through
the network. In Figure 6a, one can see a simple example of such a network. In this
example, the FNN consists of four layers, with the input layer consisting of three neurons,
the hidden layers of four neurons, and the output layer of two neurons. This network
represents a function mapping an input vector x 2 R3 to an output vector a[4] 2 R2.
An illustration of the connection between the input layer and the second layer can be
found in Figure 6b with the corresponding weights written on the connections to the first
neuron of the second layer. Since the outputs of one layer are connected to every neuron
of the next layer, those layers are called fully connected layer or dense layer.

13

a[1]
1

a[1]
2

a[1]
3

a[2]
1

a[2]
2

a[2]
3

a[2]
4

a[3]
1

a[3]
2

a[3]
3

a[3]
4

a[4]
1

a[4]
2

Input
layer

Hidden
layers

Output
layer

(a)

a[1]
1

a[1]
2

a[1]
3

a[2]
4

a[2]
3

a[2]
2

a[2]
1

w1,1w1,1

w1,2w1,2

w1,3w1,3

(b)

Figure 6: (a) Example of a FNN with two hidden layers mapping an input vector of
length three to an output vector of length two. (b) Illustration of how one neuron has
information fed forward from the previous layer. [51]

4.2 Activation Functions

The task of the activation function is to mimic some decision boundary at which a neuron
is activated [52]. The aforementioned bias shifts that decision boundary, thus the name.
A principal idea is whether a neuron fires or not. The use of the Heaviside function (4.2)
can accomplish this idea.

H(x) :=

(
0 , x < 0

1 , x � 0
(4.2)

Over time multiple di↵erent activation functions were intoduced [52]. The activation
functions employed in this thesis are the logistic function �, the rectified linear unit
(ReLU)[53], leaky ReLU [54] (LReLU) and Mish[55]. The logistic function, LReLU and
Mish are the activation functions used in YOLOv4. The activation function used in the
base model of our CNN regression network is ReLU.

The logistic function can be seen as a continuous version of the Heaviside function
(4.2). It is sigmoidal as the logistic function approaches zero for the negative limit
limx!�1 �(x) = 0 and approaches one for the positive limit limx!1 �(x) = 1 [56]. This
leads to the universal approximation theorem by Cybenko [56], stating that a network with
a single hidden layer can uniformly approximate any continuous function of n variables
with support in the unit hypercube ([0, 1]n) when using a sigmoidal activation function. A
similar result was proven by Leshno et al. [57] for a wider variety of activation functions,

14

particularly for ReLU. In Table 1, the activation functions used are displayed with their
respective first derivative.

Table 1: Activation functions and their derivative. In the derivative of Mish,
! = 4(x+ 1) + 4e2x + e3x + ex(4x+ 6) and � = 2ex + e2x + 2.

Activation function First derivative

Logistic �(x) = (1 + e�x)�1 �0(x) = �(x)(1� �(x))

Mish [55] Mish(x) = x · tanh (ln (1 + ex)) Mish0(x) = ex!
�2

ReLU [53] ReLU(x) = x · H(x) = max(0, x) ReLU0(x) = H(x), x 6= 0

LReLU [54] LReLU↵(x) =

(
x, x > 0

↵x, x 0
LReLU0(x) =

(
1, x > 0

↵, x 0

We can introduce a so-called shape parameter to the logistic function ending up with
��(x) = �(�x). The shape parameter changes the slope of the logistic function at zero
to �/4. In Figure 7, one can see the di↵erent activation functions plotted on an interval
of [�1, 1].

�1 �0.5 0 0.5 1

0

0.25

0.5

0.75

1

x [�]

y
[�

]

H(x)
�5(x)
Mish5(x)
ReLU(x)
LReLU0.1(x)

Figure 7: Heaviside-function (orange), Logistic function with shape parameter � = 5
(blue), Mish (red), ReLU (green), and LReLU (light green). The shape parameter is
chosen to be 5 only for visualization purposes.

The choice of activation function depends on di↵erent features. The logistic function is
an analytical function. Thus we do not have problems with di↵erentiation. Furthermore,
it is bounded from above and below. The image of the logistic function lies in the interval
of (0, 1). Thus, it is often used to display some probability or binary classification task.
The ReLU activation function is most prominently for computer vision task [58]. It is
di↵erentiable almost everywhere and bounded from below and unbounded above. Due to
the clipping of negative values, an optimization only feeds back the values of an active

15

neuron. However, this is only occasionally desired, thus LReLU overcomes that problem
but is unbounded above and below. The Mish activation function is similar to ReLU
bounded from below and unbounded above but preserves a small amount of negative
information [55]. Furthermore, it is continuously di↵erentiable everywhere, often a desired
feature in gradient-based optimization [55].

4.3 Optimization

Typical tasks of an ANN are regression or classification. This thesis focuses only on
supervised learning since the data sets introduced in Section 5.1 are labeled, i.e., the data
has corresponding targets, also called annotations. Furthermore, we aim at mapping input
LiDAR scans to specific targets like bounding boxes, vortex center and vortex strength
which can be achieved with supervised learning [59, p. 94]. In contrast, unsupervised
learning exists, where a data set without annotations is used. Unsupervised learning is
most common in tasks like data denoising, compression, or visualization, where the basic
idea is to find properties of the underlying data set [59, p. 94].

We assume that a labeled data set with D data points is given. For each data point
x{i} there exists a label y{i} with i 2 {1, 2, . . . , D}. Such a labeled data set makes it
possible to formulate a loss function. The widely used loss function for regression tasks
is the mean squared error (MSE) loss function [59, p. 91]

L(p) =
1

D

DX

i=1

kf ⇤(x{i},p)� y{i}k2
2
. (4.3)

Let vector p 2 Rs contain all the weights and biases of the network. Then the loss
function is a mapping L : Rs ! R. We aim to find the optimal weights and biases to
minimize the MSE. This process is also called learning. To do so the basic idea is to
use the stochastic gradient descent (SGD) [60], which is based upon the gradient descent
method described by

p p� ⌘rL(p). (4.4)

In the machine learning context, the step size ⌘ is also known as learning rate. Since the
MSE consists of a sum running over our data set, the gradient of the MSE can also be
split into the sum of gradients. One summand of the MSE is

Li := kf ⇤(x{i},p)� y{i}k2
2
. (4.5)

Thus the gradient of (4.3) can be calculated with the help of (4.5)

rL(p) = 1

D

DX

i=1

rLi(p). (4.6)

The idea of the SGD (4.7) is now not to consider all samples of a data set like in (4.6) -
as an update - but instead only consider a single data point chosen uniformly at random,

16

such that the update becomes

p p� ⌘rLi(p). (4.7)

Alternate variants based on this idea exist. For instance, we can employ so-called mini-
batches [61], where a random set of data points I ⇢ {1, 2, . . . , D} is chosen to calculate
the gradient ending up with the update

p p� ⌘
X

i2I

rLi(p). (4.8)

A method based on (4.8) is sometimes referred to as mini-batch gradient descent.
Another choice of loss function used by YOLOv4 is the binary-crossentropy loss

(4.9)[62, p. 206], which is often implemented in binary classification tasks in combination
with a logistic activation function in the last layer [59, p. 60]. As binary-crossentropy
measures the distance between two probability distributions it is favorable in case of
predicting class probabilities [59, p. 73]. The binary-crossentropy is defined as

H(p) = � 1

D

DX

i=1

y{i} log(f ⇤(x{i},p)) + (1� y{i}) log(1� f ⇤(x{i},p)). (4.9)

The optimization algorithm used in this thesis is ADAM, it has shown promising per-
formance in preceding works [10]. The idea behind ADAM is to employ decay parameters
�1 < �2 < 1, which adjust the learning rate. For more details, see “ADAM: A Method
for Stochastic Optimization” by Kingma and Ba [63].

To update the weights and biases individually we need the derivative of the loss func-
tion. To calculate the derivative, FNN suggests an e�cient way via backpropagation
developed by Rumelhart et al. in “Learning Internal Representations by Error Propaga-
tion”[64].

4.4 Convolutional Neural Network

To get an idea of spatial dependence, Convolutional Neural Networks (CNNs) were intro-
duced. Typical CNNs are comprised of five types of layers, explained in this section. The
layers are convolutional layers, batch normalization layers, pooling layers, flatten layers,
and fully-connected layers.

Convolutional Layer

The main building block of a CNN is the convolutional layer. It is based on the linear
operation convolution defined in (4.10).

Definition 4.2 (Discrete 2D-Convolution). Let x,w 2 l1(Z2) and ⇤ : l1(Z2) ⇥ l1(Z2) !
l1(Z2), where l1(Z2) := {f : Z2 ! R :

P
k2Z2 |f(k)| < 1}. The discrete convolution of x

with the convolutional kernel w is then defined by

f(k) = (x ⇤w) (k) :=
X

j2Z2

w(k � j)x(j), k 2 Z2. (4.10)

17

In the context of machine learning, x is called input, w is called kernel or sometimes
also referred to as filter, and the output of the convolution is called feature map [49]. In
our case, the convolutional kernel w 2 Rk⇥k is a finite real square matrix, and x 2 Rn⇥m

corresponds to the LiDAR scans, which are also represented by a finite real-valued matrix
thus (4.10) becomes

fi,j =
k�1X

q=0

k�1X

r=0

wq,rxi�q,j�r , with (i, j) 2 {1, 2, . . .m}⇥ {1, 2, . . . n}. (4.11)

From (4.11), we can get the notion of a weighted sum of neighboring pixel values. Thus
a spatial representation is given. There is also strided convolution with stride s 2 N such
that (4.11) becomes

fi,j =
k�1X

q=0

k�1X

r=0

wq,rxsi�q,sj�r , with (i, j) 2 {1, 2, . . .m}⇥ {1, 2, . . . n}. (4.12)

Strided convolution is sometimes used instead of pooling for dimensionality reduction.
In both convolution cases, the finite dimension of x leads to the problem of missing

values outside the domain. Close to the edge, it occurs such that values outside of the
matrix domain are needed. To provide those values, in machine learning, one uses zero-
padding, extending the matrix dimension by p 2 N and filling in the new values with zero
before applying the convolution [65]. The output shape of a convolutional layer depends
on the input size, the kernel size, the zero-padding, and stride. The most used padding
cases are called valid padding, which corresponds to no padding, and same padding. The
latter corresponds to zero-padding such that the input shape does not change. While the
former causes a shrinkage of the original matrix depending on the kernel size ending up
with f 2 Rn�s+1⇥m�s+1 [65].

The number of trainable parameters of a convolutional layer PCL depends on the
number of input channels cinput, the number of output channels coutput, i.e., the number
of filters in the input layer and output layer as well as the kernel size kh⇥kw. The formula
for calculating the number of trainable parameters of a convolutional layer is then defined
by

PCL = coutput · (cinputkhkw)| {z }
number of weights

+ coutput| {z }
number of biases

. (4.13)

Batch Normalization

A regularisation method sometimes used in CNNs is batch normalization introduced
in [66]. Since the input of each layer follows a di↵erent distribution, training can be
challenging as layers have to always adapt to that distribution [66]. The idea behind
batch normalization is to scale each batch with a mean of 0 and a standard deviation
of 1. To accomplish that, each batch’s mean and standard deviation is calculated. Let

18

B = {x1, . . . , xm} be a batch. The mean and standard deviation are given by

µB =
1

m

mX

i=1

xi and �B =

vuut 1

m

mX

i=1

(xi � µB)2. (4.14)

Batch normalization is now performed by normalizing each data point from the batch
accordingly to (4.15). With the help of (4.14) the normalization of xi is given by

x̂i =
xi � µB

�B + "
, 0 < ". (4.15)

We avoid dividing by zero by adding a small value ".

Pooling Layer

Another option for dimensionality reduction is using a pooling layer. A pooling layer
combines values in small regions to summarize. Mostly pooling layers are utilized after
the activation of a convolutional layer and help to make the representation approximately
invariant to small translations of the input [49]. There are several pooling methods, but
the one used in this thesis is max pooling [67], which filters out the maximal value in a
fixed-size neighbourhood. Another pooling option is average pooling [67], which averages
over a local region. Max pooling can detect subtle local features which average pooling
would miss [67]. In most CNNs, max pooling with a filter of size 2⇥ 2 and a stride of 2
is used, hence also applied in this thesis [68].

Flatten Layer

The flattten layer is used right before the fully connected layer and after the convolutional
layers. It flattens the multidimensional output array to a one-dimensional vector, which
the fully connected layers can use. This is orchestrated by concatenating each row of
a specific feature map one after another, ending up with a large one-dimensional vector
and thus having no trainable parameters.

Fully Connected Layer

The desired output in most applications of ANNs is a vector encoding some information.
Hence as the output layer of a CNN, in most cases fully connected layers are chosen.
An example of a fully connected layer can was previously depicted in Figure 6b. Each
neuron of a fully connected layer is connected with each neuron of the previous layer.
The input to a fully connected layer is a one-dimensional vector. Let a 2 Rninput be the
input to a fully connected layer and y 2 Rnoutput the output of the fully connected layer.
The number of trainable parameters PFCL of such a layer is

PFCL = noutput · ninput| {z }
number of weights

+ noutput| {z }
number of biases

. (4.16)

19

4.5 Object Detection

The task of object detection is not only to classify objects in an image but also to localize
those objects. ANNs performing object detection aim to mark existing objects in any
image with a rectangular bounding box [69]. We define a bounding box as follows.

Definition 4.3 (Bounding Box). Let (xc, yc, w, h) 2 R4, with (xc, yc) being the center
point and (w, h) being the dimension defining the rectangular bounding box B as

B :=

⇢
(x, y) 2 R2 : xc �

w

2
 x xc +

w

2
, yc �

h

2
 y yc +

y

2

�
. (4.17)

There are two main machine learning approaches to object detection. The first ap-
proach starts with a network that proposes regions for interest, the region-proposal net-
work (RPN). A second network - of detection type - then classifies objects in those regions
of interest [70]. Networks following this approach are called two-stage detectors. Promi-
nent state-of-the-art models following this approach are R-CNN [71], fast R-CNN [72],
faster R-CNN [73], mask R-CNN [74] and FPN [75]. The second approach is the one-stage
detectors. One-stage detectors accomplish regression and classification in a single shot.
The most prominent one-stage detectors are YOLO [76], YOLO9000 [77], YOLOv3 [78],
YOLOv4 [79], RetinaNet [80] and SSD [81].

Because the one-stage detectors do not need an RPN, they are faster than the two-
stage detectors enabling fast-time detection. In case of WVMSs and wake vortex tracking
fast-time detection is crucial. For that reason, the chosen object detection network will
be YOLOv41. It outperformed other state-of-the-art object detection networks in terms
of accuracy and speed[79].

Despite the di↵erence of having two stages or only one to do object detection, modern
object detection networks consist of three main parts, the backbone, the neck, and the
head illustrated in Figure 8 [79]. The backbone network, in most cases, is pretrained
for the ImageNet [82] classification task [83]. The task of the backbone is to extract
higher-level features of an image. The role of the neck is to collect feature maps from
di↵erent stages of the backbone and is generally composed of several top-down-paths and
bottom-up-paths. The idea is to let lower-level features and higher-level features interact
[84]. The head predicts the bounding boxes and classification.

Figure 8: Sketch of general object detectors (taken from [79]).

1
During this thesis, YOLOv7 was published, which is superior to YOLOv4 but could not be adapted

to in time.

20

5 Data Sets, YOLO and Regression Network

The focus of this thesis is on the data acquired during the Vienna measurement campaign
[9]. This data set was generated with LiDAR measurements at Vienna International Air-
port from May 2019 until November 2019 by DLR. The data contains the radial velocity
RHI LiDAR scans. Another data set based on vortex models is used for testing purposes.
This data set contains artificial proxy scans that aim to model LiDAR measurements.
The scans in the LiDAR data set from Vienna include atmospheric e↵ects, secondary
vortices, noise, and measurement errors. The proxy data set, in comparison, contains
immaculate data but does not reflect real-life scenarios as it lacks crosswind and other
atmospheric e↵ects. Therefore this data set was only used to evaluate whether YOLOv4
is suitable for detecting di↵erent numbers of vortices in scans.

Both data sets also contain corresponding labels with the vortex center locations
in polar coordinates, Rt,'t 2 R�0 and vortex circulation �t 2 R�0. Hence labels for
supervised training and evaluation are given. The data set used to train the regression net
contains cut-out vortices only from the LiDAR data set. We set up a predicition pipeline
to obtain the individual vortices from the YOLOv4 prediction and input those into the
CNN. Throughout this thesis, we use the terms prediction and estimation equivalently.
In essence, prediction does not represent a prediction in time.

5.1 LiDAR Data Set

Since the Vienna measurement campaign was conducted to evaluate the e↵ectiveness
of plate lines in wake vortex mitigation, the data set contains measurements with and
without plate line usage. Hence in some scans, plate line e↵ects are present. In the
following, a summary of the measurement campaign is given based on “Mitigating Wake
Turbulence Risk During Final Approach via Plate Lines”[9] by Holzäpfel et al. [9].

Figure 9 depicts the setup of the measurement instruments at the runway of the Vienna
International Airport. During the campaign, two plate lines were installed consisting of
eight and nine plates of dimension 4.5 m ⇥ 9 m displayed by red dashes. For the radial
velocity measurement, at most three Leosphere Windcube 200S (1.543 µm) micro-PCDLs
were used at once, positioned at three out of five possible positions (L1-L5). The three
measurement plane combinations used were: (L1, L2, L3), (L2, L3, L4) and (L3, L4, L5)
[25]. At positions A-C, additional meteorological instruments were placed. The runway
is at the bottom of Figure 9, and the aircraft approaches from the top. The average flight
altitudes above ground at LiDAR planes are 40.8 m at L1, 45.8 m at L2, 54.3 m at L3,
64.8 m at L4, and 74.5 m at L5 with a standard deviation of 4.9 m [25].

The LiDAR measured the radial velocities at discrete points along each LOS per-
pendicular to the runway. As the campaign analysis focused only on landings at weak
crosswinds of 1.5 m/s [9], it can be assumed that the vortices shared the same plane as
the LiDAR’s LOSs. Each LOS has 151 measuring points, called range gates, starting at
a range of Rmin = 80 m to a range of Rmax = 530 m with a step size of �R = 3 m. The
minimum and maximum elevation angles used depend on the LiDAR position adjusted to
the average flight altitudes at the di↵erent LiDAR positions. The elevation angle step size

21

Figure 9: Vienna measurement campaign setup of instrumentation with L1-L5 being the
LiDAR positions, A-C being additional meteorological instruments, and the red dashes
being the plates (taken from [9]).

was �' = 0.2� for all positions. The corresponding minimum and maximum elevation
angles used can be found in Table 2. A list of three-tuples can therefore describe a raw
LiDAR scan

(Ri,'j, Vr(Ri,'j)) 2 R3.

The polar coordinates (Ri,'j) represent at which the corresponding radial velocity Vr('i, Rj)
was measured, with i 2 {0, 1, . . . , 150} and j 2 {0, 1, . . . Hlid}.

Table 2: The elevation angles covered correspond to each LiDAR position and the
number of LOSs needed.

LiDAR position ' range Hlid number of LOS beams
L1 0� � 25� 125
L2 0� � 20� 100
L3 0� � 18� 90
L4 1� � 28� 135
L5 0� � 29� 145

An example of a raw LiDAR scan can be seen in Figure 10a with the corresponding
scan transformed to cartesian coordinates in Figure 10b. The grid in polar coordinates

22

is equidistant. Hence transforming to cartesian coordinates, one loses this property. In
Figure 10c and Figure 10d proxy scans with two and four vortices, respectively, are
illustrated.

(a) (b)

(c) (d)

Figure 10: (a) Example of a raw LiDAR scan. (b) Example of a raw LiDAR scan
transformed to cartesian coordinates. (c),(d) Example of a proxy scan containing two
and four vortices in cartesian coordinate system.

YOLOv4 needs bounding box labels, thus we focus on scans in cartesian coordinates,
explained in more detail in section 6.1.1. The input format required for YOLOv4 is that
of images. Thus we have to transform the polar coordinates to an equidistant cartesian
grid, which requires data interpolation. This may lead to inaccuracies, especially for high
range gate values, since the distance between two grid points at the same range gate but
with di↵erent elevation angles increases with the range gate.

Another source of inaccuracies is the time a single measurement takes. Changing the
LOSs takes 50 ms. Hence a LiDAR scan cannot be instantaneous. This time di↵erence
results in radial velocities, measured with a maximal time di↵erence of 7.25 s [32]. The
LiDAR scans were initiated at either end of the elevation angle interval. Consequently,
the resulting data set contains roughly an equal amount of data with a time distortion
from top to bottom and vice versa. Thus this e↵ect can be considered negligible [32].

23

5.2 Labels - Radial Velocity Method

The labels for the data set originate from the assessment of the measurement campaign,
which used micro-PCDLs hence the RV method [36] was used. The idea behind the
RV method is first to estimate the center of the vortices and afterward estimate the
circulations via minimizing a functional. The RV method is described as an example for
two vortices. To estimate the range gate of the vortex center RCi , the maxima of

D(Rk) :=
BlidX

j=0

Vr(Rk,'j)
2 (5.1)

are sought [36]. One example plot of (5.1) can be seen in Figure 11b with the underlying
LiDAR scan in Figure 11a. The corresponding angles can be found by calculating the
mean of the angle 'min(RCi) of minimal radial velocity and 'max(RCi) at the estimated
range gate center [36]. A functional

⇢(�i) =
BlidX

j=0

(Vr(RCi ,'j)� eVr(RCi ,'j;�1,�2))
2 (5.2)

is minimized to fit the best circulation. This functional (5.2) describes the di↵erence
between the radial velocities at the axis of the center range gate of the true LiDAR scan
Vr(RCi ,'j) and a modeled scan eVr(RCi ,'j;�1,�2) calculated theoretically with arbitrary
circulations �1 and �2 [85].

(a) (b)

Figure 11: (a) An arbitrary LiDAR scan. (b) D(R) for the LiDAR scan from (a) (taken
from [36]).

During the measurement campaign, 9 473 approaches were measured with approxi-
mately 20 scans per overflight [9]. Since the targets for the data set were constructed
by the RV method, which is time-consuming, only a fraction of the data can be used for
training, ending up with a data set of 16 349 samples in the complete data set used in

24

three di↵erent variants. The total numbers of the samples per data set can be found in
Table 3 with the corresponding splitting of the data set into training and validation data
sets.

Table 3: The number of data samples contained in each data set used for training and
validation of YOLOv4

Plate Line status Train Validation Total number
up 5 994 958 6 963

down 8 428 969 9 386
both 14 422 1 927 16 349

An internal DLR python package by Grigory Rotshteyn was used to create the proxy
data. It uses the Lamb-Oseen vortex model [86] and places it inside a LiDAR scan
field corresponding to LiDAR position L3 (see Table 2). The initial vortex separation
corresponds to an A320 with b0 = 26.8 m. We place the vortices randomly such that
the vortex center is still contained in the proxy scan. In the case of four vortices, we use
two counter-rotating vortex pairs. In the case of three vortices, we use a counter-rotating
vortex pair and a remaining starboard vortex in the first quarter of the scan. In Figure
10c, a resulting proxy scan with two vortices is depicted, and in Figure 10d, one with
four vortices.

5.3 YOLO

First, object detection is employed to detect wake vortices in the overall LiDAR scans,
in order to tackle the problem of detecting di↵erent numbers of wake vortices in di↵erent
LiDAR scans. The name YOLO is an abbreviation for “You Only Look Ones”, which
reflects the nature of a one-stage detector. We use the original YOLOv42 written in
C/C++ [87].

5.3.1 Network architecture

Like all object detectors, YOLOv4 consists of three parts: the backbone, the neck, and
the head (see Section 4.5). As backbone YOLOv4 uses CSPDarknet-53 [88]. In the neck,
spatial pyramid pooling (SPP) [89] and path-aggregation network (PAN) [90] are used.
For the detection head, YOLOv3 [78] is used. The basic building blocks of YOLOv4 are
illustrated in Figure 12.

CSPDarknet-53 is an update to Darknet-53 [78] incorporating so-called cross-stage
partial (CSP) connections. A CSP block contains convolutional layers with batch nor-
malization and Mish as an activation function, thus abbreviated with CBM. The first
CBM layer in a CSP block uses a stride of two to downsample the input. After that,
the output is copied and fed through another CBM layer, N residual blocks, illustrated
in Figure 12a, and another CBM layer before being concatenated with the second copy

2https://github.com/AlexeyAB/darknet

25

https://github.com/AlexeyAB/darknet

which was only fed through a CBM layer. The concatenation is then again fed through
a CBM layer. An illustration of that process can be found in Figure 12b.

The PAN block combines features extracted at lower layers with features at higher
layers. It uses bottom-up paths to make low-layer information easier to propagate [90].
In Figure 13, PAN is marked by the red connections. The di↵erence between the PAN
YOLOv4 uses to the originally proposed PAN is the usage of the concatenation of feature
maps instead of addition [79].

The SPP block added after the CSPDarknet-53 backbone is used to significantly in-
crease the network’s receptive field and separate out the most significant context features
[79]. This is accomplished using three di↵erent max pooling layers, each with a di↵erent
pooling size, namely 5⇥5, 9⇥9, and 13⇥13. The SPP block is illustrated in Figure 12c.

Res : CBM CBM +

(a)

CSP N : CBM
stride = 2

CBM

Res⇥N

CBM

CBM
CBM

(b)

SPP :

Max Pool: 5⇥ 5

Max Pool: 9⇥ 9

Max Pool: 13⇥ 13

(c)

Figure 12: The basic building blocks of the YOLOv4 Network. (a) Residual Block with
CBM blocks. (b) CSP block with N residual blocks. (c) SPP block.

Instead of the Mish activation function, YOLOv4 uses LReLU in the neck and the
head of the network. After the convolution, batch normalization is also performed in the
neck and head. Those blocks are abbreviated by CBL.

The detection head used is based on the anchor box idea from YOLOv3 [78, 79]. The
functionality of the detection mechanism will be explained in more detail in the next
section. The entire network of YOLOv4 can be seen in Figure 13.

Input
256⇥ 448

CBM
CSP 1
CSP 2
CSP 8

CSP 8

CSP 4 CBL⇥3 SPP CBL⇥3

Upsample
CBL

CBL CBL⇥5

Upsample
CBL

CBL CBL⇥5 CBL CONV
Output 1
56⇥ 32⇥ 21

CBL
stride = 2

CBL⇥5 CBL CONV
Output 2
28⇥ 16⇥ 21

CBL
stride = 2

CBL⇥5 CBL CONV
Output 3
14⇥ 8⇥ 21

Backbone

Neck with SPP and PAN (red connections) YOLOv3 Head

Figure 13: An illustration of the architecture of the YOLOv4 network. When the paths
split up, the output is copied. When two paths join, the dot represents the concatenation
of the inputs.

26

YOLOv3 Head

As detection head YOLOv4 uses the YOLOv3 detection head [79]. The prediction in
the YOLOv3 detection head is made at three di↵erent scales, such that we have three
outputs [78]. Each detection head’s prediction is based on a grid of di↵erent sizes such
that objects of di↵erent sizes can be detected. The grid dimensions can be found in Table
4 and a LiDAR scan with the corresponding grids in Figure 14.

(a) (b) (c)

Figure 14: Three di↵erent grids used in the detection head of YOLOv3. (a) Fine grid:
56⇥ 32. (b) Medium grid: 28⇥ 16. (c) Coarse grid: 14⇥ 8.

To predict the position and dimension of a bounding box, YOLOv3 uses anchor box
priors [78] with width pw 2 N and height ph 2 N. At each scale, YOLOv3 uses three
anchor box priors, such that a total of nine anchor box priors are used. Di↵erent object
shapes can be represented by using di↵erent anchor box priors. For each anchor box
and grid cell, an o↵set, as well as a class and objectness, is predicted. In our case, there
are two classes: port and starboard. The objectness predicts the intersection over union
(IoU) (5.3) of the ground-truth and the proposed box [77]. A metric to measure how
much a predicted box and a ground-truth box match IoU is defined as follows.

Definition 5.1 (Intersection over Union [91]). Let B be a bounding box defined by
(x, y, w, h) and Bgt be another bounding box defined by (xgt, ygt, wgt, hgt), corresponding
to Definition 4.3. The intersection over union (IoU) of B and Bgt is then defined by

IoU(B,Bgt) :=
|B \Bgt|
|B [Bgt|

. (5.3)

The operation |B| corresponds to the cardinality of the finite set B, which is under-
stood as the number of elements a set contains. With IoU and the probability of an
object existing in the predicted bounding box B objectness is defined by [76]

C(B) := P (object)IoU(B,Bgt). (5.4)

The o↵set prediction of YOLOv3 is made by predicting coordinates tx, ty, tw, th repre-
senting the center, width, and height o↵set, respectively. Furthermore, the objectness to
and a probability for each class tci is activated by the logistic function � to represent a

27

probability. The bounding box is then calculated with respect to the center of a grid cell,
defined by the o↵set of cx, cy from the origin at the top left corner, by

bx = �(tx) + cx
by = �(ty) + cy
bw = pwe

tw

bh = phe
th

C(B) = �(to)

P (classi) = �(tclassi) i 2 {1, 2}.

(5.5)

At the testing time, the objectness is multiplied by a conditional class probability
P (classi|object) to give a class-specific confidence score. In that way, the probability of
class i appearing in the bounding box and the quality of bounding box fitting is encoded
[76]. Figure 15 is a sketch of the positioning and scaling of an anchor box to a predicted
bounding box.

Anchor Box

Bounding Box

(cx, cy)

(bx, by)�(tx)

�(ty)

pw

ph

pwetw

pheth

x

y

Figure 15: The process of transforming bounding box predictions from an anchor box
prior to a predicted bounding box. (Inspired by [77])

With that knowledge, we can calculate the output dimension of each detection head.
Let the detection head divide the image into a S1⇥ S2 grid and let each grid cell predict
Bnum bounding boxes. Let furthermore be Cnum be the number of classes to predict. The
dimension of the detection head output can then be calculated by

S1 ⇥ S2 ⇥ [Bnum(4|{z}
bounding box coordinates

+ 1|{z}
confidence score

+ Cnum)]. (5.6)

In our case, the detection heads are after the 139th layer, the 150th layer, and the 161st
layer. Each detection head uses three anchor boxes, i.e., Bnum = 3. Recalling that we
aim to distinguish between the port and starboard vortices, two classes are used, i.e.,
Cnum = 2. In Table 4, the output dimensions for each detection head are calculated
according to equation (5.6).

Since each grid cell predicts three bounding boxes, some large objects or objects
near the border of multiple cells can be well localized by multiple cells [76]. The tool

28

Table 4: The dimension of the output tensors from the three di↵erent detection heads
and the corresponding anchor boxes.

Detection Head Layer Output Tensor Dimensions Anchor Box Dimensions
139 56⇥ 32⇥ 21 12⇥ 16, 19⇥ 36, 40⇥ 28
150 28⇥ 16⇥ 21 36⇥ 75, 76⇥ 55, 72⇥ 146
161 14⇥ 8⇥ 21 142⇥ 110, 192⇥ 243, 459⇥ 401

to mitigate that problem is non-maximum suppression (NMS). YOLOv4 uses greedy
NMS [79]. The idea behind greedy NMS is to select a bounding box with the highest
objectness and suppress all other bounding boxes that have an IoU above a given threshold
Tnms 2 [0, 1][92]. To assign a predicted bounding box to the correct ground-truth box, an
IoU threshold of 0.231 is used [79].

5.3.2 YOLOv4 Loss Function

The loss function for all versions of YOLO can be split into three parts. The first
part evaluates the bounding box prediction, the second part evaluates the objectness
prediction, and the last part evaluates the class predictions. The loss function used by
YOLOv4 is an updated version of the loss function from YOLOv3. For the bounding box
regression, instead of the MSE loss, complete IoU (CIoU) [91] loss is used [79]. The CIoU
loss not only considers the MSE between the bounding box predictions but considers the
overlapping area, the distance between center points, and the aspect ratio [91].

Definition 5.2 (CIoU Loss [91]). Let Bp = B(b, wp, hp) be a predicted bounding box
and Bgt = B(bgt, wgt, hgt) the ground-truth bounding box. Furthermore, let the center
of the bounding boxes be b and bgt, respectively. The consistency of the aspect ratio is
measured by

v :=
4

⇡2

✓
arctan

wgt

hhgt

� arctan
wp

hhp

◆2

. (5.7)

The CIoU loss is then defined, with a trade-o↵ parameter ↵ 2 R�0 and the diagonal
c 2 R�0 of the smallest enclosing box covering Bp and Bgt, by

LCIoU(B,Bgt) := 1� IoU(B,Bgt) +
kb� bgtk2

c2
+ ↵v. (5.8)

The objectness is evaluated with binary-cross entropy loss (4.9) split up into the cases
of an object being present in a grid cell for each bounding box and the case of no object
being present. This is done to force the objectness to be zero if no object is present.
Finally, the classification task is also measured with binary-cross entropy loss (4.9).

The training of YOLOv4 was performed on the TUHH cluster using an NVIDIA
A100-80 GPU. The training of YOLOv4 took aproximately 5 h for the proxy data set
and 7 h for the LiDAR data set.

29

5.3.3 Accuracy Measurement

To evaluate object detectors, we count the true positive (TP), false positive (FP), and
false negative (FN) predictions. In classification problems recall and precision are used
as a measure of success. Recall measures the ratio of TP predictions out of all positive
samples, i.e., a low recall hints at many FN predictions [93, p. 87]. Precision measures
the ratio of TP predictions out of all samples predicted as positive, i.e., a low precision
hints at many FP predictions [93, p. 87]. The formulas to calculate precision and recall
are [93, p. 86]

Precision =
TP

TP + FP
Recall =

TP

TP + FN
. (5.9)

To assign a class to a bounding box, YOLO uses a class probability, i.e., for each class,
a probability of that class being present in a bounding box is predicted. To finally label
that bounding box with a class, a threshold T 2 [0, 1] is used at which probability a class
prediction is used. To find the best threshold and the best compromise between high recall
and high precision, a precision-recall curve is used . The precision-recall curve plots the
precision against the recall for all thresholds T 2 [0, 1] [93]. The average precision (AP)
for a given class now is defined as the area under the precision-recall curve [58]. For each
class we want to detect, the AP is calculated. The mean average precision (mAP) is the
mean of the AP per class and the metric used to evaluate YOLOv4. The mAP can be
calculated for di↵erent IoU thresholds at which a prediction is considered positive also to
reflect the quality of the bounding box.

5.4 Regression Network

The regression network is employed after the YOLOv4 bounding box prediction on the
predicted LiDAR scan sections, where vortices can be found. The task is to enhance the
localization and include a circulation strength estimation for each vortex.

5.4.1 Network Architecture

As base architecture, we use the CNN from “Characterizing aircraft wake vortex position
and strength using LiDAR measurements processed with artificial neural networks” by
Niklas Wartha [10], given that it achieved promising results on complete LiDAR scans
and is assumed to perform even better on single vortices. Instead of training separate
networks for each coordinate prediction and circulation strength prediction, in this work
we only split the task into localization and circulation strength prediction such that we
have two networks to train. The CNN consists of blocks of convolutional layers followed
by max pooling layers, so-called ConvPool blocks. Four of such blocks are used, with the
convolutional layers having a filter size of 3⇥ 3 and the pooling layers having a filter size
of 2 ⇥ 2 and a stride of 2. The first layer uses 32 filters which number is subsequently
doubled [10]. A graph of the CNN is depicted in Figure 16.

30

Input
64⇥ 64

C
o
n
v
P
o
o
l

32
⇥
32

⇥
32

C
o
n
v
P
o
o
l

16
⇥

16
⇥

64

C
o
n
v
P
o
o
l

8
⇥

8
⇥

12
8

C
o
n
v
P
o
o
l

4
⇥

4
⇥

25
6

P
o
o
l

2
⇥

2
⇥

25
6

F
la
tt
en

10
24

D
en

se
64

D
en

se
2/
1

Figure 16: The CNN used for the regression tasks with the output dimensions of each
block. The final output dimension depends on whether the vortex center or vortex circu-
lation strength is predicted.

5.4.2 Training

We use ADAM [63] as an optimizer and MSE (4.3) as a loss function to train the CNN.
To avoid overfitting we include an early stopping mechanism to stop training if no im-
provement of the validation loss is seen for 30 epochs. In the section 7 we perform some
hyperparameter tuning and evaluate di↵erent preprocessing and data augmentation.

Python is the most prominent programming language in machine-learning due to
its open-source nature. Therefore, we use Python as the programming language. The
machine-learning package we employ for implementing CNN regression is Keras [94].
Keras is a high-level API based on Tensorflow [95]. We use Keras version 2.9.0 and
Tensorflow version 2.9.1., which were the latest versions available at the time of starting
the work on this thesis. The training of the regression networks was performed on the
HOREKA cluster using an NVIDIA A100-40 GPU and took, on average, 30 min for each
network.

5.4.3 Accuracy Measurement

Given that we want to evaluate the vortex center and the vortex circulation strength
estimation, we use two metrics. The first metric we use is the mean absolute error
(MAE) defined for a set D of N prediction-label pairs (ŷi,yi) with i 2 {1, 2, . . . , N} by

MAE(D) =
1

N

NX

i=1

|ŷi � yi|. (5.10)

The MAE can be calculated for vectors using the 1-norm or for scalars with the absolute
value. In the case of vortex center prediction, the MAE can be considered for the two
coordinates separately to get a feeling for which coordinate prediction is more precise. If
we replace the absolute error in the sum of (5.10) with the 2-Norm, we obtain the mean
absolute distance error (MADE) which can be used to evaluate the overall distance error.
The MADE is defined by

MADE(D) =
1

N

NX

i=1

kŷi � yik. (5.11)

31

6 YOLOv4 for Wake Vortex Detection

6.1 Data Preprocessing

Before we can use the LiDAR data sets for the training of YOLOv4, the labels and scans
have to be converted to match the architecture of YOLOv4 and the required input data
type. The required input format of YOLOv4 is an image in the form of “.jpg” or “.png”.
Also, the labels have to be converted since the original labels of the data set only contain
the center of each vortex and the circulation strength but no information about the width
and height, which is needed for bounding box predictions. The following sections explain
how to transform the labels and LiDAR scans.

6.1.1 Label Transformation

As a label, YOLOv4 needs the center position of a vortex, a width wB 2 R�0, and height
hB 2 R�0 of the bounding box. As previously mentioned, the initial vortex spacing b0
is a standard referencing length in the research on wake vortices. We employ b0 as the
width and height of the bounding box as label. The initial vortex spacing is unique to
each aircraft type with wing span B and can be calculated according to equation (2.9) [1].
Furthermore, that choice ensures only one vortex center being present in each bounding
box contributing to our goal of individual vortex characterization. The underlying raw
LiDAR data is in the form of polar coordinates (see Section 5.1). LiDAR scans of polar
coordinates displayed in a grid visually distort the vortices. Hence not su�cient for the
usage of b0 as bounding box dimensions. We therefore only focus on LiDAR scans in the
form of cartesian coordinates. The conversion is presented in the following Section 6.1.2.
The formula to transform polar coordinates to cartesian coordinates is given by

y(R,') = R cos('), z(R,') = R sin('). (6.1)

Before normalizing the center coordinates and the bounding box dimensions as YOLO
requires, another transformation from the standard cartesian coordinate system towards
the coordinate system used in images is needed. By mirroring the coordinate system
along the z-axis and shifting the origin of a LiDAR scan (ymin, 0) to (0, 0), illustrated in
Figure 17, we transform the coordinate system accordingly.

z

y(ymin, 0)

transform to

z

y(0,0)

Figure 17: Coordinate transformation from a cartesian LiDAR scan to image coordi-
nates.

Let (y, z) 2 [ymin, ymax]⇥ [zmin, zmax] be the domain of the LiDAR scan with
ymax � ymin = Wlid 2 R being the width and zmax � zmin = Hlid 2 R being the height of

32

the LiDAR scan. Let further (y, z) 2 [0,Wim]⇥ [0, Him] be the domain of an image with
image width Wim 2 N and image height Him 2 N. Since the LiDAR scans, in most cases,
start at an elevation angle of zero, zmin can be considered zero. With the mirroring of
the z-axis according to Figure 17, we get the transformation of the LiDAR coordinates
to image coordinates by calculating

yim(ylid) =
ylid � ymin

Wlid

Wim

zim(zlid) =
zmax � zlid

Hlid

Him

wim(wlid) =
wlid

Wlid

Wim

him(hlid) =
hlid

Hlid

Him.

(6.2)

The last step is to normalize the bounding box coordinates with respect to the image
width Wim and image height Him. Let (yc, zc) 2 R2

�0
be the vortex center according to the

RV method. We use the transformation (6.2) to transform the labels created by the RV
method to bounding box labels (yYOLO, zYOLO, wB, hB) 2 R4

�0
for YOLO by calculating

yYOLO(yc) =
yim(yc)

Wim

=
yc � ymin

Wlid

zYOLO(zc) =
zim(zc)

Wim

=
zmax � zc

Hlid

wB =
wim(b0)

Wlid

=
b0
Wlid

hB =
him(b0)

Him

=
b0
Hlid

.

(6.3)

6.1.2 Conversion of LiDAR Scans to Image Format

As already stated, the input data format YOLOv4 requires is an image in the form of
“.jpg” or “.png”. We use the “.png” format, which supports 16-bit pixel values and
uses lossless compression. Thus, more details are kept after transformation, and no
information is lost. Before converting the LiDAR scan to an image, we employ feature
engineering. LiDAR scans are transformed to a universal measurement grid, low LOSs
and crosswind are removed, and a CNR filter is applied [10].

A universal measurement grid is required as di↵erent LiDAR position measurements
result in di↵erent grids (see Table 2). The largest scan originates from LiDAR position
L5 with a domain of approximately [70 m, 530 m] ⇥ [0 m, 256 m] and average step sizes
of approximately �y = 2.87 m and �z = 1 m. Based on those values and YOLOv4’s
requirement for an image to have dimensions which are multiples of 32, we use a universal
equidistant image grid domain of [70 m, 530 m]⇥ [0 m, 256 m] and feature according step
sizes. To choose a suitable resolution, we consider the recommendation that the smallest
object to detect should be larger than 16 ⇥ 16 pixels [96]. The smallest wake vortex

33

in the data set defined by b0 is produced by aircraft A320 and A20N with a value of
b0 = 26.8 m. We already match that requirement if we keep the step size z-direction at
�z = 1 m, leading to an image height of Him = 256. In the y-direction, we would only
have approximately 9 pixels with the given �y = 2.87 m. Hence we have to choose a
smaller step size. As the width of our domain is 460 m we choose the closest multiple
of 32 as the number of pixels used in the y-direction, which is Wim = 448, such that we
have a step size of approximately �y = 1.03 m.

As a result of the LiDAR measurement starting either at the highest or lowest ele-
vation angle, we first have to interpolate the radial velocities from a LiDAR scan onto
a general grid matching each LiDAR position values from Table 2 by nearest-neighbor
interpolation [97, p. 45]. Nearest-neighbour interpolation is employed considering the
number of radial velocities in each measurement position is consistent. Given that, af-
ter the transformation from polar coordinates to cartesian coordinates, the measurement
grid is no longer equidistant, we use linear interpolation to get the radial velocities at the
image grid points.

To obtain a complete image, the empty space above the LiDAR scan, which can be
seen in Figure 10b, has to be filled with values. It can be assumed that the wind speed is
vertically stratified [98]. Consequently, those missing values are filled constantly with the
average radial velocity at a given height. Given that we further assume the wake vortices
to be parallel and in pairs in most scans, an impact on the average radial velocity can be
considered negligible. Since the maximal height zmax, of LiDAR scans at the positions
L1-L4 are lower, we also have to fill up values above zmax. To fill those values, we pad
with the edge radial velocities given at zmax.

Removing the crosswind in LiDAR scans has been shown advantageous [10, 32]. A
LiDAR scan measured before the overflight of an aircraft is used as a background scan.
This background scan is also interpolated onto the universal image grid. Under the
assumption of vertically stratified wind speeds, we calculate an average wind speed V (z)
according to (6.5) with respect to the height z. From the LiDAR scan, we subtract the
average wind speed as follows

eVr(yi, zj) = Vr(yi, zj)� V (zj) i 2 {0, 1, . . . ,Wim}, j 2 {0, 1, . . . , Him}, (6.4)

V (zj) =
1

Wim

WimX

i=0

Vr(yi, zj). (6.5)

To keep the notation clean, we expect eVr from (6.4) as given and ignore the tilde in the
further course of this thesis.

The reason to remove low LOSs is to mitigate the impact of plate lines and secondary
vortex structures in the measurements since they might lead to large velocity gradients,
which could overshadow patterns of the wake vortices [10]. As a threshold, we choose a
minimum height above the runway centerline of 7 m. Depending on the LiDAR position,
all values below a linear function with a slope of 7/drunway, with drunway being the dis-
tance of the LiDAR to the runway center, are removed. Those removed values are filled
horizontally with the average radial velocity at the respective height.

34

To mitigate measurement errors, we use a CNR-filter to remove all radial velocities
measured with a CNR higher than a given threshold TCNR. We assume a threshold of
TCNR = 0.02 to be su�cient [99].

After those preprocessing steps are done, we convert the resulting radial velocities
into pixel intensities. The “.png” image format supports 16-bit pixel values, such that
we have to transform the radial velocities from an interval of [V min

r , V max

r] to an interval
of [0, 216� 1]. We first apply a Min-Max normalization to scale the radial velocities onto
an interval of [0,1]. This normalization method is suggested in [38]. After that, we scale
the values to a maximal value of 216 � 1 and round them to the next integer value. The
transformation is given by

V pixel

r (Vr) =
Vr � V min

r

V max
r � V min

r

(216 � 1) (6.6)

6.2 YOLOv4 Evaluation

6.2.1 Training

Three di↵erent data set groups introduced in Section 5.1 are utilized for the training of
YOLOv4. LiDAR scans are expected to be homogeneous inside a group only containing
LiDAR scans from one plate line scenario and heterogeneous combined. Therefore, the
patterns found in LiDAR scans from di↵erent plate line scenarios might di↵er. First, the
success of the di↵erent data set groups is evaluated to decide whether di↵erently trained
YOLOv4 versions should be used for the di↵erent plate line scenarios or whether only one
model for both cases is su�cient. Subsequently, the final YOLOv4 model is evaluated in
terms of accuracy and di↵erent detection parameters.

Before training on the LiDAR scans, we train YOLOv4 on a small data set of proxy
scans. The data set contains 1000 proxy scans, with 500 scans having only a single port
vortex and 500 scans having a port and starboard vortex pair. We split that data set
into 800 proxy scans as the training data set and 200 proxy scans as the validation data
set. Supplementary test data sets are employed to evaluate the capability of YOLOv4
to detect more than two vortices, despite being trained with proxy scans containing only
one or two vortices. We use two test data sets with 200 proxy scans each. The first
contains two vortex pairs, and the second contains a vortex pair and an additional port
vortex.

Since using a pre-trained version of Faster R-CNN on the Microsoft Common Objects
in Context data set (COCO) [100] gave promising results [44], we use a version of YOLOv4
pre-trained on the COCO data set as well. COCO data set consists of 328 000 images
containing 2 500 000 labeled instances of common objects from 91 classes [100].

The results after 345 epochs of training can be found in Table 5. The mAP at an
IoU threshold of 50% (mAP@50) for scans containing three or four vortices is found to
be above 90%, despite training YOLOv4 only with scans containing one or two vortices.
Consequently, we assume that YOLOv4 is su�cient for the wake vortex detection task
and generalizes well on a di↵erent number of vortices in a LiDAR scan. The accuracies
in Table 5 also represent a benchmark for the training on the LiDAR data set.

35

Table 5: The mAP of YOLOv4 trained on proxy scans.

Validation
Data Set

Three Vortices
Test Data Set

Four Vortices
Test Data Set

mAP@50 94.91% 90.22% 91.81%

6.2.2 Data Set evaluation

As explained in section 5.1, the data set can be categorized into three di↵erent data set
groups. One data set group with only scans having the plate lines used, one data set
group without using plate lines and the combined data set group. To evaluate which
training works best for YOLOv4, we train it with those three data set groups separately.
The three resulting YOLOv4 models generated by training with each training data set
group, are validated with each validation data set group. We employ the mAP@50 as
accuracy metric, as it is the standard choice for YOLOv4.

The mAP for all di↵erent scenarios can be found in Table 6. As we already have
trained YOLOv4 on proxy scans, we can utilize this model as a pre-trained version of
YOLOv4 and continue training with the LiDAR data set groups. The YOLOv4 model
trained with the combined data set group - containing both plate line scenarios - has the
best mAP for all validation data sets. We thus continue improving that model. This result
is the same for YOLOv4 pre-trained on COCO and proxy scans. In the further course of
this thesis, we only consider the data set group containing both plate line scenarios for
training and validation. The di↵erence between the mAP on the model pre-trained on
COCO and the model pre-trained on proxy scans is negligible. For further training, we
use YOLOv4 pre-trained on COCO as it was also utilized by [45].

Table 6: The mAP of YOLOv4 for the three di↵erent validation data sets after training
with the respective training data sets. The highest mAP for each validation data set is
marked in green.

Pre-trained on COCO

Training Data Set
Validation Data Set

Both Down Up

Both 87.96% 86.79% 89.15%
Down 84.61% 85.55% 83.96%
Up 83.47% 84.22% 82.92%

Pre-trained on proxy scans

Training Data Set
Validation Data Set

Both Down Up

Both 87.96% 86.24% 89.80%
Down 83.19% 84% 82.60%
Up 82.72% 83% 82.66%

By increasing the number of training steps from 14700 to 20000, we push the mAP of

36

the chosen setting even further to 88.53%, which is already close to the mAP of YOLOv4
trained with proxy data (see Table 5).

6.2.3 Detection Parameter Setting

Since we use the YOLOv4 bounding box predictions as input for the regression network,
we have to investigate the parameters used for detection. In particular, the confidence
threshold used for detection has to be considered. We use the regression CNN to enhance
the vortex center prediction. Hence a lower IoU can be considered for validation. So far,
we have always used the mAP for an IoU threshold of 0.5 to evaluate our model. In Figure
18a, precision, recall, mAP, and average IoU for di↵erent values of IoU thresholds can be
seen. Since the precision and recall are the highest at an IoU threshold of 0.25, we evaluate
this case further for di↵erent confidence thresholds. In Figure 18b, the Precision-Recall
curve is plotted for an IoU threshold of 0.25. The best point is marked at a precision of
0.92 and a recall of 0.94, with the confidence threshold being Tc = 0.25. If we favor recall

(a) (b)

Figure 18: (a) A graph of the precision and recall, as well as a graph of the average IoU
and the mAP with respect to the IoU threshold used. (b) Precision-Recall curve with
the optimal precision-recall pair marked.

over precision, a confidence threshold of 0.2 would be the choice. Given that a lower recall
explains increasing numbers of TP predictions and decreasing numbers of FN predictions,
more vortices are captured. In the case of wake vortex prediction, the conservative choice,
of capturing more vortices, is preferred. Therefore we apply a confidence threshold of 0.2
to create the bounding box predictions that are fed into the regression net.

Considering the RV method creating the ground-truth labels also has inaccuracies,
we assume the confidence threshold of 0.2 to be the better choice and continue to use
it for detection. Figure 19 shows an example of wrong YOLOv4 prediction according to
the RV label. The first scan is predicted correctly according to the RV label. In the two
consecutive scans, the RV method no longer detected the starboard vortex, but YOLOv4
has. As previously discussed, the vortex trajectory is a hyperbola without crosswind, but
with a crosswind, the upwind vortex can be expected to stall over the runway [1]. This
is the case seen in Figure 19. Hence we assume the YOLOv4 prediction to be correct

37

and that the RV method could not detect the starboard vortex. Therefore, leads to the
assumption that the actual mAP, precision, and recall are higher than evaluated as we
validate using labels generated by the RV method.

(a)

(b)

(c)

Figure 19: Three consecutive LiDAR scans from the same overflight with YOLOv4
bounding box predictions. (a) Correctly predicted bounding box according to RV method.
(b)-(c) False detection of starboard vortex according to RV method.

6.2.4 Accuracy

To evaluate the accuracy of the YOLOv4 network with a confidence threshold of 0.2 even
further, we assume that the center of the bounding box matches the center of the predicted
vortex. The rationale is that the vortex center is used for the bounding box center label.
We use the validation data set for all those tests containing both plate line scenarios.
After evaluating the validation data set, we find the mean confidence to be 84.54% and

38

the median confidence to be 91.63%. With that result, we can confirm that the bounding
box predictions are of good quality even with a low confidence threshold. To evaluate
the accuracy of the center prediction from YOLOv4, we use the Euclidean distance of
the bounding box center to the vortex center label, i.e., MADE (5.11). Furthermore,
we separately evaluate the MAE (5.10) in the y- and z-directions to understand which
coordinate prediction is more accurate. The results can be found in Table 7. We can
see that the accuracy of the z-coordinate predictions is significantly higher. This can
be explained by the larger velocity gradient present in the z-direction, caused by the
perpendicular measuring of radial velocities only measuring the velocities in the direction
of the LiDAR’s LOS. Based on these values, we can evaluate the enhancement of vortex
center predictions by the following regression CNN.

Table 7: MADE as well as MAE for y- and z-coordinates evaluated separately for each
plate line scenario.

Plate Line Scenario MADE MAE (y) MAE (z)
Both 6.26 m 5.86 m 1.41 m
Up 6.54 m 6.18 m 1.43 m

Down 5.96 m 5.52 m 1.39 m

The di↵erence between the MADE with plate lines and without is 0.58 m, the MAE
di↵erence in y-coordinates is 0.66 m, and for z-coordinates, it is 0.04 m. Those di↵erences
are negligible, normalized by the minimal initial vortex separation b0 = 26.8 m for aircraft
A320 and A20N giving a percentage error. We end up with a rounded percentage error
of 0.02 for the MADE and the MAE in y-coordinates and an even lower percentage error
for the z-coordinates.

To further evaluate the quality of the vortex center prediction, we compare each
prediction’s absolute distance error (ADE) with the circulation strength target �t of the
respective vortex in Figure 20. We can see that YOLOv4 is more accurate at predicting
the vortex center of stronger vortices. Those vortices, in most cases, belong to aircraft of
the heavy category.

Figure 20: Relationship between the ADE of the YOLOv4 prediction and circulation
�t of the respective vortex.

39

7 Regression Network for Wake Vortex Characteri-
zation

After we obtain the bounding box predictions, we employ a regression CNN based on
[10] to enhance the localization and perform a vortex circulation strength estimation.
As input for the CNN, we use the cut-out vortices. In the following, the term vortex
is used equivalently to the cut-out vortices from bounding boxes. Before the network
can be trained, we must preprocess the vortices and labels. The original labels refer to
the whole scan, so we must translate the labels to match the coordinate system of the
vortices.

7.1 Data Preprocessing

The YOLOv4 network uses scans converted to images as input. Due to that conversion,
we assume to lose important physical information needed to estimate the circulation
strength [101]. For that reason, we use the original LiDAR scans as base data. As the
predicted bounding boxes can vary in size, but the regression CNN needs a constant
input dimension, we have to choose a su�cient dimension as input. The bounding box
size depends mainly on the initial vortex separation b0, given that we labeled the data
based on that (see Section 6.1.1). The largest initial vortex separation of the data set
is b0 = 62.7 m (A380). Therefore, a maximal width and height of 64 m, including a
safety factor, is assumed to be su�cient. To test that assumption, we check the width
and height of every bounding box prediction on the complete data set, including both
training and validation data. The result is summarized in Table 8. Since more than 99%
of predicted bounding boxes have a width and height below 64 m, we see the assumption
confirmed and use matrices x 2 R64⇥64 as input for our regression network. Besides that,
we already know the MADE of YOLOv4, which is 6.26 m on the validation data set.
Hence the vortex center is contained.

Table 8: Evaluation of predicted bounding box width and height. 29 829 bounding box
predictions are used for evaluation.

Mean Median 99-th percentile Maximum Below 64 m
BB width 35.16 m 32.73 m 61.02 m 86.68 m 99.43 %
BB height 34.6 m 32.41 m 57.04 m 74.36 m 99.78%

Given that our goal is to individually characterize vortices, we do not only consider the
center of the predicted bounding box and cut out a patch of dimensions 64 m⇥64 m. As
previously mentioned, we chose the bounding box width to be the initial vortex separation
b0 to ensure only one vortex center is contained in a bounding box. Accordingly, the
predicted bounding box width and height are used to cut out the vortices.

If a bounding box is larger than 64 m in any dimension, we crop the bounding box
symmetrically to have the required dimension. If a bounding box is smaller than 64 m

40

in any dimension, we pad the vortex with the mean vortex radial velocity symmetrically,
such that the vortex is centered.

The problem of YOLOv4 predicting more vortices than labeled, is addressed by match-
ing labels with bounding box predictions. For each scan, we match each predicted vortex
to the closest ground-truth vortex with respect to its center. Considering the largest
bounding box, being 56 m⇥ 56 m, the farthest point on the edge of that bounding box is
39.6 m away from the center. The prediction is ignored if the closest ground-truth vortex
center is further away than a threshold of 40 m.

In the data set with both plate line scenarios, we have 25 315 vortices labeled in the
training data set and 3 389 vortices labeled in the validation data set. After matching
the vortices with the correct labels, we end up with a data set of 24 693 vortices in
the training data set and 3 249 vortices in the validation data set. After the bounding
box prediction, 95.86% of vortices in the validation data set remain, and 97.54% of the
vortices in the training data set remain. These values match the accuracy of YOLOv4,
showing that the threshold used for matching was su�cient. The reason for losing a
higher percentage in the validation data set is that ANNs usually perform better on the
data they have been trained with than on the data they have never seen before [50].

7.2 Radial Velocity Preprocessing

It is advantageous to incorporate prior knowledge of the data utilized for training and
validation, and transform it respectively to simplify the job for the machine-learning
model [59]. To gain prior knowledge of the data set, we take a closer look at each
vortex’s radial velocities. A common preprocessing strategy is to normalize the data set
to have a mean of zero and a standard deviation of one [59]. Since this was useful for
other wake vortex estimation CNNs, we normalize the complete data set to have a mean
of zero and a standard deviation of one [10]. We achieve this by calculating the overall
mean radial velocity V r and the standard deviation �Vr . We then subtract the mean and
divide by the standard deviation to obtain

eVr =
Vr � V r

�Vr

. (7.1)

Another feature taken into account is the maximal radial velocity in each vortex. Large
values in the input can lead to large gradient updates that will prevent the network from
converging [59]. To remove radial velocity outliers, we find a threshold value at which
radial velocities are clipped. A histogram of the absolute maximal radial velocity per
scan can be found in Figure 21. Based on that, we assume a threshold of 20 m/s to be
su�cient since 99% of all absolute radial velocities lie below 17.81 m/s.

To evaluate that threshold, we test the e↵ectiveness of clipping radial velocities on
the base CNN introduced in section 5.4. The training results, employing radial velocity
clipping, can be seen in Figure 22a and 22b compared to a lower threshold of 10 m/s and
no threshold. In the localization prediction clipping, the radial velocity at a threshold
of 20 m/s works best. The impact it has in the case of circulation strength prediction is

41

Figure 21: Histogram of the maximal absolute radial velocity in every vortex of the
data set. The spike at 30 m/s originates from clipping all velocities above 30 m/s for
illustration purposes.

negligible. To keep the networks consistent, we incorporate a radial velocity clipping at
a threshold of 20 m/s in the localization and circulation strength prediction.

(a) (b)

Figure 22: Radial velocity clipping experiment on localization CNN training (a) and
circulation CNN training(b).

7.3 Regression Network Evaluation

7.3.1 Hyperparameter Studies

We already studied the e↵ect of radial velocity clipping in Section 7.2. In this section,
we further investigate the e↵ect of data augmentation (DA) during training times, which
is a powerful technique to mitigate overfitting in computer vision tasks [59]. Standard
DA includes rotation, translation, zooming, shearing, and horizontally flipping [59]. The
translation is the only DA process that does not alter the physical information a vortex
contains. Thus only translation is considered for DA. Since we use a canvas of 64 ⇥ 64
pixels as an input for the CNN and most of the bounding box predictions are smaller,

42

we can shift the vortex horizontally and vertically in that canvas and adjust the vortex
center label, respectively.

Given that we estimate vortex parameters, the idea is to have a larger filter size in
the first layer such that we capture more information about the vortex at first sight. To
evaluate this hypothesis, we conduct training of the basic CNN but change the filter size
in the first layer to 9⇥ 9 instead of 3⇥ 3. A summary of the training processes with all
those di↵erent hyperparameter settings can be found in Figure 23.

We can see that the training process without DA is highly superior in the case of
vortex center prediction (Figure 23a) but not so much in the case of circulation strength
prediction (Figure 23b). We assume this is the case since the circulation strength of a
vortex is independent of its position. However, when shifting the vortex, we also shift the
vortex center, making it harder for the network to learn the vortex center parameters.
For that reason, we chose not to use DA.

The impact of the filter size in the first layer can be seen in Figure 23c and Figure
23d. We can tell that the training process does not improve using a larger filter in the
first layer. Hence we stick to the initially proposed CNN.

(a) (b)

(c) (d)

Figure 23: Training evaluation with validation data and the respective metric. DA
experiment on localization (a) and circulation (b). First layer filter size experiment on
localization (c) and circulation (d).

A test of di↵erent activation functions, e.g., ReLU and Mish, also showed no di↵erence

43

in training. Therefore we keep using ReLU as an activation function in our CNN.
Batch normalization after the convolutional layers also showed no improvement. Since

we could not see an advantage we omit batch normalization to not distort the physical
properties.

For the final training we use the initially proposed network but employ radial velocity
clipping as an additional preprocessing step. The CNN for vortex center estimation has
453 570 and the CNN for vortex circulation strength estimation has 453 505 trainable
parameters. As a regularization factor, we use an early stopping mechanism during
training [59]. This method was shown to be su�cient in a foregoing application of CNNs
for wake vortex parameter characterization with a maximal epoch number of 100 and an
early stopping after 30 epochs without improvement [10]. As a batch size we employ 128,
such that we can fully utilize the GPU at hand.

7.3.2 Circulation

The CNN model to predict circulation strength only di↵ers from the CNN model for
localization in the output dimension. Circulation is a scalar property, thus the output
dimension of the CNN is set to be one corresponding to scalar regression.

We first test the network’s performance on perfectly cropped vortices, i.e., vortices
based on the bounding box labels. Then we train another network on the YOLOv4 output
vortices. The results can be seen in Table 9. We can see that we could nearly achieve the
same accuracy with the YOLOv4 output as with the perfectly cropped vortices. Hence
we assume that we can not further improve the accuracy without changing the model
architecture significantly. Further investigations are done only considering the output of
YOLOv4.

Table 9: MAE of the validation data set from the data set cropped by labels and the
data set cropped by YOLOv4’s prediction.

Label Crop YOLOv4 Crop
MAE 22.31 m2/s 22.97 m2/s

As previously mentioned, we found a correlation between the circulation strength and
ADE of the YOLOv4 vortex center prediction (Figure 20). In the case of circulation
strength prediction, we do not have a correlation between the absolute error (AE) of the
circulation CNN and the corresponding circulation strength target. This can be seen in
Figure 24a. That we can still have a comparison here, we consider the percentage error
(PE), which is the AE divided by the annotated circulation strength. The percentage
error can be seen in Figure 24b. Here we can see a slightly higher PE for low circulation
with outliers, i.e., the accuracy is higher for strong vortices.

The goal, in the end, is to detect hazardous wake vortices. The hazard depends on
the aircraft encountering and the path through the wake vortices [32], which can not be
considered here, but also on the vortex circulation strength. Since 100 m2/s was chosen
as a suitable threshold in [10], we classify a vortex as hazardous if the circulation is above

44

(a) (b)

Figure 24: (a) Relationship between AE and circulation �t of the respective vortex. (b)
Relationship between PE and circulation �t of the respective vortex.

that threshold. With this threshold, we can evaluate the precision and recall by applying
equation (5.9) to evaluate the CNN on the validation data set. The precision of the
circulation CNN is 96.11 %, and the recall is 95.28%

7.3.3 Localization

Since we do not use DA, the vortex center of a perfectly cropped vortex is always in the
center of the input data. Hence the CNN only trains to predict that the vortex center
coincides with the center of the input data for perfectly cropped vortices. We, therefore,
can not get benchmark values on how a network would behave on perfect bounding box
predictions.

The results of the CNN for localization can be found in Table 10. To evaluate the
improvement in comparison to the YOLOv4 center prediction, we use Table 7. The
CNN improved the overall MADE with the CNN by 3.18 m, which is approximately
half the error in comparison to solely using YOLOv4. If we take a closer look at which
improvement accounts for the decrease in the localization error, we see that the MAE
for the y-coordinate was more than halved from 5.86 m to 2.29 m. The MAE of the
z-coordinate increased in the CNN prediction by 0.16 m. Hence the MADE improvement
is due to a better y-coordinate prediction. The slightly higher MAE in z-coordinates of
0.16 m for both cases is negligible as normalized by the minimal initial vortex separation
b0 = 26.8 m is only, rounded to three decimals, 0.006.

Table 10: MADE as well as MAE for y- and z-coordinates separately for each plate line
scenario by the CNN regression.

Plate Line Scenario MADE MAE (y) MAE (z)
Both 3.08 m 2.29 m 1.57 m
Up 3.10 m 2.30 m 1.58 m

Down 3.06 m 2.27 m 1.56 m

Again we can see that the prediction in the case of no plate line usage is insignificantly

45

better. While for YOLOv4 center prediction, we had a MADE di↵erence between the
up and down cases of 0.58 m, we now have a di↵erence of 0.04 m. Hence we can assume
that the plate line scenario has no significant impact on the quality of the vortex center
prediction. The relationship of the ADE and the circulation strength target �t looks
similar to the one of YOLOv4 (see Figure 20) and can be seen in Figure 25. The main
di↵erence is that we now have a lower mean, and we see less outliers.

Figure 25: Relationship between the ADE of the localization CNN and circulation �t

of the respective vortex.

7.3.4 Physical Evaluation

In this section, we evaluate how far the physical properties of a vortex play a role in
the prediction accuracy. We focus on the prediction accuracy in relationship with the
time after vortex detection, i.e., the vortex age. As the circulation strength of a vortex
decreases with age [1], we could expect from previous results that the localization error
increases with the vortex age. Furthermore, as we could not find a correlation between
the circulation strength and the circulation strength absolute error, we expect the cir-
culation strength prediction to not correlate with vortex age. In Figure 26, we can see
the localization and circulation error compared to the time after first detection of the
vortices.

The MAE for circulation strength prediction interestingly decreases with the vortex
age. As explained in Section 2.2, a wake vortex evolves in four phases. Hence a reason
for decreasing circulation MAE with relative vortex age could be that the roll-up process
has to finish to detect the vortex circulation better. We do not see any correlation with
the vortex age for the localization error.

7.4 Explainable AI

EASA defines AI explainability as the “Capability to provide the human with under-
standable, reliable, and relevant information with the appropriate level of details and
with appropriate timing on how an AI/ML application is coming to its results.” [38, p.
56]. Multiple techniques exist to visualize what a CNN learns. We focus on the first layer

46

(a) (b)

Figure 26: (a) Relationship between the AE of predicted Circulation � and vortex age
relative to first detection. (b) Relationship between the ADE of the predicted vortex
center and vortex age relative to the first detection.

of both regression CNNs and visualize the intermediate output of the first layer and the
filters of that layer, following [59, pp. 160 - 172].

In Figures 27b and 27d, we can see the output of the first convolutional layer given
the starboard vortex, depicted in Figure 27a, as input of both the localization 27b and
circulation 27d CNN, respectively. We notice that the activations of both networks look
similar in the first layer. The output of the circulation CNN seems to look smoother
and capture more general vortex information. Although we pad the vortex, it can be
seen that the networks only use the vortex for their information gain. In general the
first layers carry basic information, and the last layers carry more pieces of information
toward the target [59, p. 166]. As the input is the same on both networks and the
physical information to extract is related, it is reasonable that both networks first look
for gradients inside a vortex.

(a) (b) (c) (d) (e)

Figure 27: (a) The starboard vortex employed to visualize first layer activations. Lo-
calization CNN:(b) The first feature map activation output and (c) the input maximizing
the response of the first feature map. Circulation CNN: (d) The first feature map acti-
vation output and (e) the input maximizing the response of the first feature map.

A technique to visualize what the first layers of a CNN are looking for is to maximize
the activation by finding the best input. As training a network is done with gradient
descent methods, we can use gradient ascent to maximize the response of a layer given a
blank input to start with [59, p.167]. The output then provides an input to which each

47

filter is maximally responsive. The visualization of the first filter of the first convolutional
layer can be seen in Figure 27c for the localization CNN and Figure 27e for the circulation
CNN. The localization CNN seems to respond to high radial velocity patches in a vortex,
but at a smaller scale than the circulation CNN. This explains why the activation of the
circulation CNN looks more smoothly than the one of the localization CNN.

7.5 Complete Prediction Pipeline

After training, the prediction time of the complete pipeline can be evaluated. An example
of one LiDAR scan being processed can be found in Figure 28. Although the bounding box
prediction is made on an image converted from a LiDAR scan, we use the radial velocities
and not the pixel intensities for illustration purposes. The original input LiDAR scan has
previously been presented in Figure 10a and converted to cartesian coordinates in Figure
10b.

The pipeline includes the preprocessing and transforming of a LiDAR scan to an
image. After that, the bounding box prediction by YOLOv4 is made, illustrated in Figure
28a. Based on the bounding boxes, the vortices get cropped from the original scan (Figure
28b,28c) and preprocessed according to previously explained feature engineering. Those
vortices are fed into the circulation prediction CNN and the localization prediction CNN.
The predictions of the CNNs can be found in Figure 28d and Figure 28e, for the starboard
and port vortex, respectively. The combination of the YOLOv4 prediction and the CNN
prediction is depicted in Figure 28f.

The average time this pipeline takes is 0.13 seconds on the HoreKa supercomputer
with an NVIDIA A100-40 GPU and an Intel Xeon Platinum 8368 CPU. The CNN-only
approach took 0.16 seconds for evaluation but was also performed without the usage of
a GPU [10].

48

(a) YOLOv4 Predicition

(b) Cropped Starboard Vortex (c) Cropped Port Vortex

(d) CNN on Starboard Vortex (e) CNN on Port Vortex

(f) CNN Prediction included in YOLOv4 Prediction

Figure 28: An illustration of the complete prediction pipeline excluding the initial
preprocessing step.

49

8 Comparison with the state-of-the-art

Since the labels for our data set were created with the RV method, we can only give a
qualitative comparison. We must expect the accuracy of our approach to be, at most, the
one used for labeling the data set. Given that the labels created with the RV method,
might contain inaccuracies, and the data used also contains inaccuracies due to the nature
of LiDAR measurements, a natural accuracy limit is given.

The traditional wake vortex characterization methods, the RV and VE methods, pre-
dict the vortex center in polar coordinates. Only the VE method provides an error in
terms of absolute distance that we can compare our approach with. Those errors are
only theoretical estimations [35, 36]. The median ADE for the VE method is 7.91 m [10].
YOLOv4 has a median ADE of 5.78 m, and the YOLOv4+CNN approach can reduce
this to a median ADE of 2.24 m. As the RV method has an accuracy similar to the VE
method for the vortex center estimation, we can compare both methods to our approach.
The median ADE is of the same magnitude, so that we can say the prediction is of similar
quality as the RV and VE method.

The most recent and only approach to predicting wake vortex parameters with an
ANN can be found in [10] with the best results using a CNN. A comparison of the
prediction of the herein presented approach - first using YOLOv4 and then using a CNN
- with the results of the CNN from [10] can be seen in Table 11. The prediction accuracies
were increased in all categories independent of both, the plate line scenario and the vortex
class.

Table 11: Comparison of YOLOv4+CNN with the CNN approach from [10] for both
plate line scenarios and vortex classes separately.

Plate Lines Up

ANN Port
MAE �[m

2/s]
Starboard

MAE �[m
2/s]

Port
MADE [m]

Starboard
MADE [m]

YOLOv4 - - 7.59 5.30
YOLOv4+CNN 21.40 23.88 3.26 2.91
CNN-only [10] 31.08 33.21 46.90 46.70

Plate Lines Down

ANN Port
MAE �[m

2/s]
Starboard

MAE �[m
2/s]

Port
MADE [m]

Starboard
MADE [m]

YOLOv4 - - 6.64 4.94
YOLOv4+CNN 20.88 27.22 3.23 2.82
CNN-only [10] 25.76 32.24 21.89 22.70

The absolute and relative improvement of the prediction pipeline in comparison to
the CNN only approach is captured in Table 12. We could achieve a significant improve-
ment of more than 93 % in the localization prediction accuracy in the case of plate line
usage and more than 85 % without plate line usage. The improvement of the circulation
prediction is also more significant in the case of plate line usage compared to the scenario

50

without plate lines. For circulation strength prediction we achieved a minimal accuracy
improvement of 15.52% for starboard vortices in the case without plate lines. The max-
imal improvement of the circrulation strength accuracy was achieved for port vortices
and plate line usage with an improvement of 31.15%. Compared to localization accuracy,
the circulation strength accuracy improvement is significantly lower. This gives rise to
the asssumption, that most of the localization accuracy improvement originates from the
YOLOv4 prediction.

Table 12: The absolute and relative improvement of the YOLOv4+CNN approach
compared to the CNN only approach.

Improvement (absolute/relative)

PL Port
MAE �[m

2/s]
Starboard

MAE �[m
2/s]

Port
ADE [m]

Starboard
ADE [m]

Up -9.68/-31.15% -9.33/-28.09% -43.64/-93.04% -43.79/-93.77 %
Down -4.88/-18.94% -5.02/-15.52 % -18.66/-85.24% -19.88/-87.58 %

A significant di↵erence between the approach combining YOLOv4 and CNN for pre-
diction and the CNN-only approach is that it is independent of the plate line scenario
and the vortex class in the case of vortex center localization, whereas in [10], they use a
di↵erent CNN for every possible scenario, and also predict the localization coordinates
separately. In the case of circulation strength prediction we can still see a discrepancy be-
tween di↵erent plate line scenarios and vortex classes. Especially the circulation strength
prediction of starboard vortices without plate line usage has the highest MAE with 27.22
m2/s.

Furthermore, the usage of YOLOv4 made us independent of the number of vortices
in each scan. The CNN-only approach had to set unavailable targets for scans only
containing one vortex or iterate over scans multiple times with more than two vortices.
With the new approach, we can feed each scan through our pipeline independently of the
number of vortices.

The hazard detection can also be compared by using the precision value. The precision
of the CNN-only approach was 88.6% [10]. With the new approach, we could increase
the precision by 7.51% to gain a precision of 96.11%.

51

9 Conclusion

9.1 Accomplishments

As it was one of the biggest issues of the convolutional neural network (CNN) approach
using a complete LiDAR scan, the goal main goal of this thesis was to implement a
pipeline for independent vortex analysis. Therefore, a pipeline of YOLOv4 bounding
box prediction and CNNs to enhance the localization prediction and additionaly provide
circulation strength predictions, was used.

To evaluate the fundamental behavior of YOLOv4, we first used proxy scans. We were
able to show that YOLOv4 generalizes well on a di↵erent number of vortices contained
in a LiDAR scan. This result made the processing pipeline independent of the number of
vortices for further characterization. Furthermore, YOLOv4 classifies port and starboard
vortices with a precision of 92% and a recall of 94%.

The bounding box prediction of YOLOv4 already gave an improvement on the local-
ization accuracy. The mean absolute distance error (MADE) of vortex center prediction
could be improved significantly to 6.29 m . This still left room for further enhancement.
Thus, a CNN for vortex center prediction on individual vortices was employed.

Besides YOLOv4 drastically decreasing the localization error, the accuracy could be
further enhanced with an additional CNN for localization. The final MADE is 3.08 m,
approximately halving the MADE from YOLOv4.

Another wake vortex aspect we looked at was circulation strength. To predict the
circulation strength of individual vortices, the same preprocessing routine and CNN ar-
chitecture as for localization was used. An independent CNN was trained only for circu-
lation strength prediction. As a benchmark value, perfectly cropped vortices were used to
investigate whether a similar accuracy on cropped vortices based on YOLOv4 predictions
can be achieved. The mean absolute error (MAE) could be improved by a minimum of
15.52 % for starboard vortices in combination without plate line usage and a maximum
of 31.15 % for port vortices in combination with plate line usage. The final MAE is 22.97
m2/s.

Furthermore, we could show that by using YOLOv4 before wake vortex localization,
we became independent of the plate line scenario and vortex class, achieving similar
accuracies in all cases despite having no di↵erent CNNs for each case.

9.2 Outlook

During the evaluation of YOLOv4, the assumption arose that it detects more vortices
than the traditional RV method could catch. This assumption still needs to be verified.
We need perfect labels to verify this assumption, which the RV method can not give. A
data set created with LiDAR scan simulations, where the vortex center and circulation
can be set precisely, could be used to validate this assumption. This data set must also
be more sophisticated than the proxy scans to represent noise, atmospheric turbulence,
and boundary layer e↵ects.

52

Furthermore, one could enhance the YOLOv4 prediction with employing custom an-
chor boxes and trying di↵erent scan resolutions. Future studies might take a look on how
to choose the prefect anchor boxes for the application of wake vortex detection. Including
further LiDAR scans from di↵erent airports and additional aircraft types would benefit
the networks’ generalizability.

We saw that the first layers of the localization and circulation CNN behaved nearly the
same. An improvement might be achieved by predicting circulation and vortex position
in a single CNN, including a custom loss function to separately represent the localization
and circulation strength predictions.

Furthermore, we inspected wake vortices as 2D objects when in reality, they can
be seen as 4D objects. The idea is to incorporate at least the time axis into training
and let the network learn some features like vortex decay and other vortex evolution
mechanisms. One could achieve such by using recurrent neural networks like LSTM for
training on sequences of LiDAR scans instead [43]. This could improve the accuracy and
help to track vortices over runways.

Besides, the application to aircraft wake vortices, the treatment of wake vortices
individually makes it possible to adjust to new applications. One might be the evaluation
of wake vortices generated by wind turbines to optimize the placement of wind turbines
in a wind farm.

53

References

[1] J. N. Hallock and F. Holzäpfel. “A review of recent wake vortex research for
increasing airport capacity”. In: Progress in Aerospace Sciences 98 (2018), pp. 27–
36. doi: 10.1016/j.paerosci.2018.03.003.

[2] M. Hoogstraten, H. G. Visser, D. Hart, V. Treve, and F. Rooseleer. “Improved
Understanding of En Route Wake-Vortex Encounters”. In: Journal of Aircraft
52.3 (2015), pp. 981–989. doi: 10.2514/1.C032858.

[3] Bundesstelle für Flugunfalluntersuchung. Bulletin Unfälle und Störungen beim Be-
trieb ziviler Luftfahrzeuge Januar 2017. Braunschweig, 2017. url: https://www.
bfu-web.de/DE/Publikationen/Bulletins/2017/Bulletin2017-01.pdf?__

blob=publicationFile.

[4] T. Gerz, F. Holzäpfel, and D. Darracq. “Commercial aircraft wake vortices”. In:
Progress in Aerospace Sciences 38.3 (2002), pp. 181–208. doi: 10.1016/S0376-
0421(02)00004-0.

[5] EUROCONTROL. Seven-Year Forecast 2021- 2027 - Main report. 2021. url:
https://www.eurocontrol.int/publication/eurocontrol-forecast-update-

2021-2027 (visited on 11/07/2020).

[6] N. L. Wartha, A. Stephan, G. Rotshteyn, and F. Holzäpfel. “Investigating Artificial
Neural Networks for Detecting Aircraft Wake Vortices in Lidar Measurements”.
In: ODAS 2022 - 22nd Onera-DLR Aerospace Symposium. June 2022, pp. 1–19.

[7] EUROCONTROL. Challenges of growth 2018. 2018. url: https://www.eurocontrol.
int/publication/challenges-growth-2018 (visited on 11/07/2020).

[8] J. Cheng, A. Ho↵, J. Tittsworth, and W. A. Gallo. “The Development of Wake
Turbulence Re-Categorization in the United States (Invited)”. In: 8th AIAA At-
mospheric and Space Environments Conference. doi: 10.2514/6.2016-3434.

[9] F. Holzäpfel et al. “Mitigating Wake Turbulence Risk During Final Approach via
Plate Lines”. In: AIAA Journal 59.11 (Nov. 2021), pp. 4626–4641. doi: 10.2514/
1.J060025.

[10] N. L. Wartha, A. Stephan, F. Holzäpfel, and G. Rotshteyn. “Characterizing air-
craft wake vortex position and strength using LiDAR measurements processed
with artificial neural networks”. In: Opt. Express 30.8 (Apr. 2022), pp. 13197–
13225. doi: 10.1364/OE.454525.

[11] J. Anderson. Fundamentals of Aerodynamics. 5th ed. New York: McGraw-Hill,
2011. isbn: 978-0-07-339810-5.

[12] P. K. Kundu and I. M. Cohen. Fluid Mechanics. 4th ed. New York: Academic
Press, 208. isbn: 978-0-12-373735-9.

[13] A. Stephan. “Wake vortices of landing aircraft”. PhD thesis. Ludwig-Maximilians-
Universität München, 2014.

54

https://doi.org/10.1016/j.paerosci.2018.03.003
https://doi.org/10.2514/1.C032858
https://www.bfu-web.de/DE/Publikationen/Bulletins/2017/Bulletin2017-01.pdf?__blob=publicationFile
https://www.bfu-web.de/DE/Publikationen/Bulletins/2017/Bulletin2017-01.pdf?__blob=publicationFile
https://www.bfu-web.de/DE/Publikationen/Bulletins/2017/Bulletin2017-01.pdf?__blob=publicationFile
https://doi.org/10.1016/S0376-0421(02)00004-0
https://doi.org/10.1016/S0376-0421(02)00004-0
https://www.eurocontrol.int/publication/eurocontrol-forecast-update-2021-2027
https://www.eurocontrol.int/publication/eurocontrol-forecast-update-2021-2027
https://www.eurocontrol.int/publication/challenges-growth-2018
https://www.eurocontrol.int/publication/challenges-growth-2018
https://doi.org/10.2514/6.2016-3434
https://doi.org/10.2514/1.J060025
https://doi.org/10.2514/1.J060025
https://doi.org/10.1364/OE.454525

[14] J. Katz and A. Plotkin. Low-Speed Aerodynamics. 2nd ed. Cambridge Aerospace
Series. Cambridge University Press, 2001. isbn: 9780511810329.

[15] J. Carlton. “Marine Propellers and Propulsion (Fourth Edition)”. In: ed. by J.
Carlton. 4th ed. Butterworth-Heinemann, 2019, pp. 141–175. isbn: 978-0-08-100366-
4.

[16] P. K. Kundu and I. M. Cohen. “Aerodynamics”. In: Fluid Mechanics (Second
Edition). Second Edition. Boston: Academic Press, 2002, pp. 629–660. isbn: 978-
0-12-178251-1.

[17] F. Holzäpfel et al. “The Wake Vortex Prediction and Monitoring System WSVBS
Part I: Design”. In: Air Tra�c Control Quarterly 17.4 (2009), pp. 301–322. doi:
10.2514/atcq.17.4.301.

[18] A. Stephan, D. Rohlmann, F. Holzäpfel, and R. Rudnik. “E↵ects of Detailed Air-
craft Geometry on Wake Vortex Dynamics During Landing”. In: Journal of Air-
craft 56.3 (2019), pp. 974–989. doi: 10.2514/1.C034961.

[19] S. C. Crow. “Stability theory for a pair of trailing vortices”. In: AIAA journal
8.12 (1970), pp. 2172–2179. doi: 10.2514/3.6083.

[20] T. Leweke, S. Le Dizès, and C. H. Williamson. “Dynamics and Instabilities of
Vortex Pairs”. In: Annual Review of Fluid Mechanics 48.1 (2016), pp. 507–541.
doi: 10.1146/annurev-fluid-122414-034558.

[21] P. Lissaman, S. C. Crow, P. MacCready Jr, I. Tombach, E. Bate Jr, et al. Aircraft
vortex wake descent and decay under real atmospheric e↵ects. Tech. rep. United
States. Federal Aviation Administration, 1973.

[22] T. Misaka, F. Holzäpfel, and T. Gerz. “Large-Eddy Simulation of Aircraft Wake
Evolution from Roll-Up Until Vortex Decay”. In: AIAA Journal 53.9 (2015),
pp. 2646–2670. doi: 10.2514/1.J053671.

[23] F. Holzäpfel. “Probabilistic Two-Phase Wake Vortex Decay and Transport Model”.
In: Journal of Aircraft 40.2 (2003), pp. 323–331. doi: 10.2514/2.3096.

[24] S. Körner. “Multi-Model Ensemble Wake Vortex Prediction”. PhD thesis. DLR,
2017.

[25] F. Holzäpfel, A. Stephan, and G. Rotshteyn. “Plate lines reduce lifetime of wake
vortices during final approach to Vienna airport”. In: AIAA Scitech 2020 Forum.
2020. doi: 10.2514/6.2020-0050.

[26] A. Stephan, F. Holzäpfel, and T. Misaka. “Aircraft Wake-Vortex Decay in Ground
Proximity—Physical Mechanisms and Artificial Enhancement”. In: Journal of Air-
craft 50.4 (2013), pp. 1250–1260. doi: 10.2514/1.C032179.

[27] R. George and J. Yang. “A survey for methods of detecting aircraft vortices”. In:
International Design Engineering Technical Conferences and Computers and In-
formation in Engineering Conference. Vol. 45004. American Society of Mechanical
Engineers. 2012, pp. 41–50. doi: 10.1115/DETC2012-70632.

55

https://doi.org/10.2514/atcq.17.4.301
https://doi.org/10.2514/1.C034961
https://doi.org/10.2514/3.6083
https://doi.org/10.1146/annurev-fluid-122414-034558
https://doi.org/10.2514/1.J053671
https://doi.org/10.2514/2.3096
https://doi.org/10.2514/6.2020-0050
https://doi.org/10.2514/1.C032179
https://doi.org/10.1115/DETC2012-70632

[28] I. Smalikho, V. Banakh, F. Holzäpfel, and S. Rahm. “Method of radial velocities
for the estimation of aircraft wake vortex parameters from data measured by
coherent Doppler lidar”. In: Opt. Express 23.19 (Sept. 2015), A1194–A1207. doi:
10.1364/OE.23.0A1194.

[29] C. Weitkamp. Lidar: range-resolved optical remote sensing of the atmosphere.
Vol. 102. Springer Science & Business, 2006. isbn: 9780387251011.

[30] N. Wildmann. Wind and turbulence measurements with multiple Doppler wind
lidars. Innsbruck University, May 2019.

[31] N. N. Ahmad and F. Proctor. “Review of idealized aircraft wake vortex models”.
In: 52nd Aerospace Sciences Meeting. 2014. doi: 10.2514/6.2014-0927.

[32] N. L. Wartha. “Wake Vortex Characterisation of Landing Aircraft using Artificial
Neural Networks and LiDAR Measurements”. MA thesis. University of Glasgow,
2021.

[33] S. Schönhals, M. Steen, and P. Hecker. “Wake vortex prediction and detection util-
ising advanced fusion filter technologies”. In: The Aeronautical Journal 115.1166
(2011), pp. 221–228. doi: 10.1017/S0001924000005674.

[34] F. Köpp, S. Rahm, and I. Smalikho. “Characterization of Aircraft Wake Vortices
by 2-µm Pulsed Doppler Lidar”. In: Journal of Atmospheric and Oceanic Tech-
nology 21.2 (2004), pp. 194–206. doi: 10.1175/1520- 0426(2004)021<0194:
COAWVB>2.0.CO;2.

[35] F. Köpp et al. “Comparison of Wake-Vortex Parameters Measured by Pulsed and
Continuous-Wave Lidars”. In: Journal of Aircraft 42.4 (2005), pp. 916–923. doi:
10.2514/1.8177.

[36] I. Smalikho, V. Banakh, F. Holzäpfel, and S. Rahm. “Method of radial velocities
for the estimation of aircraft wake vortex parameters from data measured by
coherent Doppler lidar”. In: Opt. Express 23.19 (Sept. 2015), A1194–A1207. doi:
10.1364/OE.23.0A1194.

[37] S. L. Brunton, B. R. Noack, and P. Koumoutsakos. “Machine Learning for Fluid
Mechanics”. In: Annual Review of Fluid Mechanics 52.1 (2020), pp. 477–508. doi:
10.1146/annurev-fluid-010719-060214.

[38] European Union Aviation Safety Agency. EASA Concept Paper: First usable guid-
ance for Level 1 machine learning applications Issue 01. Tech. rep. 2022. url:
https://www.easa.europa.eu/en/easa- concept- paper- first- usable-

guidance - level - 1 - machine - learning - applications - proposed - issue -

01pdf.

[39] W. Pan, Z. Wu, and X. Zhang. “Identification of Aircraft Wake Vortex Based
on SVM”. In: Mathematical Problems in Engineering 2020 (May 2020). doi: 10.
1155/2020/9314164.

56

https://doi.org/10.1364/OE.23.0A1194
https://doi.org/10.2514/6.2014-0927
https://doi.org/10.1017/S0001924000005674
https://doi.org/10.2514/1.8177
https://doi.org/10.1364/OE.23.0A1194
https://doi.org/10.1146/annurev-fluid-010719-060214
https://www.easa.europa.eu/en/easa-concept-paper-first-usable-guidance-level-1-machine-learning-applications-proposed-issue-01pdf
https://www.easa.europa.eu/en/easa-concept-paper-first-usable-guidance-level-1-machine-learning-applications-proposed-issue-01pdf
https://www.easa.europa.eu/en/easa-concept-paper-first-usable-guidance-level-1-machine-learning-applications-proposed-issue-01pdf
https://doi.org/10.1155/2020/9314164
https://doi.org/10.1155/2020/9314164

[40] W. Pan, H. Yin, Y. Leng, and X. Zhang. “Recognition of Aircraft Wake Vortex
Based on Random Forest”. In: IEEE Access 10 (2022), pp. 8916–8923. doi: 10.
1109/ACCESS.2022.3141595.

[41] W. Pan, Y. Leng, H. Yin, and X. Zhang. “Identification of Aircraft Wake Vortex
Based on VGGNet”. In: Wireless Communications and Mobile Computing 2022
(June 2022). doi: 10.1155/2022/1487854.

[42] Y. Ai, Y. Wang, W. Pan, and D. Wu. “A Deep Learning Framework Based on
Multisensor Fusion Information to Identify the Airplane Wake Vortex”. In: Journal
of Sensors 2021 (Nov. 2021). doi: 10.1155/2021/4819254.

[43] W.-J. Pan, Y.-F. Leng, T.-Y. Wu, Y.-X. Xu, and X.-L. Zhang. “Conv-Wake: A
Lightweight Framework for Aircraft Wake Recognition”. In: Journal of Sensors
2022 (2022). doi: 10.1155/2022/3050507.

[44] N. Baranov and B. Resnick. “Wake vortex detection by convolutional neural net-
works”. In: European Journal of Electrical Engineering and Computer Science
(EEACS) 3 (2021), pp. 92–97.

[45] P. Weijun, D. Yingjie, Z. Qiang, T. Jiahao, and Z. Jun. “Deep Learning for Aircraft
Wake Vortex Identification”. In: IOP Conference Series: Materials Science and
Engineering 685.1 (Nov. 2019). doi: 10.1088/1757-899x/685/1/012015.

[46] W. S. McCulloch and W. Pitts. “A logical calculus of the ideas immanent in
nervous activity”. In: The bulletin of mathematical biophysics 5.4 (1943), pp. 115–
133.

[47] K. Fukushima and S. Miyake. “Neocognitron: A Self-Organizing Neural Network
Model for a Mechanism of Visual Pattern Recognition”. In: Competition and Coop-
eration in Neural Nets. Springer, 1982, pp. 267–285. doi: 10.2514/6.2016-3434.

[48] Y. LeCun et al. “Backpropagation applied to handwritten zip code recognition”.
In: Neural computation 1.4 (1989), pp. 541–551. doi: 10.1162/neco.1989.1.4.
541.

[49] I., Y. Bengio, and A. Courville. Deep Learning. http://www.deeplearningbook.
org. MIT Press, 2016.

[50] C. F. Higham and D. J. Higham. Deep Learning: An Introduction for Applied
Mathematicians. 2018. doi: 10.48550/ARXIV.1801.05894.

[51] url: https://github.com/IzaakWN/CodeSnippets/tree/master/LaTeX/TikZ
(visited on 11/07/2022).

[52] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall. “Activation functions:
Comparison of trends in practice and research for deep learning”. In: arXiv preprint
arXiv:1811.03378 (2018). doi: 10.48550/ARXIV.1811.03378.

[53] V. Nair and G. E. Hinton. “Rectified Linear Units Improve Restricted Boltz-
mann Machines”. In: ICML’10. Haifa, Israel: Omnipress, 2010, pp. 807–814. isbn:
9781605589077.

57

https://doi.org/10.1109/ACCESS.2022.3141595
https://doi.org/10.1109/ACCESS.2022.3141595
https://doi.org/10.1155/2022/1487854
https://doi.org/10.1155/2021/4819254
https://doi.org/10.1155/2022/3050507
https://doi.org/10.1088/1757-899x/685/1/012015
https://doi.org/10.2514/6.2016-3434
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1162/neco.1989.1.4.541
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.48550/ARXIV.1801.05894
https://github.com/IzaakWN/CodeSnippets/tree/master/LaTeX/TikZ
https://doi.org/10.48550/ARXIV.1811.03378

[54] A. L. Maas, A. Y. Hannun, A. Y. Ng, et al. “Rectifier nonlinearities improve neural
network acoustic models”. In: Proc. icml. Vol. 30. 1. Atlanta, Georgia, USA. 2013,
p. 3.

[55] D. Misra. “Mish: A Self Regularized Non-Monotonic Neural Activation Function”.
In: CoRR abs/1908.08681 (2019). doi: 10.48550/arXiv.1908.08681.

[56] G. Cybenko. “Approximation by superpositions of a sigmoidal function”. In:Math-
ematics of Control, Signals and Systems 2.4 (Dec. 1989), pp. 303–314. doi: 10.
1007/BF02551274.

[57] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken. “Multilayer feedforward net-
works with a nonpolynomial activation function can approximate any function”.
In: Neural Networks 6.6 (1993), pp. 861–867. issn: 0893-6080. doi: https://doi.
org/10.1016/S0893-6080(05)80131-5.

[58] M. Everingham, L. Van Gool, J. Winn, and A. Zisserman. “The Pascal Visual
Object Classes (VOC) Challenge”. In: International Journal of Computer Vision
88 (2010). doi: 10.1007/s11263-009-0275-4.

[59] F. Chollet. Deep learning with Python. Birmingham: McGraw-Hill, 2017. isbn:
978-1-617-29443-3.

[60] L. Bottou. “Stochastic gradient descent tricks”. In: Neural networks: Tricks of the
trade. Springer, 2012, pp. 421–436. doi: 10.1007/978-3-642-35289-8_25.

[61] M. Li, T. Zhang, Y. Chen, and A. J. Smola. “E�cient Mini-Batch Training for
Stochastic Optimization”. In: KDD ’14. New York, New York, USA: Association
for Computing Machinery, 2014. isbn: 9781450329569.

[62] C. Bishop. Pattern Recognition and Machine Learning. New York: Springer, Jan.
2006. isbn: 978-0- 387-31073-2.

[63] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. 2014. doi:
10.48550/ARXIV.1412.6980.

[64] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representa-
tions by error propagation. Tech. rep. California Univ San Diego La Jolla Inst for
Cognitive Science, 1985.

[65] V. Dumoulin and F. Visin. A guide to convolution arithmetic for deep learning.
2016. doi: 10.48550/ARXIV.1603.07285.

[66] S. Io↵e and C. Szegedy. Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift. 2015. doi: 10.48550/ARXIV.1502.03167.

[67] Y. Boureau, J. Ponce, and Y. LeCun. “A theoretical analysis of feature pool-
ing in visual recognition”. In: Proceedings of the 27th international conference on
machine learning (ICML-10). 2010, pp. 111–118. isbn: 9781605589077.

[68] I. Arel, D. C. Rose, and T. P. Karnowski. “Deep Machine Learning - A New
Frontier in Artificial Intelligence Research [Research Frontier]”. In: IEEE Compu-
tational Intelligence Magazine 5.4 (2010), pp. 13–18. doi: 10.1109/MCI.2010.
938364.

58

https://doi.org/10.48550/arXiv.1908.08681
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
https://doi.org/https://doi.org/10.1016/S0893-6080(05)80131-5
https://doi.org/https://doi.org/10.1016/S0893-6080(05)80131-5
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1007/978-3-642-35289-8_25
https://doi.org/10.48550/ARXIV.1412.6980
https://doi.org/10.48550/ARXIV.1603.07285
https://doi.org/10.48550/ARXIV.1502.03167
https://doi.org/10.1109/MCI.2010.938364
https://doi.org/10.1109/MCI.2010.938364

[69] Z.-Q. Zhao, P. Zheng, S.-t. Xu, and X. Wu. “Object detection with deep learning:
A review”. In: IEEE transactions on neural networks and learning systems 30.11
(2019), pp. 3212–3232. doi: 10.1109/TNNLS.2018.2876865.

[70] L. Du, R. Zhang, and X. Wang. “Overview of two-stage object detection algo-
rithms”. In: Journal of Physics: Conference Series 1544 (May 2020). doi: 10.
1088/1742-6596/1544/1/012033.

[71] R. Girshick, J. Donahue, T. Darrell, and J. Malik. “Rich Feature Hierarchies for
Accurate Object Detection and Semantic Segmentation”. In: 2014 IEEE Con-
ference on Computer Vision and Pattern Recognition. 2014, pp. 580–587. doi:
10.1109/CVPR.2014.81.

[72] R. Girshick. “Fast R-CNN”. In: 2015 IEEE International Conference on Computer
Vision (ICCV). 2015, pp. 1440–1448. doi: 10.1109/ICCV.2015.169.

[73] S. Ren, K. He, R. Girshick, and J. Sun. “Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks”. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence 39.6 (2017), pp. 1137–1149. doi: 10.
1109/TPAMI.2016.2577031.

[74] K. He, G. Gkioxari, P. Dollár, and R. Girshick. “Mask R-CNN”. In: 2017 IEEE
International Conference on Computer Vision (ICCV). 2017, pp. 2980–2988. doi:
10.1109/ICCV.2017.322.

[75] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie. “Feature
Pyramid Networks for Object Detection”. In: 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2017, pp. 936–944. doi: 10.1109/CVPR.
2017.106.

[76] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. “You Only Look Once: Uni-
fied, Real-Time Object Detection”. In: 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 2016, pp. 779–788. doi: 10.1109/CVPR.2016.
91.

[77] J. Redmon and A. Farhadi. “YOLO9000: Better, Faster, Stronger”. In: 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2017, pp. 6517–
6525. doi: 10.1109/CVPR.2017.690.

[78] J. Redmon and A. Farhadi. YOLOv3: An Incremental Improvement. 2018. doi:
10.48550/ARXIV.1804.02767.

[79] A. Bochkovskiy, C. Wang, and H. M. Liao. “YOLOv4: Optimal Speed and Ac-
curacy of Object Detection”. In: CoRR abs/2004.10934 (2020). doi: 10.48550/
ARXIV.2004.10934.

[80] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. “Focal Loss for Dense
Object Detection”. In: 2017 IEEE International Conference on Computer Vision
(ICCV). 2017, pp. 2999–3007. doi: 10.1109/ICCV.2017.324.

59

https://doi.org/10.1109/TNNLS.2018.2876865
https://doi.org/10.1088/1742-6596/1544/1/012033
https://doi.org/10.1088/1742-6596/1544/1/012033
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/ICCV.2015.169
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1109/CVPR.2017.106
https://doi.org/10.1109/CVPR.2017.106
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2017.690
https://doi.org/10.48550/ARXIV.1804.02767
https://doi.org/10.48550/ARXIV.2004.10934
https://doi.org/10.48550/ARXIV.2004.10934
https://doi.org/10.1109/ICCV.2017.324

[81] W. Liu et al. “SSD: Single Shot MultiBox Detector”. In: Computer Vision – ECCV
2016. Ed. by B. Leibe, J. Matas, N. Sebe, and M. Welling. Cham: Springer Inter-
national Publishing, 2016, pp. 21–37. isbn: 978-3-319-46448-0.

[82] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “Imagenet classification with deep
convolutional neural networks”. In: Communications of the ACM 60.6 (2017),
pp. 84–90. doi: 10.1145/3065386.

[83] Z. Li, C. Peng, G. Yu, X. Zhang, Y. Deng, and J. Sun. Detnet: A backbone network
for object detection. 2018. doi: 10.48550/ARXIV.1804.06215.

[84] S. Bouraya and A. Belangour. “Deep Learning based Neck Models for Object De-
tection: A Review and a Benchmarking Study”. In: International Journal of Ad-
vanced Computer Science and Applications 12.11 (2021). doi: 10.14569/IJACSA.
2021.0121119.

[85] I. N. Smalikho and V. A. Banakh. “Estimation of aircraft wake vortex parameters
from data measured with a 1.5-µm coherent Doppler lidar”. In: Opt. Lett. 40.14
(July 2015), pp. 3408–3411. doi: 10.1364/OL.40.003408.

[86] F. Holzäpfel et al. “Strategies for Circulation Evaluation of Aircraft Wake Vortices
Measured by Lidar”. In: Journal of Atmospheric and Oceanic Technology 20.8
(2003), pp. 1183–1195. doi: 10.1175/1520-0426(2003)020<1183:SFCEOA>2.0.
CO;2.

[87] A. Bochkovskiy. Yolo v4, v3 and v2 for Windows and Linux. 2022. url: https:
//github.com/AlexeyAB/darknet (visited on 10/19/2022).

[88] C.-Y. Wang, H.-Y. Mark Liao, Y.-H. Wu, P.-Y. Chen, J.-W. Hsieh, and I.-H. Yeh.
“CSPNet: A New Backbone that can Enhance Learning Capability of CNN”. In:
(2020), pp. 1571–1580. doi: 10.1109/CVPRW50498.2020.00203.

[89] K. He, X. Zhang, S. Ren, and J. Sun. “Spatial Pyramid Pooling in Deep Con-
volutional Networks for Visual Recognition”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 37.9 (2015), pp. 1904–1916. doi: 10.1109/
TPAMI.2015.2389824.

[90] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia. “Path Aggregation Network for Instance
Segmentation”. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2018, pp. 8759–8768. doi: 10.1109/CVPR.2018.00913.

[91] Z. Zheng, P. Wang, W. Liu, J. Li, R. Ye, and D. Ren. “Distance-IoU loss: Faster
and better learning for bounding box regression”. In: Proceedings of the AAAI
conference on artificial intelligence. Vol. 34. 07. 2020, pp. 12993–13000. doi: 10.
1609/aaai.v34i07.6999.

[92] N. Bodla, B. Singh, R. Chellappa, and L. S. Davis. “Soft-NMS— Improving Object
Detection with One Line of Code”. In: 2017 IEEE International Conference on
Computer Vision (ICCV). 2017, pp. 5562–5570. doi: 10.1109/ICCV.2017.593.

60

https://doi.org/10.1145/3065386
https://doi.org/10.48550/ARXIV.1804.06215
https://doi.org/10.14569/IJACSA.2021.0121119
https://doi.org/10.14569/IJACSA.2021.0121119
https://doi.org/10.1364/OL.40.003408
https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
https://doi.org/10.1109/CVPRW50498.2020.00203
https://doi.org/10.1109/TPAMI.2015.2389824
https://doi.org/10.1109/TPAMI.2015.2389824
https://doi.org/10.1109/CVPR.2018.00913
https://doi.org/10.1609/aaai.v34i07.6999
https://doi.org/10.1609/aaai.v34i07.6999
https://doi.org/10.1109/ICCV.2017.593

[93] A. Lindholm, N. Wahlström, F. Lindsten, and T. B. Schön. Machine Learning -
A First Course for Engineers and Scientists. Cambridge University Press, 2022.
url: https://smlbook.org.

[94] F. Chollet et al. Keras. 2015. url: https://github.com/fchollet/keras.

[95] Mart́ın Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. Software available from tensorflow.org. 2015. url: https://www.tensorflow.
org/.

[96] S. Charette. Darknet FAQ. 2022. url: https://www.ccoderun.ca/programming/
2020-09-25_Darknet_FAQ/ (visited on 10/19/2022).

[97] K. Bredies and D. Lorenz. Mathematische Bildverarbeitung. Vol. 1. Springer, 2011.
isbn: 978-3-8348-1037-3.

[98] N. L. Wartha and T. Bölle. Personal communication. May 2022.

[99] G. Rotshteyn. Personal communication. May 2022.

[100] T.-Y. Lin et al. “Microsoft coco: Common objects in context”. In: European con-
ference on computer vision. Springer. 2014, pp. 740–755. doi: 10.1007/978-3-
319-10602-1_48.

[101] F. Holzäpfel, N. L. Wartha, A. Stephan, and G. Rotshteyn. Wake Vortex Group
Meeting. July 2022.

61

https://smlbook.org
https://github.com/fchollet/keras
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.ccoderun.ca/programming/2020-09-25_Darknet_FAQ/
https://www.ccoderun.ca/programming/2020-09-25_Darknet_FAQ/
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1_48

Acknowledgments

During this thesis, I received a lot of input and support. First, I would like to thank
my supervisors, Niklas Wartha, Prof. Dr. Daniel Ruprecht, and Dr. Sebastian Götschel.
Thank you, Niklas, for our countless discussions, being open to my concerns, and con-
stantly pushing me to achieve better results. Thank you, Daniel and Sebastian, for always
having an open ear to my questions. You always gave me the feeling of asking the right
things leading in the right direction in the monthly Zoom sessions. I want to express my
gratitude to the entire Wake Vortex Group, Dr. Anton Stephan, Dr. Frank Holzäpfel,
Grigory Rotshteyn and Moritz Spraul for always showing me your interest in my research
and helping me to understand the engineering point of view on wake vortices. Further-
more, I would like to thank the whole Transport Meteorology department for allowing
me to be part of the team. I really enjoyed the daily co↵ee and lunch breaks together.

I would like to thank all the young researchers at the Institute of Atmospheric Physics,
for letting me take part in group activities, despite only being there for my master thesis.
I would especially like to thank Niklas, Moritz, and Kianusch for the almost weekly
bouldering sessions we had.

Last but not least, I would like to express my personal gartitude to Käthe and my
family for the continuous mental and emotional support through the hard times, giving
me the energy needed to finish this work.

This work was performed on the HoreKa supercomputer funded by the Ministry of
Science, Research and the Arts Baden-Württemberg and by the Federal Ministry of
Education and Research. As well as the image transformation on CARA and the YOLOv4
training on the TUHH Cluster.

62

	Abstract
	List of Figures
	List of Tables
	Introduction
	Motivation
	Goal
	Overview

	Wake Vortex Principles
	Basic Vortex
	Wake Vortex
	Measurement
	LiDAR

	Literature Review
	Traditional Wake Vortex Detection
	Artificial Intelligence for Wake Vortex Detection
	Reasearch Questions

	Artificial Neural Networks Theory
	Feedforward Neural Network
	Activation Functions
	Optimization
	Convolutional Neural Network
	Object Detection

	Data Sets, YOLO and Regression Network
	LiDAR Data Set
	Labels - Radial Velocity Method
	YOLO
	Network architecture
	YOLOv4 Loss Function
	Accuracy Measurement

	Regression Network
	Network Architecture
	Training
	Accuracy Measurement

	YOLOv4 for Wake Vortex Detection
	Data Preprocessing
	Label Transformation
	Conversion of LiDAR Scans to Image Format

	YOLOv4 Evaluation
	Training
	Data Set evaluation
	Detection Parameter Setting
	Accuracy

	Regression Network for Wake Vortex Characterization
	Data Preprocessing
	Radial Velocity Preprocessing
	Regression Network Evaluation
	Hyperparameter Studies
	Circulation
	Localization
	Physical Evaluation

	Explainable AI
	Complete Prediction Pipeline

	Comparison with the state-of-the-art
	Conclusion
	Accomplishments
	Outlook

	Bibliography
	Acknowledgments

