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Abstract: Extracting information about the shape or size of non-spherical aerosol particles from
limited optical radar data is a well-known inverse ill-posed problem. The purpose of the study is
to figure out a robust and stable regularization method including an appropriate parameter choice
rule to address the latter problem. First, we briefly review common regularization methods and
investigate a new iterative family of generalized Runge–Kutta filter regularizers. Next, we model a
spheroidal particle ensemble and test with it different regularization methods experimenting with
artificial data pertaining to several atmospheric scenarios. We found that one method of the newly
introduced generalized family combined with the L-curve method performs better compared to
traditional methods.

Keywords: inverse ill-posed problem; regularization; Runge–Kutta integrators; aerosol particles;
lidar; particle size distribution; spheroidal particles

1. Introduction

We denote with L(V, G) the set of linear bounded operators between the normed
spaces V and G with the inner products 〈·, ·〉V and 〈·, ·〉G, respectively, and K(V, G) =
{T ∈ L(V, G)| T is compact}. Note that we often omit the space-subscripts in the inner
products for brevity when there is no risk of confusion.

Compact linear operators Tv = g are the extension of matrices in Hilbert spaces,
in which one is able to generalize the spectral theorems. A special compact linear operator
which models our problem in Atmospheric Physics, the spheroidal particle ensemble,
and many other applications, arises from the Fredholm operator of the first kind. The
Fredholm integral equation has the following general form:

Tv =
∫ b

a
K(λ, r)v(r)dr = g(λ), (1)

where K(λ, r) is the kernel function. In Section 4, we show an example of such a function
representing backscatter and extinction cross sections of aerosol particles. The Riemann–
Lebesgue Lemma indicates the underlying reason for the ill-posedness of these integral
equations. Consider the function sequence vn(r) = sin(2nπr). Then, for a Riemann-
integrable function K(s, t), it holds

lim
n→∞

∫ 1

0
K(λ, r)vn(r)dr → 0. (2)

This result summarizes the smoothing phenomenon imposed by the Fredholm opera-
tor to any solution candidate.
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The properties of the Singular Value Decomposition (SVD) of the operator are given
by: Let T ∈ K(V, G) and let T∗ be the adjoint of T. There exist sequences f j ∈ V, hj ∈ G,
and µj ∈ R with 0 < µj+1 ≤ µj and j ∈ N such that the following statements hold:

1. limj→∞ µj = 0.
2. The sequences {hj}j∈N and { f j}j∈N form a complete orthonormal system of the spaces

im(T) and ker(T)⊥, respectively:
3. T f j = µjhj and T∗hj = µj f j for all j ∈ N.
4. Tv = ∑∞

j=1 µj〈v, f j〉Vhj, and T∗v = ∑∞
j=1 µj〈v, hj〉G f j for all v ∈ V.

The triple (µj, f j, hj)j∈N is called the singular system of the compact operator T. In par-
ticular, the sequences { f j}j∈N and {hj}j∈N are called the left and right singular functions,
respectively, and the sequences {µj}j∈N are called the singular values of T.

Furthermore, the Picard condition states the following: Let T : V → G be a compact
operator and (µj, f j, hj)j∈N its singular system. An element g ∈ im(T) is an element of
im(T) exactly, when

∞

∑
j=1

(
|〈g, hj〉|

µj

)2

< ∞. (3)

This condition exposes the decisive role of the convergence rate of the singular val-
ues; there only exists a solution if the terms |〈g, hj〉| decay faster in competition to the
singular values.

Regularization methods are very good candidates in order to gain some control over
noisy and highly sensitive solutions and to solve inverse ill-posed problems efficiently.
One family of methods, that can be used for regularization, is the one of Runge-Kutta
integrators, commonly used for ordinary differential equations.

For linear operators, Rieder [1] proved that Runge–Kutta integrators applied to the
asymptotic regularization and stopped by the discrepancy principle are regularization
schemes where the Hölder-type source set Xν,ρ := {(A∗A)νz : z ∈ N(A)⊥, ‖z‖ ≤ ρ} is
used. Recently, in Pornsawad et al. [2], a modified discrepancy principle was investigated
for the implicit Euler method of the Runge–Kutta family. In Böckmann et al. [3] and
Pornsawad et al. [4,5], the nonlinear operator case was investigated under Hölder-type and
logarithmic source conditions. It was shown that convergence and optimal convergence
rates can be achieved under certain assumptions. Similarly, in Zhao et al. [6], a wide
class of spectral regularization methods under variational source conditions was shown
to yield convergence rates under certain general assumptions, which are also satisfied by
asymptotic regularization and Runge–Kutta integrators.

This paper is structured in the following manner: first, in Section 2, a brief review
of regularization methods is given to build up a necessary background, also useful for
the investigation of the spheroidal particle model later on. In Section 3, we propose
a new generalized filter of the Runge–Kutta type and prove regularizing properties of
such a filter. Readers, only interested in the application in Atmospheric Physics, may
skip Sections 2 and 3. Furthermore, Sections 4 and 5 are dedicated to the modeling of a
spheroidal particle ensemble and our numerical experiments with different atmospheric
scenarios, respectively. The latter is done by means of gradual complexity moving from
spherical- to non-spherical particle ensembles and retrieving particle distributions of one
and two dimensions, respectively. This serves us in order to introduce a new method and
demonstrate its efficiency for the problem of aerosol microphysics in the 1D case (Mie
model), which most of the literature is occupied with, and then extend to the quasi-2D
case we mostly focus on. Section 5 is also concerned with the reconstruction of shape-size
distributions with modality up to 2. Section 6 summarizes the upsides and limitations.

2. Preliminaries: Brief Review of Regularization Theory

A well-posed problem has a unique solution which depends on the input data in
a stable manner. A problem that violates any of the three properties of well-posedness
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(existence, uniqueness or stability) is called an ill-posed problem. The degree of ill-
posedness is given by: LetM be a positive real number. Then, the problem (T, V, G)

1. is mildly ill-posed if µj has a polynomial behaviour, i.e., µj = O(j−M).
2. is severely ill-posed if µj has an exponential behaviour, i.e., µj = O(e−Mj).

The ambiguity in the solution space is apparently undesired. It is possible to search
for a unique solution by replacing the problem with

T∗Tv = T∗g⇐⇒ T∗(Tv− g) = 0⇐⇒ Tv− g ∈ ker(T∗) = im(T)⊥, (4)

which turns out to be equivalent to a least-squares problem.
For g ∈ im(T)⊕ im(T)⊥, the set of the solutions of the normal equation T∗Tv = T∗g

is non-empty, closed and convex. Moreover, there is a unique solution v† of minimal norm.
This property of the normal equation along with continuity of the norm allows the ex-

istence of a unique solution of minimal norm and strikes out uniqueness from Hadamard’s
requirements [7]. We shall define this as a solution of Tv = g in generalized terms.

The operator T† : D(T†) → V, with the domain D(T†) := im(T)⊕ im(T)⊥, which
assigns uniquely an element v† of minimal norm to any g ∈ D(T†) is called a Moore–
Penrose inverse or generalized inverse of T ∈ L(V, G). The element v† = T†g is called the
minimum-norm solution of Tv = g.

We are now able to answer by what means and under which circumstances we can
invert the equation Tv = g.

Theorem 1. Let T ∈ L(V, G); then, its generalized inverse T† has the following properties:

1. v† = T†g is the unique solution of the normal equation T∗Tv = T∗g in ker(T)⊥, for every
g ∈ D(T†).

2. T† is linear.
3. im(T†) = ker(T)⊥.
4. T† is continuous if and only if im(T) is closed. Then, T† is defined in the whole G.
5. If T is compact, then it is continuous if im(T) is finite.

The key to assure the well-posedness of our problem is im(T) = im(T). In fact, this
allows for characterization of ill-posedness through the closedness of the range im(T). The
ill-posedness by Nashed is defined as follows: The problem (T, V, G) is called ill-posed if
im(T) is not closed [8]. Otherwise, it is called well-posed.

2.1. Regularization with Spectral Filters

First, let us define regularization through a family of operators approximating the
desired (generalized) inverse, see e.g., [9,10].

Definition 1 (Regularization Scheme). The family of linear bounded operators {Rζ}ζ>0 from G
into V is called a regularization scheme or a regularizer for T if we have the following pointwise
convergence:

lim
ζ→0

Rζ Tv = v, for all v ∈ V. (5)

Let there be given noisy data with gδ, δ > 0, with ‖gδ − g‖ < δ and let {Rζ}ζ>0 be a
regularization scheme, where ζ = ζ(δ, gδ) > 0. If, for all g ∈ im(T) and all gδ ∈ G with
‖gδ − g‖ < δ we have

lim
δ→0

Rζ gδ = T†g, (6)

then the pair (Rζ , ζ) is called a regularization method for Tv = g. Furthermore, ζ is called a priori
parameter choice rule (PCR) if it only depends on δ; otherwise, it is called a posteriori parameter
choice rule.

Note that a PCR depending solely on gδ is called a data-driven one and is often based
on heuristics.
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In case we have a unique solution v† = T†g = (T∗T)−1T∗g, we can see that the trou-
bling part, regarding stability, is the operator T∗T. Moreover, recalling the singular system
of T, (µj, f j, hj)j∈N, we have T† = ∑∞

j=1 µ−1
j 〈·, hj〉 f j(r) and therefore our filters need to target

the singular values. This motivates the filter function b(ζ, µ) for the regularization scheme

Rζ gδ =
∞

∑
j=1

b(ζ, µj)µ
−1
j 〈g

δ, hj〉 f j(r). (7)

An immediate question is what the properties of such a function are in order to
constitute a regularization method.

Theorem 2 (Regularizing filters). Let T be an injective compact operator with singular system
(µj, f j, hj)j∈N. If the function b : (0, ∞]× (0, ‖T‖]→ R satisfies the following conditions:

1. b(ζ, µ) is bounded for all ζ > 0, µ ∈ (0, ‖T‖] and limζ→0 b(ζ, µ) = 1 for all µ ∈ (0, ‖T‖],
2. for all ζ > 0, there exists a positive constant d(ζ) such that all µ ∈ (0, ‖T‖] hold either of the

following relations:

2.1. |b(ζ, µ)| ≤ d(ζ)µ
2.2. |b(ζ, µ)| ≤ d(ζ)µ2

then Rζ is a regularization scheme defined as in (7), and v(δ,ζ) = Rζ gδ. Moreover, we have
‖Rζ‖ ≤ τ and the reconstruction error estimate

‖v(δ,ζ) − v‖2 ≤ ‖v‖2 sup
µ∈(0,‖T‖]

|b(ζ, µ)− 1|2 + δ2τ2, (8)

where τ = d(ζ) in case of (i) or τ =
√

Cd(ζ) in case of (ii) with C denoting a bound on q.
The function b(ζ, µ) is then called a regularizing filter.

A proof can be found, e.g., in [10]. Examples of filter functions will now be introduced
amid the exposé of the methods we are going to use later in our simulations.

2.1.1. Truncated SVD

Here, we only show a discrete analog of SVD of practical interest: For any matrix
M ∈ Rm×n, there exist orthogonal matrices U ∈ Rm×m and V ∈ Rn×n and a matrix
Σ = diag(σ1, σ2, . . . , σr) ∈ Rm×n where r = min{m, n} and σ1 ≥ σ2 ≥ · · · ≥ σp > σp+1 =
· · · = σr = 0, so that M is decomposed to

M = UΣVT =
p

∑
i=1

σiυiν
T
i , (9)

where υi, νi are the orthonormal columns of U and V, and they are called left and right
singular vectors of M, respectively. The σi-s are called singular values of M, and the triple
(σi, υi, νi) is called singular system of M. Tiny singular values (close to zero) are the ones
responsible for a disproportionate increase in error induced high frequencies; the steeper
the decay rate, the higher the degree of ill-posedness. Intuitively, this suggests keeping
only the most significant singular values and discard the rest. A threshold ζ > 0 will be the
cut-off (regularization) parameter below which no singular value makes it to the sum. We
summarize this discussion to the introduction of the reqularizing filter b of what we call
the Truncated SVD (TSVD):

b(ζ, µ) =

{
1, µ ≥ ζ
0, otherwise

(10)

2.1.2. Tikhonov Regularization

TSVD is a straightforward regularization tool which aims to identify and cut out
the most vulnerable part of the solution. However, doing so it wastes all the solution
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information associated with the disposed part. Furthermore, in cases where there is a lot of
noise, the “ripping” nature of TSVD may result in an oversmoothed solution. Therefore,
instead of cutting some part, we can alternatively give it a shift by a parameter ζ2 (ζ > 0)
to counteract its spectral weakness. This correcting procedure, enabling the search of an
optimal balance (ζ) of the good against the troubling solution content, is attributed to A.
N. Tikhonov [11]. The concept of Tikhonov Regularization (TR) is described by the filter
function b:

b(ζ, µ) =
µ2

µ2 + ζ2 . (11)

We introduced Tikhonov’s method from the point of view of the singular values
following a possible flaw of the behavior of SVD. There are, nevertheless, a few ways to
define this method basically through a minimization procedure, see e.g., [12].

2.1.3. Iterative Regularization Methods: Runge–Kutta Integrators

Let the following be an initial value problem:

v̇ = H(v, t), t > 0 (12)

v(t0) = v0.

Choosing a step size 0 < h = tj − tj−1, j = 1, 2, . . . , N. We seek an approximation
vj = v(tj), given by the formula:

vj = vj−1 + h
k

∑
n=1

znrn, (13)

where

ri = H

(
t + cih, v + h

k

∑
s=1

misrs

)
, for i = 1, 2, . . . , k (14)

is the i-th stage of the (generally implicit) Runge–Kutta method. Considering mij, cj, zj as
the matrix elements of Mk×k, ck×1, and zk×1, respectively, the formalism is lightened by the
mnemonic device

c M

zT

called the Butcher’s tableau, developed in 1960 by J. C. Butcher [13]. In our case, we have
H(v) = −T∗Tv + T∗g. This iterative filter method was first introduced in [1,14,15] and
will be studied in more detail in the next section.

2.2. Parameter Choice Rules

Regularization describes the way to reverse the noise effect and restore partly the
“natural” regularity of the solution but does not prescribe the depth of its act inherently.
The use of parameter choice rules is not an optional addition but necessary in order to
make a regularization method successful, or in other words, to minimize regularization
errors in some sense. Here, we present the most widely used PCRs in bibliography and
those which we are using later in our application, highlighting their assets and drawbacks.

Among all the parameter choice rules, the discrepancy principle is the most facile both
conceptually and computationally. It is based on the “reasonable” demand that the data
should be approximated with a same-order accuracy as the actual (measurement) data
error. The obvious dependence on distorted-data information (gδ) classifies this technique
as an a posteriori PCR. This technique, Morozov’s discrepancy principle, is formalized as
follows. Let v(ζ,δ) be the regularized solution of Tv = g produced by the regularization
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method (Rζ(δ,gδ), ζ) and let c > 1 be a constant. The regularization parameter ζ∗ ≤ ζ is
determined such that

‖Tv(ζ
∗ ,δ) − gδ‖ ≤ cδ < ‖Tv(ζ,δ) − gδ‖. (15)

The constant c is often called the safety factor and allows a somewhat safer approach
preventing possible oversmoothing.

Despite the unique ease of the discrepancy principle, insufficient knowledge on the
error level often strikes it out as an option. This is the basic motivation behind the develop-
ment of PCRs solely based on the available data. The idea behind the L-curve method lies
within the plot of the regularity term against the residual error, first suggested by [16]. The
L-curve criterion is summarized as follows: Let ( J̃, Ĩ) =

(
log ‖Tv(ζ,δ) − gδ‖, log ‖Qv(ζ,δ)‖

)
be the points constituting the L-curve. The regularization parameter is determined by
maximizing its curvature function ω(ζ) [17,18]

ω(ζ) =
J̃′ Ĩ′′ − J̃′′ Ĩ′

[( J̃′)2 + ( Ĩ′)2]3/2 .

For our purposes, we will use the L-curve criterion combined either with the Tikhonov
method or with our iterative regularization. The L-curve method solves heuristically the
bargain between the competing error terms (approximation and data error), but there are
some obstacles to oversee. The resulting plots for a noisy right-hand side (gδ) are neither
always “L-shaped” (missing the vertical or horizontal part, or having “local” corners, or
being arbitrary shaped) nor a curve, in cases where the regularization parameter is discrete
(e.g., the cut-off level of TSVD), in which case the inversion is assisted by interpolation. All
the latter scenarios might result in an occasional failure of the method. We note that in this
work, for the combination of an iterative regularization (Runge-Kutta) with the L-curve,
where the number of iterations is the regularization parameter, we “fill in” the gaps of the
discrete L-curve with cubic spline interpolation.

Finally, cross validation [19] is a well-known learning algorithm from statistics, offering
another purely-data-driven regularization method. All previous PCRs do not take into
account how good a prediction would be with data that the procedure has not been
“trained” to deal with. The first step of this approach includes splitting the data in sets of
“training” and “test”. Then, the model equation “learns” by being inverted for the data
in the training set and subsequently uses this knowledge v(ζ,δ)

− (“-” expresses the missing

data) to reproduce the data from the test set with forward calculations (Rζ v(ζ,δ)
− ). Finally,

the mean error from the predictions is used to evaluate the prediction.
In this work, we will use the “leave-one-out” partition, which removes only a single

point, trains with the rest and goes back to predict the missing one. This is repeated for
every data point, and the regularization parameter is chosen so that the mean prediction
error is minimized. In our application, we use TR with GCV. The regularization parameter
is determined by minimizing the so-called GCV function ω(ζ)

ω(ζ) =
‖Tv(ζ,δ) − gδ‖2

(m−∑n
i=1 b(ζ, σi))

2 . (16)

2.3. Collocation Discretization

As every other equation in real-life applications, does the underlying integral equation
of our problem needs to be discretized in order to have a practical use. Although discretizing
a problem can be seen as a regularization method, see [12], here we regard it as a separate
step before the regularized inversion. Projecting the problem to a finite space which we can
subsequently handle computationally is the first decisive step towards its solution. Such
a space must reflect properties of the actual solution space, which we, at best, know little
about. For this, it is useful to introduce a special type of base functions (B-spline functions)
which will carry out this task throughout this work; see Appendix A.



AppliedMath 2022, 2 553

As we will see in our application, the measurement data gδ are known in certain
points, rather than continuously. Projection methods by collocation exploit this very feature
most appropriately. Collocation methods can be defined the following way:

Let G = C(W), where W ⊂ R compact subset and let T : V → G be an injective
bounded linear operator, with V and G Hilbert spaces and Tv = g, with v ∈ V and a
given g ∈ G. Let the subspace sequences Vn ⊂ V, and Gm ⊂ G satisfy dim Vn = n and
dim Gm = m. Choose m points λ̃ = {λ1, λ2, . . . , λm} ∈W such that Gm is unisolvent with
respect to λ̃, i.e., any function from Gm that vanishes in λ̃ vanishes identically. Then, the
collocation method applied to the equation Tv = g gives an approximation of the solution
(v), vn ∈ Vn, satisfying

(Tvn)(λi) = g(λi), i = 1, 2, . . . , m. (17)

Consider Vn = span(B), where B = {ψ1, ψ2, . . . , ψn} are B-spline functions. Every
solution approximation can be expressed with respect to the basis B,

vn(r) =
n

∑
j=1

pjψj(r), (18)

where (pj)
n
j=1 are the expansion coefficients. Using the abbreviated notation gi = g(λi),

and Kij = K(λi, rj), the model Equation (1) casts to the linear system

n

∑
j=1

(∫ b

a
Kijψjdr

)
pj = gi, i = 1, . . . , m. (19)

Choosing a quadrature rule for the calculation of the integrals in Equation (19) con-
cludes the transformation of the model equation to a discrete (matrix–vector) problem.
Obviously, the last step enables quadrature errors which will be considered negligible for
our further analysis. After solving the system (19) for the coefficients pj (regularization),
one has to go back to the expansion (18) to finally obtain vn.

3. New Generalized Runge–Kutta Regularizers

Since we have H(v) = −T∗Tv + T∗g, we will now appeal to the class of time in-
variant (autonomous) linear ODEs, in which case there are well-known results about
stability. Consider the autonomous ODE system, v̇(t) = λv(t) + φ and combine it with
Equations (13) and (14) to derive

r =(I − hλM)−1(λvi−1 + φ)1, (20)

vj =S(hλ)vj−1 + hW(hλ)φ, (21)

where S(x) = 1 + xzT(I − xM)−11, known as the stability function, W(x) = [S(x)− 1]/x
and 1 = [1, . . . , 1]T ∈ Rk. Then, it can be verified by induction that

vn = Snv0 − (1− Sn)λ−1φ, n = 1, 2, . . . (22)

Setting λ = −T∗T and φ = T∗g, i.e., S = S(−hT∗T), to Equation (22), it can be shown,
that, for an injective compact linear operator T with singular system (µj, f j, hj)j∈N and
|S| < 1

v† = lim
n→∞

vn = lim
n→∞

∞

∑
j=1

(1− Sn)µ−1
j 〈g, hj〉 f j(r), (23)

where v† is the minimum-norm solution (Moore–Penrose). In [1], S is linked to the afore-
mentioned Butcher tableau and the Equation (14), but here, following our previous analysis,

it helps us define naturally a filter function, namely, (1− Sb
1
ζ c, 0 < ζ ≤ 1). The requirements

of Theorem 2 can be met as follows.
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Theorem 3 (Generalized filter of Runge–Kutta-type). Let 0 < ω < x̃
‖T‖ with x̃ ∈ R+ ∪ {∞}.

If there is a function S(x) fulfilling the following properties:

1. |S(x)| < 1 for x ∈ (−x̃, 0),
2. there is a constant ξ > 0 such that S(x) ≥ 1 + ξx, for all x ∈ (−x̃, 0),

then the function b(ζ, µ) = 1− S(−ωµ)
b 1

ζ c with µ ∈ (0, ‖T‖] defining the scheme

Rζ g =
∞

∑
j=1

(1− Sb
1
ζ c)µ−1

j 〈g, hj〉 f j(r), (24)

is a regularizing filter. If S = p/q, where p and q be real coprime polynomials with p(0) = q(0) = 1,
the iterative scheme defined through b(ζ, µ) is called generalized filter of Runge–Kutta-type, and ω
is called the relaxation parameter.

Proof. For all µ ∈ (0, ‖T‖] and 0 < ω < x̃
‖T‖ , it holds ωµ < x̃, hence |S(−ωµ)| < 1, so that

lim
ζ→0

b(ζ, µ) = lim
n→∞

1− Sn = 1. (25)

We have S(−ωµ) ≥ 1− ξωµ ≥ 1− ξω‖T‖ and 1− S(−ωµ) ≤ ξωµ. We examine the
sign of S.

S(−ωµ) ≥ 0 holds for ω < 1
ξ‖T‖ for all µ ∈ (0, ‖T‖] and b(ζ, µ) is bounded with

0 < b(ζ, µ) < 1. In this case, applying Bernoulli’s inequality, tκ ≥ 1 + κ(t− 1) for t > 0
and κ > 1, we obtain

1− Sb
1
ζ c ≤ b1

ζ
c(1− S) ≤ b1

ζ
cξωµ.

Assume now there exists ω ∈ (0, x̃
‖T‖ ) such that S(−ωµ) < 0 for all µ ∈ (0, ‖T‖].

We have
|1− Sb

1
ζ c| ≤ 1 + |S|b

1
ζ c ≤ 2;

therefore, b(ζ, µ) is bounded. If ζ > 1/2, then b 1
ζ c = 1, which leads to the trivial |1−

Sb
1
ζ c| ≤ b 1

ζ c(1− S). If ζ ≤ 1/2, then b 1
ζ c ≥ 2 and b 1

ζ c(1− S) ≥ 2.

Therefore, for all ζ ∈ (0, 1] and all µ ∈ (0, ‖T‖], we have 1− Sb
1
ζ c ≤ b 1

ζ c(1− S) ≤
b 1

ζ cξωµ = d(ζ)µ, with d(ζ) = ξωb 1
ζ c. The requirements 1 and 2 of Theorem 2 are satisfied;

hence, b(ζ, µ) is a regularizing filter.

Stiff ODEs cannot be handled by explicit RK methods, which is the main reason for
the rise of the implicit RK methods, for which S(x) is a rational function. This motivates
the study of polynomial quotients of variable degrees, known as Padé approximants,
to approximate the exponential function, which is what the stability function does by
definition. In this sense, the rational function S(x) may disassociate from the Runge–
Kutta method and instead follow the requirements of Theorem 3, which will ensure the
regularizing effect of the filter.

Definition 2 (Padé approximants). Consider the power series f (x) = ∑∞
i=1 aixi and the polyno-

mials p(x) and q(x) with deg p = n and deg q = m. The rational function S(x) = p(x)
q(x) is called

the Padé approximant of f (x) of order (m, n) if

f (x)− S(x) = O(xm+n+1). (26)

The normalization q(0) = 1 is a usual additional constraint to overcome the unde-
termined system of equations for the coefficients of p and q yielding from (26). It was
shown [20,21] that a Padé approximant of the exponential function can define a general-
ized filter of the Runge–Kutta type. This generalized Runge–Kutta iteration is of optimal
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convergence rate under the Hölder source condition and the discrepancy principle with
infinite qualification. With respect to the degrees of the polynomials and the relaxation
parameter ω, we obtain the following connection.

Theorem 4 (Padé iterations [20]). Let (m, n) ∈ N2 \ {(0, 0)}. The iteration scheme defined
by the stability function Sm,n = pm,n/qm,n as a Padé approximant of f (x) = ex is a generalized
Runge–Kutta regularization. It is called the (m, n)-Padé iteration. Moreover, if ω is the relaxation
parameter, then we have the following convergence behavior:

1. If m ≥ n, the (m, n)-Padé iteration converges for all ω ∈ R+.
2. If m < n, there exists a constant ω̄ ∈ R+ such that the (m, n)-Padé iteration converges for

all ω < ω̄ and diverges otherwise.
3. If m ≤ n, there exists a unique optimal relaxation parameter.
4. If m > n, there exists no optimal relaxation parameter, i.e., in increasing the relaxation

parameter ω, one can “over-accelerate” the iteration.

Therefore, it is favorable to choose an iteration from case 4 which motivates the use of
(2,1)–Padé iteration in Section 4.

4. Modeling a Spheroidal Particle Ensemble

Having presented briefly the mathematical apparatus behind regularization, PCRs,
and a family of iterative regularizers we turn now to our application from Atmospheric
Physics. The naive inversion (without regularization) of a non-spherical aerosol ensemble
could make an arbitrarily small noise in the data have an arbitrarily large noise effect in the
solution (size distribution v).

Our incomplete knowledge of the spatiotemporal distribution of aerosol is a significant
source of uncertainty for the radiative balance in climate models [22]. Lidar (optical radar)
is a mature technology used to measure vertically distributed aerosol properties [23]. Lidar
data have been successfully used to derive microphysical properties of aerosols more than
20 years now, first by [24,25]. However, mostly Mie theory is employed, which is only valid
for spherical particles, which itself remains under active research, see e.g., [26,27]. On the
other hand, only few novel approaches have been proposed using a spheroidal particle
approximation, e.g., by [28–32].

In this vein, consider now the following generalization of Equation (1) to model the
spheroidal particle ensemble

Tv(r, η) =
∫ b

a

∫ d

c
K(λ, r, η)v(r, η)drdη = g(λ), with (r, η) ∈ [a, b]× [c, d]. (27)

For our problem, the kernel functions K represent backscatter or extinction cross
sections, i.e., the probability of either event to take place as a result of interaction between
photons (e.g., a laser beam of a lidar system) and scattering particles, whose size and shape
shall be analyzed. Bringing together the contributions from n single scattering objects
(multi-scattering effects are ignored) of a certain type (e.g., size r or shape η) gives us the so-
called backscatter or extinction coefficients at different wavelengths λ, which are direct lidar
measurement products (g(λ)). The unknown function v acquires an additional dimension
(η), but the right-hand side (input data) remains a function of a single variable, which is
why we shall call Equation (27) the quasi-two-dimensional case (quasi-2D case). Assume
now an expansion of the form (A5) with basis functions {ψj(r)}n

j=1 and {χk(η)}l
k=1 and set

Kijk = K(λi, rj, ηk) for brevity. Applying formally the collocation steps to Equation (27) for
each available data point {gi}m

i=1, we have the scheme

n

∑
j=1

l

∑
k=1

(∫ b

a

∫ d

c
Kijkψjχkdrdη

)
pjqk = gi, i = 1, . . . , m. (28)

The parenthesized term is now an element of a two-dimensional matrix (3rd order
tensor) with i rows, j columns and k layers, which makes the equation ambiguous. How
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to deal with such a scheme most efficiently is a subject of active research on multilinear
analysis, with its solvability being under question as well. In order to overcome this
difficulty, we follow a concept from image processing (see [33]) where the indices (i, j) are
“compressed” to one index h with the bijective index reordering F : N2 → N

(j, k) 7→(k− 1)n + j. (29)

Now, the collocation process forms a matrix again with dimensions m× nl and vn is as-
sumed to have a (compatible to the matrix dimension) B-spline expansion
vnl = ∑nl

h=1 zhφh, hence the problem is reduced to the one-dimensional case (19). In
contrast to the one-dimensional case, after inverting the discrete equation, the resulting
approximation vh has to be “decompressed” again to obtain a (quasi-)2D solution

vnl =
nl

∑
h=1

zF−1(h)φF−1(h). (30)

The model relating the optical particle parameters Z(λ) with the particle volume size
distribution (PVSD) v(r, η) is described by the action of a 2D Fredholm integral operator of
the 1st kind

Z(λ)α/β =
∫ ηmax

ηmin

∫ rmax

rmin

3A
16πr3 Qα/β(r, λ, η; m)v(r, η)drdη, (31)

where A is the particle surface area, m is the complex refractive index (RI), λ is the wave-
length, r is the volume equivalent radius, [rmin, rmax], and [ηmin, ηmax] are sensible radius
and aspect ratio ranges. Here, we used the fact that, in a convex particle ensemble, the
average area per particle is equal to A/4, see [34]. Z(λ) denotes either the optical extinction
α and/or optical backscatter β (cross (⊥) and parallel (‖) coefficients, and Q stands for
either the extinction or the backscatter (dimensionless) efficiencies, respectively. Moreover,
the concept of random orientation of non-spherical particles (here spheroids) is the basis for
the calculations of these efficiencies. Identifying Z(λ) as our noisy data and v(r, η) as the
unknown PVSD, the problem reduces to the inversion of Equation (31). Formula (31) was
also derived by [30,35]. The real-life application forces us to solve the problem with limited
data. In practice, this means there are at most 3 β⊥(λi), 3 β‖(λi) and 2 α(λi) available to us,
which will be thereafter our default setup.

The primary objective of our inversion here is the shape-size distribution v(r, η).
The first stage in trying to solve Equation (31) is, of course, a discretization, which is done
here with projection by quasi-2D collocation as proposed before. There are two other
important practical implications here: (i) the determination of the refractive index (m) and
(ii) the calculations of the kernel functions (efficiencies). The refractive index is actually
an unknown too, and solving for it introduces a highly nonlinear quest. However, in this
work, we only investigate several instances of an a priori known refractive index.

The most time-consuming part of solving the model equation is the discretization due
to the unprecedented computational expense of the kernel-function calculations. For this
reason a precalculated database was created by [36] using the software tool Mieschka. Addi-
tionally, it provides an extensive database of scattering quantities for spheroidal geometries,
currently also available through an interactive platform of the German Aerospace Center
(DLR). Mieschka’s look-up tables include scattering efficiencies for a 6× 7 (Re(m)× Im(m))
refractive index grid (a total of 42 RI values), seven different aspect ratios and a size pa-
rameter range [0.02, 40] µm with a resolution of 0.2. Specifically, the refractive indices and
aspect ratios used from the database of Mieschka software [36], are the following:
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Re(m) ∈{1.33, 1.4, 1.5, 1.6, 1.7, 1.8}
Im(m) ∈{0, 0.001, 0.005, 0.01, 0.03, 0.05, 0.1}

η ∈{0.67, 0.77, 0.87, 1, 1.15, 1.3, 1.5}
(32)

The resolution gap in the aspect ratio needed for the integrations is handled with in-
terpolation to the nearest neighbor; other interpolation techniques, e.g., cubic interpolation,
show only tenuous differences in the discretization outputs.

Although the calculation of the efficiencies for a specific refractive index, size param-
eter and aspect ratio is already handled by the look-up tables of Mieschka software, we
are still left with the interpolation of these functions and the double integration of the
discretization procedure, see Equation (28). For this reason, another database was created,
this time including the discretization matrices with number of spline points from 3 up to
20 combined with spline degree from 2 up to 6. The spline points for the aspect ratio are
fixed to 7, the actual number of different aspect ratio values (Equation (32)). This large
collection far exceeds the needs of the present work, covering lots of different discretization
dimensions. The integrations involved a two-dimensional Gaussian quadrature integration
scheme with a relative tolerance 10−3.

The latter approach is particularly useful for another important reason too. Prior to
the regularization, the problem has to be projected in a space of finite dimension, to be able
to be solved in the first place. Finding a suitable dimension is the key as shown in [37], and
it is often problematic to pick one dimension as a global setting to handle datasets which
correspond to very different atmospheric scenarios. Therefore, the mathematical constraint
we will use in this work are the spline features (number of spline points and spline degree)
which are associated with the dimension of the produced linear system. Previous work
done with real-life data in [25,37–39] in parallel with several early simulations for this work,
showed the benefit of such hybrid algorithms, the concept of which is the leading approach
of the present work as well.

After discretizing the model Equation (31), we solve the resulting linear system with
regularization, which is the first big step to counteract the ill-posedness of this inverse
problem. Having usually no further information about the data error makes it difficult to
choose an optimal regularization parameter which will guarantee physical adequacy.

We often encounter a situation where the actual solution coefficients are zero (or
nearly zero), but might, nevertheless, turn to negative values due the noise presence (e.g.,
measurement errors). This is apparently an undesired eventuality from a physical point of
view, which we prevent by setting all strictly negative coefficients to zero. This decision
is a result of early numerical experiments for this work leading to a superior algorithm
performance. Especially for Padé iteration, we apply the non-negativity constraint to the
solution in each iteration.

The reader is reminded that the primary unknowns of the resulting linear systems
are the spline coefficients of the shape-size distribution (and not the function itself) with
respect to the specified projection space.

Algorithm using a fixed refractive index:

1. Specify the range of the number of spline points and the range of spline degrees.
2. Discretize for every number of spline points, every spline degree and the fixed refrac-

tive index. (Use of database of precalculated discretization matrices (T))
3. Choose a regularization method and a parameter choice rule to solve the linear

systems for a given (error-) dataset (g) applying the non-negativity constraint.
4. For all sets of solution coefficients v, make the forward calculation g̃ = Tv and

estimate the residual error ‖g̃− g‖.
5. Calculate the solutions (shape-size distributions) with respect to the corresponding

projection spaces.
6. Calculate the mean solution out of a few least-residual solutions.

The regularization methods and the parameter choice rules are chosen among the
following ones:
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1. Truncated singular value decomposition with the discrepancy principle (TSVD-DP);
2. Tikhonov regularization with the L-curve method (Tikh-LC);
3. Padé iteration with the discrepancy principle (Padé-DP);
4. Tikhonov regularization with the generalized cross validation method (Tikh-GCV);
5. Tikhonov regularization with the discrepancy principle (Tikh-DP); and
6. Padé iteration with the L-curve (Padé-LC).

The methods in 1, 2, 4 and 5 are well studied regularization methods and parameter
choice rules which have been widely used for the spherical particle model, e.g., [24,25], and
it is interesting to see their efficiency for the new spheroidal model as well. Similarly, we
investigate the lesser known Padé iteration as a regularization method, first used in the
lidar-data inversion by [40], here combined with the discrepancy principle (3), and for the
first time with the L-curve method (6). The parameter choice rules are also common in
bibliography, and, while they operate very differently, the primary reason for their use here
is the presence (DP) or lack of a priori error knowledge (LC, GCV); see the brief review in
Section 2.

TSVD-DP (1) is implemented using the theory directly from Section 2.1.1. We start
by including all the terms in the SVD-description of the solution and remove them one
by one till the discrepancy principle is fulfilled or we arrive at a single term. Apparently,
the assumed discrepancy (perhaps multiplied by a safety factor) cannot be smaller than the
residual error with all the SVD-terms included. In other words, we cannot demand a better
approximation than the best we have.

The Padé approximants (see Equation (26)) for Padé iteration (3, 6) were calculated
using a routine implemented by [15], which was integrated in the code. Padé-DP is
implemented simply by fixing a maximum number of iterations (MNI) and checking if
the assumed discrepancy is interposed between the corresponding residual terms of two
successive iterations. The iteration is stopped either by the satisfaction of the DP or by
reaching the MNI. For Padé-LC (6), we use a discrete implementation of L-curve with
respect to the number of iterations the following way:

• Fix a maximum number of iterations (MNI) m and run Padé iteration for each number
1, . . . , m. (m independent times in total);

• Store the residual error ‖g̃− g‖2 and the regularity term ‖v‖2 for each number of iter-
ations;

• Build the L-curve with cubic spline interpolation from the points (‖g̃− g‖2, ‖v‖2);
• Locate the point of maximum curvature of the L-curve m?;
• Take as the solution the output of Padé iteration with m? iterations.

For Tikh-LC (2), Tikh-GCV (4) and Tikh-DP (5), we used modified versions of routines
used in the software package Regularization Tools by P. C. Hansen [41].

5. Numerical Simulations of Particle Ensembles

First, we investigate briefly the efficiency of Padé-LC for the atmospheric particle
model, but for spherical particles (η = 1), a case that is relatively easier than the spheroidal
one. The focus of the simulations here is the reconstruction of the size distribution. We
experiment with different atmospheric scenarios artificially produced with the log-normal-
distribution parameters and refractive indices shown in Table 1.

For this purpose, we conducted the following preliminary synthetic retrievals for
a variety of test problems and finally for the inversion of the spherical model with an
optical 5-point synthetic dataset 3β + 2α. For all inversions, we use the (2,1)-Padé iteration
(see (26) for the notation) with a maximum number of 100 iterations and the relaxation
parameter set to 100. These values resulted from experience with earlier simulations, and
they are also in accordance with findings in [35,42]. The discretization dimension is fixed
to 11, considering 9 spline points and 3rd-degree splines. The initial- and retrieved size
distributions were derived using a 200-point resolution. The spherical kernel functions
were calculated through a Matlab implementation of Bohren and Huffman code [43].
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Table 1. Simulation parameters for preliminary tests for spherical particles, η = 1, (nc: number
concentration).

Case Radius Interval Median Radius Mode Width nc RI

2 [0.001, 2] 0.25 1.6 1 1.5 + 0.01i

3 [0.001, 1] 0.5 1.2 1 1.7 + 0.05i

5 [0.001, 1] [0.1, 1] [1.6, 1.3] [400, 1] 1.5 + 0.01i

Using these parameters, we create datasets with input white noise 1%, 5% and 10%
and repeat the experiment 15 times with different random distribution for each error level.
In addition to Padé-LC, we solve also with Padé-DP for comparison and present the results
for the cases 2, 3, 5 in Figure 1. The title of each plot shows also the mean reconstruction
error and the median of the iteration numbers found in the 15 individual retrievals.

Figure 1. Cont.
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Figure 1. Reconstructions of volume size distributions [µm3/(cm3µm)] (y-axis) versus radius [µm]
(x-axis). Every set of (6) plots corresponds to Padé-DP solutions (top) and Padé-LC solutions (bottom)
and to a specific case (2, 3 and 5) from Table 1, designated on the left side of the set. The title in each
plot shows additionally the input error level, the mean reconstruction error and the median of the
iteration numbers (param.) used by the 15 individual retrievals.

5.1. Results for the Spherical Particle Model

First, let us focus on the cases No. 2 and 3 which involve monomodal log-normal
distributions. The first case (Case No. 2) is with medium size and medium absorbing
particles (1.5 + 0.01i). Padé-LC continues to have milder artifacts than Padé-DP, obviously
due to a better control of the iteration number. The second monomodal-distribution case
No. 3 pertaining to very absorbing particles (1.7 + 0.05i) is the most successful for these
methods. Indeed, both of them deliver an equivalently precise reconstruction, with Padé-
DP being only marginally better for the case of 10% data-error. Moreover, compared to the
case 2, we see here the lowest reconstruction errors with respect to any error level.

The last part of numerical experiments involves the much harder task of reconstructing
a bimodal size distribution, the last set of plots in Figure 1 related to case No. 5. Experiments
involving a large coarse mode and a more silent fine mode (not shown here), are dealt very
well by both methods even in the case of large data error. Instead, we include only the more
challenging task of a big fine mode and a relatively smaller coarse mode. The methods are
struggling to retrieve especially the coarse mode, with Padé-LC prevailing overall. Despite
the evident noise for 5 or 10% data error, Padé-LC’s solutions are still following closely
enough the pattern of the initial distributions.

We conclude that Padé-LC works generally better than Padé-DP, an advantage appar-
ently attributed to the L-curve method. Indeed, we observe large differences in the median
of iterations between LC- and DP-solutions in the vast majority of the cases, see e.g., cases
No. 2 and 5 with 1% errors. This result is not taken for granted later on for the non-spherical
case where these methods are retested in a much larger scale and since the purpose of the
examples here was mainly to demonstrate Padé-LC’s reasonable regularization behavior.
In fact, a reconstruction can be very prone to either oversee a mode (mainly coarse) or
create artifacts where the distribution is essentially zero. This behavior is hinted e.g., in
case No. 5, Padé-DP 1% where an additional mode is being built and then steeply forced
to zero. However, the full potential of these methods was dormant since we had a fixed
discretization dimension which could ideally handle better these difficulties.
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5.2. Results for the Spheroidal Particle Model
5.2.1. Reconstruction of Monomodal Size Distribution

In the following sections, we perform numerical experiments with artificial data
simulating several atmospheric scenarios. These retrievals give valuable insights already
used for real-life data from lidar measurements, see [44–46]. Our investigations, analyses,
and results were realized with a Windows 10 workstation PC of 16 GB RAM and a 2.40 GHz
quad-core processor.

We assume, as already mentioned, exact knowledge of the refractive index. We
will consider 8-point synthetic datasets, i.e., 3β⊥ + 3β‖ + 2α (for more details, see [46])
associated with optical products of the most advanced polarization lidars [47] in the present
time. The shape-size distribution v(r, η) is formed by multiplying a log-normal distribution
v(r) with an aspect ratio distribution a(η)

v(r, η) = v(r)a(η). (33)

The aspect ratio distribution a(η) is given by the simple model

a(η) =


p1, if η = η1,
p2, if η = η2,
...

...
...

pν, if η = ην,

(34)

where 0 ≤ pj ≤ 1, j = 1, 2, . . . , ν and p1 + p2 + . . . + pν = 1. The selected aspect ratio
distributions cover the three most interesting cases: (a) oblate ensembles, (b) sphere-
spheroid mixtures and (c) prolate ensembles, see Table 2 for the specific used values.
The associated case-aspect ratios (ηj, j = 1, 2, . . . , ν) are selected from the exact available
ones in Mieschka’s database, see Equation (32). The radius ranges are [0.01, 1.2] or [0.01, 2.2]
both for the distributions and for the integration, and the aspect ratio range is [0.67, 1.5].
Figure 2 shows some examples of shape-size distributions from Table 2.

The combination of the (four) log-normal distributions with the (three) aspect ratio
distributions from Table 2 yield an effective-radius range of 0.26 to 0.95 µm. The aforemen-
tioned sizes cover many interesting cases of aerosol particle ensembles and fall within the
range of fine and medium-coarse dust-like particles but do not span, of course, the whole
physically occurring range.

For the discretization of the model Equation (31), the refractive index and the projected
dimension (splines) are necessary. The fixed refractive index for the scattering efficiencies
takes the values 1.33 + 0.001i, 1.4 + 0.005i, 1.5 + 0.01i, 1.6 + 0.001i and 1.7 + 0.05i (one at a
time). The number of spline points and spline degrees take over values from the ranges
6 up to 14 and 2 up to 5, respectively, resulting in projection dimensions from 7 up to 18.
The lowest dimension 7 used here was found also in [37] to be marginally sufficient, while
a larger dimension than 18 might result in a systematic behavior in the retrieval because
the linear systems end up highly underdetermined.

Once the optical dataset is created with a forward run of Equation (31), we add to it
Gaussian white noise, with relative error levels 1%, 5% and 10%. Every dataset is randomly
generated 15 times for the same error level. Finally, the produced linear systems are solved
with the regularization methods 1–6.

The discrepancy δ for TSVD-DP, Padé-DP and Tikh-DP is automatically computed for
a simulation from the known error level (ε) by δ = ε‖g‖, where g is the error-free dataset,
and the safety factor is set to be unit. The (m, n)-Padé iteration scheme used here is (2, 1),
which was found suitable for regularization in [15,38,40,42]. The maximum number of
iterations for Padé-DP/-LC is fixed to 100, and the relaxation parameter is fixed to 100.
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Figure 2. 2D-Plots of synthetic shape-size distributions produced by combinations of log-normal
distributions and aspect ratio distributions from Table 2, see the corresponding title above each plot.

Table 2. Simulation- and inversion setup with a fixed refractive index. Parameters below the titles
“Distribution data generated with”, “Optical data generated with” and “Optical data inverted with”
are combined with each other to perform the corresponding action.

Distribution Data Generated with

log-normal distribution

No 1 2 3 4

mode radius (rmed) (µm) 0.05 0.25 0.5 0.8
mode width (σ) 2.3 1.6 1.2 1.3
radius range (µm) [0.01, 1.2] [0.01, 1.2] [0.01, 2.2] [0.01, 2.2]
number concentration (nc) 1 1 1 1

aspect ratio distribution

(a) oblate (b) sphere-spheroid mixture (c) prolate

{
1/2, if η = 0.77,
1/2, if η = 0.87,


1/3, if η = 0.87,
1/3, if η = 1,
1/3, if η = 1.15,

{
1/2, if η = 1.3,
1/2, if η = 1.5,

Optical data generated with

refractive index

(i) 1.33 + 0.001i (ii) 1.4 + 0.005i (iii) 1.5 + 0.01i (iv) 1.6 + 0.001i (v) 1.7 + 0.05i

number of spline points

6 7 8 9 10 11 12 13 14

spline degrees

2 3 4 5

relative error level (×15 repetitions)

1% 5% 10%
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A straightforward observation from Figures 3–5, A1 and A2 (see Appendix C) is that
TSVD-DP and Tikh-GCV/LC/DP are the least efficient methods and may be ruled out.
The most probable cause of this behavior is the overestimation or underestimation of the
regularization parameter leading to oversmoothed or undersmoothed solutions.

There are only small differences in accuracy between Padé-DP and Padé-LC, mostly
in favor of Padé-LC which occasionally amounts to a better distribution reconstruction
than the one produced by Padé-DP which was already observed in the previous spherical
case study.

Figures 3 and 4 show the error-level evolution of the produced reconstruction by Padé-
DP, Padé-LC and Tikh-DP (left to right) for the cases (2, c, iii) and (4, a, ii) respectively for
1% (2nd row) and 10% (3rd row) error level; the initial shape-size distribution is shown in
the uppermost plots for both figures. In addition, the triple (Unc, Dist, Var), for explanation
see Appendix B, is given in the title of each reconstruction. Each solution space here owns
36 solutions (9 splines-point numbers × 4 spline degrees), five of which are selected as
the least-residual error solutions and are involved in the variability percentage. Padé-DP
and Padé-LC achieve a more accurate reconstruction than Tikh-DP in both cases (2, c, iii)
and (4, a, ii) and both error levels. Indeed, Padé iteration has less pronounced artifacts
than Tikh-DP and preserves the location of the peak (see also colorbars) and its width
better. For instance, the case (2, c, iii, 1%) in Figure 3 Dist is larger for Tikh-DP and the
reconstruction has a stronger spread in the radius axis and more artifacts in the bottom of
the graph. Padé-LC achieves a much better reconstruction for the same case but 10% error
level; see the lowermost panel of Figure 3, but it has a dubious uncertainty (Unc) of 66.45%,
which is more than twice the ones of Padé-DP and Tikh-DP. The case (4, a, ii) in Figure 4
essentially reconfirms the situation in another setting. The Tikh-DP reconstruction presents
much stronger elongation in the aspect-ratio axis as well as the radius axis, and there is
also some otherwise negligible noise in the beginning (leftmost) of the graph. However,
in the case of a 10% error level, there is a reduced chance of ∼50% (Unc) from the side
of Padé-DP/-LC of reaching this accuracy, which is much more than the one of Tikh-DP
(23.50%), see the lowermost panel of Figure 4. Furthermore, the variability is considerably
lower for Tikh-DP. However, a simple rough calculation for the worst-case scenario (high
deviation from the average accuracy) for Padé iteration accounting both Var and Unc shows
that it is still better than the one of Tikh-DP, which is the rule for many of the cases.

There is a milder but noteworthy competition between Padé-DP and Padé-LC in distri-
bution reconstructions mostly expressed for 5% or 10% error level. Figure 5, shows several
examples of reconstructions for a comparison between Padé-DP and Padé-LC, through
which we can also see noisy or less trustworthy outcomes for both methods. For instance,
focusing on the uppermost row of plots, i.e., the case (2, c, i, 5%), Padé-LC demonstrates
again better accuracy but much higher uncertainty (Unc: 51.54%) than Padé-DP (Unc:
13.81%), which essentially fails to capture the shape of the initial distribution in greater
detail. We note that there are plenty of cases with very smooth and nice distribution results
that are not shown here, but instead the chosen cases cover mostly difficult encounters for
Padé iteration, which may be of practical interest in a real application. Evidently a high
error level damages the reconstructions very distinctly. The mildest effect is expressed
through the aforementioned spread in radius- or aspect ratio axis, while stronger noise
involves additional “modes” (artifacts), see e.g., the lowermost panel of Figure 3. However,
it is important to realize that, in an experimental case (real data), multimodality is quite
a probable scenario and our intuition about what is noise or a real extra mode has to be
conformed accordingly. As a general remark, the location of the peak in the radius axis
is best reproduced, as compared to the (radius) mode width, the aspect ratio width and
the height of the peak, i.e., the volume distribution (colorbar). Indeed, even in cases of
mistreatment of the shape (aspect ratio), the location of peak in the radius axis is still
obtained, see e.g., the uppermost or lowermost panel of Figure 5. The plots in Figure 4 for
Padé iteration correspond to the best we can do for a case with oblate spheroids; most often,
the distributions are falsely shifted upwards, resembling those of the sphere-spheroid mix-
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ture. The refractive index obviously plays a crucial role in the inversion even if the initial
shape- and size settings are the same, since the kernel functions impose different levels of
smoothing depending on its value. We can see this through the examples on the 2nd and
3rd row of plots in Figure 5 referring to the cases (3, c, iv, v, 10%). These instances show the
reconstruction of same shape-size distribution for the extreme cases of weakly absorbing
particles (RI : 1.6 + 0.001i) and very absorbing particles (RI : 1.7 + 0.05i), illustrating the
infiltration of noise and the enhanced difficulty for an approximation associated with the
absorbing case.

Figure 3. Shape-size distribution reconstructions produced by Padé-DP, Padé-LC and Tikh-DP (left to
right) for the case (2, c, iii), respectively, for 1% and 10% error level. The uppermost plot corresponds
to the initial shape-size distribution. The triple (Unc, Dist, Var) in the title of each plot refers to
error-related quantities of shape-size distribution.

Figure 4. Cont.
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Figure 4. Shape-size distribution reconstructions produced by Padé-DP, Padé-LC and Tikh-DP (left to
right) for the case (4, a, ii) respectively for 1% and 10% error level. The uppermost plot corresponds
to the initial shape-size distribution. The triple (Unc, Dist, Var) in the title of each plot refers to
residual-error quantities of shape-size distribution.

Figure 5. Shape-size distribution reconstructions produced by Padé-DP, Padé-LC for several cases.
From left to right: initial shape-size distribution, Padé-DP-reconstructed distribution, Padé-LC-
reconstructed distribution. The triple (Unc, Dist, Var) in the title of each plot refers to error-related
quantities of shape-size distribution.

5.2.2. Reconstruction of Bimodal Size Distribution

In this section, we would like to show the potential of our approach in retrieving
bimodal shape-size distributions, restricting to reconstructions produced by Padé-DP. Mul-
timodality in a two-dimensional aerosol distribution has never been studied, as a result of
the mere absence of a 2D-representation of the distribution itself from contemporary bibli-
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ography for the sake of simplicity. Indeed, in order to even build a shape-size distribution
of desired modes (location, peak, etc), experience of some level is required as compared to
the case of a usual size distribution since there is no standard procedure and the additional
dimension (aspect ratio) expands significantly the possible outcomes. The construction of
such distributions is based here again on simple multiplication of independent log-normal
size distributions and aspect ratio distributions. The parameters used to create the synthetic
data and distributions are shown in Table 3 (BMD: 1–4). We will investigate shape-size
distributions which have two distinct modes either on the radius axis formed by a bimodal
log-normal distribution (BMD: 1–4) or on the aspect ratio axis (BMD: 5, 6) with greater
emphasis on the latter.

The new inversion examples were ran 15 times for 1% error level, choosing as
usual 5 best solutions (out of 36) for each run and the reconstruction plots are shown
in Figures 6 and 7 containing also information about the involved uncertainties in their ti-
tles. The top first and second panels of Figure 6 depict examples of a fixed mixture of oblate
and spherical particles combined with very diverse bimodal log-normal distributions, each
of which marrying fine (BMD 1) or very fine absorbing particles (BMD2) with coarse ones,
see Table 3. In both of these cases, the reconstructions are remarkably good at making
out the different modes not only locating the peaks but also the transition between the
modes. This detail is especially pronounced in the BMD 2, see the smaller 3D plots within
the main plots. The radius-width and the aspect ratio width are reproduced with good
accuracy as well, with BMD 1 allowing more noise into the plot. The third plot from the top
of Figure 6 (BMD 3) relates to a case of prolate particles where both modes pertain to coarse
particles. The reconstruction faces greater difficulty but all in all has similar characteristics,
i.e., identifying two modes which overall resemble the initial trends. The second mode
(right), however, appears to be noisier, and its peak is shifted on downward and right, and
we further observe a height suppression of the peaks and some artifacts in the bottom of
the graph. The modes on the last plot (BMD 4) pertain to very coarse particles combined
with the sphere–spheroid mixture used extensively in the previous simulations. Here,
in addition to the overall good response of the method, we can see that the reconstruction
senses also the small height difference between the mode peaks. The second mode (again)
suffers bigger errors but within a reasonable level.

Shape bimodality appears to be more problematic, probably as a result of the limited
access we have on kernel values with respect to the aspect ratio. Figure 7 shows our
attempts to reproduce two atmospheric settings (BMD 5, 6 in Table 3) of a fixed particle size
combined with a mixed ensemble consisting of oblate and prolate particles. The example
BMD 5 (upper panel) shows correct identification and detection of the two modes (location,
radius width), but the strength of the modes (peak heights) is reversed. The second example,
BMD 6 (lower panel), pertains to weakly absorbing particles (in contrast to BMD 5) with
much larger radius width. The relative strength of modes and their separation is well felt
by the reconstruction, but the upper mode is noisy and the peak of the lower mode is
shifted downward. Bimodal distributions with vicinal shape modes, e.g., using a prolate
ensemble with η = 1.15 and η = 1.5, are often mistreated by the inversion, showing the
two modes merged to a single wider one and thus revealing a shortcoming in sensitivity.
We should underline that the right choice of spline number and degree by the algorithm
seems to be more delicate when there is an aspect-ratio-related bimodality. In this case,
further simulations showed that a smaller projection dimension is often needed, i.e., a small
number of spline points and/or degree, in order to better identify the two modes.
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Table 3. Simulation setup for the reconstruction of bimodal shape-size distributions (BMD) with a
fixed refractive index and 1% error level. The following combinations were used: BMD 1: (1, a, iii),
BMD 2: (2, a, iii) , BMD 3: (3, e, ii) , BMD 4: (4, d, i) , BMD 5: (3, b, iii) , BMD 6: (4, c. i).

log-normal distribution

No 1 2 3 4 5 6

median radius (µm) [0.05, 1.4] [0.2, 1] [0.5, 1.6] [0.8, 1.7] 0.5 0.8
mode width [2.3, 1.2] [1.6, 1.4] [1.3, 1.2] [1.2, 1.2] 1.2 1.4
radius range (µm) [0.01, 2.2] [0.01, 2.2] [0.01, 2.2] [0.01, 2.2] [0.01, 2.2] [0.01, 2.2]
number concentration (nc) [600, 1] [30, 1] [12, 1] [6, 1] 1 1

aspect ratio distribution

(a)

{
1/2, if η = 0.87,
1/2, if η = 1,

(b)

{
1/3, if η = 0.77,
2/3, if η = 1.3,

(c)

{
1/3, if η = 0.87,
2/3, if η = 1.3,

(d)


1/3, if η = 0.87,
1/3, if η = 1,
1/3, if η = 1.15,

(e)

{
1/2, if η = 1.3,
1/2, if η = 1.5,

refractive index

(i) 1.33 +
0.001i

(ii) 1.4 +
0.005i (iii) 1.5 + 0.01i

Figure 6. Cont.
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Figure 6. Reconstructions of bimodal shape-size distributions with two distinct radius-modes. Top
down, right: reconstructions corresponding to the BMD 1–4 from Table 3. Left: Initial shape-size
distributions for the reconstructions on the right. Smaller plots within the main plots show the
shape-size distribution in 3D.

Figure 7. Reconstructions of bimodal shape-size distributions with two distinct aspect-ratio modes.
Right: reconstructions corresponding to the cases 5 (top) and 6 (bottom) from Table 3. Left: Initial
shape-size distributions for the reconstructions on the right.
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6. Conclusions and Outlook

Starting with the common Fredholm integral equation, we presented the theoretical
requirements to achieve a stable generalized solution. The SVD of the Fredholm operator
provided an insightful connection of the inherent instability of these inverse problems to
the existence of very small singular values which potentially magnify noisy components
of the solution. This motivated the definition of regularizers, in particular, through the
useful framework of filter functions whose regularizing effect is reduced to a small checklist
of simple properties. The latter was shown to be satisfied by the family of Runge–Kutta
iterative methods, from which we chose the (2,1)-Padé iterative regularizer to be among
the methods for our numerical experiments with synthetic data pertaining to different
atmospheric scenarios. First, we established the robustness of a new data-driven method
combining (2,1)-Padé with a L-curve method for the spherical particle case through recon-
structions of 1D (volume) size distributions. Expanding the Fredholm integral model to
a quasi-2D one, in order to accommodate the spheroidal particle approximation, brought
about a more complex and nuanced particle distribution function, i.e., the shape-size distri-
bution, which became our measure for a larger round of method comparisons. (2,1)-Padé
method stood out among the other traditional methods, with the LC version (L-curve)
being relatively more accurate and the DP version (discrepancy principle) being more stable.
Accounting for the fact that estimates of measurement data error (necessary for DP) are
mostly absent in applications, the purely data-driven method Padé-LC is a favorable choice.
Finally, we went on to reconstruct limited cases of bimodal shape-size distributions with
remarkable fidelity, pushing at the same time the limits of our approach. Putting aside the
substantial complexity imposed by the spheroidal particle approximation, e.g., numerical
convergence of kernel functions, quasi-2D discretization, 2D integrations for the forward
model, unfamiliar interpretation of a shape-size distribution, etc., there are evident practical
limitations to this approach for it to become fully operational. These involve mostly the
restrictions of the scattering database limiting the refractive indices to a characteristic but
quite small grid and the aspect ratio range to a few values. Limitations on the so-called size
parameter (2 ∗ π ∗ r/λ) also force the radius range to account for particles up to 2.2 µm and
might also lead to misidentification or disruption of distribution modes as shown. These
are all topics that would potentially improve the performance of our method and need to
be taken into account in future studies along with the use of real-life lidar measurements.
Nonetheless, this study marks a more mature point for the handling of the non-spherical
microphysical retrieval problem bringing back to the discussion the role of shape, in an
active manner, as a variable of the particle distribution missing from other approaches.
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Appendix A. B-Spline Functions

B-spline functions probably remain the most malleable tool regarding the local control
of the curve (control points), although somewhat complicated e.g., compared to its fraternal
predecessor the Bézier (or Bernstein) functions. The conceptual and practical upgrade of
the latter to the B-spline functions lies on the consideration of a special knot set, designed
to offer this flexibility.

Definition A1 (B-spline curve). Let R be a set of t + 1 non-decreasing numbers, r0 ≤ r1 ≤
r2 ≤ . . . ≤ rt, called the knot set which is augmented to r−d = . . . = r−1 = r0 ≤ r1 ≤ r2 ≤
. . . ≤ rt ≤ rt+1 = . . . = rn, where n = t + d + 1 is called the number of basis functions. Then,
the j−th B-spline of degree d is defined by the De Boor–Cox recursion [48]:

Sj,0(r) =

{
1, if rj ≤ r < rr+1

0, otherwise.
(A1)

Sj,d+1(r) =ωj,d+1(r)Sj,d(r) +
(

1−ωj+1,d+1(r)
)

Sj+1,d(r), d ≥ 1 (A2)

where

ωj,d(r) =

{ r−rj
rj+d−rj

, if rj+d 6= rj

0, otherwise.
(A3)

Moreover, the curve defined by

v(r) =
n

∑
j=1

pjSj,d(r) (A4)

is called a B-spline curve and (pj)
n
j=1 its control points.

A B-spline curve is a piecewise polynomial function which can be used to represent
a function of one variable in the projected space. A natural generalization of the B-spline
curve in two dimensions by products of b-spline curves is the following.

Definition A2 (B-spline surface). Consider the B-spline curve schemes

u(r) =
n

∑
j=1

pjSj,d(r) with knot set (rj)
n+d+1
j=1 , and

w(a) =
l

∑
k=1

qkSk,h(a) with knot set (ak)
l+h+1
k=1 .

The tensor product

v(r, a) = u⊗ w =
n

∑
j=1

l

∑
k=1

pjqkSj,d(r)Sk,h(a) with knot set (rj)
n+d+1
j=1 × (ak)

l+h+1
k=1 , (A5)

is called a B-spline surface.

Note that the elements pjqk (matrix of control points) can be allowed to take arbitrary
values leading to a more general B-spline surface formula.

The apparent additional complexity of B-splines versus the usual spline functions is
counterbalanced by the computational relief due to their local support (at a given point
r ∈ [rj, rj+1), only d + 1 numbers are non-zero) and the efficient representation of a yet
unknown solution as the crucial step of the collocation method.
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Appendix B. Brief Explanation of Accuracy Parameters

Difference from exact value (Dif). This is simply the proximity of the mean solution to
the exact synthetic values.

Variability of the solution space (Var %). The Variability of a parameter here stands for
the standard deviation of the selected best (least-residual) values, divided by their mean
value. If there are multiple datasets, then a mean variability is implied, i.e., Var is found for
each dataset, and then their mean value is assigned to Var.

Randomness uncertainty (Unc %). This is related to the stability of the examined
method with respect to several repetitions of a numerical experiment of the same simu-
lated atmospheric scenario but with different (random) instances of the same error level.
Moreover, the Uncertainty of a parameter is the ratio of the standard deviation of the mean
values of this parameter for each dataset over their mean. For simulations, the different
datasets are usually produced with random realizations of input error added to a synthetic
dataset, and therefore Unc is a measure of numerical stability [45,46].

Appendix C. Further Reconstructions of Monomodal Shape-Size Distributions

Figure A1. Retrieved shape-size distributions from synthetic data produced with RI: 1.5 + 0.01i, 1%
data error, the size distribution No. 1 and prolate particle ensembles. The uppermost plot corresponds
to the initial shape-size distribution.

Figure A2. Cont.
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Figure A2. Retrieved shape-size distributions from synthetic data produced with RI: 1.5 + 0.01i, 1%
data error, the size distributions No. 3 and sphere-spheroid particle ensembles. The uppermost plot
corresponds to the initial shape-size distribution.
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