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ABSTRACT
This paper presents a nonlinear spectral unmixing method
jointly considering shadow effect and spatial relationships in
local neighborhoods. Sunlit and shadowed spectra are mod-
eled by considering two illumination sources, i.e., direct and
diffuse solar radiation. Specifically, we model the spectrum
of a material in shadowed regions according to the spectrum
of the same material exposed to direct sunlight. Furthermore,
we embed a weighted total variation regularization in order to
keep the spatial relationships among pixels. Weighting fac-
tors take into account the similarity of neighboring pixels by
considering the spectral information from the hyperspectral
imagery, height information from the image-generated digi-
tal surface model (DSM), and shadow effects. The optimiza-
tion problem is solved by the Alternating Direction Method of
Multipliers (ADMM). Experimental results demonstrate that
the proposed shadow-aware unmixing method performs bet-
ter with the aid of the spatial regularization.

Index Terms— Spectral unmixing, shadow, spatial regu-
larization, digital surface model (DSM), HySpex

1. INTRODUCTION

Spectral unmixing methods decompose mixed hyperspectral
pixels into spectral signatures of ground materials, i.e., end-
members, along with their corresponding contributions, i.e.,
abundances [1, 2, 3]. In the past decades, numerous spectral
mixing models have been developed, which simplify the real
optical interactions to certain degrees with or without physi-
cal interpretations [1, 2, 3]. The most common model is the
linear mixing model (LMM) [1], but nonlinear models have
attracted lots of attentions in the past decades. One group
of models regard nonlinear optical interactions up to the sec-
ond order. Depending on their assumptions, different types of
models have been proposed, such as the Nascimento model,
the Fan model, and the GBM (Generalized Bilinear Model)
[1]. Some works extended the nonlinear optical interactions
to unlimited orders [4, 5].

For the sake of spectral modeling, the shadow effect
has also attracted attention. One category of models re-

gards shadow as a wavelength-independent scaling effect
[6, 7] that can be by either adding a ”zero-reflectance”
spectrum or including a scaling parameter into the mix-
ture models. Another category of models regards shadow as
a wavelength-dependent effect by considering multiple illu-
mination sources, i.e. sunlight and skylight, thus achieving
better spectral representations [8, 9]. Due to low signal-to-
noise ratio in shadowed regions, the unmixing results exhibit
higher noise when including the skylight information [8]. In
addition, including the skylight can lead to inaccurate abun-
dance results in the shadowed regions of complex scenes,
causing unnatural transitions in shadow boundaries [8].

Next to modeling of the spectral information, embedding
spatial information has attracted research interest in spectral
unmixing [10, 11]. One popular group of methods applies
spatial regularization to the spectral mixing models in order to
promote spatial homogeneity among pixels in a local neigh-
borhood. In [11], authors embed total variation (TV) regu-
larization into the LMM, aiming to minimize the abundance
differences between a target pixel and its first order neigh-
boring pixels, which largely improves the spatial correlation
of abundance values. In order to preserve the edges in the
image, later works added weighting parameters to the TV-
regularization terms. The weights account for the spectral
similarity between pixels [12, 13]. When additional height
data is available, regularization with respect to height similar-
ity can be performed, which is advantageous for scenes with
high spectral variability, as height data is invariant to ilumina-
tion conditions.

Following our previous work in [8], we first introduce
a shadow-aware nonlinear spectral mixing model based on
physical assumptions. Then we embed spatial regularization
in the spectral mixing model using a weighted total varia-
tion (TV) regularizer, where the weighting factors are derived
by jointly considering spectral, height and shadow informa-
tion. Specifically, the height information is provided by an
image-generated digital surface model (DSM). Furthermore,
the nonlinear optimization is then constructed as a bi-convex
problem and solved by the ADMM (Alternating Direction
Method of Multipliers) [14].



2. METHODOLOGY

According to our previous work in [8], we present a shadow-
aware spectral mixing model, considering shadow effects in a
wavelength dependent manner. The motivation is to improve
the spectral modeling in shadowed regions to better repre-
sent ground mixtures at different illumination conditions. We
consider both direct and diffuse solar illuminations, assum-
ing that fully sunlit pixels receive both direct and diffuse so-
lar illuminations and fully shadowed pixels receive solely the
diffuse solar illumination. Given the spectrum of a material
r(λ) exposed to direct solar illumination, we model the spec-
tra rs(λ) of the same material in a fully shadowed region as:

rs(λ) =
F · (k1λ−k2 + k3)

1 + F · (k1λ−k2 + k3)
· r(λ) (1)

The wavelength-dependent fractional term models the propor-
tion of the diffuse solar illumination with respect to the global
solar illumination, using a power function (k1λ

−k2+k3) with
k1, k2, k3 ≥ 0. If no occlusion occurs on a ground pixel, the
diffuse radiation comes from all directions of the sky. Other-
wise, the diffuse illumination decreases by the sky view factor
F ∈ [0, 1], representing the fraction of sky that a ground pixel
can ”see”. In this paper, F is computed using DSM data, gen-
erated from the images [15] using the software SAGA GIS
[16]. Despite the fact that the image-generated DSM has
lower accuracy compared to a Lidar-generated DSM, it is suf-
ficient for our application and provides valuable information
when Lidar data are not available.

Given that a pixel can contain several materials and is of-
ten partially shadowed in a real scenario, we use a parameter
Q to represent the fraction of shadow within a pixel. Further-
more, we model multiple reflections from neighboring pixels
to the target pixel up to the second order. The proposed spec-
tral mixing model for pixel j is give by:

xj =(1−Qj)

p∑
i=1

aj,iei +Qj

p∑
i=1

aj,iei · F̃j+

Kj

p∑
i=1

ei · eNj

(2)

The three terms represent three types of contributions, i.e.,
sunlit, shadowed and nonlinear interactions for a pixel j.
F̃j =

Fj ·(k1λ
−k2+k3)

1+Fj ·(k1λ−k2+k3)
, {ei}pi=1 are the endmembers and

aj,i is the abundance value of endmember i at pixel j, and p
is the total number of endmembers. eNj is the mean spec-
trum of neighboring pixels of the target pixel j, while K is
the fraction of the multiple reflections from the neighboring
pixels that the pixel receives.

Note that X = [x1,x2, · · · ,xN ], where xj ∈ RL×1.
E = [e1, e2, · · · , ep]. A = [a1,a2, · · · ,aN ], where aj ∈
Rp×1. K = [K1,K2, · · · ,KN ], F = [F1, F2, · · · , FN ],

eN = [eN1 , eN2 , · · · , eNN ], where N is the number of pix-
els. We construct the optimization problem as:

min
A,Q,K

1

2

N∑
j=1

∥ẼjAj −Xj∥2F (3)

where

Ẽj = E ⊙ ((1L − 1LQj + F̃jQj + eNjKj)1
T
p ) (4)

Following several previous works, we apply the ANC
(abundance non-negativity constraint) and ASC (abundance
sum-to-one constraint) on the abundance values aj . Addi-
tionally, we assume Q and K ∈ [0, 1], in order to keep their
physical meanings:

aj ≥ 0,

p∑
i=1

aj,i = 1, Q,K ∈ [0, 1] (5)

Inspired by existing works on weighted total variation
constraints for spectral unmixing [13, 12], the spatial con-
straint is described as:

N∑
j=1

∑
m∈N (j)

Rj,m∥aj − am∥11 (6)

where N (j) denotes the first order neighboring pixels of the
target pixel j, and Rj,m a weighting factor, describing the
similarity between pixel j and m, based on both spectral and
height information. In this paper, we use two exponential
functions to describe the spectral and height similarities be-
tween target pixel j and its neighboring pixel m. The smaller
the spectral and height distance to the target pixel j, the larger
the exponential functions become (see Eq. (7)), thus the con-
straint encourages m to have similar abundances with the tar-
get pixel j.

To measure the spectral similarity, accounting for shadow
effects, we use the spectral angle. The height information
from the DSM data provides illumination-insensitive infor-
mation. Furthermore, as abundance values in shadowed re-
gions can not be estimated as accurately as those in sunlit
regions, and often exhibit a higher noise level caused by the
low signal-to-noise ratio in shadowed areas [8], we embed
the pre-calculated shadow-related factor 1 −Q′

j,m, by which
the sunlit neighboring pixels have more impact to the target
pixel than shadowed neighboring pixels. For a target pixel j,
the weighting factor from its neighboring pixel m can then be
computed as:

Rj,m =
1

Zj

{
(1−Q′

j,m)

[
exp

(
− 1

δ2x
arccos

xj · xm

∥xj∥∥xm∥

)
+

exp

(
− 1

δ2h

(hj − hm)2

(hj + hm)2

)]}
(7)



where Q′
j,m is the pre-calculated shadow fractional value

through the method in [8], h and x are the height and re-
flectance, respectively. Zj is the normalizing constant value,
δ2x and δ2h are the constant parameters of the exponential
functions controlling the weight range.

In this paper, we apply the weighted TV regularization to
A. In addition, we apply a non-weighted TV regularization
to K, because nonlinear effects are generally not dependent
the spectral, height, and shadow conditions. Hence, we write
the optimization problem with spectral and spatial constraints
as follows:

min
A,Q,K

1

2

N∑
j=1

∥ẼjAj −Xj∥2F + λ∥AW1∥1,1 + ℓN (A)+

ℓS(A) + ℓM(Q) + λ∥KW2∥1,1 + ℓM(K)

(8)

where ℓN (A) = {A|A ≥ 0p×N}, ℓS(A) = {A|1T
p A =

1T
N}, ℓM(Q) = {Q|Q ≥ 01×N ,Q ≤ 11×N}, ℓM(K) =

{K|K ≥ 01×N ,K ≤ 11×N}, W1 ∈ RN×4N computes
the differences between a target pixel j and its neighboring
pixels weighted by the factor Rj,m, W2 ∈ RN×4N computes
the differences between a target pixel j and its neighboring
pixels without weighting factors.

The above optimization is a bi-convex problem, and it is
convex with respect to A and {Q,K}, respectively. Follow-
ing many successful applications to such problems [14, 17],
we split the unknown variables into two groups and solve two
convex problems sequentially through ADMM. We write the
optimization into the ADMM form in Eq. ((9)). The detailed
updating sequence is reported in Algorithm 1.

min
A,Q,K,G,H

1

2

N∑
j=1

∥ẼjAj −Xj∥2F + λ∥G2∥1,1+

ℓN (G3) + ℓS(G4) + ℓM(H1) + λ∥H3∥1,1 + ℓM(H4)

s.t.G1 = A,G2 = G1W1,G3 = A,G4 = A,H1 = Q,

H2 = K,H3 = H2W2,H4 = K.

(9)

with G = [G1,G2,G3,G4] and H = [H1,H2,H3,H4].
Experimental results obtained through Algorithm 1 are pre-
sented in next section.

3. EXPERIMENTAL RESULTS

We test our method using a real airborne hyperspectral im-
age (Fig. 1 (a)) with a HySpex VNIR sensor [18, 19] and the
digital surface model (DSM) (Fig. 1 (c)) generated from im-
age pairs acquired with the 4K camera system [15]. Both
datasets were acquired at the same time over Oberpfaffen-
hofen, Bavaria, Germany between 8:42 and 8:56 a.m. (Cen-
tral European Summer Time (CEST)) on June 4th, 2018. The

Algorithm 1: ADMM for the optimization problem
in (9)

Input : E, F , X , eN ,λ,k1,k2,k3
Output: A, Q, K
Initialize: t = 0,A(0), Q(0), K(0),G(0),H(0),U (0)

1 while the stopping criterion is not satisfied do
2 Update A(t+1), given Q(t), K(t),G(t),U (t)

3 Update G(t+1), given A(t+1), U (t)

4 Update Q(t+1) and K(t+1), given A(t+1), H(t),
U (t)

5 Update H(t+1), given Q(t+1), K(t+1), U (t)

6 Update U (t+1), given U (t), A(t+1),
Q(t+1),K(t+1),G(t+1),H(t+1)

7 t = t + 1
8 end

hyperspectral image has been atmospherically corrected us-
ing ATCOR [20]. After removing water vapor bands, a total
of 101 bands have been kept for further processing. The DSM
data are generated using the method in [15], followed by ge-
ometrically co-registration and re-sampling, in order to keep
the same geo-coordinates and spatial resolution (i.e., 0.7 m)
as the hyperspectral imagery. A spectral library of endmem-
bers is generated by manually selecting pure pixels of relevant
materials in sunlit regions of the image (Fig. 1 (b)). In addi-
tion, the sky view factor F is computed from the DSM data
using the software SAGA GIS [16] (see Fig. 1 (d)). Given the
F values, ten pairs of pixels have been selected in the scene in
order to compute parameters k1, k2, and k3 according to Eq.
(1). Assuming that the atmospheric conditions are constant in
the entire region, these parameters are assumed to be constant,
and were set as: k1 = 0.5501; k2 = 7.1303; k3 = 0.1907.

Fig. 2 compares the results of the proposed spectral mix-
ing model in Eq. ((2)) with different constraints. Results in
the first row consider the spectral and spatial constraints fol-
lowing Eqs. (5), (6), and (7), while results in the second row
consider solely the spectral constraints of Eq. (5). For sim-
plicity, we show two aggregate abundance maps of endmem-
bers by grouping materials with similar spectra, resulting in
the abundance maps of impervious surfaces (Fig. 2 (a) and
(f)) and vegetation (Fig. 2 (b) and (g)). After embedding the
spatial information, the abundance maps display better spa-
tial relationships among pixels with a largely reduced noise
level. Figs. 2 (d) and (i) compare the Q maps. Despite the
fact that the proposed method does not enforce any spatial
constraints on Q, the Q map in Fig. 2 (d) appears smoother
while preserving small shadowed regions, thanks to the spa-
tial constraints on the abundance maps. Following our pre-
vious works, the restored images in Fig. 2 (c) and (h) are
computed by image reconstruction using the spectral mixing
model in Eq. ((2)) with Q = 0. As the proposed method pro-
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Fig. 1. Input data and computation of input parameters: (a)
hyperspectral image as a true color composite acquired by
the HySpex sensor in the study area of Oberpfaffenhofen,
Bavaria, Germany; (b) endmember library, manually selected
from (a); (c) DSM data and (d) F computed from the DSM
data.

duces spatially smooth abundance maps and parameter maps,
the reconstructed shadow-removed image (Fig. 2 (c)) is also
spatially smooth.

4. CONCLUSION

This paper proposes a nonlinear spectral unmixing method by
considering shadow and spatial relationships between neigh-
boring pixels. We consider two illumination sources to im-
prove the modeling of the spectra of shadowed pixels. In ad-
dition, we use image-generated DSM data to provide geomet-
ric information and promote the spatial relationships during
the estimation of the abundances. We applied the proposed
method to real airborne hyperspectral imagery. Experimen-
tal results demonstrate that the image-generated DSM offers
great assistance in the proposed shadow-aware spectral mix-
ing model. Firstly, the sky view factor feeds geometric infor-
mation into the proposed spectral mixing model. Moreover,
in shadowed regions where the spectra contain wavelength-
dependent distortions, the height data assist in generating spa-
tial relationships in the local neighborhood through weight-
ing factors. By embedding the spatial relationships, the pro-
posed method generates smoother abundance maps, parame-
ter maps, and shadow-removed imagery.
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Fig. 2. First row: proposed model with spatial regularization; second row: model in Eq. ((2)) without spatial regularization.
Columns: sum of abundances of impervious materials; sum of abundances of vegetation; shadow-removed images in true color
composites; parameter Q; parameter K.
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tomated geoscientific analyses (saga) v. 2.1. 4,” Geo-

scientific Model Development, vol. 8, no. 7, pp. 1991–
2007, 2015.

[17] Bin Yang and Bin Wang, “Band-wise nonlinear unmix-
ing for hyperspectral imagery using an extended mul-
tilinear mixing model,” IEEE Transactions on Geo-
science and Remote Sensing, vol. 56, no. 11, pp. 6747–
6762, 2018.

[18] Daniele Cerra, Miguel Pato, Kevin Alonso, Claas
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