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Abstract 

Building stocks account for a large share of energy consumption and harbour great potential for reducing 

greenhouse gas emissions. The field of urban building energy modelling (UBEM) offers a range of approaches 

to inform climate protection policies, producing output of different granularity and quality. 

We compare two typology-based (archetype) approaches to urban heat demand calculation in a mixed-use 

area in Berlin, Germany. The goal is to show challenges and pitfalls and how remote sensing can improve the 

modelling. The first approach uses 2D cadastral data and specific heat demand values from a typology. For the 

second approach, we derive a 3D building model from aerial imagery, use parameters from the same typology, 

and calculate the heat balance for each building. We compare the differences in several geometric 

parameters, U-values and the heat demand. Additionally, we analyse if window detection on aerial image 

textures and surface temperatures from aerial infrared thermography can improve the estimated window-wall 

ratios and U-values. The two heat demand approaches lead to different results for individual buildings. 

Averaging effects reduce the differences at an aggregated level. Remote sensing can be used to improve some 

geometric parameters needed for modelling, but still requires additional research regarding U-value 

estimation. 
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1 Introduction  

As climate change progresses, a growing number of governments at national, regional and municipal levels 

declare ambitious goals for climate protection. One of the sectors with the highest potential to reduce 

greenhouse gas emissions is the building sector. Energy use in buildings accounts for 40 % of the total primary 

energy consumption in the EU and the U.S. As part of its plan to reduce greenhouse gas emissions, the German 

government announced the goal of having a nearly climate-neutral building stock in the country by the year 

2050. As standards for new construction are ambitious, but the rate of new construction is low and decreasing, 

attention must focus on the existing building stock. Extensive renovation of building envelopes and exchange 

of heating systems are needed to meet the government’s climate protection goals [1–3].  

In deriving strategies and planning measures for reaching the agreed upon goals, planners can be supported by 

urban building energy modelling (UBEM), meaning the extension of already widely used building energy 

models (BEM) to an urban context. These tools help to understand the current situation and the possible 

impact of future developments on the energy use [4]. 

 Literature 
In recent years, many different methods and tools for UBEM have been developed. Li et al. [5] classify them 

into top-down and bottom-up approaches. The first allocate aggregated energy consumption to individual 

units (buildings, districts or others) based on known characteristics of the smaller units that correlate with the 

individual energy consumption. The latter use a sample of units with known energetic properties that serve as 

archetypes and scale them up. Lim and Zhai [6] suggest a subdivision of the bottom-up models into two 

subgroups: Statistical methods map energy use to individual buildings based on statistics connecting building 

parameters and historical energy use; engineering-based methods “explicitly account for the energy 

consumption of individual  end-uses  based  on  the  equipment  use,  heat  transfer and thermodynamic 

relationships”. Among the latter, stochastic approaches account for several uncertainty issues by introducing 

randomized aspects, while deterministic approaches are restricted to average values. Reinhart and Cerezo 

Davila [4] give an overview about existing engineering-based bottom-up approaches and discuss the use of 

building archetypes in the process.  

As the range of different approaches is wide, so are the open challenges in the field. An overview can be found 

in a range of recent publications [4–7]. In the following we focus on those that are related to the work 

presented in this paper. According to Sola et al. [7], an important challenge lies in “the required effort for the 

collection of data to create the models of existing districts, including 3D city models”. A related point made by 

Reinhart and Cerezo Davila [5] is the need of the energetic building type (“archetype”) definitions to reliably 

represent the building stock. Similarly, Lim and Zhai [6] point out the constraints of existing bottom-up 

methodologies in considering the distribution of building parameters among individual buildings with the same 

assigned archetype. Hong et al. [8] mention that different UBEM tools are used on different datasets, making it 

hard to compare tools and validate results. Last but not least, model calibration is seen as a key challenge, 

since measured data comes – if at all – mostly in aggregated form and while models tend to perform well at 

aggregated levels, errors increase at lower levels [4,5].  

 Aim  
In this paper, we apply two urban building energy modelling methods, developed in previous work, to the 

same case study area. Both methods use different bottom-up approaches based on the same building 

typology, but differ in the details in many regards. We aim at presenting the importance of these details and 

the differences in the results they lead to, thereby contributing to the comparability of different UBEM 

approaches. Furthermore, we investigate remote sensing as a way to gather possibly unavailable data that is 

nevertheless required by the models as well as to account for individual building parameters. Specifically, we 

aim at improving key input data regarding geometry and U-values. 
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In Figure 1, we give an overview of the different approaches used in this study, which data and data sources 

they use, and which results are then compared. The first approach, which we call “SHD (specific heat demand) 

approach”, was developed by Dochev et al. [9] for the heat demand cadastre of Hamburg, Germany. It uses 

information from a 2D cadastre to assign building archetypes to the buildings. It then estimates the heat 

demand of the buildings based on the floor area derived from the cadastre and the respective archetype 

buildings’ specific heat demand (kWh/m2*a). The overall method is well-known, but the details in assigning the 

types and translating the cadastral data are novel. 

The second approach is the SimStadt software [10,11] which uses a 3D polygonal model derived from aerial 

imagery. SimStadt first assigns building archetypes to the 3D CityGML objects, depending on their geometrical 

properties. With the types come the energetic properties (e.g. U-values for different constructions, window-

wall ratios). Finally, the software performs a quasi-steady-state heat demand calculation [12] for every building 

taking all heat sources and sinks into account.  

Besides the generation of the 3D model, we use remote sensing to measure parameters of the buildings in the 

case study area needed for the two modelling approaches, namely window areas (based on façade texture 

image analysis) and surface temperatures (based on quantitative infrared thermography). We attempted to 

use surface temperatures as a proxy for U-values to be able to compare the values.  

2 Case study description  

The urban area investigated in this paper is located in the Moabit neighbourhood of Berlin. It is a good 

example for an urban area where heat energy modelling based on consumption data is not possible. The 

reasons are the very heterogeneous energy sources used for heating (oil, gas and district heating) as well as 

data protection regulations that make data unavailable. We chose this area because the appropriate data for 

Figure 1: Overview about the methods (modelling/simulation and remote sensing), their data sources, and which results we 
compare based on the case study. Note that the data sources are not always used completely, e.g. SimStadt does not read 
footprint geometries from the cadastre. 
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both modelling approaches and remote sensing was available and the size of the area was suitable for our 

analysis. Figure 2 shows an aerial view of the study area. There are 208 buildings in total. Of these, 71 % (161 

buildings) are primarily used for residential purposes, most of them being large multi-family buildings. The rest 

are used for industry, offices, retail or education. Garages and other non-heated buildings make up 12 % of the 

stock. In terms of age, 63 % of the buildings were built before 1910, while the rest were built mostly between 

1953 and 1996. The five newest buildings are from 2008 and 2016 (see Figure 3). 

 

Figure 2: Aerial view of Berlin-Moabit [13] with case study 
area delineated in red. 

 

Figure 3: Primary use of buildings and years of construction 
in case study area Berlin-Moabit, 𝑛 = 208.

3 Data sources  

We use three main data sources: an excerpt from the 2D digital cadastre of Berlin [14], a 3D polygonal model 

in CityGML format derived from aerial imagery, and a separate dataset on building age (years of construction) 

[15]. Since in many cases multiple building objects in our 3D model correspond to one building object in the 2D 

cadastre data, we use the larger 2D objects as unit of analysis and aggregate smaller 3D objects accordingly 

unless mentioned otherwise. This aggregation leads to 208 buildings. 

 Cadastre (ALKIS)  
ALKIS is the standardized digital cadastral system for Germany [16] that provides comprehensive information 

on land-use and the built environment. It includes the footprint geometry of buildings (measured after 

completion) together with their number of storeys and functions and assigns a unique identifier to each 

individual building. Additionally, the cadastre includes building parts where the number of storeys is different 

from the main part to designate overarching or tower-like volumes. For Berlin-Moabit, the cadastral data is 

available from the Geoportal Berlin [14].  

 3D polygonal model (CityGML) 
The second dataset is a 3D polygonal building model in the CityGML format derived from aerial imagery as 

described in section 4.3.1. CityGML can represent existing urban environments such as buildings, roads and 
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vegetation. It allows describing buildings at different levels of detail (LOD) (Figure 4): LOD0 consists of only a 

planar shape. LOD1 represents the building as a cube with an average building height and a flat roof. LOD2 has 

more detailed information about different building heights and roof shapes. LOD3 includes windows, openings, 

roof overhangs and further façade details. LOD4 additionally contains the interior design [17]. In the model 

created for this study, LOD3 syntax is used to represent LOD2 information and window polygons. 

 

 

Figure 4: Visualization of LOD0 to LOD4 in the CityGML format [18]. 

 Building typologies  
Both SimStadt and the SHD approach rely on typologies to gather energetically relevant parameters for their 

models. In the context of this paper, data from the IWU residential typology and the German standard VDI 

3807 is used.     

3.3.1 IWU residential typology 

For residential buildings, we use the typology of the German Institut Wohnen and Umwelt (IWU) [15].  This is 

the leading German typology generated from a large Germany-wide sample that is renewed periodically. IWU 

was the lead in the EU project TABULA developing similar typologies for other European countries [16]. The 

IWU typology classifies buildings of the German residential building stock according to their building size class 

(e.g. single-family house (SFH), multi-family house (MFH)) and construction period (usually a range of 10 years, 

e.g. 1958-1968 and 1969-1978) as shown in Table 1. For each building size class and construction period, a 

reference (archetype) building with its respective wall, roof, cellar ceiling and window properties is described. 

These properties include floor and window areas, building envelope constructions and materials as well as U-

values for each component. 

Table 1: Construction periods and building size classes for residential buildings from German IWU building typology [19]. 

Building size class Construction period 
         

     Before 1860  1979-1983  

 SFH Single-family house       

     1860-1918  1984-1994  

 TH Terraced house       

     1860-1918  1995-2001  

 MFH Multi-family house       

     1949-1957  2002-2009  

 AB Apartment block       

     1958-1968  2010-2015  

 HR High-rise building       

     1969-1978  After 2015  
         

3.3.2 VDI 3807 

The German standard VDI 3807 [20] uses a classification of about 70 building functions  and gives mean, 

median and mode values of their specific heat consumption from measured data. Only the SHD approach (see 

3.1.) uses this typology to model the non-residential buildings. 
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 Years of construction 
The years of construction of the buildings are essential for using the IWU typology. The cadastre usually 

contains such information, but for this case study, both ALKIS and the 3D polygonal model (CityGML) did not. 

However, the Berlin Geoportal provides data on building construction periods [15], so  we could use it to 

complete the other datasets. However, these periods are not always the same as the ones used by IWU. In the 

few cases where the assignment of one to the other was ambiguous, we assumed the middle of each period as 

the year of construction (e.g. if the building construction period from the Geoportal is 1962-1974, the year of 

construction was assumed to be 1968, which places the building in the IWU period 1958-1968). Since the data 

from the Geoportal was outdated (1993), we used historical aerial imagery from Google Earth [21] for the 

buildings that were built after 1993. The result is presented in Figure 5. 

 

Figure 5: Age classes of buildings in case study area (2D representation in QGIS) according to Geoportal Berlin and historic 
aerial imagery from Google Earth. 

 Aggregation of data sources  
As mentioned in Section3, the 387 buildings in the CityGML model (visualized in Figure 6) correspond to the 

208 ALKIS buildings in a one-to-many relationship. We aggregated the CityGML model to the level of the ALKIS 

buildings to enable comparison. Note that there were a few exceptions, where a CityGML building was part of 

two ALKIS buildings, effectively making the relationship many-to-many. Since the overlaps were small (10 m² at 

most), we neglected this for the purposes of this paper and assigned CityGML buildings to the ALKIS buildings 

based on their centroids. 
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4 Methods  

In this section, we present the methods of our different approaches to urban building modelling and energetic 

assessment. We explain their application in the case study in Berlin-Moabit. The results are compared and 

discussed in section 5.  

 Specific heat demand values from a typology – “SHD approach”  
In the following, we summarize the approach of Dochev et al. [9] that we refer to as the specific heat demand 

(SHD) approach. It makes use of a 2D building cadastre and a building typology to estimate building 

characteristics which are not part of the cadastre. We assign the energetic building types defined in the IWU 

typology to each building polygon using attributes from the cadastre or other sources – mainly number of 

storeys, building size class and construction year. 

After the classification of the construction years (see 2.4.), we assign a building size class (e.g. SFH or MFH) to 

each building. For non-residential buildings, we re-classify the cadastral building functions to match the 

functions in the German standard VDI 3807 [20]. Mixed-use buildings can be identified in the cadastre by their 

function – for example “residential building with office”. Using this, we assign both a residential and a non-

residential type to such buildings. 

We then estimate the gross floor area of each building polygon using the area of the footprint and the number 

of storeys as: 

𝐴𝑛 =  𝐴𝑓 ⋅ (𝑛𝑓 + 𝑚 ⋅ 0.75) + ∑ 𝐴𝑏𝑝 ⋅ Δ𝑛𝑏𝑝

𝑏𝑝

 (1) 

where:  

𝐴𝑛 gross floor area of building 
𝐴𝑓 footprint area found in the cadastre 

𝑛𝑓 number of storeys of the footprint 

𝑚 roof type factor (0 for flat roofs, 1 for mansard or half-hipped or according to typology) 
𝐴𝑏𝑝 footprint area of building part (building part is a geometry contained in the footprint geometry of the 

building which signifies a difference in number of storeys) 
Δ𝑛𝑏𝑝 difference in number of storeys between main building and building part 

 
The factor 0.75 is to avoid overestimating a heated attic, since it rarely can be as large as a full storey. Note 

that the ALKIS as a cadastral system provides a field for the roof type, but the availability of the data itself is 

region-specific. In the case of Berlin, it was not available and we calculated all buildings as having flat roofs.  

We have formulated a best-guess ratio 𝑟 between the residential and non-residential area for buildings with 

mixed use in the cadastre, mainly from studies in the field and sample observations [9]. We assign these ratios 

to each building based on the building function. After we apply 𝑟 to the gross floor area of each building, we 

multiply the residential part with a coefficient of 0.8 [22] to estimate the residential floor area. This value is the 

reference area for the specific heat demand values of the IWU Typology. The reference area of the VDI 3807 

for the non-residential buildings is the gross floor area, so we only apply the ratio 1 − 𝑟. All in all, the resulting 

heat demand is equal to 

𝑄ℎ = 0.8 ⋅ 𝐴𝑛 ⋅ 𝑟 ⋅ 𝑄𝐼𝑊𝑈
′′ + 𝐴𝑛 ⋅ (1 − 𝑟) ⋅ 𝑄𝑉𝐷𝐼 3807

′′        (2) 

where:   

𝑄ℎ  heat demand of the building, 
𝑟 share of residential area in the building, 

𝑄𝐼𝑊𝑈
′′  SHD of the respective residential energetic building type from IWU building typology, 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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𝑄𝑉𝐷𝐼 3807
′′  SHD of the respective use type from VDI 3807. 

 

For converting between gross floor area 𝐴𝑛 and volume 𝑉𝑒, the German standard DIN V 18599 [12] provides 

the relationship 𝐴𝑛 = 0.32 ⋅ 𝑉𝑒. Note that this relationship has been formulated to estimate the gross floor 

area based on a measurement of the volume. Due to the properties of our data (2D cadastre) we use the 

formula “in reverse” to obtain 𝑉𝑒. We perform this step only for the comparison of volume and window areas 

with the other methods. It is not needed for our heat demand estimation. Note that the gross floor area 𝐴𝑛 

and volume 𝑉𝑒 are defined [22] as the gross area/volume within the conditioned building envelope. For our 

purposes we assume the whole area/volume is conditioned.  

We estimate the window-wall ratio (WWR) and envelope area for each residential building using the area-to-

volume ratio of the corresponding reference building in the typology and the volume of the analysed building. 

Afterwards, we can calculate the window area 

𝐴𝑤𝑖𝑛 = 𝑉𝑒 ⋅ 𝑞 ⋅ 𝑝       (3) 

where:  

𝐴𝑤𝑖𝑛 window area of the building 
𝑉𝑒 volume 
𝑞 envelope area-to-volume ratio of the reference building (“A/V ratio”) 
𝑝 WWR of the reference building 

 

Note that wall areas calculated from the geometries in the cadastre rather than through the A/V of the 

energetic building type and the volume would be more realistic. However, the specific heat demands used in 

equation (2) were computed for the reference buildings of the typology. Therefore, the U-value, A/V ratio, 

window area and shared wall ratios of the reference buildings are implicitly included in the specific heat 

demand. As a consequence, it is more consistent to compare the U-values and window areas from the other 

approaches with values of the archetype building rather than with values calculated for each individual 

footprint which, although more precise, do not influence our heat demand estimates. 

 Monthly energy demand simulation with SimStadt 
The second analysis is made through the simulation platform SimStadt which is being developed at the 

University of Applied Sciences Stuttgart. There are several studies and publications describing the method of 

building heat demand calculation with SimStadt [23,24]. 

SimStadt has a graphical user interface (GUI) and is organized in hierarchical workflow steps. Information on 

the geometry of each building given in the CityGML model is combined with building physics and usage 

libraries as well as weather databases. However, since SimStadt can only process CityGML models in LOD1 and 

LOD2 so far, the LOD3 model had to be reduced to LOD2, losing information on windows.  

The building physics library is based on the IWU typology for both the residential and non-residential buildings. 

The properties for the different building size classes and construction periods are assigned to the actual 

building geometry of each building. Window ratios are calculated from the window and wall areas given for 

each reference building in the typology, then the window area is calculated for each individual building. 

SimStadt then calculates average U-values for each entire building based on the actual building geometry.  

The usage library is based on several German standards. Heating and cooling set point temperatures, 

occupancy schedules and internal gains that differ depending on the building’s function (residential, office, 

retail, etc.) are some examples of values that are taken into account. 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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In order for SimStadt to calculate the heat demand of the building, it needs its function and year of 

construction. Based on that, the building geometry can be linked to the relevant parameters in the libraries. If 

this information is not given in the CityGML file, data from other sources needs to be taken into account. In 

this case study, the information about the years of construction from Geoportal Berlin and the building 

functions from ALKIS were linked to the CityGML buildings and added to the CityGML file. 

The heat demand for each building (both residential and non-residential) in a town or city quarter is calculated 

as a monthly energy balance according to the German standard DIN V 18599 [12]. In this quasi steady-state 

method, all heat sinks and sources are calculated and balanced over each month 𝑚.  

𝑄ℎ,𝑏 = ∑ 𝑄𝑠𝑖𝑛𝑘,𝑚 − 𝜂𝑚 ⋅ 𝑄𝑠𝑜𝑢𝑟𝑐𝑒,𝑚 − Δ𝑄𝐶,𝑏,𝑚
12
𝑚=1   

 
(4) 

where:  

𝑄ℎ,𝑏 total heat demand of the building, 
𝑄𝑠𝑖𝑛𝑘  total heat flow to heat sinks in the building, 

𝑄𝑠𝑜𝑢𝑟𝑐𝑒  total heat flow from heat sources in the building, 
𝜂 average utilization factor of the heat sources, 

Δ𝑄𝐶,𝑏 heat transferred from the building elements into the building zone during periods of reduced 
operation at weekends and during holiday periods. 

  
The 12 monthly heat demands are then summed up to the total yearly heat demand. The building-specific 

results from the simulations can be exported in a CSV file and used for further analyses or it can be visualized 

in 2D maps, or on a 3D globe, e.g. with Cesium. Cesium Virtual Globe is a virtual open source 3D globe which 

enables 3D visualization of spatial data [25,26].  

 Remote sensing 
Our remote sensing approach tries to gather information from aerial observations rather than from statistical 

data. For this case study, we use a novel combination of known measurement and evaluation methods: From 

oblique aerial RGB images, a 3D CityGML model is created. It includes window polygons detected on the 

façades’ RGB textures. Afterwards, the buildings are textured from aerial infrared thermography. Under 

consideration of several influencing factors, surface temperatures are calculated from these textures. Errors 

and uncertainties of window detection and infrared thermography are discussed in section 5. 

4.3.1 3D model generation 

The 3D model was generated from oblique aerial RGB images of the case study area taken in July 2017 from a 

height of about 650 m using a modular aerial camera system (MACS) [27]. Its configuration included three RGB 

cameras (one with nadir and two with oblique orientation) and a nadir-oriented near infrared (NIR) camera. 

The image set with a ground resolution of 8 to 14 cm was processed with the photogrammetric approach of 

Frommholz et al. [28]. That method consists of six main steps: 

1. A digital surface model (DSM), a digital terrain model (DTM) and a 3D point cloud are derived from 

the RGB images. The NIR orthoimage is used to filter out vegetation. 

2. The point cloud is projected to the ground plane. By analysing the points’ distribution and performing 

local linear regression, walls are extracted. Note: Due to tree coverage, the resulting 2D wall shapes 

were not complete. Therefore, building part footprints from ALKIS were used and refined with the 

point cloud data to get as-built façade outlines of all buildings. The original approach uses ALKIS only 

to refine single extracted walls and to separate buildings in the same block. 

3. Within the closed shapes of the walls, plane local regression is applied to the point cloud to 

reconstruct the roofs. 

4. 3D polygons are created by intersecting the ground (from the DTM), orthogonally erected walls, and 

the roof plane patches. 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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5. Wall and roof polygons are textured from the original image set. 

6. Windows are recognized on the textures and separated from the wall polygons as described in 

Section 4.3.2.  

The finished collection of 3D building envelope polygons is exported to the CityGML format with LOD3 syntax 

although it contains only LOD2 information plus windows. Figure 6 shows a visualization of the result. 

Note that the photogrammetric approach to get the 3D model was developed in previous work [28], but is 

novel to the field of UBEM. Its main advantage over using LIDAR-based point clouds is that neither additional 

equipment nor co-registration is required to obtain surface textures e.g. for window detection. 

Due to the used method, errors are mainly caused by building geometries that cannot be described by the 

algorithm used. Examples for these are elaborated façade shapes and roof structures. Both mainly appear on 

some non-residential buildings in the case study area. Furthermore, building parts below ground cannot be 

mapped. Quantification of the errors is impossible in this case as there is no ground truth data available. 

 

Figure 6: LOD3 model of case study Berlin-Moabit (387 CityGML buildings, 3D representation in FZKViewer). 

4.3.2 Window detection 

The RGB images are straightened by a homographic transformation to obtain the orthogonal projection of 

each image on the corresponding façade. Windows are detected on the projected images using a procedure 

similar to the one explained by Meixner and Leiberl [29]. Edge detection is used to distinguish the storeys of 

the building. Each floor is scanned for windows and other openings using colour gradients and geometric 

properties of candidate patches to distinguish windows from walls. In this way, window polygons are obtained 

and can be included in the 3D model. 

4.3.3 Infrared thermography – theory 

Infrared thermography is a well-known method for qualitative or quantitative analysis of surface temperatures 

and related phenomena, such as building heat loss. However, several influencing factors have to be considered 

to derive surface temperatures from infrared thermography (IRT) recordings.  

According to Schott et al. [30], the radiance recorded at the sensor 𝐿 is approximately equal to 

𝐿 = [𝜀 ⋅ 𝐿𝑇 + 𝜌 ⋅ (𝐹 ⋅ 𝐿𝑑 + (1 − 𝐹) ⋅ 𝐿𝑏)] ⋅ 𝜏 + 𝐿𝑢 = 𝐿0 ⋅ 𝜏 + 𝐿𝑢 (5) 

where 
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𝐿 radiance recorded at the sensor, 
𝜀 surface emissivity, 

𝐿𝑇 blackbody radiance at the surface temperature, 
𝜌 surface reflectivity, 
𝐹 sky view factor (the fraction of the hemisphere above the surface which is sky), 
𝐿𝑑  downwelled atmospheric radiance from the sky, 
𝐿𝑏 radiance from background objects, 
𝜏 atmospheric transmittance between surface and camera, 

𝐿𝑢 effective upwelled radiance of the atmosphere between surface and camera, 
𝐿0 total radiance leaving the surface into the direction of the camera. 

 

All radiance values are effective values for the recorded IR band. 

For several reasons, in this case we use a more elaborated calculation that is described in the following. 

First, due to different viewing angles the observation distance changes from image to image, thus affecting the 

atmospheric effects. As our data did not allow for applying the “multiple angle approach” presented by Byrnes 

and Schott [31], atmospheric properties (transmissivity and upwelled radiance) are calculated by MODTRAN 

[32]. The data provided by DWD [33] and ICOS [34] for the nearby Lindenberg Meteorological Observatory, 

completed by MODTRAN’s default “mid-latitude summer” atmospheric conditions serve as input atmospheric 

conditions. 

Second, the approximation of constant emissivity does not hold for viewing angles largely deviating from 

orthogonal view [35]. As Monien et al. [36] state, Fresnel’s Law gives the directional emissivity 𝜀𝑑𝑖𝑟 for each 

observation angle 𝜗𝑜 from emissivity values for normal view via the refractive index 𝑛. 

𝜀𝑑𝑖𝑟(𝜗𝑜 = 0°) =
4 ⋅ 𝑛

(𝑛 + 1)2
 (6) 

 

𝜀𝑑𝑖𝑟(𝜗𝑜) =

(1 − (
√𝑛2−sin² 𝜗𝑜−cos ϑo

√n2−sin² 𝜗𝑜+cos ϑ𝑜
)

2

) + (1 − (
cos ϑ𝑜⋅𝑛2−√𝑛2−sin² 𝜗𝑜

cos ϑ𝑜⋅𝑛2+√𝑛2−sin² 𝜗𝑜
)

2

)

2
 (7) 

As available data were not sufficient to classify the surface materials of the scene, the emissivities of prevalent 

surface materials in the area are taken from the literature (see Table 2). 

Table 2: Emissivity values for different surface types. 

Surface type Prevalent material 𝜺𝒅𝒊𝒓(𝝑𝒐 = 𝟎°) Source 

Façade  Plaster 0.91 [37] 
Flat roof (slope < 5°) Bitumen 0.96 [37] 
Tilted roof (slope > 5°) Red roof tiles 0.90 [38] 

 
Third, recorded radiance values for background objects are available from the textured 3D polygon model and 

an orthoimage of the street level. For each texture pixel of an observed surface, the hemisphere in front of it is 

discretized into solid angle segments 𝜔𝑖, and raytracing determines the next surrounding object in each 

direction. To avoid a complex system of equations, 𝐿0 of the background objects is assumed constant for all 

observation directions. To meet the law of energy conservation, directional reflectivity is adjusted as 

𝜌𝑑𝑖𝑟(𝜗𝑖) = 1 − 𝜀𝑑𝑖𝑟(𝜗𝑖) depending on the emissivity for the incidence angle 𝜗𝑖.  

As material classification is only approximate, the observed surfaces are generally rough, and bidirectional 

reflection distribution functions (BRDFs) are hardly available in literature, assuming Lambertian reflective 

behaviour appears reasonable. 
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Reflected radiance is calculated according to Nicodemus et al. [39] and different atmospheric path lengths are 

accounted for according to Byrnes and Schott [31]. As a result of these and the previously mentioned 

considerations, equation (5) changes to  

𝐿 = [𝜀𝑑𝑖𝑟(𝜗𝑜) ⋅ 𝐿𝑇 + ∑
1 − 𝜀𝑑𝑖𝑟(𝜗𝑖)

𝜋
⋅ 𝐿𝑏,𝑖  ⋅ cos(𝜗𝑖) ⋅ 𝜔𝑖

𝑖

] ⋅ 𝜏(ℎ, 0)𝑑 + 𝐿𝑢(ℎ, 0) ⋅ 𝑑 ⋅ 𝜏(ℎ, 0)𝑑−1 

𝐿 = 𝐿0  ⋅ 𝜏(ℎ, 0)𝑑 + 𝐿𝑢(ℎ, 0) ⋅ 𝑑 ⋅ 𝜏(ℎ, 0)𝑑−1 
(8) 

where 

𝜔𝑖  solid angle segments, 
ℎ standard flight height, 

𝜏(ℎ, 0) atm. transmittance between surface and camera for the flight height at normal observation angle, 
𝐿𝑢(ℎ, 0)  upwelled radiance between surface and camera for the flight height at normal observation angle, 

𝑑 ratio of the distance between surface and camera to the standard flight height, 
𝐿𝑏,𝑖 background radiance (sky or background object radiance, depending on raytracing outcome). 

 

Sky radiance is computed by MODTRAN. 

Finally and as mentioned by Schott [40], the spectral response of a microbolometer sensor [41] is applied to all 

relevant integral and average determinations, namely downwelled and upwelled atmospheric radiance, 

atmospheric transmittance, and blackbody radiance. With this, the atmospheric influence factors are adjusted 

as they tend to be stronger for wavelengths with lower spectral response.     

4.3.4 Infrared thermography – application 

The area of Berlin-Moabit was recorded with nadir and oblique infrared thermography (IRT) on March 6, 2019 

at about 1:00 from a height of approximately 600 m using a MACS-equipped plane with uncooled 

microbolometer cameras covering the 7.5 to 14 µm band. The IRT recordings were performed at night and 

therefore separately from the RGB recordings to avoid the influence of sunlight. The obtained images have a 

resolution of about 35 cm for the roofs and the ground, but less on the façades due to the viewing angle. Using 

the camera’s positions and orientations, the previously generated 3D polygon model (result of step 4 of the 

workflow described in section 3.2) was textured with the IRT imagery. In Figure 7, the textured model is 

visualized on the left. 

The camera output used for texturing has one temperature value per pixel that assumes blackbody radiation. 

In a first step of the calculation, the IRT output temperature is converted to radiance by integrating Planck’s 

law over the wavelength band, again weighted by the microbolometer’s spectral response. 

Figure 7: Radiation temperature of infrared polygon textures, combined with an orthoimage of the street (left) and  
calculated mean surface temperatures (right). 
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The next step includes the correction of all textures in the scene by atmospheric influences such that they 

show the radiance leaving the surface (𝐿0) according to equation (8). Afterwards, raytracing is applied to 

obtain 𝐿𝑏,𝑖  values. With these and the observation angles (between path to camera and surface normal), we 

calculate the blackbody radiance (𝐿𝑇 in equation (8)) for each texture pixel. 

In a last step, we convert radiance values to surface temperatures for each pixel using a lookup table that was 

previously generated by performing the Planck’s law integration for a range of temperatures. For each 

building, we calculate mean roof and mean façade surface temperatures, leading to the result visualized in 

Figure 7 on the right. As too many assumptions would be necessary to estimate U-values from surface 

temperatures [30], we do without it and use surface temperatures as indicators for building envelope 

insulation quality when comparing the remote sensing outcome to the results of the SHD approach and of 

SimStadt.  

5 Results and discussion 

As described in section 3.5, we use the coarser ALKIS level with 208 buildings for the comparison. The three 

approaches do not all compute the same quantities. So for some indicators we can only compare values from 

two methods. Note that we have no “real” or “true” values for any of the results that we compare in the 

following sections, as there is neither a reference model for the geometry nor measurement data of the 

heating energy consumption of the buildings. We compare the methods and results generated through these 

methods (see Figure 1) and describe the differences in the results. 

 Heated volume 
Both the SHD approach and SimStadt neglect secondary building functions that may not require heating and 

assume the total volume as within the conditioned building shell. For example, a garage in the first floor of a 

residential building would be counted as part of the heated volume of a building. Both methods, however, 

tackle the case of heated attics. SimStadt estimates if the attic is heated based on the angle of the roofs and 

the floor-to-roof height of the last storey, i.e. if it is large enough to be inhabited, it is considered as heated. 

The SHD approach uses the information on roof-type in the cadastre and the typology for this. The results 

(Figure 8) show that, the total heated volume for all buildings is 2.1 % lower in SimStadt than the total volume 

of the buildings which is calculated from the raw CityGML model. This is due to the SimStadt estimation of 

non-heated attics. The calculation of the heated volume with the 2D SHD approach underestimates the other 

two values by 11.6 % and 13.5 % respectively. The main reason for this is that although the SHD approach is 

able to take different roof types into account, they are not available in the cadastral data for Berlin-Moabit. All 

Figure 8: Results for the total heated volume in the study area from SHD approach and SimStadt in comparison to the total 
volume of the raw CityGML model. 
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roofs were considered as flat roofs, which in reality is not the case – most roofs are hipped or mansard roofs. 

An additional reason is that the actual average floor-to-floor height in the area might be different than the 

3.125 m that are implied by 𝐴𝑛 = 0.32 ⋅ 𝑉𝑒.  

Next, we compare the results on an individual building level. For this, we use the symmetrical mean 

percentage error (SMAPE,  also known as adjusted MAPE [42]) and its corresponding standard deviation.  

𝑆𝑀𝐴𝑃𝐸 =
100 %

𝑛
∑

|𝑃𝑖−𝑂𝑖|

(|𝑂𝑖|+|𝑃𝑖|)/2

𝑛

𝑖=1
       (9) 

SMAPE is a measure of accuracy used in forecasting and is defined as the average of the percent difference 

between each of 𝑛 pairs of observations 𝑂𝑖  and predictions 𝑃𝑖 , where the difference is relative to the mean of 

the pair. In our case, we compare the values from the different approaches, all of which are estimates. The 

advantage of the SMAPE is that it is symmetrical, which means that equal differences above or below the 

observed value lead to the same results. In our case it is even more appropriate, since the choice of 

“predicted” or “observed” value is arbitrary as they are both estimates. 

The SMAPE of the heated volume between the SHD approach and SimStadt across all buildings is 19.9 %, with 

a standard deviation of 11.4 % (Figure 9). Unsurprisingly, averaging out occurs for the summed totals and the 

difference is greater at the individual building level. We note a slight difference when comparing residential 

and non-residential buildings. For residential buildings the SMAPE is 19.2 % with a standard deviation of 

10.8 %, while for non-residential we get 23.2 % and 13.5 % respectively. A reason for the lower difference for 

residential buildings could be that the assumption of a fixed floor-to-floor height of 3.125 m in the SHD 

approach is more realistic for residential buildings and gives a larger discrepancy for non-residential ones. Note 

that the maximum value for individual buildings reaches up to 65 %. We do not observe a correlation between 

the size of the building and the relative deviation (R is 0.03 for the difference (SMAPE) of the volume and the 

mean volume of the buildings) and between the function of the building and the difference. The only 

noticeable pattern is that the results for the heated volume of the SHD approach are systematically lower than 

the other two. 

 

Figure 9: Symmetrical mean percentage error (SMAPE) of total heated volume between the SHD approach and SimStadt. 

The heated area in all approaches is derived from the volume with the same formula. Therefore, comparing 

the heated areas would not provide additional insights. 

 IWU type assignment 
Before analysing the results of the heat demand calculation, we check if the assignment of IWU types (the 

energetic building types of the IWU Typology) and consequently the U-values differ between SimStadt and the 

SHD approach. The two methods are based on the same building typology, but assign the types to the 
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buildings in different ways. We perform this analysis at the level of the CityGML rather than the ALKIS objects. 

This is because SimStadt assigns the IWU type according to the CityGML object, leading to multiple types for 

some ALKIS objects and aggregating would not work here unlike the quantitative information (heat demand). 

Additionally, we compare only the residential buildings here since the SHD approach uses a different, 

consumption-based typology for the non-residential ones and does not assign an IWU type or U-value to the 

non-residential buildings. 

The assigned IWU types have a building size class and a building construction period. Since both methods use 

the same data source for building age, differences appear only for the building size class. The comparison 

shows that for 80 out of 296 residential CityGML buildings (27 %) the IWU size classes differ between the two 

approaches. Some of the discrepancies appear because SimStadt takes the building height as the main proxy 

for assigning the construction type while the SHD approach uses the number of storeys. Depending upon 

whether the ridge or eaves height of the building is used and what cut-off criteria is used for each IWU type, 

this can lead to different types assigned by the two approaches. In 36 cases SimStadt assigned the building size 

class HR (high-rise building) to buildings for which SHD approach assigned AB (apartment block). In another 12 

cases SHD approach assigned an AB and SimStadt a MFH (multi-family house); in 16 cases the SHD assigned 

MFH and SimStadt AB. In another 16 cases, the differences in the assigned types came from the different 

aggregation levels and peculiarities of the CityGML dataset. As already noted, the CityGML objects are smaller 

than the ALKIS objects and one ALKIS object may include more than one CityGML object. Multiple CityGML 

objects within a single ALKIS object, however were, in this particular CityGML, defined as different buildings 

and not as parts of one building. This led to situations where, for example, a large multi-family building 

composed of a lower-rise and a higher-rise part was modelled as two separate buildings in the CityGML file 

and therefore treated as two buildings by SimStadt. The lower part then got assigned a RH type, while the 

higher a MFH. When the SHD approach assigned a type to the same building (including both the lower-rise and 

the higher-rise part), the assigned type was AB, exemplifying the multiple differences in the assigning method.  

Both SimStadt and the SHD approach use the number of full storeys above ground as an estimator for the 

building size class. SimStadt calculates the number of storeys from the building height. If available, ALKIS is a 

reliable source for this information and can be considered as a true reference. A comparison between the 

ALKIS and the SimStadt estimations shows that due to the relatively low floor-to-floor height assumed – 2.76 

m. on average SimStadt overestimates the number of storeys in most (92 %) cases. As a consequence, in some 

cases SimStadt assigns a different building size class than the SHD approach. Taking the ALKIS value as the 

“true” value for the number of storeys and the CityGML object eaves height derived from the remote sensing 

as the “true” value for the building height, we calculate an average outside storey height of 3.4 m. It has to be 

noted that the study area includes a large building stock built around the 1900s. If we consider only buildings 

after 1950, the average is 3 m. 

All in all, our analysis shows that even when using the same typology on the same buildings, the way the 

buildings types are assigned can lead to large differences. Assumptions, as for the average floor-to-floor 

height, are sometimes inevitable, but can have far-reaching consequences. 

 U-value and surface temperature 
The U-values assigned with the SHD approach and SimStadt vary because of the difference in assigned types 

(as described in the previous section), but also because of the information associated with each type. The SHD 

approach uses the U-value given in the IWU documentation [19] while SimStadt uses both the information 

from the IWU typology and material properties to calculate U-values. Therefore, even though theoretically the 

SHD approach and SimStadt are based on the same typology, the U-values used for the heat demand 

estimations differ. Figure 10 depicts the U-values of both approaches for each building. Many U-value pairs 

appear for multiple buildings, leading to larger sizes of the corresponding markers. We observe a substantial 

difference in roof U-values and a lower, but considerable disparity for wall U-values. 
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Figure 10: Difference in average U-values of walls and roofs between SHD approach and SimStadt. Marker size scales with 
the number of buildings that a pair of U-values appears for. 

As mentioned before, the remote sensing approach does not explicitly calculate U-values for building surfaces, 

but uses surface temperatures as indicators for thermal envelope quality. Higher surface temperatures suggest 

higher U-values of the envelope because of higher heat transmission losses through the building envelope. 

Figure 11 shows a comparison of the U-values of the SHD approach and SimStadt to the mean IR-measured 

temperatures of all wall and roof surfaces for each building (as defined by ALKIS and CityGML respectively). As 

the U-values used by the SHD approach and SimStadt are typology-based, they are discretely distributed. 

There is a large difference in the number of data points between the two graphs as the SHD approach does not 

assign U-values to non-residential buildings and there are more CityGML than ALKIS buildings. With 𝑅 < 0.1 

for all four combinations, there is no correlation between the U-values and measured surface temperatures. 

Two outliers with low U-values for the roofs and low surface temperatures can be identified. These are the 

two residential buildings built in 2016 which are the most modern buildings in the case study area. This 

observation is consistent with a correlation between surface temperatures and U-values – at least for extreme 

cases. However, two data points are not sufficient to draw any further conclusions.  

The lack of correlation between the surface temperatures and the U-values indicates errors and uncertainties 

in one or both approaches. They are listed in the following, but as they all depend on how the assumptions in 

the methods match the local conditions and ground truth data was not available, they cannot be quantified. 

The typology approaches make use of typical U-values, but refurbishments and/or more untypical building 

design may lead to differences between assumed and actual values. Consequently, since the building stock 

may have developed energetically in the last decades, it is uncertain if “typical” values (“mode” in the 

Figure 11: U-value of the SHD approach (left) and SimStadt (right) compared to mean IR-measured wall and roof surface 
temperatures of the respective buildings. 
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statistical sense) still carry statistical value. Furthermore, the assignment of types to buildings depends on 

different geometric attributes of the building and can therefore lead to errors (see section 5.2). On the other 

hand, thermographically measured surface temperatures are not necessarily a reliable indicator for thermal 

transmittance due to the corresponding indoor temperature being unknown and because of the non-

stationary nature of the heat flow through the building envelope. Additionally, the measurement is influenced 

by the uncertainty of the camera itself as well as by atmospheric conditions, the radiation properties of surface 

materials, and radiance from surrounding objects and the sky. 

Figure 12 shows only the pairs of U-values and surface temperatures for a subset of roofs. We restrict the 

comparison of U-values and surface temperatures to roof surfaces of residential buildings for which balconies 

and/or large windows visible on the 3D model textures indicate that the attic is inhabited and therefore 

heated. By focusing only on these roofs, we avoid a huge part of the uncertainties of indoor temperatures, 

surface radiation properties, and radiance from surrounding objects than can influence the surface 

temperatures of walls. For both modelling/simulation approaches, we observe a certain grouping of 

temperature values for equal U-values. Exceptions are the outlier at about 0.4 W/(m²K) and 284 K which 

results from a small low-rise building in between two much higher ones. The large amount of values at 

1.3 W/(m²K) and 1.76 W/(m²K) for the SHD approach and SimStadt respectively stem from buildings originally 

built before 1918, whose insulation and surface materials may have undergone multiple refurbishments in the 

meantime. Considering the findings of Schott et al. [30] that buildings can be characterized into U-value classes 

based on infrared thermography, we suggest that typologies can serve as a valuable source of a-priori 

information for such a method. In this way, combining remote sensing and archetype approaches may improve 

the U-values used for modelling and simulation.  

However, our results show that additional research and development is required to reduce uncertainties in 

infrared thermography: First, object detection methods may serve to reduce the analysed wall and roof 

surfaces to the part covered by the predominant material that the used emissivity is valid for. Second, these 

materials and their radiative properties, preferably including their dependence on the viewing angle, need to 

be known and individually assigned to the buildings, for example using hyperspectral techniques (see e.g. 

[43]). Third, more efficient algorithms may improve the modelling of the reflection of radiance from 

surrounding objects. Finally, deriving information about indoor temperatures from features visible on the 3D 

model textures (as we did manually for heated roofs here) or using other building parameters could help 

calculating the relation between U-values and surface temperatures and may be implemented using machine 

learning. 

 

Figure 12: U-values of the SHD approach and SimStadt compared to mean IR-measured roof temperatures of residential 
buildings with heated attic. 
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These challenges lead to difficulties in the interpretation of the results, but also show the opportunities for 

future development of the approaches. In particular, combining data from typologies and from remote sensing 

in urban building energy modelling might increase the reliability of the results.  

 Window area 
The window area of the building envelope is another relevant parameter for the calculation of the heat 

demand. Because the SHD approach does not attribute window areas to non-residential buildings, we 

compare the window areas of residential buildings only. Figure 13 shows the sum of the window area over all 

residential buildings in the case study area determined by each approach. 

 

Figure 13: Comparison of the results for the total window area of residential buildings in the study area from different 
approaches. 

SimStadt delivers the highest total window area. Window recognition on the façade textures from aerial 

images and the SHD approach give about 35 % and 73 % of it respectively. The deviation between the SHD 

approach and SimStadt can be explained to some extend by the lower building volumes assumed by the SHD 

approach and resulting smaller envelope areas. This leads to smaller window areas even if the same WWR is 

used and the same building size class is assigned to the building (see section 5.2). Assigning different size 

classes to a building can consequently lead to different WWRs.  

Image-based window detection results in a much smaller window area than both typology-based approaches. 

One reason is that the image quality is not high enough for some of the textures to effectively apply the image 

recognition. In addition, many windows are not visible on the aerial images due to shading effects, because 

they are obscured by vegetation, balconies etc. or cannot be detected because the sunlight hits façades only 

partly or the brightness of the textures is too uneven. As a result, window detection failed for several facades 

and delivered visibly erroneous results for others. However, it has been shown that image-based detection can 

work well if high-resolution textures are available [44,45]. 

The individual building level helps to get additional insight into the deviations. The differences of window areas 

between the SHD approach and SimStadt are almost symmetrically distributed around the average (-79.7 m²) 

with a standard deviation of 178.2. m² (see Figure 14a). This does not allow for the conclusion that the SHD 

approach gives systematically lower window areas than SimStadt. The distributions of differences between the 

window areas found by image recognition and the two other approaches give standard deviations that nearly 

equal the average deviation (see Table 3). However, these distributions are clearly asymmetric (Figure 14b and 

c), indicating that the remote-sensing-based window recognition (see section 4.3) produces systematically 

smaller window areas than the SHD approach and SimStadt – possibly due to the previously mentioned effects.  
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Figure 14: Histogram of difference in window areas for every residential building in the case study area between the 
approaches of a) SHD approach and SimStadt, b) SHD approach and window recognition, and c) SimStadt and window 
recognition. 

Table 3: Average deviations between window areas of the approaches and standard deviations. 

 Average [m2] Std. dev. [m2] 

SHD – SimStadt  -79.7 178.2 

SHD – window recognition  112.3 122.1 

SimStadt – window recognition 192.0 186.7 

Since another possible approach to determine window areas for a neighbourhood is to measure windows 

manually in images or texturized models, we measured the size of windows for thirteen arbitrarily chosen 

residential buildings in Google Earth [21]. Figure 15 shows the WWR for each of the buildings graphically. 

Shading also plays a role when windows are measured and counted in Google Earth because vegetation and 

other buildings may obstruct the view onto some façades. We have tried to compensate this by extrapolating 

regular patterns of windows and other regularities in the façade structures. Nevertheless, the automated 

window detection and the manual measurements in Google Earth both give substantially smaller WWRs than 

the other methods. Possible reasons are the mentioned shading effects and that the typology is uniform for 

the whole country and may not perfectly represent the specific case study area. The WWRs found by window 

detection and in Google Earth are comparatively similar, but window detection tends to find smaller WWRs 

than the manual measurements in Google Earth. This is another indication that window detection 

systematically underestimates window areas. 
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Figure 15: WWR for thirteen arbitrarily chosen buildings. The WWR of nearly zero from Google for building 8 appears 
because the view onto the façade of the building is almost completely obscured by a big tree in Google Earth. 

Although SimStadt and the SHD approach use the same typology, there are deviations in the WWR for some 

buildings due to different building size class assignments (see section 5.2). In some cases, the difference in the 

WWR between the SHD approach and SimStadt is smaller than the difference in the WWR between different 

IWU types. These are cases in which the ALKIS object constitutes of several CityGML objects. The types that 

SimStadt assigns for the CityGML objects do not necessarily differ from the type that the SHD approach assigns 

to the ALKIS object.  

Several studies that look at the influence of parameters on the results of the heat demand calculation come to 

the conclusion that the WWR has only a low influence on the results [46,47].  Nevertheless, we applied the 

WWR from the manual measurements in Google Earth to the SimStadt simulation. Of the 13 arbitrary 

buildings, six were GMH or MFH from the construction period 1870-1899, four buildings were RH or GMH from 

the construction period 1900-1918. Two buildings had years of construction that are recorded only once in the 

13 buildings, therefore they cannot be seen as representative for this building age class. One building with a 

WWR of 0 % in the Google Earth measurement was also excluded. The WWR obtained from the manual 

Google measurements were then changed in the building physics library of SimStadt for the respective 

buildings. Compared to the standard WWR in SimStadt, the WWR of the buildings older than 1899 changes 

from 30 % on average to 10 % and the WWR of the buildings built between 1900 and 1918 changes from 29 % 

on average to 9 %. By applying the WWR to all buildings in the corresponding age and size classes, we can 

analyse the influence of this parameter on a large scale and not only for a small sample size of 10 buildings. 

The results of the total heat demand for individual MFH, RH and GMH buildings built before 1918 vary 

between +8 % to -5 % compared to the previous results. Only nine of the total 239 buildings with changed 

WWR have a decrease in heat demand. On 29 buildings the changed WWR has no effect. The remaining 201 

buildings all show an increase in heat demand, which can be attributed to less solar heat gains in winter 

caused by the smaller window area. The effect on the total heat demand of all 208 buildings is relatively low 

with a 2.3 % increase.  

 Heat demand 
The observed discrepancy of the heated volume is propagated to the total heat demand. The difference 

between the SHD approach and SimStadt is 15.5 % in total (see Figure 16). 
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Figure 16: Comparison of the total heat demand between SHD approach and SimStadt. 

However, at the individual building level, the difference in the total heat demand is much larger (see Figure 17) 

– the SMAPE is 34.7 % with a standard deviation of 19.8 %. The SMAPE of the specific demand (kWh/m2) is 

lower at 21.3 % (standard deviation 17.8 %), since it is not a function of the size of the buildings and the 

differences in estimated volume are not propagated. 

The difference in total heat demand is larger for non-residential buildings with a SMAPE for the total demand 

of 39.1 % and a standard deviation of 27.6 %, compared to 33.8 % and 17.5 %, respectively, for the residential 

buildings. Looking at specific heat demands, differentiated between residential and non-residential, the 

difference is even larger: The SMAPE for the specific demand of residential buildings is 18.0 % (standard 

deviation 13.3 %), while it rises to 36.3 % with 25.8 % standard deviation for non-residential buildings. This is a 

high discrepancy, showing that the low discrepancy on the neighbourhood level stems from averaging effects. 

We expected high discrepancies for non-residential buildings since the SHD approach and SimStadt use very 

different typologies here, as opposed to residential buildings where the underlying database for both methods 

is the IWU typology. 

 

Figure 17: SMAPE and the corresponding standard deviation of the absolute percentage error in total and specific heat 
demand between the SHD and SimStadt results. 

Looking at Figure 18, we observe that the specific heat demand calculated with the SHD approach appears to 

be systematically lower than the one calculated by SimStadt for residential buildings. For non-residential 

buildings, there is a slight tendency towards the reverse, but this trend is less clear. Note that controlling for 

the building size class when comparing the residential buildings did not decrease the difference. 
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Figure 18: Difference in specific heat demand 𝑄′′ between SHD approach and SimStadt related to heated volume.  

Lastly, we compare the specific heat demands calculated by SimStadt to the predefined specific heat demand 

values for each type used by the SHD approach (Figure 19). The correlation between the specific heat demand 

results of the two approaches is only weak (𝑅 = 0.4041, 𝑅2 = 0.1633). 

 

Figure 19: Scatterplot of specific heat demand 𝑄′′ values calculated by the SHD approach and SimStadt. 

In order to put the numbers in perspective, we compare them with reported simulation errors. Reinhart and 

Cerezo Davila give a good overview of UBEMs [4], citing differences between simulations and measurements 

of between 4 and 13 % [48–51] at aggregated levels and between 8 % and 99 % [52] and 12 % and 55 % [53] at 

the building level. The numbers at the aggregate level are comparable albeit a bit lower than our results 

(15.5% on the totals). At the building level, the SMAPE of 34.7 % with a standard deviation of 19.8 % is in line 

with the ranges of 12-55 % and 8-99 % given above, reaffirming the observed large discrepancies at the 

building level. However, note that we compare two simulation approaches and do not have measurements. 

6 Conclusion and outlook 

On a case study area in Berlin, Germany, we have applied two different approaches to urban building energy 

modelling and investigated how remote sensing can be used to improve the existing approaches. As there is no 

data available on heat energy consumption for the case study area, no final statement can be made which 

approach leads to the most realistic results. However, we have analysed the differences in the methods and 

the results and explored strengths and weaknesses. 

Generally, the cadastre-based SHD approach is the simplest to execute and easily scalable. SimStadt offers 

higher flexibility by using 3D data and a physical heat demand calculation model. However, both approaches 
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rely on existing typologies and the availability of input data. Remote sensing techniques can help to collect 

input data on key parameters of the building models like volumes, window areas and surface temperatures. 

In our case study, we observed that the overall heated volume calculated from the cadastral data on footprints 

and number of stories by the SHD approach led to an underestimation of about 12 % compared to the 3D 

model used by SimStadt. While the SMAPE across all buildings was 20 % with a standard deviation of 11 %, the 

maximum difference on individual building level was 65 %. Although differences in the assignment of building 

size classes and in the heat demand calculation methods between the SHD approach and SimStadt led to 

higher variations of the total and specific heat demand of individual buildings, the difference in total heat 

demand over all buildings (15 %) was in the range observed for the heated volume.  Using the same typology 

and underlying energetic characteristics still produces very different results depending if specific heat demand 

values per m2 or a heat balancing calculation for each building is used. In districts with a more homogenous 

building stock, averaging effects may be less strong than in our case study and differences between model 

results may be higher.  

When evaluating results and intermediate data from the two approaches together with data from the cadastre 

and from remote sensing, we found that the WWR estimations of the archetype approaches overestimate real 

values. Furthermore, we observed a difference in building size class assignments. Although we found that the 

effects of the WWR on the heat demand are rather modest (lower WWR resulted in heat demands in a range 

between an increase of up to 8 % and a decrease of up to 5 %), window detection on 3D model textures may 

improve the WWR and therefore energy modelling. However, images should be recorded in winter to reduce 

the effect of vegetation occluding façades. Additionally, image resolution must be high to ensure reliable 

detection. 

For applications requiring a fast and low-cost estimation of the heat demand, a 2D cadastre and heat demand 

calculation with fixed values for the specific heat demand is largely sufficient, provided that the cadastre 

includes information on the number of storeys, models buildings with multiple bodies (tower-like or 

overarching) properly and a good assumption can be made about the average floor-to-floor heights. This is the 

case in Berlin. However, data availability from cadastres is regionally highly specific. If this information is not 

available, high-quality 3D models can serve as a source for building geometry, which is needed to perform a 

physical heat demand calculation, e.g. with SimStadt. For cities without high-quality 3D models, the presented 

method to derive them from aerial imagery is a promising way to efficiently collect both 3D building models 

and surface textures.  

As for the surface temperatures measured with aerial infrared thermography, we expected them to be 

correlated with the typology U-values due to the underlying physical processes. The observed lack of 

correlation in our case study can be attributed to measurement uncertainties, the inevitable U-value 

differences between reality and typology, or a combination of both. However, we observed some interrelation 

between surface temperatures and U-values when looking only at roofs with heated attics of residential 

buildings, for which measurement uncertainties are low. We suggest making use of this in the future by taking 

typology U-values as a-priori information and deriving real U-values from the distribution of surface 

temperatures over comparable building parts. This may overcome the issue that with an increasing share of 

refurbished buildings, the typology approach relying on building age as the main factor for estimating U-values 

is questionable. For improving the reliability of infrared thermography results and expanding its applicability to 

other building parts than the mentioned roofs, better knowledge about surface materials and their properties, 

more efficient algorithms for modelling reflected radiation and new methods for estimating indoor 

temperatures may be helpful. 

The combination of well-tried modelling approaches like the SHD approach or SimStadt with remote sensing is 

a promising outlook for urban building energy modelling. As SimStadt is more flexible, additional data could be 

more easily incorporated than in the SHD approach, although both would require some adjustments. The 
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quality of the inputs to the approaches would benefit from information on refurbishments or U-values, 

window sizes, number of storeys or whether attics are heated. However, some of the methods to find these 

parameters from aerial imagery or thermography need additional research work to provide reliable results.  
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