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ABSTRACT: Simulating clouds with global climate models is challenging as the relevant physics involves many nonlinear
processes covering a wide range of spatial and temporal scales. As key components of the hydrological cycle and the cli-
mate system, an evaluation of clouds from models used for climate projections is an important prerequisite for assessing
the confidence in the results from these models. Here, we compare output from models contributing to phase 6 of the
Coupled Model Intercomparison Project (CMIP6) with satellite data and with results from their predecessors (CMIP5).
We use multiproduct reference datasets to estimate the observational uncertainties associated with different sensors and
with internal variability on a per-pixel basis. Selected cloud properties are also analyzed by region and by dynamical regime
and thermodynamic conditions. Our results show that for parameters such as total cloud cover, cloud water path, and cloud
radiative effect, the CMIP6 multimodel mean performs slightly better than the CMIP5 ensemble mean in terms of mean
bias, pattern correlation, and relative root-mean square deviation. The intermodel spread in CMIP6, however, is not re-
duced compared to CMIP5. Compared with CALIPSO-ICECLOUD data, the CMIP5/6 models overestimate cloud ice,
particularly in the lower and middle troposphere, partly due to too high ice fractions for given temperatures. This bias is re-
duced in the CMIP6 multimodel mean. While many known biases such as an underestimation in cloud cover in stratocumu-
lus regions remain in CMIP6, we find that the CMIP5 problem of too few but too reflective clouds over the Southern
Ocean is significantly improved.
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1. Introduction

In meteorology, clouds are defined as a visible aggregate or
aerosol of microscopic water droplets and/or ice particles in
the atmosphere above Earth’s surface. As a key component
of the hydrological cycle, clouds play an important role in
weather and climate. By reflecting incoming solar radiation
and by absorbing outgoing longwave radiation, clouds have a
large impact on the Earth’s radiation budget called cloud radi-
ative effect (cre) (e.g., Ramanathan et al. 1989). In addition,
clouds play an important role in tropospheric chemistry
through their involvement in multiphase reactions such as oxi-
dation of SO2 to SO4 and scavenging of atmospheric trace
gases and aerosol particles (e.g., Herckes and Collett 2015).
Furthermore, cloud–climate feedbacks have important impli-
cations for climate sensitivity (Bjordal et al. 2020; Bony et al.
2015; Zelinka et al. 2020) and thus for the amplitude and pace
of future climate change. Despite their pivotal role in weather
and climate, clouds are still quite challenging to simulate with
global climate models as the relevant physics includes many
nonlinear processes on temporal and spatial scales covering
several orders of magnitude (Bony et al. 2015). The numerical
representation of clouds in global climate models therefore
requires a high degree of parameterization, including forma-
tion, growth, and sedimentation of water particles. This makes
a careful evaluation of clouds in global climate models an im-
portant part when assessing the skills of the models in

reproducing observed climate as well as building confidence
in projections of future climate change.

In this paper, we document and evaluate the mean cloud
properties from models contributing to the latest phase of the
Coupled Model Intercomparison Project (CMIP6) with satel-
lite data and compare the results with output from the prede-
cessor phase CMIP5. We focus on the cloud properties cloud
fraction, cloud liquid water and cloud ice water, and total
cloud water path (tcwp) as well as on the shortwave (swcre)
and longwave (lwcre) cloud radiative effects at the top of the
atmosphere. Section 2 describes the CMIP model ensembles,
the model simulations evaluated, and the satellite data used
for comparison with the models. Section 3 describes the meth-
ods applied including a brief overview on the Earth System
Model Evaluation Tool (ESMValTool) used for the analyses.
Results are presented in section 4 including climatologies, in-
terannual variability, seasonal cycle, cloud properties by dy-
namical regime, and analyses of the cloud regimes in the
Southern Ocean, southeastern Pacific, and Pacific intertropi-
cal convergence zone (ITCZ). A summary of the findings and
conclusions is presented in section 5.

2. Models, model simulations, and satellite data

a. CMIP models

In this study we investigate the performance of the models
participating in the current phase of CMIP (CMIP6; Eyring
et al. 2016) by comparing results from the “historical” simula-
tions [in which forcings due to both natural causes such as vol-
canic eruptions and solar variability and human factors suchCorresponding author: Axel Lauer, axel.lauer@dlr.de
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TABLE 1. List of models analyzed. If more than one ensemble member is available, only the first ensemble member “r1i1p1”
(CMIP5, historical) or “r1i1p1f1” (CMIP6, historical) is analyzed. Models providing cloud liquid water path instead of total cloud
water path are marked with an asterisk (*); see section 3c.

Model name Generation
Atmosphere horizontal
resolution, vertical levels References

ACCESS1.0 CMIP5 1.38 3 1.98, L38 Bi et al. (2013)
ACCESS1.3 CMIP5 1.38 3 1.98, L38 Bi et al. (2013)
BCC-CSM1.1 CMIP5 2.88 3 2.88, L26 Wu (2012), Wu et al. (2010)
BCC-CSM1.1(m) CMIP5 1.18 3 1.18, L26 Wu (2012), Wu et al. (2010)
BNU-ESM CMIP5 2.88 3 2.88, L26 Ji et al. (2014)
CanESM2 CMIP5 2.88 3 2.88, L35 Arora et al. (2011)
CCSM4* CMIP5 1.38 3 0.98, L26 Gent et al. (2011)
CESM1(BGC) CMIP5 1.38 3 0.98, L26 Long et al. (2013)
CESM1(CAM5)* CMIP5 1.38 3 0.98, L30 Hurrell et al. (2013)
CESM1(FASTCHEM) CMIP5 1.38 3 0.98, L27 Cameron-Smith et al. (2006), Hurrell et al. (2013)
CESM1(WACCM) CMIP5 2.58 3 1.98, L66 Hurrell et al. (2013)
CMCC-CESM CMIP5 3.88 3 3.48, L39 Fogli et al. (2009), Vichi et al. (2011)
CMCC-CM CMIP5 0.88 3 0.78, L31 Fogli et al. (2009), Scoccimarro et al. (2011)
CSIRO-Mk3.6.0* CMIP5 1.98 3 1.98, L18 Rotstayn et al. (2010)
FGOALS-g2 CMIP5 2.88 3 38, L26 Li et al. (2013)
FIO-ESM CMIP5 2.98 3 2.98, L26 Qiao et al. (2013)
GFDL-CM3 CMIP5 2.58 3 28, L48 Donner et al. (2011)
GFDL-ESM2G CMIP5 2.58 3 28, L24 Dunne et al. (2012)
GFDL-ESM2M CMIP5 2.58 3 28, L24 Dunne et al. (2012)
GISS-E2-H-CC CMIP5 2.58 3 28, L40 Schmidt et al. (2006)
GISS-E2-H* CMIP5 2.58 3 28, L40 Schmidt et al. (2006)
GISS-E2-R-CC CMIP5 2.58 3 28, L40 Schmidt et al. (2006)
GISS-E2-R CMIP5 2.58 3 28, L40 Schmidt et al. (2006)
HadGEM2-CC CMIP5 1.98 3 1.38, L60 Collins et al. (2011)
HadGEM2-ES CMIP5 1.98 3 1.38, L38 Collins et al. (2011)
INM-CM4 CMIP5 28 3 1.58, L21 Volodin et al. (2010)
IPSL-CM5A-LR* CMIP5 3.88 3 1.98, L39 Dufresne et al. (2013)
IPSL-CM5A-MR* CMIP5 2.58 3 1.38, L39 Dufresne et al. (2013)
IPSL-CM5B-LR* CMIP5 3.88 3 1.98, L39 Hourdin et al. (2013)
MIROC4h CMIP5 0.68 3 0.68, L56 Sakamoto et al. (2012)
MIROC5 CMIP5 1.48 3 1.48, L40 Watanabe et al. (2010)
MIROC-ESM-CHEM* CMIP5 2.88 3 2.88, L80 Watanabe et al. (2011)
MIROC-ESM* CMIP5 2.88 3 2.88, L80 Watanabe et al. (2011)
MPI-ESM-LR* CMIP5 1.98 3 1.98, L47 Giorgetta et al. (2013), Stevens et al. (2013)
MPI-ESM-MR* CMIP5 1.98 3 1.98, L95 Giorgetta et al. (2013), Stevens et al. (2013)
MPI-ESM-P* CMIP5 1.98 3 1.98, L47 Giorgetta et al. (2013), Stevens et al. (2013)
MRI-CGCM3 CMIP5 1.18 3 1.18, L48 Yukimoto et al. (2012)
MRI-ESM1 CMIP5 1.18 3 1.18, L48 Adachi et al. (2013)
NorESM1-ME CMIP5 2.58 3 1.98, L26 Bentsen et al. (2013)
NorESM1-M CMIP5 2.58 3 1.98, L26 Bentsen et al. (2013)
AWI-ESM-1-1-LR* CMIP6 0.98 3 0.98, L95 Rackow et al. (2018), Sidorenko et al. (2015)
BCC-CSM2-MR CMIP6 1.18 3 1.18, L46 Wu et al. (2019)
CAMS-CSM1-0* CMIP6 1.18 3 1.18, L31 Rong et al. (2018)
CESM2-FV2 CMIP6 2.58 3 1.98, L32 Danabasoglu et al. (2020)
CESM2 CMIP6 1.38 3 0.98, L32 Danabasoglu et al. (2020)
CESM2-WACCM CMIP6 1.38 3 0.98, L32 Danabasoglu et al. (2020), Gettelman et al. (2019)
CNRM-CM6-1-HR CMIP6 0.38 3 0.38, L91 Voldoire et al. (2019)
CNRM-CM6-1 CMIP6 1.48 3 1.48, L91 Voldoire et al. (2019)
CNRM-ESM2-1 CMIP6 1.48 3 1.48, L91 Séférian et al. (2019)
FGOALS-g3 CMIP6 28 3 2.38, L26 Li et al. (2020)
GFDL-CM4 CMIP6 18 3 18, L33 Held et al. (2019)
GFDL-ESM4 CMIP6 18 3 18, L49 Dunne et al. (2020)
GISS-E2-1-G CMIP6 2.58 3 2.58, L40 Rind et al. (2020)
GISS-E2-1-H CMIP6 2.58 3 2.58, L40 Rind et al. (2020)
HadGEM3-GC31-LL CMIP6 1.98 3 1.38, L85 Kuhlbrodt et al. (2018)
ISPL-CM6A-LR* CMIP6 2.58 3 1.38, L79 Boucher et al. (2020)
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as CO2 concentration (e.g., fossil fuel burning), aerosols, and
land use were included over the time period 1850–2014] with
the corresponding CMIP5 (Taylor et al. 2012) model runs
(historical simulations for 1850–2005 conducted with the best
record of natural and anthropogenic climate forcing) and sat-
ellite data. We used one ensemble member (typically the first
member) per model. The 20-yr means are calculated by using
the last 20 years of the historical simulation (i.e., 1986–2005
for CMIP5 and 1995–2014 for CMIP6). While this choice of
model years is somewhat arbitrary, we found that it has very
little impact on the multiyear ensemble averages. This is not
surprising as ESMs are not expected to reproduce the exact
observed phase of climate modes largely controlling present-
day variability of clouds but rather their statistical properties.

A particular focus of this work is to assess how much progress
has been made over the recent years by the model ensembles as
a whole. This is done by evaluating multimodel means from the
CMIP5 and CMIP6 model ensembles rather than trying to trace
individual models as a number of new models contribute to
CMIP6 that have not been part of CMIP5 and because some in-
dividual models changed so substantially that it would be difficult
to compare them with older model versions. Table 1 gives an
overview of the 35 CMIP5 and 28 CMIP6 models analyzed here.

b. Satellite data

In the following, each satellite and reanalysis dataset that is
used in the comparison with the model simulations is briefly
described. An overview of each of the datasets is provided in
Table 2 (for variable definitions see Table 3).

1) CALIPSO

The Cloud–Aerosol Lidar and Infrared Pathfinder Satellite
Observation (CALIPSO) combines an active lidar instrument
(CALIOP) with passive infrared and visible imagers to obtain
global vertically resolved properties of thin clouds and aerosols.
CALIPSO and CloudSat (see below) are highly complementary
and part of the A-Train satellite constellation consisting of several
satellites flying in formation (Stephens et al. 2018). Here, we use
the GCM-Oriented CALIPSO Cloud Product (CALIPSO-
GOCCP; Chepfer et al. 2010) providing 3D observations of

the cloud fraction and the CALIPSO version 1.00 lidar Level 3
Ice Cloud Data Product (CALIPSO-ICECLOUD; NASA/
LARC/SD/ASDC 2018) providing histograms of the 3D cloud
ice content. To calculate the grid box average ice water content
for comparison with the models, we follow the procedure de-
scribed in the CALIPSO-ICECLOUD Data Quality Sum-
mary available at https://www-calipso.larc.nasa.gov/resources/
calipso_users_guide/qs/cal_lid_l3_ice_cloud_v1-00.php (last ac-
cess 8 July 2021). For more details, we refer to the CALIPSO
data user’s guide and the references therein available at
https://www-calipso.larc.nasa.gov/resources/calipso_users_guide/
data_quality/level_3_icecloud_summary_v100.php (last access
8 July 2021).

2) CERES-EBAF

The Clouds and Earth’s Radiant Energy Systems (CERES)
Energy Balanced and Filled (EBAF) dataset provides global
monthly-mean top-of-atmosphere (TOA) and surface long-
wave (LW), shortwave (SW), and net radiative fluxes under
clear and all-sky conditions. CERES instruments are flown on
NASA’s Terra and Aqua satellites. For the generation of the
CERES-EBAF dataset, an objective constrainment algorithm
is used in order to adjust SW and LW TOA fluxes within their
ranges of uncertainty to remove the inconsistency between
average global net TOA flux and the observed ocean heating
rate. In addition, gaps in the CERES clear-sky TOA flux
maps are filled using clear-sky fluxes from the Moderate Res-
olution Imaging Spectrometer (MODIS) (Loeb et al. 2009,
2012). Here, we use monthly mean CERES-EBAF Ed 4.1
data that are provided on a 18 3 18 grid (NASA/LARC/
SD/ASDC 2019).

3) CLARA-A2.1

The satellite-derived climate data record CLARA (CM
SAF Cloud, Albedo and Radiation dataset from AVHRR
data) is based on data from the Advanced Very High Resolu-
tion Radiometer (AVHRR) and covers the time period 1982–
2018. In this study, we use monthly data from edition 2.1
(Karlsson et al. 2020), which is an extended version of
CLARA-A2 (Karlsson et al. 2017), for the cloud liquid water

TABLE 1. (Continued)

Model name Generation
Atmosphere horizontal
resolution, vertical levels References

KACE-1-0-G CMIP6 1.98 3 1.38, L85 Lee et al. (2020a)
MIROC6 CMIP6 1.48 3 1.48, L81 Tatebe et al. (2019)
MIROC-ES2L CMIP6 2.88 3 2.88, L40 Hajima et al. (2020)
MPI-ESM-1-2-HAM* CMIP6 1.98 3 1.98, L47 Mauritsen et al. (2019)
MPI-ESM1-2-HR* CMIP6 0.98 3 0.98, L95 Müller et al. (2018)
MPI-ESM1-2-LR* CMIP6 1.98 3 1.98, L47 Mauritsen et al. (2019)
MRI-ESM2-0 CMIP6 1.18 3 1.18, L80 Yukimoto et al. (2019)
NESM3 CMIP6 1.98 3 1.98, L47 Cao et al. (2018)
NorESM2-LM CMIP6 2.58 3 1.98, L32 Seland et al. (2020)
SAM0-UNICON* CMIP6 1.38 3 0.98, L30 Park et al. (2019)
TaiESM1 CMIP6 1.38 3 0.98, L30 Lee et al. (2020b)
UKESM1-0-LL CMIP6 1.98 3 1.38, L85 Sellar et al. (2019)
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and ice water path as well as for total cloud fraction provided
on a global 0.258 3 0.258 grid. The data and corresponding
documentation are available at https://doi.org/10.5676/EUM_
SAF_CM/CLARA_AVHRR/V002_01.

4) CLOUDSAT

CloudSat uses a cloud profiling radar to provide retrievals
of global vertically resolved cloud liquid water content from
space (Stephens et al. 2002). In this study, we use 3D cloud

liquid water content data from individual CloudSat orbits
(level 2 data: 2B_CWC_RO “radar only”) that are binned
onto a 28 3 28 grid with 40 vertical levels. Individual orbits
and days are averaged to monthly means. CloudSat is sensi-
tive to both cloud and precipitation liquid and ice particles.
Estimates of cloud liquid water from CloudSat are therefore
expected to overestimate the actual cloud liquid water con-
tent (e.g., Waliser et al. 2009). Similar to Li et al. (2018), cases
when precipitation is present are therefore not included in

TABLE 2. Observationally based datasets used in the comparison with model simulations. For variable definitions, see Table 3; for
details on the estimated uncertainty range (calculated if two or more datasets for are available for the variable), see section 3d.

Dataset Type Variable(s) Resolution Years

Estimated
average

uncertainty Reference

CALIPSO-GOCCP Satellite clcalipso 28 3 28 3 L40 2007–15 } Chepfer et al. (2010)
CALIPSO-ICECLOUD Satellite cli 2.58 3 2.08 3 L27 2007–15 } NASA/LARC/SD/ASDC

(2018)
CERES-EBAF Satellite lwcre 18 3 18 2001–21 2 W m22 Loeb et al. (2009), Loeb et al.

(2012), NASA/LARC/SD/
ASDC (2019)

swcre 5 W m22

CLARA-AVHRR Satellite clivi 0.258 3 0.258 1982–2018 0.03 kg m22 Karlsson et al. (2020),
Karlsson et al. (2017)clt 4%

lwp 0.04 kg m22

CloudSat-L2 Satellite clivi 28 3 28 3 L40 2006–17 0.02 kg m22 Stephens et al. (2018),
Stephens et al. (2002)clw }

lwp 0.05 kg m22

ERA5 Reanalysis ta 0.258 3 0.258, L37 1979–2019 } Hersbach et al. (2019)
wap }

cl }

clivi 0.03 kg m22

clt 8%
lwp 0.03 kg m22

ERA-Interim Reanalysis clivi 0.758 3 0.758, L19 1979–2018 0.03 kg m22 Dee et al. (2011)
clt 9%
lwp 0.04 kg m22

prw 1.7 kg m22

ESACCI-CLOUD Satellite clivi 0.58 3 0.58 1992–2016
(1982–2016)

0.01 kg m22 Stengel et al. (2020)
clt 3%
lwp 0.03 kg m22

lwcre 3 W m22

swcre 7 W m22

CM SAF / CCI TCWV-
global (COMBI)

Satellite prw 0.58 3 0.58 2003–17 2.0 kg m22 Beta version of the combined
microwave and near-
infrared imager based
TCWV data record
(COMBI), official release is
planned in 2022 by CM
SAF, for questions contact
contact.cmsaf@dwd.de

ISCCP-FH Satellite prw 18 3 18 1984–2016 2.0 kg m22 Rossow and NOAA CDR
Program (2017),
Young et al. (2018)

lwcre 2 W m22

swcre 4 W m22

MAC-LWP Satellite lwp 18 3 18 1988–2016 0.03 kg m22 Elsaesser et al. (2017)
MODIS Satellite clivi 18 3 18 2003–18 0.02 kg m22 Platnick et al. (2003)

clt 5%
lwp 0.02 kg m22

PATMOS-x Satellite clt 0.18 3 0.18 1982–2016 5% Heidinger et al. (2014)
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this analysis. Precipitating pixels are identified using the
CloudSat level 2 data for column precipitation (2C_PRECIP_
COLUMN). For comparison with the CMIP models, Cloud-
Sat data are converted from kg m23 to kg kg21 using the air
density from the U.S. Standard Atmosphere 1976. In addi-
tion, the in-cloud values from CloudSat are converted to
the grid box averages provided by the models assuming that
missing values in the CloudSat orbits are actually cloud-free
(i.e., zero cloud liquid water). For more details on Cloud-
Sat, refer to Stephens et al. (2002) and Stephens et al.
(2018).

5) ESA CCI

For this study we use two datasets from the European
Space Agency’s Climate Change Initiative (ESA CCI; e.g.,
Hollmann et al. 2013), ESACCI-CLOUD and CM SAF/CCI
TCWV-global (COMBI).

The version 3 cloud datasets of ESA CCI CLOUD are
based on data from the passive imager satellite sensors
AVHRR and (A)ATSR, and are named AVHRR-AMv3,
AVHRR-PMv3 (Stengel et al. 2020), and ATSR2-AATSRv3
(Poulsen et al. 2020). In this study, Level 3C data from
AVHRR-AMv3 and AVHRR-PMv3 are averaged to include
both AVHRR morning (AM) and afternoon (PM) satellite
measurements, resulting in a combined dataset with monthly
mean data at a horizontal resolution of 0.58 3 0.58 for the
overlapping time period (1992–2016) of both source datasets.

Variables used in this study are total cloud cover, liquid wa-
ter path, and ice water path. Known limitations of the
AVHRR data include an underrepresentation of optically
very thin clouds and sparse temporal sampling as well as
satellite drift affecting in particular data before the year
2001 (Ji and Brown 2017). For details, refer to Stengel et al.
(2020).

The dataset CM SAF/CCI TCWV-global (COMBI) com-
bines microwave and near-infrared imager based TCWV over
the ice-free ocean as well as over land, coastal ocean, and sea
ice. COMBI is available on a global grid with a spatial resolu-
tion of 0.58 3 0.58 and 0.058 3 0.058 and a daily and monthly
temporal resolution (here we use the 0.58 and monthly resolu-
tions). The data record relies on microwave observations
from SSM/I, SSMIS (Fennig et al. 2020), AMSR-E, and TMI
and on near-infrared observations from the Medium Resolu-
tion Imaging Spectrometer (MERIS; third reprocessing),
MODIS-Terra (collection 6.1), and the Ocean and Land
Color Instrument (OLCI; first reprocessing). Details of the re-
trieval for microwave imagers can be found in Andersson et al.
(2010) and Graw et al. (2017) and for near-infrared imagers in
Diedrich et al. (2015), Fischer et al. (2021), and Lindstrot et al.
(2012).

6) ISCCP-FH

From the third-generation version of the International Sat-
ellite Cloud Climatology Project (ISCCP) we use TOA

TABLE 3. Variables (CMOR names) and derived variables used. Derived variables are marked with an asterisk (*).

Variable Name Units Comment

cl 3D cloud area fraction % Interpolated to pressure levels
clcalipso 3D cloud area fraction as seen from CALIPSO % Output from the satellite simulation software for

model assessment (COSP; Bodas-Salcedo et al.
2011)

cli 3D cloud ice mass fraction kg kg21 Interpolated to pressure levels
clivi Cloud ice water path (iwp) kg m22 The more common acronym iwp is used in the text

synonymously with CMOR variable clivi
clt Total cloud area fraction % Also called total cloud cover
clw 3D cloud liquid water mass fraction kg kg21 Interpolated to pressure levels
clwvi Cloud total water path kg m22 Mass of condensed water (liquid 1 ice) per area,

same as tcwp
iwp Ice water path kg m22 Same as clivi
lwcre* TOA longwave cloud radiative effect W m22 Calculated as lwcre 5 rlutcs 2 rlut
lwp* Cloud liquid water path kg m22 Calculated as lwp 5 clwvi 2 clivi (see section 3b)
prw Water vapor path (wvp) kg m22 The more common acronym wvp is used in the text

synonymously with CMOR variable prw
rlut TOA outgoing longwave radiation W m22 At the top of the atmosphere
rlutcs TOA outgoing clear-sky longwave radiation W m22 At the top of the atmosphere
rsut TOA outgoing shortwave radiation W m22 At the top of the atmosphere
rsutcs TOA outgoing clear-sky shortwave radiation W m22 At the top of the atmosphere
swcre* TOA shortwave cloud radiative effect W m22 Calculated as swcre 5 rsutcs 2 rsut
ta Air temperature K
tcwp* Total cloud water path kg m22 Mass of condensed water (liquid 1 ice) per area,

calculated as tcwp 5 lwp 1 iwp (see section 3b)
ts Surface temperature K “Skin” temperature (i.e., SST for open ocean)
wap Lagrangian tendency of air pressure Pa s21

wvp Water vapor path kg m22 Same as prw
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radiative fluxes (cloud radiative effects) and water vapor path
data for this study (ISCCP-FH; Rossow and NOAA CDR
Program 2017). The ISCCP H-series products use data de-
rived from geostationary and polar-orbiting satellite imaging
radiometers with common visible and infrared channels. They
supersede their predecessors from the D-series. Key improve-
ments include, for instance, an improved quality control,
higher spatial resolution input and output products, and up-
dated documentation and metadata (Young et al. 2018). The
ISCCP-FH data used here are provided as monthly means on
a 18 3 18 grid. We would like to note that variable wvp in-
cluded in the ISCCP-FH dataset is one of the “sub-product
parameters” and originally comes from ISCCP-HGG.

7) MAC-LWP

The Multisensor Advanced Climatology of Liquid Water
Path (MAC-LWP; Elsaesser et al. 2017) is an updated and en-
hanced version of the University of Wisconsin (UWisc;
O’Dell et al. 2008) cloud liquid water path climatology. The
data consist of monthly mean liquid water path over the
ocean provided on a 18 3 18 grid covering the time period
1988–2016. MAC-LWP uses input data from SSM/I, TMI,
AMSR-E, WindSat, SSMIS, AMSR-2, and GMI. A known
limitation of this dataset is the increased uncertainty in re-
gions with substantial precipitation as the microwave emission
signal from cloud water is similar to that of precipitation. In
contrast to many other climatological LWP datasets, MAC-
LWP explicitly accounts for the diurnal cycle of cloud liquid
water, despite being limited to ice-free ocean regions only.

8) MODIS

Here, we use data from the Moderate Resolution Imaging
Spectroradiometer (MODIS) L3 Atmosphere Product, Col-
lection 6.1 covering the time period 2003–18. For details on
the instrument, retrievals, and derived cloud products, we re-
fer to Platnick et al. (2003), Platnick et al. (2017), and
Marchant et al. (2016), for the atmosphere L3 monthly
product to Platnick et al. (2015). In this study, we use the
variables clivi, clt, and lwp.

9) PATMOS-X

The Advanced Very High Resolution Radiometer (AVHRR)
Pathfinder Atmospheres – Extended (PATMOS-x) dataset is
a satellite-based long-term record providing properties of
tropospheric clouds and aerosols, Earth’s surface, Earth’s ra-
diation budget, and relevant ancillary variables (Heidinger
et al. 2014). PATMOS-x is composed of data from 17 differ-
ent sensors flown on a number of polar-orbiting NOAA and
MetOp satellites. Here, we use data for clt covering the time
period 1982–2016 on a 0.18 3 0.18 grid. For details on the da-
taset, processing, and limitations, we refer to Heidinger et al.
(2014).

c. Reanalysis data

The two reanalysis datasets used in this study are briefly de-
scribed in the following. A summary is provided in Table 2.

1) ERA5

The European Centre for Medium-Range Weather Fore-
casts (ECMWF) fifth-generation reanalysis ERA5 is the suc-
cessor of the widely used ERA-Interim reanalysis (Dee et al.
2011). ERA5 is based on four-dimensional variational (4D-Var)
data assimilation and uses Cycle 41r2 of the Integrated Fore-
casting System (IFS) (Copernicus Climate Change Service
2017). In this study, ERA5 data served on the Copernicus
Climate Change Service Climate Data Store (CDS) (Copernicus
Climate Change Service 2017) are used. Atmospheric variables
are provided on the CDS interpolated to 37 pressure levels
ranging from 1000 hPa near the surface to 1 hPa (ECMWF
2020). The ERA5 datasets used here have a horizontal
resolution of 0.258 3 0.258 grid. For more details on the
ERA5 dataset we refer to Hersbach et al. (2020). Here, we
use monthly means of the variables ta, wap, cl, clivi, clt,
and lwp.

2) ERA-INTERIM

The reanalysis ERA-Interim (Dee et al. 2011) is a global
dataset providing a multitude of atmospheric variables over
the time period January 1979 through August 2019. ERA-
Interim was produced by ECMWF and has been widely used
in climate studies. It has been superseded by the ERA5
reanalysis. Similar to ERA5, ERA-Interim uses 4D-Var
data assimilation but is based on the older Cycle 31r2 of
the ECMWF IFS. The dataset has a spatial resolution of
0.758 3 0.758 and is provided on 60 vertical levels from the
surface up to 0.1 hPa. For more details, please refer to Dee
et al. (2011) or, for example, https://www.ecmwf.int/en/forecasts/
datasets/reanalysis-datasets/era-interim (last access: 1 September
2021).

3. Methods

a. Earth system model evaluation tool

All analyses in this study are made with the open-source
community diagnostics and performance metrics tool for eval-
uation of Earth system models “Earth System Model Evalua-
tion Tool” (ESMValTool; Eyring et al. 2020; Lauer et al.
2020; Righi et al. 2020; Weigel et al. 2021). The ESMVal-
Tool allows for consistent processing of all datasets (e.g., re-
gridding to common grids, masking of land/sea and missing
values, vertical interpolation, etc.) and traceability and repro-
ducibility of the results by providing provenance records for
all results. With the ESMValTool “recipes” (i.e., configura-
tion files defining input data, preprocessing steps, and diag-
nostics to be applied) recipe_lauer22jclim_fig*.yml, figures
shown in this paper can be reproduced. For use with the
ESMValTool, the variables and metadata of the input data-
sets have to be formatted following the CMOR (Climate
Model Output Rewriter; Taylor et al. 2006) tables and defi-
nitions [e.g., https://github.com/PCMDI/cmip6-cmor-tables/
tree/master/Tables (PCMDI 2019) for CMIP6]. While the
CMIP5 and CMIP6 model output follow this standard, some
observational data have to be reformatted according to this
standard. For this, the ESMValTool contains a set of scripts that

J OURNAL OF CL IMATE VOLUME 36286

Brought to you by DLR | Unauthenticated | Downloaded 12/16/24 01:37 PM UTC

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim
https://github.com/PCMDI/cmip6-cmor-tables/tree/master/Tables
https://github.com/PCMDI/cmip6-cmor-tables/tree/master/Tables


are provided with the ESMValTool source code and are pub-
licly available on GitHub (https://github.com/ESMValGroup/
ESMValTool). These scripts give exact downloading and proc-
essing instructions to create the observational datasets used in
this publication.

b. Regridding, masking, and vertical interpolation

To average different datasets, calculate differences or spa-
tial correlations with a reference dataset, data have been line-
arly regridded to a regular 28 3 28 latitude–longitude grid
using the regridding function of the ESMValTool preproces-
sor (Righi et al. 2020). Application of land/sea masks and area
selection were also performed with the ESMValTool prepro-
cessor. Vertically resolved variables such as cloud liquid water
or cloud ice water content from the CMIP models are typi-
cally provided on model specific hybrid levels. To calculate
differences, data have been vertically interpolated to the
pressure levels defined by the CMIP6 coordinate “plev27”
(27 pressure levels from 1000 to 100 hPa) or the height lev-
els defined by “alt40” (40 height levels up to ;19 km) (e.g.,
https://github.com/PCMDI/cmip6-cmor-tables/tree/master/
Tables, last access 7 November 2020) depending on the
variable.

c. Calculation of liquid water path and total water path

Cloud liquid water path (lwp) from the CMIP models is cal-
culated by subtracting the ice water path (clivi) from the verti-
cally integrated total cloud water path (clwvi 5 ice 1 liquid).
Some models erroneously provide lwp only instead of total
cloud water path. Subtracting clivi from clwvi would then re-
sult in significant negative and thus unphysical values. Most of
the affected CMIP5 models are listed on the CMIP5 errata
page (https://pcmdi.llnl.gov/mips/cmip5/errata.html; last ac-
cess on 8 October 2021). Similarly, some CMIP6 models are
affected by the same issue. All CMIP5 and CMIP6 models af-
fected and used in this study are marked in Table 1 with an as-
terisk. For these models we presume that variable clwvi
provides liquid water path data only.

For the same reason, we do not use variable clwvi directly
as total cloud water path, but calculate total cloud water path
(tcwp) for all models as tcwp5 lwp1 clivi.

d. Multiobservational datasets and estimation of
observational uncertainties

For evaluation of the climatologies from the models, multi-
observational means X are calculated as average over the
time (t) means xn 5 (1/Tn )+Tn

t51xt,n of all Nobs observational
datasets (xn) whenever two or more observational datasets
are available for a given variable x:

X 5
1

Nobs
+
Nobs

n51
xn: (1)

Here, all observational datasets are given the same weight, in-
dependent of their record length. In most cases, the record
length used is the maximum record available (see Table 2)
(i.e., of similar length or longer than for the models) but is

allowed to be shorter if fewer years of data are available. This
allows for estimating the observational uncertainty on a per-
pixel basis by calculating the average standard deviation of
individual annual means against the multiobservational clima-
tology. The standard deviation sn of dataset n is calculated
over the individual years (t) and using the multiobservational
mean X :

sn 5

�����������������������������
1

Tn 2 1
+
Tn

t51
(X 2 xt,n)2

√
: (2)

This standard deviation is then averaged over all observa-
tional datasets using the same weight for each dataset:

s 5

���������������
1

Nobs
+
Nobs

n51
s2
n

√
: (3)

Constructed this way, s includes estimates for the uncertainty
introduced by natural interannual variability as well as devia-
tions of the individual observational datasets from the multi-
observational mean. Considering interannual variability is
important in this context as individual years from ESMs do
not necessarily correspond to the same observed years as rele-
vant climate modes are not necessarily in the same phase in
the models and in the real world.

In the figures presented here, areas are stippled if the abso-
lute values of the differences between the model climatology
and the multiobservational mean do not exceed s.

The estimates of the global average uncertainty of the ob-
servational datasets given in Table 2 are calculated as the
square root of the average of the area-weighted squared dif-
ferences between the values of the respective dataset and the
multiobservational mean climatology. The observational data-
sets used to calculate a multiobservational dataset for a given
variable are listed in Table 4.

e. Temporal variability and seasonal cycle amplitude

The temporal (interannual) variability at each grid cell is
estimated as the temporal standard deviation of the deseason-
alized monthly means (stemp). The monthly mean values of a

TABLE 4. Observational datasets used to calculate the
multiobservational datasets per variable. Reanalysis datasets are
not included when calculating multiobs products.

Variable Observational datasets

clt CLARA-AVHRR, ESACCI-CLOUD, MODIS,
PATMOS-x

iwp CLARA-AVHRR, CloudSat-L2, ESACCI-CLOUD,
MODIS

lwcre CERES-EBAF, ESACCI-CLOUD, ISCCP-FH
lwp CLARA-AVHRR, CloudSat-L2, ESACCI-CLOUD,

MAC-LWP, MODIS
swcre CERES-EBAF, ESACCI-CLOUD, ISCCP-FH
wvp ESACCI-WATERVAPOUR, ISCCP-FH
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variable (x) are normalized by the average over the entire
time series (x). The (relative) temporal variability of the mul-
timodel ensembles and of the multiobservational reference
(stemp) is calculated by averaging over all N individual model
or observational datasets:

stemp 5
1
N

+
N

i51

stemp,i

xi
3 100%: (4)

The (relative) seasonal cycle amplitude (Aseas) is calculated as
difference between the minimum (xmin) and maximum value
(xmax) of the average seasonal cycle normalized by the clima-
tological annual mean value (x). As for the interannual vari-
ability, the seasonal cycle amplitude of the multimodel
ensembles and of the multiobservational reference (Aseas) is
calculated by averaging over all N individual model or obser-
vational datasets:

Aseas 5
1
N

+
N

i51

∣∣∣∣ xmax,i 2 xmin,i

xi

∣∣∣∣ 3 100%: (5)

4. Comparison of CMIP6 with CMIP5 and satellite data

Modeled clouds and satellite observations are usually diffi-
cult to compare because observations are affected by the
satellite instrument’s sensitivity, the temporal and spatial sam-
pling, and the vertical overlap of the cloud layers, while the
clouds in climate models are assumed to be plane-parallel and
are of coarse horizontal and vertical resolution. Ideally, a
satellite simulator such as COSP [Cloud Feedback Model
Intercomparison Project (CFMIP) Observation Simulator
Package; Bodas-Salcedo et al. 2011] is used during the model
simulation to mimic the satellite viewing geometry, temporal
sampling, and specific instrument characteristics such as cut-
off values. Many CMIP5 and CMIP6 historical simulations,
however, have been run without such a satellite simulator, or
variables of interest such as cloud water path or 3D cloud liq-
uid and ice water content are not available. Alongside with
the evaluation of satellite simulator output of 3D cloud frac-
tion [section 4a(3)] we also use multiproduct observational
datasets (see section 3d) that provide a per-pixel estimation
of observational uncertainties by different sensors and inter-
nal variability when output from satellite simulators was not
available. Using multiple independent datasets for compari-
son with the models is considered one possibility to at least
partly reduce limitations of observational datasets caused by
observational uncertainties and internal variability when no
other information is available (e.g., Flato et al. 2013). This
method is, however, not able to reduce sampling biases intro-
duced when only datasets from polar-orbiting satellites are
available (twice daily sampling). If no satellite simulators are
available for the models, the only way to reduce this kind of
sampling bias would be a correction applied to the satellite
observations by the data providers as done, for example, for
the sampling-bias-corrected AIRS Obs4MIPs V2.1 dataset
(Tian and Hearty 2020).

a. Multiyear annual mean climatologies

1) GEOGRAPHICAL DISTRIBUTION

Figure 1 shows maps of the multiyear annual mean clima-
tologies of total cloud cover (clt), liquid (lwp) and ice water
path (iwp), longwave (lwcre) and shortwave cloud radiative
effect (swcre), and the water vapor path (wvp) for the refer-
ence dataset (multiobservational mean, herein called the
“multiobs mean”) and the differences between the two CMIP
ensembles and the reference. This allows for a comparison of
typical regional features in the geographical distribution of
these parameters. Table 5 summarizes global values of mean,
bias, pattern correlation, and root-mean square deviation for
all mentioned parameters.

The observed distribution of clt shows high values in the
midlatitude storm track regions associated with frontal sys-
tems, the intertropical convergence zone (ITCZ) associated
with frequent and strong convection, and the stratocumulus
decks off the west coasts of the continents in the subtropical
subsidence regions. The CMIP6 models underestimate total
cloud cover over the Southern Ocean and in stratocumulus re-
gions by about 5% less than the CMIP5 models. Overestima-
tion of clt north and south of the equator has increased by
about 5% in CMIP6 compared with CMIP5 to up to 15%.
The overestimation in clt south of the equator is also seen in
other quantities such lwp or lwcre. This double-ITCZ bias has
found to be only slightly reduced from CMIP5 to CMIP6
(Tian and Dong 2020). There is also a stronger overestimation
in high latitudes of up to more than 30% in CMIP6, which has
also been reported for single models (e.g., Nor-ESM; Seland
et al. 2020), and which is not seen in CMIP5 to the same ex-
tent. However, many satellite products have shortcomings in
detecting optically thin clouds (e.g., Karlsson et al. 2017).
Stengel et al. (2018) found that removing modeled clouds
with optical thicknesses below 1 can reduce the cloud fraction
by several tens of percent, which indicates that clt in at least
some observational datasets used here can be assumed to be
significantly biased low in the polar regions. This makes the
comparison between observations and models challenging in
these regions even though the differences between the multi-
model mean (MMM) and the multiobs mean are larger than
the estimated61s uncertainty in these regions.

Cloud liquid water path measurements from satellites show
large uncertainties resulting in a large spread among different
datasets. On global annual average we find about 20% less lwp
in CMIP6 than in CMIP5, which is in better agreement with the
multiobs mean. Most differences of the MMMs from the multi-
obs mean are, however, below the uncertainty estimate of
61 sigma of the individual observed time series to the multiobs
mean [Eq. (3)] except in the tropical regions near or within
the ITCZ and in some polar regions. The pattern correlation
(Pearson product-moment coefficient of linear correlation be-
tween two fields) of the MMM with the multiobs reference da-
taset increased from 0.71 in CMIP5 to 0.76 in CMIP6. The bias
of the modeled liquid water path toward low values at low lati-
tudes and high values in the extratropics has also been reported
by single model results (e.g., Nor-ESM; Seland et al. 2020).
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FIG. 1. The 20-yr annual averages (models) of total cloud cover (clt), liquid water path (lwp), ice water path (iwp),
TOA shortwave (swcre) and longwave (lwcre) cloud radiative effects, and water vapor path (wvp), shown from top to
bottom. (left) Observational reference datasets (multiobs means) and the differences of the (center) CMIP5 and (right)
CMIP6 multimodel means to the observational reference dataset. Differences that are smaller than the observational
uncertainty estimate calculated from interannual variability and variability across individual observational datasets
compared with the multiobs mean [Eq. (3)] are stippled.
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The observational uncertainty in ice water path is similarly
high as the one for lwp as indicated by the large spread be-
tween different satellite products (see Table 5). Compared to
CMIP5, we find a reduction by about 15% in the global annual
MMM from CMIP6 to 32 g m22. This value is slightly below the
range of observational datasets analyzed (36–61 g m22). Pattern
correlation in CMIP6, however, increased from 0.73 in CMIP5
to 0.78.

Compared with CMIP5, the CMIP6 MMM of the short-
wave cloud (sw) radiative effect shows an improvement in the
overestimation of sw cooling north and south of ITCZ by
about 5–10 W m22. Over the Southern Ocean, the underesti-
mation of the observed sw cooling in the CMIP6 models is im-
proved by about 5 W m22. This improvement is at least partly
based on advances in model parameterizations and was al-
ready shown for several individual models (e.g., Danabasoglu
et al. 2020; Kawai et al. 2019; Madeleine et al. 2020; Voldoire
et al. 2019). In contrast, there is rather little change in the un-
derestimation of swcre in the subtropical stratocumulus re-
gions between CMIP5 and CMIP6 as described, for example,
for the IPSL model by Madeleine et al. (2020). Biases of up to
30–40 W m22 remain for example in the southeastern Pacific.
Pattern correlation of swcre improved slightly from 0.91 in
CMIP5 to 0.94 in CMIP6. This agrees very well with results of
Jian et al. (2020).

Similar to swcre, there is an overestimation in the longwave
cloud radiative effect north and south of the ITCZ in the
models. This bias is improved in CMIP6 by about 5 W m22

compared with the CMIP5 MMM, already seen for CNRM-
CM6-1 (Voldoire et al. 2019) and CESM2 (Danabasoglu et al.
2020). Otherwise, there are very few changes from CMIP5 to
CMIP6. Pattern correlations are high and amount 0.93 in
CMIP5 and 0.94 in CMIP6.

The geographical distribution of water vapor path in CMIP6
shows a small improvement with smaller biases over the tropi-
cal ocean of about 1–2 kg m22, a smaller overestimation of
wvp north and south of the ITCZ, and about 1–2 kg m22 less
underestimation over the tropical Atlantic. The global annual
average of the CMIP6 MMM (24.8 kg m22) is slightly larger
than in CMIP5 (24.1 kg m22) and now within range of ana-
lyzed observational datasets (24.8–26.2 kg m22). The pattern
correlations of the MMMs are high and amount to about
0.99 for both CMIP5 and CMIP6.

For some of the parameters investigated here (lwp, iwp,
swcre, wvp), we find that the CMIP6 intermodel spread is
larger than in CMIP5 (see Table 5), while the average root-
mean-square deviation is decreased (clt, lwp, swcre, wvp). We
would expect this increased intermodel spread to be at least
partly caused by an increased complexity of the CMIP6 mod-
els compared to CMIP5 introducing additional degrees of
freedom.

Biases in simulated sea surface temperatures (SSTs) can af-
fect simulated cloud properties. We therefore also analyzed
some results from simulations using the atmosphere compo-
nents of the CMIP models and prescribed observed SSTs (the
so-called AMIP runs) for the same time periods (not shown).
Similar to Lauer and Hamilton (2013), who investigated
CMIP3 and CMIP5 models, we found that in general the skillT
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of the AMIP multimodel means (MMMs) in reproducing the
observed cloud climatologies measured by global means,
biases, pattern correlations, and RMSDs does not systemati-
cally differ from the MMM obtained from the historical simu-
lations. This is the case for both CMIP5 and CMIP6. While
there are some improvements of specific biases such as, for
example, the double-ITCZ visible in the geographical distri-
butions of lwp and iwp, the AMIP models do not systemati-
cally outperform the coupled models in reproducing observed
mean cloud properties.

2) TAYLOR DIAGRAMS

The Taylor diagrams shown in Fig. 2 give the spatial stan-
dard deviation and linear pattern correlation of the 20-yr an-
nual means of a variable from individual models and
observational climatologies with the corresponding multiobs
mean reference dataset (see also Table 4). The spatial stan-
dard deviation is given as the ratio between the value for the
individual dataset and the value from the reference dataset.
The reference dataset is represented in each panel by the
filled black circle on the x axis at x 5 1. In the polar coordi-
nate system used by the Taylor diagrams, the linear distance
between the individual dataset and the reference dataset is
proportional to the (centered) root-mean-square error (rmse)
(Taylor 2001) and can be estimated using the green circles
centered on the reference (black) dots. Using the multiobs
mean as reference data allows for also including the individual
observational datasets as an estimate of the observational
uncertainty.

For all six variables investigated, the performance of the
MMMs from CMIP5 and CMIP6 in reproducing the observed
annual mean distribution is quite similar. For clt, the pattern
correlation of the MMM decreased slightly from 0.86 in
CMIP5 to 0.83 in CMIP6 while the spread of the individual
models’ correlations narrowed down from 0.35–0.89 in
CMIP5 to 0.60–0.88 in CMIP6. For comparison, also data
from the reanalyses ERA-Interim and ERA5 are included.
Their pattern correlations are 0.90 and 0.89, respectively. Cor-
relations of the individual observational datasets range be-
tween 0.96 and 0.99.

The models’ skill in reproducing the geographical distribu-
tion of shortwave and longwave cloud radiative effects as well
as water vapor path is high compared to the other variables
investigated. Correlations range from 0.91 for swcre for
CMIP5 (CMIP65 0.94) to 0.99 for wvp (CMIP5 and CMIP6).
In contrast, the intermodel spread as well as the interobserva-
tion spread for lwp and iwp are very high regarding the pat-
tern correlations as well as the ratio of the spatial standard
deviations. For lwp, the pattern correlations of the MMMs
(CMIP5 5 0.71, CMIP6 5 0.76) are within the range given by
individual observational datasets, between 0.49 (MAC-LWP)
and 0.94 (MODIS), which makes an assessment of the mod-
els’ performance difficult and confirms the challenges of ob-
taining accurate global maps of lwp from satellite retrievals.
For iwp, the spread of pattern correlations for the individual
observational datasets ranges from 0.74 (CLARA-AVHRR)
to 0.94 (ESACCI-CLOUD). For comparison, the pattern

correlation of the CMIP5 MMM with the multiobs reference
is 0.73 and 0.78 for CMIP6. Again, because of the large spread
among the different observational datasets, this improvement
in CMIP6 is difficult to assess. More accurate measurements
of the global iwp distribution would be needed.

3) ZONAL MEANS

The vertical distribution of clouds plays an important role
in their effect on the radiation budget. A negative net cloud
radiative effect calculated as the sum of swcre and lwcre is a
cooling effect, a positive sign is a net warming effect of clouds.
While for optically thick low-level clouds the net cloud radia-
tive effect is typically dominated by swcre, resulting in a cool-
ing net effect, lwcre becomes more important with increasing
cloud-top height as the temperature difference between the
cloud top and the surface increases.

Figure 3 shows a comparison of the zonal means of the 3D
cloud fraction from CALIPSO-GOCCP (Chepfer et al. 2010)
and the CMIP5 and CMIP6 MMMs of the subset of models
providing the corresponding output (clcalipso) from the satel-
lite simulation software COSP. The observations show large
cloud fractions in the lowermost troposphere (0–2 km) over
the Southern Ocean and in Northern Hemispheric middle
and high latitudes. The 3D cloud fraction decreases with
height with the values in midlatitudes, being higher and ap-
pearing separated from the adjacent subtropical latitudes with
low cloud fractions. Another local maximum in the observed
zonal mean distribution of the 3D cloud fraction is observed
in the upper troposphere (12–15 km) in the central tropics
with the highest values in the ITCZ. This geographical distri-
bution is qualitatively reproduced by the models. While both
model generations underestimate cloud fraction in the lower
and middle troposphere by roughly 5%, and by up to 30%
(absolute differences) in the boundary layer over the South-
ern Ocean, cloud fractions are overestimated by 3%–5% in a
band extending about 2–3 km below the tropopause region
across most latitudes. This overestimation of the cloud frac-
tion is more pronounced in the CMIP6 MMM than in CMIP5,
already indicated for single models (e.g., the IPSL model;
Madeleine et al. 2020). An exception to this is the tropical tro-
popause region, in which the CMIP5 models underestimate
the observed cloud fraction by up to 5%. This underestima-
tion is not present in the CMIP6 MMM.

As COSP output for clcalipso was only available from 9
CMIP5 and 7 CMIP6 models, we also calculated zonal means
of the native (unprocessed) 3D cloud fraction (cl) that was
available from 38 CMIP5 and 35 CMIP6 models. These are
compared to ERA5 reanalysis results as no directly compara-
ble observations are available. The zonal mean cloud fraction
from ERA5 is qualitatively similar to the one from CALIPSO,
but shows generally higher values of up to 10% throughout
the domain with exceptions being the lowermost troposphere
over the Southern Ocean (220%) and the northern midlati-
tudes (215%), as well as the middle troposphere in the ITCZ
region (25%). Both model generations generally overestimate
the ERA5 cloud fraction by about 0%–5% (CMIP5) and 0%–

10% (CMIP6). Particularly in CMIP5, there is no clearly
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FIG. 2. Taylor diagrams showing the 20-yr annual average performance of the CMIP5 (light blue)
and CMIP6 (light red) models for total cloud cover (clt), liquid water path (lwp), ice water path
(iwp), TOA shortwave (swcre) and longwave (lwcre) cloud radiative effects, and water vapor path
(wvp). Individual models are shown by the filled circles, the multimodel means by the stars, and the
individual observational datasets by the colored circles. The multiobs reference is shown by the filled
black circle on the x axis at x5 1.
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outstanding pattern in the bias of cloud fraction visible related
to specific regions or cloud types.

The vertical distribution of cloud liquid water and cloud ice
water from observations from CloudSat and from CALIPSO-
ICECLOUD, respectively, and the deviation of the CMIP5
and CMIP6 MMMs from the observations are shown in
Fig. 4. Zonal mean cloud liquid water (clw) observations
show maxima centered in the lowermost troposphere at about
800–900 hPa and 608S and 608N. Bands of high values are ex-
tending from these locations to about 108N (the ITCZ region)
and 400 hPa. Another band of high values is found in the low-
ermost troposphere at about 850 hPa across almost all

latitudes. Both model generations overestimate clw in the
boundary below the 900-hPa layer by up to 0.03 g kg21

(CMIP5) and 0.02 g kg21 (CMIP6). Here, CloudSat shows al-
most no cloud liquid water. We would like to note that Cloud-
Sat’s cloud profiling radar is known to have difficulties in
detecting low-level clouds because of the inherent difficulty
the sensor has in detecting such clouds due to surface clutter
(Marchand et al. 2008).

In contrast, the models underestimate clw in both bands
with observed high liquid water values extending from about
900 hPa at 608S and 608N to about 108N at 400 hPa. The
CMIP5 MMM underestimates clw in these bands by about

FIG. 3. Multiyear annual averages of zonal mean cloud fraction (%). The top row shows (left) data from CALIPSO-GOCCP, as well as
differences of the (center) CMIP5 (9 models) and (right) CMIP6 (7 models) multimodel mean (models providing COSP output) com-
pared with CALIPSO-GOCCP. The bottom row shows (left) data from ERA5, as well as differences of the (center) CMIP5 (38 models)
and (right) CMIP6 (35 models) multimodel mean compared with ERA5. Stippled differences are not statistically significant at a 95% con-
fidence level.
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50% in the midlatitudes and up to about 75% in the tropics.
This underestimation is even more pronounced in the CMIP6
MMM, amounting to about 75% in the midlatitudes and up to
90% in the tropics. It is noteworthy that the CloudSat values
used here do not include pixels with precipitating clouds as
CloudSat is known to be sensitive to both cloud water and
precipitation [see section 2b(5)]. The CloudSat clw values are
therefore rather regarded as a lower estimate, making the un-
derestimation (above the boundary layer) of clw in the mod-
els even more pronounced.

For cloud ice water content (cli), the CALIPSO-ICECLOUD
observations show a maximum in the zonal means at about

108N and 200 hPa (ITCZ) as well as two bands of high values in
northern and southern midlatitudes at around 300 hPa. The
CMIP5 models overestimate cli in the lower and middle tropo-
sphere in midlatitudes by up to 0.01 g kg21, in the upper tropical
troposphere at about 250 hPa by up to 0.02 g kg21. This bias is
reduced in the CMIP6 MMM showing deviations in the lower
and middle troposphere in midlatitudes up to 0.008 g kg21 in the
Southern Hemisphere and up to 0.005 g kg21 in the Northern
Hemisphere. This improvement was already seen for the IPSL
models (Madeleine et al. 2020). In the upper tropical tropo-
sphere, the CMIP6 MMM bias is reduced to 0.01 g kg21. In con-
trast to this overestimation, both model generations show an

FIG. 4. The top row shows the multiyear annual average of (left) zonal mean cloud liquid water content (g kg21) from CloudSat-L2, and
differences of the (center) CMIP5 (32 models) and (right) CMIP6 (28 models) multimodel mean compared with CloudSat. The bottom
row shows (left) the zonal mean cloud ice water content (g kg21) from CALIPSO-ICECLOUD, and differences of the (center) CMIP5
(32 models) and (right) CMIP6 (27 models) multimodel mean compared with the CALIPSO data. Stippled differences are not statistically
significant at a 95% confidence level.
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underestimation of cli in the upper troposphere in the middle
and high latitudes by about 0.003 g kg21. We would like to note
that the vertical integral of the 3D CALIPSO-ICECLOUD
data (not shown) result in about a factor of 2 higher iwp values
than the multiobs mean [see section 4a(1)]. This suggests that
the overestimation of cli by the models is not simply caused by
rather low cli values in the CALIPSO-ICECLOUD dataset due
to saturation effects of the lidar instrument.

4) ICE FRACTION

To investigate the pattern of too much cloud ice in the
lower and middle troposphere and too little ice in the upper
troposphere in the models [section 4a(3)] and to better under-
stand the differences between CMIP5 and CMIP6, we calcu-
late average cloud ice fraction as a function of temperature.
Similar to Zelinka et al. (2020), we use monthly means for the
calculation of the ice fraction but instead of vertical integrals
of cloud liquid water and cloud ice, we use the full 3D fields.
For each 3D grid cell containing cloud water, the ice fraction
is calculated as cli/(cli 1 clw) and then binned by temperature
from the same grid cell. We use 1026 kg kg21 as a threshold
for the minimum cloud water to calculate the ice fraction within
the corresponding grid cell. Grid cells with less cloud water
(sum of ice 1 liquid) are ignored. As an observationally based
estimate, we do the same calculation using cli from CALIPSO-
ICECLOUD, clw from CloudSat, and air temperature (ta)
from ERA5. Figure 5 shows the results for nine individual
CMIP5/CMIP6 model pairs that we identified by almost identi-
cal model names (BCC-CSM1/2, CESM1/2-WACCM, GFDL-
CM3/4, GISS-E2-H/GISS-E2-1-H, HadGEM2-CC/HadGEM3-
GC31-LL, MICRO-ESM/MIROC-ES2L, MPI-ESM-LR/
MPI-ESM1-2-LR, MRI-ESM1/MRI-ESM2-0, NorESM1-M/
NorESM2-LM) and the MMM of all 32 CMIP5 and 28
CMIP6 models with the required data available. The observa-
tions show a very steep gradient in ice fraction from .90% at
245 K to about 10% at 260 K. The models show a wide spread
in the relation between temperature and ice fraction. A num-
ber of models and in particular the MMMs show a strongly
overestimated ice fraction in the temperature range 250–270 K
and an underestimation at temperatures below about 245 K.
The intermodel spread is, however, as shown by the shaded
area indicating the 61 standard deviation range in Fig. 5, very
large and includes the observations at most temperatures
except around 260 K. While some models (BCC-CSM,
CESM-WACCM, GISS-E2, MRI-ESM) show large differ-
ences between the CMIP5 and the CMIP6 version, the models
GFDL-CM, HadGEM, MPI-ESM, and NorESM show rather
little difference between the two model generations. Particularly
the CMIP6 versions of BCC-CSM, CESM-WACCM, and MRI-
ESM are now closer to the observations [also shown in, e.g., Frey
and Kay (2018) and Kawai et al. (2019)]. While the average ice
fraction per temperature bin is higher in some CMIP6 models
compared with their CMIP5 counterparts (BCC-CSM, CESM-
WACCM, GFDL-CM) it is lower in other models (GISS-E2,
HadGEM, MRI-ESM) as shown in Bodas-Salcedo et al. (2019).
Across the whole model ensemble (MMM), both model ensem-
bles show few differences in the mean and intermodel spread

across most temperatures. An exception is the temperature range
245–255 K, in which the CMIP6 models predict a cloud ice frac-
tion that is about 4%–5% smaller than in CMIP5 (absolute dif-
ferences). This suggests that the ice fraction for a given air
temperature, which we expect to be to a large degree influenced
by cloud microphysics, is probably not the only reason explaining
the difference in the zonal means of clw and cli between CMIP5
and CMIP6. Other reasons contributing to the differences in sim-
ulated cloud ice could be differences in the simulated tempera-
ture fields. An analysis of the annual mean zonal average
temperature (not shown) shows that the models simulate slightly
lower temperatures compared with ERA5 in regions where
cloud ice is overestimated by the models. Similar to Tian et al.
(2013), who reported a tropospheric cold bias in many CMIP5
models, we find that temperatures are underestimated in CMIP5
in northern and southern midlatitudes at around 450 hPa by
about 2 K, and in the upper tropical troposphere at around
250 hPa by about 1 K. This cold bias is improved by about 0.5 K
in the CMIP6 MMM, which might also contribute to a small de-
gree to the reduced cloud ice in the CMIP6 MMM in these parts
of the troposphere.

In addition to the global averages, we also calculated the
ice fraction for the Southern Ocean (latitude belt 308–658S)
and Pacific ITCZ (1358E–858W, 08–128N) (not shown). While
we found the results for the Southern Ocean to differ very lit-
tle from the global averages, the models show higher ice frac-
tions in the Pacific ITCZ. Here, the CMIP5 MMM shows an
increase in ice fraction of up to about 10% at 260 K and the
CMIP6 MMM of up to about 15% at 250 K. For the tempera-
ture range of ;250–270 K, this increases the overestimation
of the ice fraction in this region compared with the global
averages. This suggests that an important contribution to the
overestimation of modeled cloud ice in this temperature
range is related to convective clouds.

Our results suggest that the overestimation of the cloud ice
fraction over a large temperature range (;250–270 K) in the
models probably explains part of the overestimation of cloud
ice in the lower and middle troposphere as cloud ice can ei-
ther be formed or persist in the models at temperatures higher
than shown in the observation (i.e., at lower altitudes in the
troposphere). We tested this hypothesis by applying the ob-
served ice fraction to the model data whenever the modeled
ice fraction for a given temperature was larger than the ob-
served one. We did this by multiplying the modeled ice concen-
tration by the ratio of ice fraction(T)obs and ice fraction(T)mod

whenever the observed ice fraction is smaller than the modeled
one for a given temperature. This results in a decrease of the
positive bias in simulated zonally averaged MMM cloud ice in
the lower and middle troposphere in midlatitudes by roughly
70%–80%. Another reason for the overestimation in cloud ice
could be that cloud ice is not removed quickly enough from the
atmosphere (e.g., through sedimentation).

b. Interannual variability

The interannual variability is estimated by subtracting the
average seasonal cycle from the time series of monthly means
and then calculating the relative temporal standard deviation
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[Eq. (4) and section 3e]. The observations show in Fig. 6 a
high interannual variability of all cloud parameters in the Pa-
cific ITCZ as well the tropical ocean regions and the South Pa-
cific convergence zone (SPCZ). Particularly in the midlatitudes,

the continents often show a higher interannual variability than
the ocean regions at the same latitude. Other regions of high vari-
ability are for example the Sahara in North Africa. This is a result
of very small cloud amounts in this region so that even small

FIG. 5. Global average fraction of ice water content in clouds calcu-
lated from 20 years (models) of monthly means of 3D cloud ice and
cloud liquid water content binned by temperature. Ice fraction is shown
for 9 individual CMIP5 models (blue dots) and their corresponding
CMIP6 counterparts (red dots) for which all data were available. Also
shown are the CMIP5 and CMIP6 ensemble means for each bin calcu-
lated from 32 models (CMIP5) and 28 models (CMIP6) as well as their
61 standard deviation (shading). CMIP5 models are shown in blue,
CMIP6 models in red, and the observational reference [CloudSat-L2
(clw), CALIPSO-ICECLOUD (cli), ERA5 (ta)] in black.

J OURNAL OF CL IMATE VOLUME 36296

Brought to you by DLR | Unauthenticated | Downloaded 12/16/24 01:37 PM UTC



FIG. 6. Relative temporal standard deviation of 20 years (models) of total cloud cover (clt), liquid water path (lwp), ice
water path (iwp), TOA shortwave (swcre) and longwave (lwcre) cloud radiative effects, and water vapor path (wvp),
shown from top to bottom, from the (center) CMIP5 and (right) CMIP6 models compared with (left) multiobs averages.
The temporal standard deviations are calculated from monthly anomalies after subtracting the climatological mean sea-
sonal cycle. These have then been averaged over all models [Eq. (4)].
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changes lead to large relative changes. This general pattern is
qualitatively reproduced by the models. However, a common fea-
ture across different variables is an underestimation of the ob-
served interannual variability in the Pacific ITCZ by the models.
For CMIP5, this underestimation ranges between about 20% to
30% for lwcre and swcre and around 30% to 40% for lwp, and it
has been reduced by about 10% for these three variables in
CMIP6. For all eight variables investigated here, the differences
between the CMIP5 and CMIP6 MMMs throughout most of the
domain are, however, rather small (typically,5%). It is notewor-
thy that the global average interannual variabilities of wvp and clt
are small (,15%) in both the observations and the models. The
observed variabilities of lwp and iwp, however, are high, about
60% and 108%, respectively. In both cases, the average variability
is strongly underestimated in both model generations, amounting
to about 40% for lwp and.60% for iwp. While part of these dif-
ferences can probably be attributed to the large uncertainties in
lwp and iwp data obtained from space, this could also point to the
total cloud water path in the models not being sensitive enough to
changes in dynamics and thermodynamic structure of the atmo-
sphere as this underestimation is found in many different cloud
regimes and geographical regions. The observed interannual vari-
ability of lwcre and swcre lies in between the ones for clt and for
cloud water path with about 28% (lwcre) and 27% (swcre). Both
model ensembles show similar global averages of about 31% for
lwcre and about 27% for swcre.

c. Seasonal cycle

As a measure for the strength of the seasonal cycle, we cal-
culate its amplitude as the relative difference between mini-
mum and maximum monthly mean values within the average
seasonal cycle [Eq. (4) and section 3e]. Figure 7 shows the
seasonal cycle amplitude for the six parameters clt, lwp,
ipw, swcre, lwcre, and wvp. For total cloud cover, the ob-
served seasonal cycle amplitude is about 40%–60% over large
parts of the tropical and subtropical oceans, between 10%
and 20% over midlatitude oceans, and ,10% in large parts of
the Southern Ocean. The amplitudes are higher particularly
over large parts of low- and midlatitude continental areas.
While this pattern is qualitatively reproduced by the models,
the CMIP5 models overestimate the seasonal cycle amplitude
by about 10%, particularly over the tropical ocean and the
central parts of the Southern Ocean. This overestimation is
slightly reduced in the CMIP6 MMM by about 5%. In north-
ern India, northern Australia, and southern Africa, the mod-
els underestimate the observed seasonal cycle amplitude of
clt. While there is little difference in these negative biases be-
tween CMIP5 and CMIP6 in India and Australia, the under-
estimation in southern Africa is about 10% stronger in
CMIP6 than in CMIP5. The observed seasonal cycle ampli-
tude of lwp and iwp in midlatitude ocean regions and in the
Southern Ocean in particular is underestimated by the models
by about 10%–20%. This negative bias is slightly reduced in
the CMIP6 MMM by about 5%–10%. The observed seasonal
cycle amplitudes are overestimated by the models over the
tropical ocean by about 10% for swcre and by up to 20%–

30% for lwcre. This bias is slightly larger (;5%–10%) in

CMIP6 than in the CMIP5 MMM. Similar to clt, the seasonal
cycle amplitude of wvp is overestimated by the models partic-
ular over tropical and subtropical oceans by about 10%. This
did not change significantly from CMIP5 to CMIP6.

d. Dynamical regime

The relative occurrence of specific cloud types is sensitive
to the large-scale circulation (dynamical regime) and local
thermodynamic conditions (Bony et al. 2004). Bony and
Dufresne (2005) used monthly mean 500-hPa vertical velocity
(v500) as a proxy for the large-scale circulation over tropical
oceans (latitude belt from 308S to 308N) to calculate compo-
sites of climate variables. Similar to Williams et al. (2003), we
calculate two-dimensional composites of cloud properties
binned by 500-hPa vertical velocity as a proxy for the large-
scale circulation and binned by SST as a proxy for local ther-
modynamic conditions. We used all grid cells over the ocean.
As observational reference, we use ESACCI-CLOUD data
for total cloud cover and total cloud water path as well as
ERA5 for SST and v500.

Figure 8 shows such composites for total cloud cover (top)
and total cloud water path (middle). The CMIP5 and CMIP6
ensemble means have been calculated by averaging the two-
dimensional distributions from each individual model partici-
pating in CMIP5 and CMIP6, respectively. In this analysis,
the ITCZ can be roughly characterized by SSTs . 300 K and
v500 , 23 Pa min21. The observations show an increase in clt
from about 75% to .90% with updraft velocity. This increase
is qualitatively reproduced by the CMIP5 models, but abso-
lute values are underestimated by several percent with maxi-
mum cloud cover values of about 85%. This is improved in
CMIP6 particularly for strong updraft velocities. The tcwp in-
creases from about 0.2 to 0.3 kg m22 with increasing updraft
velocities in the observations, which is overestimated in
CMIP5 models and is better matched in CMIP6.

In the subtropical stratocumulus regions, roughly character-
ized in this analysis by SSTs between 290 and 295 K and subsi-
dence (vertical velocities of .0 Pa min21), observations show
that total cloud cover is particularly sensitive to SST and de-
creases roughly from 65% at 290 K to 55% at 295 K. This sen-
sitivity is underestimated in CMIP5 (decrease from roughly
55% at 290 K to 50% at 295 K). The CMIP6 MMM also
underestimates this gradient in clt with SST but shows a larger
sensitivity of total cloud cover to SST (about 60% at 290 K to
50% at 295 K) that is in better agreement with observations.
In both model ensembles, absolute clt values are underesti-
mated compared with the observations. Absolute changes in
tcwp are small, as tcwp values in this regime are typically
rather small, and also decrease with increasing SST with little
difference between CMIP5 and CMIP6.

Extratropical conditions are characterized by SSTs being
typically below 290–295 K depending on the season. Here, we
find an increase in total cloud cover with updraft velocities
and a decrease with increasing SST. This behavior is qualita-
tively reproduced by the models but the CMIP5 MMM under-
estimates clt values by about 10% throughout most of the
extratropical regime. The CMIP6 MMM is in better agreement
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FIG. 7. Relative amplitude of the mean seasonal cycle averaged over 20 years (models) of total cloud cover (clt), liquid
water path (lwp), ice water path (iwp), shortwave (swcre) and longwave (lwcre) cloud radiative effects, and water vapor
path (wvp), shown from top to bottom, from the (center) CMIP5 and (right) CMIP6 models compared with (left) multi-
obs averages [Eq. (5)].
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with observations showing higher absolute values. The maxi-
mum in clt at moderate vertical velocities (,4 Pa min21) and
low SSTs (,280 K) is underestimated in both model genera-
tions, but again with improved absolute values in CMIP6. Total
cloud water path in the extratropical regime is more sensitive to
vertical velocity than to SST. While this is qualitatively repro-
duced by the CMIP models, particularly the CMIP5 MMM
strongly overestimates the sensitivity of tcwp to vertical velocity.
Here, CMIP6 models are in better agreement with the observa-
tions regarding absolute values as well as the gradient in tcwp
with vertical velocity.

The relative frequency of occurrence of the different SST–v500

combinations is shown in the bottom row of Fig. 8. The reanalysis

data show maxima over cold ocean surfaces (T , 285 K) com-
bined with weakly ascending conditions (22 Pa min21 ,

v500 , 0) associated particularly with mid- and high latitudes,
over warm ocean surfaces (290 K , T , 300 K) combined
with weak subsidence (0 , v500 , 3 Pa min21) associated
with the subtropical subsidence regions, and over the ocean with
T . 295 K combined with weak to strong ascending motion
(26 Pa min21 , v500 , 0) associated with the rising branch of
the Hadley cell in the tropics. The two multimodel ensembles
qualitatively reproduce the shape of this distribution. The biggest
relative differences are found in the tropics with the CMIP5 mod-
els underestimating the frequency of occurrence of SST–v500 com-
binations of T; 302 K and25 Pa min21 , v500 , 22 Pa min21

FIG. 8. Two-dimensional distribution of average (top) total cloud cover (clt) and (middle) total cloud water path (tcwp) binned by SST
(x axis) and vertical velocity at 500 hPa (v500; y axis) averaged over 20 years and all grid cells over the ocean. (bottom) The relative fre-
quency of occurrence of the SST–v500 combinations.
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by about 50%, the CMIP6 models by about 40%. In contrast,
for strong ascending motions (v500 ,26 Pa min21) in this tem-
perature range the CMIP5 models overestimate the frequency
of occurrence by about roughly 50%–100%. In CMIP6, this
overestimation is even slightly more pronounced. This
overestimation is probably partly related to the so-called
double-ITCZ bias (e.g., Tian and Dong 2020) in some of
the models that can lead to two ascending branches of the
Hadley cell in the tropics, which are visible in zonal annual
means of the vertical velocity (not shown). As this problem
in the zonal annual mean distribution of the vertical veloc-
ity is found to be reduced in CMIP6 (not shown), this sug-
gests that, for example, convection might be too strong or
too sensitive to high SSTs.

e. Regional cloud analyses

1) SOUTHERN OCEAN

As a key region for connecting the surface ocean with the
deep ocean, the Southern Ocean plays an important role in
climate through its major contribution to the global ocean
heat uptake and storage (e.g., Sallée 2018). The Southern
Ocean is known to be a challenging region for ESMs with
many models underestimating reflected shortwave radiation
at the top of the atmosphere as a result of too few clouds
(e.g., Trenberth and Fasullo 2010). Other models are simulat-
ing clouds over the Southern Ocean that are too reflective,
which is thought to be caused by an overestimation of cloud
ice and a corresponding underestimation of supercooled cloud
liquid water (e.g., Bodas-Salcedo et al. 2012; Lohmann and
Neubauer 2018).

To investigate the relationship between cloud radiative ef-
fect, total cloud water path, and cloud cover, we apply a diag-
nostic similar to Lauer et al. (2018), who binned monthly
mean cloud radiative effect by cloud cover. Here we apply the
same kind of binning also to tcwp. As the incoming solar radi-
ation is at a maximum in austral summer and the effect of er-
rors in model clouds on radiation are the largest, we focus on
the months December, January, and February (DJF). Figure 9
shows 20-yr seasonal (DJF) averages of swcre and of tcwp ver-
sus total cloud fraction averaged over the Southern Ocean.
The Southern Ocean is defined as all ocean grid cells in the
latitude belt 308–658S. For cloud cover values ranging between
about 20% and 75%, the CMIP5 MMM overestimates swcre
(i.e., more negative values) compared to the ESACCI-CLOUD
observations. In contrast, the CMIP6 MMM shows improved
agreement with the observations up to clt values of about 70%.
Also, swcre is underestimated (i.e., values not negative enough)
in both model ensembles for total cloud cover values over 80%.
Comparison of the total cloud water path per total cloud cover
value suggests that this improved agreement is at least partially
caused by a reduction in tcwp in the CMIP6 models, which is in
better agreement with the ESACCI-CLOUD data than in
CMIP5. The frequency distributions of simulated clt values, also
shown in Fig. 9, indicate that the models tend to overestimate
the frequency of values below about 80% and strongly underes-
timate very high values (above 80%), that are the most frequent
in the observations. While this underestimation of very high clt

values is still present in CMIP6, this bias is significantly reduced.
The cumulative frequency of occurrence of clt values above
80% is 0.65 in the ESACCI-CLOUD data compared to 0.27 in
the CMIP5 MMM and 0.47 in CMIP6.

These findings suggest that the CMIP5 problem of “too few,
too bright” clouds over the Southern Ocean (e.g., Trenberth
and Fasullo 2010) is reduced in CMIP6: the frequency of oc-
currence of high total cloud cover values in CMIP6 is closer to
the observations than in CMIP5, and at the same time swcre
for a given total cloud cover is in better agreement with
ESACCI-CLOUD data than CMIP5 over a wide range of
cloud cover values. This is at least partly caused by an im-
provement in the simulated total cloud water path, which is in
closer agreement with ESACCI-CLOUD data in CMIP6 than
in CMIP5. The average ratio of simulated to observed tcwp
across all total cloud cover bins in CMIP5 is 2.1 while this is
improved to an average ratio of 1.4 in CMIP6.

2) SOUTHEASTERN PACIFIC

The southeastern Pacific (SEP) off the west coasts of north-
ern Chile, Peru, and Ecuador is home of the largest and most
persistent subtropical stratocumulus regime in the world (e.g.,
Bretherton et al. 2010). The stratocumulus clouds are formed
and maintained by complex interactions between a relatively
cool ocean surface and a moist marine boundary layer capped
by a strong inversion with warm and dry air aloft (e.g., Lin
et al. 2014). Because of their low cloud tops, these clouds
have a cooling effect on climate by reflecting a large fraction
of the incoming solar radiation while contributing only very
little to the TOA longwave cloud radiative effect. Despite
their importance in climate (e.g., Wood 2012), stratocumulus
clouds have been notoriously difficult to simulate with global
climate models (e.g., Caldwell et al. 2013; Lauer and Hamilton
2013). Common model problems in this region are an underes-
timation of cloud cover, too high cloud tops, and an unrealistic
cloud albedo (Jian et al. 2020). Particularly the underestima-
tion in cloud cover results in an overly weak shortwave cloud
radiative effect, leading to too warm sea surface temperatures
(Lin et al. 2014).

We investigate the relationship between cloud radiative ef-
fect, total cloud water path, and cloud cover over the SEP de-
fined as rectangular ocean region covering 858–958W, 258–58S.
As stratocumulus clouds play an important role in climate
throughout the year, we focus on annual averages. Associated
results are shown in Fig. 10.

The observations show an almost linear increase in tcwp
with cloud fraction, which is reproduced by the multimodel
ensemble means up to monthly mean clt values of about 80%.
Beyond about 80% (CMIP5) and 90% (CMIP6), the intermo-
del spread indicated by the red shaded areas shows a very
large variability of simulated tcwp among the individual mod-
els. On average over all total cloud cover bins, the CMIP5
MMM overestimates observed tcwp values by about 75%, the
CMIP6 MMM by about 40%. As tcwp is an important factor
determining the shortwave cloud radiative effect, this de-
crease in average tcwp per total cloud cover class in CMIP6 is
also reflected in the corresponding swcre. On average over all
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FIG. 9. The 20-yr seasonal average (DJF) of (top) TOA cloud shortwave radiative effect (W m22) and (middle) to-
tal cloud water path (tcwp) vs total cloud fraction (clt; %) averaged over the Southern Ocean defined as latitude belt
308–658S (ocean grid cells only). Shown are (left) CMIP5 and (right) CMIP6 multimodel means as red filled circles
and lines. The black circles and lines show observational estimates obtained from ESACCI-CLOUD data. The red
shaded areas represent the range between the 10th and 90th percentiles of the results from all individual models
within each model ensemble. (bottom) The frequency distribution of monthly mean total cloud cover with the red
curve showing the multimodel average, the blue curve the ESACCI-CLOUD data, and the thin gray lines the individ-
ual models. The red shading shows61 standard deviation of the intermodel spread.
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total cloud cover bins, amplitudes of swcre are underesti-
mated in the CMIP5 MMM by about 5% whereas this under-
estimation amounts to about 15% in the CMIP6 MMM.
Similar to the Southern Ocean, the frequencies of high
monthly mean clt values are increased in CMIP6 compared to
CMIP5 and thus in better agreement with observations. For
CMIP5, the cumulative frequencies of cloud cover larger than

60% is 37%, in CMIP6 48%, compared to 79% in the obser-
vations. This means that the occurrence of stratocumulus
clouds in the southeast Pacific is still underestimated in
CMIP6 even though there are clear improvements compared
to CMIP5. In contrast, swcre for a given total cloud fraction is
stronger underestimated in CMIP6 than in CMIP5 which can
be partly attributed to a decrease in simulated tcwp per cloud

FIG. 10. As in Fig. 9, but for annual averages and over the southeast Pacific (SEP) defined as the region
858–958W, 258–58S.
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cover class. This agrees with the results from Jian et al.
(2020), who also saw that the AMIP6 models underestimate
cloud albedos and have more difficulties than AMIP5 models
in capturing the linear relationship of cloud fraction and plan-
etary albedo over the marine stratocumulus regions, and espe-
cially in the SEP.

3) PACIFIC ITCZ

The ITCZ is a low pressure region in the tropics generated
by convergence of the trade winds. As an important part of
the global circulation, the ITCZ forms the upward branch of
the Hadley cell that redistributes heat from the tropics to mid-
latitudes. Frequent occurrence of convection, including deep
convection, is common in the ITCZ (e.g., Waliser and Gautier
1993). The ITCZ is a challenging region for global climate
models with biases in the simulated clouds and convection. A
well-known bias through different generations of global cli-
mate models including CMIP6 models is the so-called double
ITCZ, an unrealistic zone over the southeastern Pacific and
South Atlantic at about 108S parallel to the equator that
somewhat resembles a second ITCZ (Tian and Dong 2020).
To capture the ITCZ over the eastern and western Pacific, we
here define the region “Pacific ITCZ” used for the analysis as
rectangular region covering 1358E–858W, 08–128N. Associated
analysis results are shown in Fig. 11.

When averaged over all total cloud cover bins, the MMMs
of CMIP5 and CMIP6 show larger tcwp values by a factor of
1.5 and 1.1, respectively, than the observational reference.
Similar to the SEP, amplitudes of swcre are underestimated in
CMIP5 by about 3% when averaged over all cloud cover bins,
in CMIP6 by about 17%. Again, the reduction in swcre ampli-
tude per cloud cover in CMIP6 can be at least partially attrib-
uted to the corresponding decrease in tcwp. In contrast to the
Southern Ocean and the SEP, the frequencies of high
monthly mean cloud cover values are overestimated in the
CMIP6 MMM. The frequency of occurrence of a monthly
mean total cloud cover of 60% and larger is 62% in the obser-
vations and 70% in CMIP6 compared with 58% in CMIP5.
Possible reasons for this could be a more active convection in
CMIP6 or longer cloud lifetimes.

5. Summary and conclusions

In this study, we compared results from historical simula-
tions from models contributing to CMIP6 with satellite data
and with output from the previous phase CMIP5. Whenever
possible, reference datasets based on multiple satellite prod-
ucts were used for evaluation of the models in order to allow
for an estimation of the observational uncertainties associated
with different sensors and with internal variability on a per-
pixel basis. A particular focus of this work was to assess how
much progress has been made over the recent years by the
model ensembles as a whole by comparing the MMMs from
CMIP5 and CMIP6 with satellite data and with each other. In
total, 35 models contributing to CMIP5 and 28 models con-
tributing to CMIP6 models were used for the analysis.

Our results show that for many cloud parameters investi-
gated here such as total cloud cover, cloud water path, and

cloud radiative effect, the CMIP6 MMM performs slightly
better than CMIP5 ensemble mean in terms of mean bias, pat-
tern correlation, and relative root-mean-square deviation.
The intermodel spread in CMIP6, however, is not reduced or
is even slightly larger than in CMIP5. This is probably a result
of the increased model complexity and thus an increased de-
gree of freedom in the models. Compared with CALIPSO-
ICECLOUD data, the CMIP5/6 models overestimate cloud
ice particularly in the lower and middle troposphere. This bias
in the cloud ice climatology is reduced in CMIP6. Our results
suggest that the overestimation of the cloud ice fraction over
a relatively large temperature range (;250–270 K) in the
models can probably explain part of the cloud ice bias in the
lower and middle troposphere as cloud ice is probably formed
in the models at too high temperatures. Another reason for
the overestimation in cloud ice could be that cloud ice is not
removed quickly enough from the atmosphere, e.g., through
sedimentation, resulting in cloud ice being too persistent (i.e.,
too long residence times in the atmosphere) in this tempera-
ture range.

While many known biases such as an underestimation in
cloud cover in stratocumulus regions or unrealistic cloud dis-
tributions in the tropics due to a double-ITCZ in some models
remain a problem in CMIP6, we find that the CMIP5 problem
of too few but too reflective clouds over the Southern Ocean
is significantly reduced in CMIP6. Here, CMIP6 models simu-
late more frequently high total cloud cover values, which are
in better agreement with satellite data than the frequency dis-
tribution of cloud cover from the CMIP5 models. At the same
time, the shortwave cloud radiative effect for a given total
cloud cover value in CMIP6 is reduced and in better agree-
ment with satellite data compared with CMIP5.

While we found little change in interannual variability and
amplitude of seasonal cycle of the investigated variables be-
tween CMIP5 and CMIP6, cloud cover and total cloud water
path from CMIP6 are in better agreement with observations
over a wide range of dynamical regimes characterized by
500-hPa vertical velocity and sea surface temperature. In
CMIP6, total cloud cover is found to be increased in regions
with high SSTs and strong upward motion (ITCZ) while
showing a reduced sensitivity of the total cloud water path
with updraft velocity at 500 hPa, which is in better agreement
with observations than in CMIP5. In contrast, the sensitivity
of total cloud cover to SST in the subtropical stratocumulus
regions is underestimated in the models, with a slight im-
provement in CMIP6 compared to CMIP5. Total cloud water
path in the extratropical regime is more sensitive to vertical
velocity than to SST and is overestimated by the models.
CMIP6 models are found to be in better agreement with the
observations regarding absolute values as well as the gradient
in tcwp with vertical velocity than the CMIP5 models. The re-
sults further show that the models are overestimating the fre-
quency of occurrence of high updraft values in regions with
high SSTs by about 50%–100%. In CMIP6, this overestima-
tion is even slightly more pronounced than in CMIP5, and is
probably partly related to the double-ITCZ bias in some of
the models that can lead to two ascending branches of the
Hadley cell in the tropics. As this problem in the zonal annual
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mean distribution of the vertical velocity is found to be re-
duced in CMIP6, this suggests that, for example, convection
might be too strong or too sensitive to high SSTs.

We note that despite the increased complexity of the CMIP6
models and the resulting increase in degrees of freedom, the
MMM climatology of many investigated cloud parameters has
improved in some regions compared with satellite data and

results from CMIP5. Among the most notable improvements is
an improved agreement of cloud amount and reflectivity of
clouds over the Southern Ocean. Many challenges remain, how-
ever, such as simulating clouds in the ITCZ or in the stratocu-
mulus regions. Clouds remain a very challenging task for global
climate models and further evaluation studies are therefore im-
portant for future improvements of cloud parameterizations in

FIG. 11. As in Fig. 9, but for annual averages and averaged over the Pacific ITCZ region defined as
1358E–858W, 08–128N.
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these models. For this, more widespread application of satel-
lite simulators including covering more instruments (e.g.,
Eliasson et al. 2020, 2019) in upcoming model intercomparison
projects such as CMIP7 would clearly help to evaluate the
models and improve our understanding of differences and
model deficiencies.
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