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Abstract. The numerical approximation of solutions to the compressible Euler and Navier-
stokes equations is a crucial but challenging task with relevance in various fields of science and
engineering. Recently, methods from deep learning have been successfully employed for solving
partial differential equations by incorporating the equations into a loss function that is minimized
during the training of a neural network. This approach yields a so-called physics-informed neural
network which does not rely on a classical discretization and can address parametric problems
in a straightforward manner. Therefore, it avoids characteristic difficulties of traditional ap-
proaches, such as finite volume methods. This has raised the question, whether physics-informed
neural networks may be a viable alternative to conventional methods for computational fluid
dynamics. Here, we show a new physics-informed neural network training procedure to approx-
imately solve the two-dimensional compressible Euler equations, which makes use of artificial
dissipation during the training process. We demonstrate how additional dissipative terms help
to avoid unphysical results and how the additional numerical viscosity can be reduced during
training while iterating towards a solution. Furthermore, we showcase how this approach can
be combined with parametric boundary conditions. Our results highlight the appearance of
unphysical results when solving compressible flows with physics-informed neural networks and
offer a new approach to overcome this problem. We therefore expect that the presented meth-
ods enable the application of physics-informed neural networks for previously difficult to solve
problems.

1 Introduction

The motion of compressible fluids gives rise to nonlinear partial differential equations (PDEs)
such as the Euler and Navier-Stokes equations. The numerical solution of these equations is for
example essential for the development of future aircraft configurations. Classical simulation
algorithms employ a spatial and temporal discretization and calculate solutions with iterative
algorithms. Despite a non-negligible progress in efficiency in recent years, long term prospects
for further acceleration of these codes seem limited. Especially, transferring these methods to
potentially advantageous hardware like graphic processing units has shown to be challenging.
Hence, our interest is to investigate numerical methods based on machine learning and deep neu-
ral networks to solve PDEs modelling compressible flows. With the rising popularity of machine
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learning methods and especially deep neural networks, alternative approaches for the solution
of differential equations, based on methods from this rapidly advancing field have become a
popular alternative to classical solvers.

One of these techniques are Physics-Informed Neural Networks (PINNs). The fundamental
idea of PINNs is to use a neural network as a parametric ansatz function for the approximation of
the PDE solution and to optimize the networks parameters by minimizing a loss functional which
directly incorporates the differential equations as well as the initial and boundary conditions.
During the training of the network, the loss functional is evaluated at typically random points
inside of the domain. Such approaches for approximating PDE solutions via neural networks
have been proposed decades ago in works of Lagaris [1] and Dissanayake [2]. Even though the
idea seems natural due to the ability of universal function approximation of neural networks[3],
the approach has only recently gained popularity. Nowadays, the networks can be trained more
efficiently due to the availability of high performance GPUs. Moreover, the implementation
of such algorithms has become straightforward with software libraries for deep learning, such
as Tensorflow [4] and PyTorch [5]. The term PINN has been introduced by Raissi et al. [6]
who demonstrated the use of this approach on a number of nonlinear PDEs for forward and
inverse problems. Subsequently, PINNs have shown to be applicable for solving stochastic
PDEs [7], inverse problems [8] and parametric problems [9]. Various alterations of the vanilla
PINN formulation have been proposed and improvements for the implementation of boundary
conditions [10, 11], training facilitation [12, 13] and training point selection [14, 15] have been
developed. Among many other domains, the flow simulation community has readily adapted
PINNs for various cases such as blood flow [11, 16], turbulent convection [17] and aerodynamics
of airfoils [18]. Even for compressible flows, there has been some success to employ PINNs for
simple forward and inverse problems which exhibit contact discontinuities [19, 20]. For a more
extensive overview on the usage of PINNs for fluid dynamics the interested reader is referred
to [21].

In this work we focus on the use of PINNs for compressible flows for which state of the
art solvers typically rely on finite volume or finite element algorithms. These algorithms have
been developed and refined for decades and they are in regular use for industrial problems
such as aircraft design. These classical algorithms discretize the domain and thus require the
construction of carefully crafted computational grids, so-called meshes. Superficially speaking,
a finer mesh will result in a more accurate result but will also increase the computational cost
needed. Besides, classical algorithms solve a problem for one specific instance of boundary
conditions and/or initial conditions. Therefore, for certain tasks, such as design optimization,
multiple evaluations of the solver are necessary. The cumulative computational effort of multiple
solver evaluations can be significant and is therefore a possibly limiting factor for the usage for
commercially relevant problems.

Compared to classical algorithms, PINNs are fundamentally different because they do not
rely on a spatial or temporal discretization in a classical sense. Instead a continuous para-
metric ansatz-function (a neural network) is evaluated and optimized at (oftentimes randomly
distributed) points in the domain. Hence, the task of mesh-generation is replaced by the task to
find a point distribution in space and time and an appropriate network dimension (i.e. number
and width of layers) which, when combined, result in a fast convergence and satisfactory final
accuracy. Compared to classical methods, PINNs can directly tackle parametric problems. A
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Figure 1: Schematic representation of the physics-informed neural network approach. It consists
of a fully connected neural network û(θ,x, t) which is an ansatz for the unknown function u(x, t).
The loss for an individual point x in the physical domain and at time t is calculated as the sum
of squares of the residual of the PDE, the boundary and the initial condition. The calculation
of partial derivatives of û(θ,x, t) with respect to components of x or t can be achieved by using
automatic differentiation.

single network can be trained in a continuous parameter space and yield approximate solutions
for a whole range of parameter combinations of interest. This ability may have implications for
aforementioned usecases like design optimization.

These properties raise the question whether PINNs are a viable alternative to classical algo-
rithms in computational fluid dynamics. In this paper, we take a step towards answering this
question, by presenting a new training procedure for PINNs to solve compressible, inviscid flow
problems by incorporating artificial viscosity during the training phase. Similarly to classical
methods, the use of artificial viscosity helps to avoid unphysical solutions of the Euler equations
and stabilizes the training procedure. In Sec. 2 we give a general introduction to the standard
PINN approach for solving (parametric) initial and boundary value problems. In Sec. 2.2 we
discuss the application of the approach to the compressible Euler equations and explain how the
incorporation of artificial dissipation during the training can facilitate convergence when looking
at the aerodynamic problem of calculating the flow around a solid object of arbitrary shape.

In Sec. 3 we demonstrate the difficulties which arise when trying to solve compressible flows
with PINNs by calculating the flow around a cylinder in the subsonic regime. Furthermore, it is
showcased how the use of artificial dissipation can help to overcome these problems. In Sec. 4,
we demonstrate how this approach can be extended towards parametric boundary conditions
such as variable Mach numbers. In Sec. 5 the presented results are evaluated in a more general
context and future implications as well as newly arising questions are discussed.
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2 Methods

2.1 Physics-Informed Neural Networks

Physics-informed neural networks are deep neural networks, which are employed to solve a
differential equation. A general initial-boundary value problem for the unknown function u on
the spatial domain Ω ⊂ Rd and in the time interval (0, T ) ⊂ R can be defined as:

D(u(x, t),x, t) = 0 (x, t) ∈ (Ω× (0, T ))

I(u(x, 0),x) = 0 x ∈ Ω

B(u(x, t),x, t) = 0 (x, t) ∈ (∂Ω× (0, T )),

(1)

where D is a general differential operator and I and B are the initial and boundary condition,
respectively. The operator D may include multiple nonlinear differential terms of different order.
A neural network û(θ,x, t) is now used to approximate the unknown solution û(θ,x, t) ≈ u(x, t).
The vector θ includes neural networks parameters (weights and biases) which have to be adapted
during an optimization/training process to find an accurate approximation of the solution. For
this, an objective or loss functional L is defined. The left hand side of Eqs. (1) vanishes on the
entire domain x ∈ Ω and for all times t ∈ (0, T ) if û(θ,x, t) is a solution to Eqs. 1. Therefore,
a simple loss functional could take the form

L(û(θ,x, t)) =
∫∫

Ω×(0,T )

D(û(θ,x, t))2 dx dt + α

∫
Ω

I(û(θ,x, 0),x)2 dx+

β

∫∫
∂Ω×(0,T )

B(û(θ,x, t),x, t)2 dx dt

(2)

which is 0 and thus minimal if û(θ,x, t) is a solution to Eqs. 1. The coefficients α and β scale
the importance of the boundary and initial loss term with respect to the residual term. However,
since the network û(θ,x, t) can only be evaluated at discrete input values, the loss is instead
calculated by taking the sum over a representative point distribution inside of the spatial and
temporal domain

L(û(θ,x, t)) = LRes + αLI + βLB

LRes =
1

N

N∑
i=1

D(û(θ,xi, ti))
2 xi ∈ Ω ; ti ∈ (0, T )

LI = α
1

NI

NI∑
i=1

I(û(θ,xi, 0))
2 xi ∈ Ω

LB = β
1

NB

NB∑
i=1

B(û(θ,xi, ti))
2 xi ∈ ∂Ω ; ti ∈ (0, T )

(3)

where NRes, NI and NB are the number of points that evaluate the residual, the initial condition
and the boundary condition, respectively. Since for a well defined problem, the bounds of
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the domain are known, the generation of these training points can be achieved with quasi-
random low discrepancy sequences such as Sobol [22] or Halton [23] or with other methods like
Latin Hypercube sampling [24] at little additional cost. For a uniform point distribution, the
calculation of the loss functional can be interpreted as a Monte-Carlo integration of Eq. 2 where
the normalization by the volume has been dropped. As highlighted in various publications [15,
14, 19], a non uniform distribution of training points or an adaptive training point selection,
based on the local residual may accelerate training and improve the final accuracy for certain
problems.

The partial derivatives in D(û(θ,xi, ti)) are calculated, using automatic differentiation. The
network parameters are then tuned using an iterative optimization algorithm. The most popular
algorithms are variants of stochastic gradient descend such as Adam [25]. During the optimiza-
tion, the gradient of the loss with respect to the network parameters ∇θL(û(θ,xi, ti)) has to be
calculated. This can again be achieved, using automatic differentiation and the backpropaga-
tion algorithm [26]. A schematic representation of a typical PINN is shown in Fig. 1. As usual
for neural networks, the optimization problem is generally non-convex and the optimizer can
therefore converge to local minima or regions of vanishing gradients. Furthermore, for partial
differential equations such as the compressible Euler equations which may not have a unique
solution, a minimum of the loss may not always correspond to a physically reasonable solution.

2.1.1 Parametric Problems

One prospect of physics-informed neural networks is the possibility to solve parametric prob-
lems. Let τ be a general parameter of the initial and boundary value problem. A PINN approxi-
mation û(θ,x, t, τ) of the unknown solution u(x, t, τ) simply receives τ as an additional input to
the neural network alongside x and t. The parameter adds an additional dimension to the input
space and thus the training points. The training points are now sampled in a d+2-dimensional
domain (x, t, τ) ∈ Ω × (0, T ) × (τ1, τ2), where τ1 and τ2 are the lower and upper bound of the
parameter space. The parameter τ can then be incorporated into the calculation of any of the
loss terms in Eq. 3. Similarly, this approach can be extended to more than one parameter.

2.2 Approximation of Compressible Flows with PINNs

The inviscid flow of compressible fluids is governed by the Euler equations which describe the
conservation of mass, momentum and energy in a continuous fluid. The two-dimensional Euler
equations in their differential conservative form are given by

∂W

∂t
+

∂Fx

∂x
+

∂Fy

∂y
= 0,

W =


ρ
ρu
ρv
ρE

 , Fx =


ρu

ρu2 + p
ρuv
ρHu

 , Fy =


ρv
ρuv

ρv2 + p
ρHv

 (4)

where W is the vector of the conservative variables with the density ρ, the local fluid velocity
q = (u, v), and the total specific Energy E. The total enthalpy H is defined as H = E+ p

ρ . This
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system of partial differential equations can be closed by the equations of state of ideal gases,
which yield p = ρ(κ−1)(E−ρq2/2), with κ being the ratio of specific heats. The Mach number
M = ∥q∥2/a is the ration between the velocity and the speed of sound a =

√
κp/ρ.

Compared to the incompressible equations, the more general compressible Euler equations
model the flow of an inviscid fluid when the elastic forces are not negligible compared to the
inertial forces. The equations are therefore relevant for aerodynamic flow conditions where the
Mach number is not close to 0. The compressible Euler equations are a quasilinear system of
conservation laws and exhibit weak solutions. However, not any weak solution is physically
reasonable. A general principal of systems of conversation laws is that a physically correct
solution should arise for a modified system with an additional viscous term at the limit of
vanishing viscosity [27].

For aerodynamic problems one is oftentimes interested in the stationary solution. Therefore,
the time derivative in Eq. (1) is dropped. When solving this system of equations with a physics-
informed neural network, the network outputs can be chosen to approximate the primitive
variables û(θ,x) ≈ (ρ(x), u(x), v(x), E(x)). The residual loss term becomes

LRes =
1

N

N∑
i=1

(
∂Fx(û(θ,xi))

∂x
+

∂Fy(û(θ,xi))

∂y

)2

. (5)

The partial derivatives are calculated using automatic differentiation. In the following, we focus
on the calculation of an inviscid flow around an object with a piecewise smooth surface, such as
a cylinder or an airfoil (see Fig. 2). Far from the object the flow field should reach a constant
state of W∞ = (ρ∞, ρ∞u∞, ρ∞v∞, ρ∞E∞) which is determined by the Mach number M∞ and
often called far field. Also, the flow should be tangential to the objects surface. This results in
a boundary loss term of

LB = α

 1

N∞

N∞∑
i=1

[W (û(θ,xi))−W∞]2 +
1

Nobj

Nobj∑
j=1

[q(û(θ,xj)) · nj ]
2

 (6)

with N∞ points xi on the boundary of the physical domain and Nobj points xj on the boundary
of the object. The surface normals at positions xj are given by nj .

2.2.1 Artificial Dissipation

A fundamental challenge for PINNs in the search of solutions to the compressible Euler
equations lies in finding a physically reasonable minimum of the loss (i.e. an entropy solution).
By definition of the loss function (3), any weak solution of Eqs. (4) that fulfills a given set of
boundary conditions is a (global) minimum of the loss and thus a possible final state of the
network to converge to. Furthermore, the optimizer can always converge to local minima, which
correspond to unphysical solutions.

In classical computational methods for the solution of compressible flows, artificial dissipation
is introduced in the form of upwind schemes or through a combination of central schemes and
explicit dissipative terms [28]. The dissipation smears out discontinuities and has a stabilizing
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Figure 2: Schematic representation of boundary training point distribution and boundary con-
ditions for flow around an object. The flow in the far field is constrained at the points xi with
i = 1 . . . N∞. The no-flux boundary condition at the objects surface is enforced at the points xj

with j = 1 . . . Nobj . The far field is determined by the Mach number M∞.

effect. A straightforward approach is to add a dissipative term to Eqs. (4) to obtain a similar
effect during the PINN training

∂W

∂t
+

∂Fx

∂x
+

∂Fy

∂y
= η∆W (7)

where ∆ = (∂2
x+∂2

y) is the Laplacian and η can be interpreted as an artificial viscosity. This can
be interpreted as a regularization of the optimization/training problem. Similarly to classical
scalar dissipation schemes like the JST-scheme [29], we scale the dissipation locally, based on
the spectral radius of the flux jacobians

η = ν(a+ |q|) (8)

where ν is a constant viscosity factor. This artificial viscosity factor ν is chosen empirically.
For the evaluation of the additional term in Eq. (7), 14 additional partial derivatives have to be
calculated which increases the computational effort significantly. Also, the dissipation changes
the physical problem and the resulting solution will disagree with the fully inviscid solution.
Essentially, one is no longer solving for an inviscid solution and therefore the fluid is decelerated
by shear stresses. Scalar dissipation schemes employ 4th order differences in smooth flow regions
which only dampens higher frequency modes of the flow. Second order differences are only used
near discontinuities, where a scheme of first order accuracy is required due to Godunov’s theorem.
An additional fourth order differential term could theoretically be added to Eq. (7). This would
however introduce fourth order derivatives which would require additional expensive evaluations
of the computational graph. Instead, we follow a different approach and adjust the viscosity
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during the training process, to limit the dissipative effect on the final solution. Therefore, we
propose a 3 phase training routine:

1. Train with constant viscosity ν until there is no significant change in residual loss

2. Linearly reduce the viscosity ν until a minimal viscosity of ν0 has been reached

3. Continue the training with constant viscosity ν0 to fine-tune the result.

The idea of this procedure is to guide the network towards a physical solution (the entropy
solution) during the initial training phase. Once the network has converged to a state that
resembles a physical but viscous solution, the viscosity can be reduced, since from this point
on, the network should be in a state near the entropy solution. It is crucial to no longer train
with a very large learning rate during step 2, since large learning rates may allow the network to
step away from the neighborhood of the entropy solution once again. Finally, a reasonable final
viscosity ν0 has to be chosen, which is sufficient to stabilize the solution, but which has little
dissipative effects on the final result. For certain examples it may even be possible to completely
drop the viscous term (i.e. set ν = 0). However, generally it may be sufficient if the viscosity is
reduced to a value where the dissipative term becomes very small compared to the other terms.

3 2D Flow around Cylinder

As a testcase, we consider a subsonic two-dimensional inviscid flow around a cylinder. The
center of the cylinder is positioned in the origin and has a radius of r = 0.1. The physical
domain is chosen to be x = (x, y) ∈ Ω = (−1, 1) × (−1, 1). For this kind of problem, a
continuous, spatially symmetric solution is expected. Figs. 3 (a)-(b) show a numerical reference
solution of the problem for a Mach number of M = 0.2 with far field boundary conditions. The
solution was obtained using the DLR in-house finite volume solver TAU [30, 31].

To calculate an approximation of this solution with a PINN, no-flux boundary conditions
at the cylinder wall and far-field boundary conditions at the external domain boundary are
enforced using Eq. 6.

The weighting factor α is set to α = 1. As shown in various publications, such as [32, 12,
13], the (adaptive) weighting of loss terms is an effective technique to accelerate the convergence
and improve the accuracy because it can compensate imbalances in the gradients between the
different loss terms. However, we have observed that for certain problems, adaptive loss term
weighting may lead to instabilities during the early stages of the training. For the presented
problems we do not see significant imbalances during the training and are able to achieve satis-
fying results with a constant weighting factor. Therefore, loss term weighting is not considered
herein.

A summary of the parameters within each training phase is shown in the Appendix in Tab.1.
This includes the utilized optimizer, the learning rate lr and the viscosity factor ν. The training
points for the residual loss are randomly sampled in the entire domain, using a Latin Hypercube
sampling. We choose a fully connected neural network of constant layer width with hyperbolic
tangent activation functions. For the majority of the training, Adam [25] is used as the optimizer
(phase 1 to phase 3.1 in Tab. 1). A brief final training period with the quasi-Newton LBFGS
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Figure 3: Results for pressure coefficient Cp and local Mach number M for the flow around a
cylinder at M∞ = 0.2. Fig. (a)-(b) show the reference solution which was calculated with the
DLR in-house finite volume solver TAU. Fig. (c)-(d) show the result that has been achieved
with a standard PINN approach without additional dissipative terms. The velocity field shows
extreme unphysical changes which extend from the left to the right boundary of the domain
and enclose an area of low velocity which contains the cylinder. This results in relatively small
pressure gradients, compared to the physical solution.

optimizer has shown to be an efficient way for improving the final accuracy (phase 3.2 in Tab. 1).
Since this algorithm requires comparatively more memory and is (in PyTorch) unsuitable for
minibatch training, a second set of training points with a reduced number of pointsN is used. For
both point sets, the same number of points are used to represent the boundary of the physical
domain and the cylinder (N = N∞ = Nobj). For the implementation, the python package
SMARTy [33] was used, which is a toolbox for surrogate modeling and other data driven tasks.
SMARTy supports Tensorflow and PyTorch as backends for the creation and training of neural
networks. The presented results were obtained with PyTorch.

Figs. 3 (c)-(d) show the result of a PINN which solves the non-dissipative Eqs. (4). The
training parameters correspond to phase 1 in Tab. 1 with a viscosity factor of ν = 0. One can
clearly see steep unphysical changes in the velocity field and a flat pressure field. To avoid such
results, Eqs. (7) are considered instead. To determine a reasonable viscosity factor ν for this
specific testcase, the error of the resulting solution is compared in Fig. 7 for various values of
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ν. For very high ν, the dissipative term covers the other terms in Eqs. (7) and the inflow is
slowed down significantly, even at large distances to the cylinder. For very low ν, similarly to
Fig. 3 (b), the result becomes unphysical again, even though the velocity changes are smeared
out due to the remaining dissipation. Lower errors are observed for a wide viscosity range
ν ∈ (5, 100) · 10−4. For all following simulations, a value of ν = 7.5 · 10−4 is selected because the
effect of the dissipative term should be minimal but still strong enough to ensure a sufficient
level of stabilization. The result at ν = 7.5 · 10−3 is shown in Fig. 5 after the initial training
phase 1 (cf. Tab. 1). It resembles the reference solution. However, due to the dissipative loss of
energy, the velocity downstream is reduced and the result is non-symmetric.

As proposed in Sec. 2.2, this result can be improved by reducing the viscosity factor ν in a
subsequent training phase. After a linear reduction of ν to a value of ν0 = 0 over 1000 epochs,
the training is continued without the viscous term for 10000 epochs. Empiric investigations of
different reduction phase lengths, show that it can be relatively short, compared to the initial
training phase and that a less steep reduction of ν has little impact on the final accuracy. We
choose to fully reduce the viscosity to 0, because it is possible for this specific problem. Based on
our experience with different geometries, this is not always the case and a final viscosity factor
of ν0 > 0 is required for other geometries. Fig. 4 shows the development of the total loss and
the error of the PINN in comparison to the reference solution during the training.

One can clearly see, how the error is further reduced during the reduction phase. After the
reduction of the viscosity, the error continues to decrease, although significantly slower. A final
training phase employing the quasi Newton optimizer LBFGS further improves the accuracy.
The final result is shown in Fig. 5 (d). Compared to the result after the first training phase, the
loss of velocity downstream, caused by the dissipation, is almost completely revoked.

For a quantitative assessment of the errors, we consider the pressure coefficient Cp, the local
Mach number M and the density ρ. The mean absolute difference to the reference solution
was calculated for a small square that contains the cylinder (−0.5 < x < 0.5;−0.5 < y < 0.5).
This difference was then normalized with the range of values of the reference solution for each
individual quantity. The resulting, normalized errors are shown in Tab. 2. The final errors are
highest for Cp and on the order of 2% with the most significant errors observed close to the
cylinder. This is expected, since the largest gradients of the solution occur in close proximity
to the surface. In comparison to classical methods, the accuracy of the PINN is orders of
magnitude worse than traditional solvers. Note that the hyperparameters of the training and
the network shape are not optimized, improved accuracy may therefore be possible with different
parameters. However, the cost of hyperparameter optimization is further increased by the fact
that one has to additionally choose appropriate values for ν, ν0 and the duration of the different
phases. Nevertheless, it is highly unlikely that the presented approach can even come close to
the accuracy of a classical solver, even with optimized hyperparameters.

With respect to training times, it is difficult to compare traditional methods and PINNs
because PINNs are best trained on graphic chips, while classical algorithms mostly use conven-
tional processors. The presented PINNs were trained with NVIDIA Quadro P2200 and NVIDIA
RTX 2080 cards using the PyTorch deep learning library. The resulting training times are on
the order of 20 hours. For reference, the reference solutions were calculated on a desktop Intel
i7-9700 CPU with convergence times on the order of one hour. The PINN training time is mostly
limited by the clock time of the GPU and by the available video memory.
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Figure 4: Loss and error history as well as artificial viscosity factor ν during training of PINN
for flow around cylinder. The three phases of the applied training procedure are highlighted.
Note that during the last 1000 epochs, the LBFGS optimizer was used instead of ADAM (see
Tab. 1 for more details).
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Figure 5: Comparison of the local Mach number M for different artificial viscosity factors in
comparison to the reference finite volume result (a). Fig. (b) shows the PINN result for an arti-
ficial viscosity factor of ν = 10−4. One can see that the result resembles the unphysical inviscid
solution in Fig. 3 (b). However, due to the additional dissipation, the extreme velocity gradients
are smeared out. Fig (c) shows the result for a viscosity factor of ν = 7.5 · 10−4. Even though
the result is physically reasonable, the artificial dissipation causes a loss of energy downstream
of the cylinder. Therefore, the symmetry in flow direction is lost and the downstream velocity is
reduced. Fig (d) shows the result of the same training run as Fig. (c), after gradually reducing
the viscosity. One can see that the effect of the dissipative term is mostly revoked while the
unphysical result of Fig. (b) is avoided.
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4 Parametric 2D Flow

As a parametric problem we again consider the flow around a cylinder, but with variable
parameterized boundary conditions. Similarly to before, a cylinder of radius r = 0.1 is positioned
with its center in the origin of the domain Ω = (−1, 1)×(−1, 1). The network prediction receives
the Mach number M∞ as an additional input. The training points are therefore sampled in
a three-dimensional domain where the third dimension corresponds to the parameter space.
We choose a parameter space of M∞ ∈ (0.2, 0.4). The upper limit of the Mach number of
M∞ = 0.4 is slightly below the critical Mach number of the cylinder, at which the velocity
locally exceeds the speed of sound. The artificial viscosity factor of ν = 7.5 · 10−4 is used based
on the previous investigations. Since the actual artificial viscosity in Eq. (8) is scaled with the
local velocity, the strength of the dissipation naturally increases at higher Mach numbers. The
neural network dimensions are increased, compared to Problem I, to account for the increased
complexity of the problem. A summary of the adapted hyperparameters is shown in Tab. 1.
The resulting predictions for the pressure field for two different Mach numbers are shown in
Fig. 6. One can see that even at M∞ = 0.4, close to the critical Mach number, the results
are visually indistinguishable to the reference solution. The plot of the absolute error reveals
that inaccuracies are most prominent on the cylinder surface. Overall the errors at M∞ = 0.2
(Fig.6 (c)) are lower and one can observe a chessboard like distribution. This indicates, that a
higher training point density may have further improved the prediction because the solution is
not fitted properly at locations where only a few training points are nearby. Furthermore, one
can observe how an inaccurate local prediction of the flow field on the upper right of the cylinder
and on the left propagates into the flow field further away from the cylinder. For M∞ = 0.4,
the result is particularly inaccurate at the top and bottom of the cylinder, where the local flow
velocity comes close to the speed of sound. Results of similar accuracy are achieved for the
entire parameter space. Compared to the non-parametric problem, the training effort is only
marginally increased primarily due to the increased network dimensions and the training times
are on the order of 20 hours. The accuracy of the results is still acceptable although slightly
higher than for the non-parametric PINN in Sec. 3. A comparison of the normalized errors
at M∞ = 0.2 is shown in Tab. 2. The errors were calculated as explained in Sec. 4. Again,
the hyperparameters are not optimized and higher accuracies may be possible when employing
hyperparameter optimization.

5 Conclusion

Physics-informed neural networks are a method which uses deep learning to solve partial
differential equations by incorporating the residuals of the equations into the objective func-
tion. The Euler equations are a system of conservation laws, which describe the dynamics of
inviscid fluids and are naturally difficult to solve numerically. Here we showed that, similarly to
classical numerical methods, the use of artificial dissipation in a PINN’s loss function can help
to find physically correct solutions and avoid unphysical results. The artificial viscosity can be
reduced during the training to circumvent the effect of the dissipative term on the final solution.
The presented method may open up new possibilities for the use of PINNs for similar inviscid
problems, which were previously unsolvable using vanilla PINNs. Furthermore, we showed how
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Figure 6: Comparison of parametric PINN solution with a reference finite volume result for
different Mach numbers. The absolute errors between the reference and the PINN solution is
shown in Figs. (c) and (f). Note the difference in the error scales.

the concept of artificial dissipation can also be applied to problems with parametric boundary
conditions.

The proposed implementation of artificial viscosity is very simplistic and one can think of
many ways to improve this approach. Similarly to artificial matrix-dissipation schemes in clas-
sical CFD methods [34, 35, 36, 37], a yet to be developed matrix-dissipation model for η might
reduce the influence of the dissipative term during training, while maintaining its stabilizing
properties. Also, recently an alternative regularization scheme based on an entropy criteria has
been proposed for solving hyperbolic problems with PINNs which might be an additional mea-
sure to avoid unphysical results, when solving the compressible Euler equations, especially at
higher Mach numbers [38, 39].

The presented approach of parametric boundary conditions can, in theory, be extended to
multiple parameters (e.g. with variable Mach number and angle of attack for airfoils) or even for
parameterized geometries. Therefore, it could be applicable for tasks such as design optimization
which traditionally require many solver evaluations. Whether a sufficient level of accuracy can
be reached for more complex multi-parameter problems remains to be seen.

The presented results for the flow around the cylinder raise the question if the proposed
training procedure can deliver similar results for more complex geometries of the object. Natu-
rally, airfoils are the next logical step. An additional point of future interest is the behavior of
the presented approach in the transsonic regime, where the local velocity exceeds the speed of
sound. Mao et al. [19] have demonstrated that PINNs have the ability to find solutions of the
compressible Euler equations which exhibit contact discontinuities and shock waves. However,
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since the simplistic artificial dissipation in the proposed procedure will smoothen discontinuities,
it remains to be seen whether a reasonably accurate representation of compression shocks in the
transsonic regime is still possible.

An aspect of PINNs that has not been considered so far is that higher fidelity solution data can
be incorporated into the objective function as an additional loss term. This opens the possibility
to directly combine PINNs with classical solvers or to even incorporate experimental data into
the loss. For parametric problems, such a hybrid-data-driven approach may improve accuracy
and even speed up the convergence during training. This flexibility may open up new possibilities
for physics-informed reduced order modeling for higher dimensional parametric flows. We have
seen that a very simple parametric boundary condition is straightforward to implement and
satisfying results can be achieved without a significant increase in model complexity or training
effort. While this may be the case for a single parameter, it remains to be seen if this is still
the case for multiple parameters (e.g. parametrization of the object shape, Mach number and
angle of attack). The combination of PINNs with pointwise higher fidelity data in the parameter
space may be able to alleviate the additional effort that is required for the training of PINNs
for such high-dimensional problems.

Overall, the presented results and other work indicate that the precision and speed of state-
of-the-art finite volume solvers for compressible flows will not be reached with PINNs in the
near future. One has to consider, that computational fluid dynamics solvers have been actively
developed for decades and are highly optimized in terms of speed, accuracy and robustness. Right
now it is difficult to evaluate the maximum potential performance of PINNs as PDE solvers,
since many aspects, like best practices for training parameters and training point distributions,
are simply not established yet. Even though PINNs may not outperform classical algorithms for
simple forward problems, the described features of PINNs make them applicable where classical
methods are lacking.

15



S. Wassing, S. Langer and P. Bekemeyer

Appendix

Table 1: Summary of neural network and training parameters.

Sec. 3. 2D Flow around Cylinder 4. Parametric 2D Flow

hidden layers 8 8

neurons/layer 20 30

activation tanh tanh

phase 1

Adam
ν = 7.5 · 10−4

N = 20000
batchsize = 2500

15000 epochs w. lr = 10−3

5000 epochs w. lr = 10−4

5000 epochs w. lr = 10−5

5000 epochs w. lr = 10−6

Adam
ν = 7.5 · 10−4

N = 40000
batchsize = 8000

15000 epochs w. lr = 10−3

5000 epochs w. lr = 10−4

5000 epochs w. lr = 10−5

phase 2

Adam
reduce ν = 7.5 · 10−4 to ν0 = 0

N = 20000
batchsize = 2500

1000 epochs w. lr = 10−4

Adam
reduce ν = 7.5 · 10−4 to ν0 = 0

N = 40000
batchsize = 8000

1500 epochs w. lr = 10−4

phase 3.1

Adam
ν = ν0 = 0
N = 20000

batchsize = 2500
4000 epochs w. lr = 10−4

2000 epochs w. lr = 10−5

3000 epochs w. lr = 10−6

Adam
ν = ν0 = 0
N = 40000

batchsize = 8000
3500 epochs w. lr = 10−4

5000 epochs w. lr = 10−5

phase 3.2

LBFGS
ν = ν0 = 0
N = 5000

1000 epochs

LBFGS
ν = ν0 = 0
N = 5000

1500 epochs
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Figure 7: Normalized mean absolute error for the primitive variables of the Euler equations.
The error was calculated in comparison to the reference solution for a small square that encloses
the cylinder (−0.5 < x < 0.5,−0.5 < y < 0.5) . The error was then normalized, based on the
maximum deviation of the reference solution from the average value of the primitive variables in
the entire domain. The errors are similarly low for a wide range of viscosities ν ∈ (5, 100) ·10−4.
A more accurate identification of the minimum is not necessary because the viscosity is adapted
during the training process.

Table 2: Percentage errors at M∞ = 0.2.

Sec. 3. 2D Flow around Cylinder 4. Parametric 2D Flow

Cp 2.24% 2.24%

M 0.21% 0.26%

ρ 0.33% 0.39%
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