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Abstract—As unconventional sources of geo-information, mas-
sive imagery and text messages from open platforms and so-
cial media form a temporally quasi-seamless, spatially multi-
perspective stream, but with unknown and diverse quality. Due to
its complementarity to remote sensing data, geo-information from
these sources offers promising perspectives, but harvesting is not
trivial due to its data characteristics. In this article, we address
key aspects in the field, including data availability, analysis-
ready data preparation and data management, geo-information
extraction from social media text messages and images, and the
fusion of social media and remote sensing data. We then showcase
some exemplary geographic applications. In addition, we present
the first extensive discussion of ethical considerations of social
media data in the context of geo-information harvesting and
geographic applications. With this effort, we wish to stimulate
curiosity and lay the groundwork for researchers who intend to
explore social media data for geo-applications. We encourage the
community to join forces by sharing their code and data.

Index Terms—Social media, geo-information, remote sensing,
machine learning, ethics, data fusion

I. INTRODUCTION

Geodetically accurate remote sensing (RS) data acquired by
Earth observation (EO) satellites serves as a high quality refer-
ence database for global geo-information retrieval. Beyond the
temporal resolution of EO satellites, typically days, the con-
textual embedding of space into meanings, perceptions, and
dynamic changes in human settlement due to daily life routines
can only be indirectly assessed by ground-level measurement,
such as social media data. Taking building function prediction
as an example, building facades and detailed building func-
tional information retrievable from ground-level social media
imagery are not accessible from satellites. Such information
can also be utilized to generate training sets for supervised
classification with satellite images.

A new era of Earth observation (EO) has certainly ar-
rived, when we consider the social media data (photos, text
messages) uploaded by individuals as a valuable additional
information source of Earth “observation.” As of this writing
(April, 2022), around 3.96 billion people use social networking
sites [1], such as Facebook. As shown in Fig. 1, a subset
of selected social media platforms already provided 3 billion
daily photo-uploads in 2015 and estimates suggest hundreds
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of petabytes of them are available in total. Apart from internet
images and text messages, 2D geographic information systems
(GISs), digital cadastral databases, and municipal utility infor-
mation are widely available for most well developed countries.
Besides paid services, openly available sources of 2D GIS
data include Natural Earth, Geocommons, MapCruzin, Open-
StreetMap (OSM), and many more. Exploiting and extracting
the valuable information from these data sources enables a
revolutionary complement to satellite remote sensing. The
extracted geo-information from these observations will support
cartographic applications, civil security, and city planning,
among many other domains, and hence change the way we
manage our cities.

Research fields in social media data mining and outsourcing
sensing tasks to the general public are rapidly emerging,
especially for 3D urban reconstruction from social media
imagery [2]-[5], people dynamics monitoring using airborne
sensor and mobile phone data [6], [7], flood damage map-
ping using governmental and crowdsource data [8], [9], and
crowdsourcing for mapping, image analysis, and geographic
information collection [10]-[13] (and the list goes on). The
exponential increase of social media data ignites a new means
of remote sensing that involves the community, also known as
community remote sensing. The real strength of social media
in remote sensing is its complementarity in data characteristics
and population base.

Only a handful of contributions have addressed the problem
of fusing social media and RS data for geo-information
retrieval. As [14] mentions, few studies on social media text
messages are linked to remote sensing data. Most of them
focus on result-level spatial merging. The current research has
not addressed the real challenge of handling the heterogeneous
big data delivered by EO satellites and social media. The
seemingly unrelated remote sensing science and daily social
life happen to coincide by their nature as “big data.” Many
studies have shown that processing hundreds of thousands of
online images and millions of online text messages is now
possible [3], [15]. Consequently there is an impulse to develop
a sophisticated system that effectively mines their information
and coherently fuses them.

In this article, we discuss key aspects of geo-information
harvesting from social media data, including social media data
availability (Section II), social media data pre-processing and
management (Section III), geo-information extraction from
social media text messages (Section IV) and social media
images (Section V), and the fusion of social media and remote
sensing data (Section VI). Section VII showcases exemplary
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geographic applications. For the first time, we also extensively
discuss ethical consideration of research with social media data
(Section VIII) in the context of geo-information harvesting and
geographic applications. Our aim is to inspire more researchers
to explore social media data as an unconventional data source
of geo-information, and provide a good basis for doing so.

II. SOCIAL MEDIA DATA AVAILABILITY

Social media data is the information collected from social
networks representing how users share, view, or engage with
internet content and with each other. It is mainly composed
of large quantities of photos, videos, and text messages, but
also exists in many other forms, such as emoticons, product
ratings, volunteered geographic information, and so on.

Despite the large quantity of social media data created every
day, most of it is not available for geo-information extraction,
mainly due to the license terms, the data crawlability, and
the availability of geo-tags. Social media data is spread out
on various online platforms that have different terms of use.
For example, photos posted on Facebook usually do not
have an open-access license, making massive crawling and
processing of the photos on Facebook impossible. The same
conditions apply to many other social media platforms, such
as Instagram. In contrast, text messages posted on Twitter are
by default open unless users restrict access; hence they can
be crawled extensively. Twitter also provides an official API
that permits massive download of tweets. Another issue is the
geographic location contained in the data, as it is the key to
linking the data to geographic applications. For this reason,
this paper focuses on geographically harvestable social media
data. We require that photos and text messages are either geo-
tagged, or it is possible to infer their geographic locations
with reasonable precision (in a building block level). Tabel I
summarizes the available harvestable social media based on
these s requirements. The list is of course not exhaustive. It is
intended to give readers the most common sources of social
media data for geo-information retrieval. Most freely available
social media data is under the creative commons license, often
the CC-BY license. The license of their images vary from
platform to platform. We intend to give readers guidance on
what type of social media sites and what data licenses are
suitable for scientific research. For example, although CC-BY
allows free use of the data, we note that a CC-BY license
does not permit sublicensing. This means that posting or
publishing such data on certain websites or journals requires
special attention such as a sublicense or even the transfer
of ownership, which is sometimes required by the journal
publisher.

Our extensive research shows that among all these options,
Twitter and Flickr are the most generous in terms of the
total data volume and data harvestability, because of their
license terms and the functionality of the APIs. Volunteered
geographic information such as OSM is also accessible in
large volume. However, they are not strictly social media data,
hence not the focus of this paper. We will focus on tweets and
Flickr images in the following.

Twitter: Twitter offers several API packages with different
pricing levels. In this article, we focus solely on the freely

available Twitter API, which allows the user to stream ap-
proximately 1% of the daily Twitter stream of an area of
interest (AOI). Further, the API offers several techniques to
query tweets. If a researcher is interested in a special hashtag!
or keyword like #COVID19, it is possible to submit such a
request to the API, and receive tweets with matching contents
as a result. An AOI can be specified via a bounding box of a
city, region, or country. It is also possible to receive the 1%
stream without any keyword or hashtag filtering. A further
method to receive tweets is to download a user’s timeline
or “hydrate” tweet IDs, i.e., retrieve tweet content based on
IDs. This is particularly relevant in research as data sets are
usually only shared in this format due to Twitter’s license
terms prohibiting sharing of complete tweet data.

Flickr: Flickr, a social media image platform, offers a
powerful free API allowing arbitrary spatio-temporal queries.
It can therefore be used to create comprehensive worldwide
data sets, and is therefore often the first choice for image data.
Flickr images have been used in various studies across all
disciplines, e.g., [16]-[19]. In contrast, Facebook used to have
an open API in its early days, but changed towards a more
privacy-preserving one as it became more popular and allowed
users more fine-grained options on the visibility of posts.

Others: Instagram closed their API in April 2018 and
redesigned it to be used by businesses and external apps
to curate the profile of a user. All access to query data
specifically and randomly by time, location, or tags has been
removed. Snapchat’s API never offered any query features but
targeted creation and publication of advertisements. Beyond
these popular examples, there are several other platforms
providing user-contributed images with geo-reference. Among
them are Google Places and Foursquare, databases of points-
of-interest with user images and reviews, Geograph, a platform
systematically acquiring landscape photos across Great Britain
and Ireland, and Mapillary, which aims to build a catalogue of
street view imagery based on volunteers driving around with
their own cameras. Until November 2016, Panoramio was a
valuable source of geo-tagged images on a global scale and
its data was used for several studies (e.g., [20]). This service
has since been shut down, but its imagery is still available as
a part of Google Maps.

Our recommendation is that readers use Flickr and Twitter
for large-scale applications. Mapillary, Google Places, and
Foursquare are good for study of specific locations. All of
them provide official APIs.

III. SOCIAL MEDIA DATA MANAGEMENT

With respect to data management, a key aspect of social
media data streams is that they represent a source of big
data. Of the defining properties of big data — volume, variety
and velocity [21] — velocity is the most obvious. However,
the other two facets are also observed when working with
location-based social media streams. The high velocity at
which messages are generated leads to a huge number of

'Hashtags are keywords to tag a tweet with a certain topic, event, celebrity,
etc. and consist of a word or word sequence without trailing spaces and a
leading “#”. For example #RemoteSensinglsGreat.
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TABLE I
AVAILABLE SOCIAL MEDIA DATA

Platform | Type Description License Crawlability Geotag
Google image search Image search engine Partly CC or free to use Third-party crawlers partly
Flickr.com Image photographer website Partly CC Official API partly
Unsplash.com Image photographer website All CC or free to use Official API mostly
Pexels.com Image photographer website All CC or free to use Official API mostly
Magdeleine.co Image photographer website All CCO or CC-BY Official API few
Twitter.com Text and image  social sharing website posts public by default Official API 1% of all partly
Instagram.com Text and image  social sharing website posts public by default Third-party crawlers partly
OpenStreetMap.org vector and text Online map service Open Data Commons Open Database Official API and DB dumps all
Mapillary.com Image Online map service CC BY-SA Official API with limited quota all
Google Places Text and image POI service Proprietary Official API all
Foursquare Text and image POI service Proprietary Official API all
Geograph.org.uk Text and image Online map service CC BY-SA Official API and DB dumps all
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messages, leading to significant volume. While these messages
are often small, they may have bigger data assets associated
with them, including images and videos for increased volume.
Furthermore, there is a high degree of variety, from a technical
point of view, in terms of the nature and quality of the location,
time, and other metadata, from image and attachment file
formats and semantics. The variety is also high from a user
perspective. Including messages from professional marketing
agencies, ethically sound information dissemination bots, bots
actively engaging in specific topics to produce an impact on the
perception (which can be considered unethical), users tweeting
with their “professional personality,” users using the network
in a “private” setting, together with the network role and
weight of a user (e.g., influencer vs. small network user), and
even mixtures of all of these.

From a data management perspective, it is first most impor-
tant to handle the big data characteristics. Distributed systems
for taking care of data management are necessary. This implies
that we can have only a single consistent key [22], and in fact
infrastructures using key-value data representations dominate
the field. With respect to key-value stores themselves, readers
are referred to [23], [24].

A key in this context can be either a number or a short string.
Depending on the use case, choosing these keys may require
considerations of data locality versus random hash functions,
which has implications for data access speed and node usage
balancing.

For some geospatial applications on a global scale, query

area of New York can be found in only few nodes, answering
a single query about New York is efficient as only these
few nodes need to be asked and coordinated for a definitive
answer. However, if the majority of queries are relevant to
the New York area only, then from a big distributed system
only a few nodes can contribute and will become a bottleneck.
Therefore, an optimal system needs to be designed with both
data distribution and query distribution in mind.

The keys themselves can be built by a combination of
random information, time, location, topic, hashtags, and other
criteria. Spatial information can be integrated either as a set
of keys (e.g., rectangles) or through the mechanism of space-
filling curves. Such curves enable us to approximately map
between 2D, 3D, or 4D space and a plain integer key which is
used for ordering. In [25] an exemplary keying scheme based
on message timestamps and a hash encoding of geolocations
is presented. The locality of this pure spatiotemporal scheme
is then reduced by introducing random characters.

In summary, managing social media data entails spatio-
temporal data management as well as management of big data.
Therefore, key-value structures are used to guide the low-level
organization of the data and of the mapping of data to nodes.
In current cloud computing infrastructures as well as in HPC-
environments, a good dose of randomness needs to be inserted
to avoid hotspots when managing a global dataset for local
queries or local data for global queries.

IV. GEO-INFORMATION EXTRACTION FROM SOCIAL
MEDIA TEXT MESSAGES

As discussed in section II, Twitter is the most salient social
media source with a focus on the text domain. In this section,
we discuss various aspects of extracting geo-information from
this source. In the past decade, Twitter has developed into a
major service for sharing small texts which are called tweets
(see Fig. 2). A tweet can include a news headline, an open
position within a company, traffic information for a city,
tomorrow’s weather, a web URL to an interesting website,
or more personal messages like feelings or opinions. All this
information must be packed within 240 characters.
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Fig. 2. Two-month world-wide Twitter sample with approximately 3M geo-referenced tweets.

A tweet can be analyzed to determine whether it includes
(implicit) information about the surrounding environment and
thus, can reveal further data about nearby urban characteris-
tics, demographic information of a region, or events in the
neighborhood. Due to the massive amount of data, automatic
methods from the field of Natural Language Processing (NLP)
are necessary here. This section gives an overview of such
methods commonly used for geo-information extraction from
social media material [26]. The algorithms and techniques
shown here are widely language independent (or alternatives
are depicted) and are applicable to all text-based social media.
A key challenge when using Twitter data for geo-information
extraction is the attachment of geolocations to tweets. The
last part of this section discusses direct availability of such
locations as well as solutions for obtaining tweet locations in
other ways.

A. Twitter Data Format and Pre-processing

Tweets from the Twitter API are usually encoded as json
[27] objects, which include several attributes. One provides
information about the poster, including the user ID, user name,
user language, a user description, sometimes the hometown,
etc. Data about the tweet itself is also attached, such as the
original and unprocessed tweet text. Further attributes are the
tweet ID, the estimated language, a timestamp, a human-
readable time of creation (UTC), and many others.

Before feeding the collected data into NLP or machine
learning algorithms, it needs to be pre-processed because the
raw social media text most likely includes informal spelling,
typos, and creative use of punctuation like emoticons or

emoji.> Common pre-processing steps include deleting URLs
and user names, stripping punctuation marks and numbers,
removing stop-words (and, the, a, ...), setting all characters to
lowercase, and removing emoji. Of course, the choice of these
methods depends on the use case. Subsequent pre-processing
steps may involve lemmatization or stemming which convert
all words into their roots, or normalization where irregular
spellings like yeeeeeeeees are corrected using simple rules or
lexical knowledge. Widely used NLP libraries like spaCy [28],
NLTK [29], or Gensim [30] offer implementations of these
methods.

Many common techniques are particular to space-separated
languages. For others like Japanese or Chinese, different
approaches are necessary. For example, the Python library
Janome [31] can be used to tokenize Japanese strings. It makes
use of the MeCab dictionary [32], [33] including the Japanese
new era (Reiwa) dictionary. For the Chinese language, jieba
[34] has proved a useful tool for tokenizing Chinese text
sequences.Some downstream NLP methods may require their
own preprocessing steps, such as BERT (see section IV-B).

The methods discussed here mark a good starting point
to pre-process Twitter, Weibo, or other (social media) text.
However, there is no golden rule for text pre-processing and
it always depends on the algorithms used for the desired task.

B. Methods

1) Information Retrieval: Aside from deep learning algo-
rithms (which are discussed later), there are several “classic”
information retrieval algorithms that are based in statistics. A

2Emoji are ideograms and pictograms depicting smiley faces with different
sentiments, fruits, activities, items, or flags.
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widely used unsupervised algorithm to assign documents to
certain topics in text documents is latent Dirichlet allocation
(LDA, [35]). A topic can be seen as a word pattern that occurs
in several documents (e.g., in a string or a tweet) and is
represented as a bag-of-words. Documents with the same or
similar word patterns are assumed to be related and therefore
are clustered to a certain topic. Recently, [36] introduced an
extension to LDA called Archetypal-LDA (A-LDA) which
specializes in short texts like tweets using anchor words.
Anchor words can be seen as a seed to “guide” the LDA topic
inference. Hashtags were used as anchor words to work out
topics around certain hashtags and therefore support the topic
inference. This method could be useful in geo-spatial research,
e.g., event detection, where certain hashtags are related to a
specific event. Tweets without that hashtag could therefore be
utilized as well.

LDA has been used in various studies in the geo sciences.
For example, [37] used tweets and Flickr images for a multi-
label land-use classification in New York and San Fran-
cisco. They applied LDA to extract relevant topics related to
Foursquare venues in specified clusters. The relevant clusters
were calculated by HDBSCAN [38] to identify local hot spots
in the Flickr images. Before they applied LDA, the text was
pre-processed by removing stop-words and applying lemma-
tization. Only those tweets within the clusters detected before
were used. LDA revealed the relevant topics for each cluster,
which led to good classification performance. LDA was also
used in [39] to identify relevant topics of the Olympics Games
2012 in London within the context of city planning. First, the
tweets were pre-processed with the aforementioned methods;
thereafter, they used LDA to filter the tweets that were about
the Olympic Games and transportation. Tweets that were re-
lated to the mentioned topics were used to perform a sentiment
analysis and a spatial-temporal analysis. [40] investigated the
tracking and monitoring of Twitter topics related to a disaster
over time. Since LDA is not suitable for tracking topics over
time, they used a dynamic topic model [41] (DTM), which is
based on LDA.

Another classic, but still very popular [42] algorithm is
term frequency-inverse document frequency (TF-IDF) [43].
Basically, TF-IDF measures the relevancy of a term (e.g., a
word) in a document and weights the document’s importance,
for example for a search query. This weighing process
involves the combination of two different steps. First, the
standard way of determining the term-frequency (TF) of a
certain term t in a document d is to calculate the quotient
of the total count of t appearing in d by the complete count
of all terms in d. Second, a stop-word like “the” would
distort the document-weighting because it is likely to appear
very frequently within a document. Therefore, the inverse
document frequency (IDF) decreases the importance of the
frequently recurring terms. This is achieved by taking the
logarithm of the quotient of the total number of documents
and the count of d including that certain term t. The final
TF-IDF score for a term is computed by the product of TF
and IDF.

2) Sentiment Analysis: As pointed out in Section II,
social media data can also contain emotions. One rule-based
algorithm to determine sentiments in English (but not
limited to) Twitter text data is Valence Aware Dictionary for
sEntiment Reasoning (VADER) [44]. The authors compiled
a list of sentiment-loaded terms. Those terms can be words
like happy” or emoticons like :-)”. Furthermore, the authors
added support for emoji sentiment detection. The terms are
validated and ranked by humans (Amazon Mechanical Turk).
In the end, the list comprises 7520 of such terms. Every term
in the list comes with a mean sentiment intensity ranging from

4 (very negative) to 4 (very positive) and ten independent
human ratings. Next, a qualitative approach was used to
detect the main textual drivers of the perceived sentiment
intensity. With this, five heuristics incorporating grammatical
and syntactical clues are derived to determine the sentiment
intensity of a string or possible changes of the sentiment. For
example, exclamation points add some sentiment intensity to
a string, as does using all-caps to stress words that express
the intended sentiment. Furthermore, booster words like
“very” also contribute to the computation of the sentiment
intensity. VADER achieved good performance and was able
to outperform human reviewers in some cases.

3) Embeddings: Today, the field of Natural Language
Processing (NLP) has seen a strong shift towards machine
learning, and particularly deep learning, approaches, which
in many cases now outperform previous methods based in
linguistics [45]. The topic of social media analysis is no
exception here, and most large-scale systems now employ deep
neural networks [46].

A crucial issue that caused the relatively late introduc-
tion of deep learning to text data analysis (as opposed to
other forms of data, like images) lies in how to represent
words numerically. Traditionally, this has been done with
one-hot encodings that do not capture semantic meaning.
The key development here was the introduction of word
embeddings. These embeddings are neural networks them-
selves, and are part of the complete classification network.
Some very successful early approaches that are still in use
today are word2vec [47], GloVe [48], and fastText [49]. One
of the earliest, word2vec is a neural-based architecture that
can embed large vocabularies from huge text corpora into
an n-dimensional feature space very quickly. It can preserve
semantic and syntactic features of words and embeds similar
word close together in the feature space. This development
was followed by GloVe, which is a statistics-based approach.
To solve the issue of out-of-vocabulary (OOV) words, [49]
introduced the fastText algorithm, which divides words into
subwords. This process facilitates the approximation of OOV
word vectors by composing a word vector based on the word’s
subwords, which is particularly useful for irregular text as it is
often found on social media. In each case, it is very common to
use pre-trained embeddings, such as those provided for fastText
in 157 languages [50].

Urban areas are multilingual spaces [51]-[53] and the set
of languages discovered in social media posts in cities is
diverse [54] (of course, English is dominant on Twitter [55]
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and Chinese on Weibo). However, multilingual approaches are
rare in earth sciences and so offer interesting research oppor-
tunities, such as ensemble models covering all languages to
classify building functions in urban areas [56] or investigating
the information density of Japanese or Chinese social media
postings with respect to English [57] within the context of
urban land use tasks.

As applied in [58], embeddings that represent not just
words but whole sentences are also becoming used more
widely, e.g., the Universal Sentence Encoder (USE) [59].
Here, the sentence embeddings are trained using either a
Transformer-based approach [60] or a deep averaging network
(DAN) [61]. In earth sciences, [62] showed the applicability
of multilingual sentence embeddings. The researchers used a
multilingual variant [63] of the universal sentence encoder [59]
to conduct a sentiment analysis on geo-referenced European
tweets related to the COVID-19 pandemic by fine-tuning the
pre-trained sentence embedding with tweets. The application
of multilingual sentence representations to classify sentiments
by using a simple feed-forward neural network enhanced
the results compared to a monolingual baseline. Of course,
embeddings adapted specifically to tweets also exist, e.g., [64],
[65].

In the past two years, BERT embeddings [66] and their
various offshoots, which take complex contexts into account,
have become very popular. BERT language models are based
on the Transformer architecture [60] and are trained by
using the so-called masked language task where a certain
percentage of words in a sequence is masked. During
training, BERT’s goal is to predict the masked words, which
increases context “awareness” of the model. BERT has been
applied in studies focusing on urban areas such as sentiment
analysis on energy-related complaints on Twitter [67] and the
classification of flood-related tweets in Indonesia using the
multilingual version of BERT [68].

4) Neural Networks: Embeddings usually serve as the
input layer to a deep neural network, which can then be
trained to solve various tasks like classification of tweets.
Recurrent Neural Networks (RNNs) are commonly used for
sequential data like texts, but due to the short-context nature
of tweets, Convolutional Neural Networks (CNNs) are often
more successful here and easier to train, with the architecture
presented by Kim in [69] being used frequently. CNNs are
also suitable for processing text that is represented at the
character level [70]. Challenges like different languages or
misspellings can be approached when working at a character
level since no intuition of the network about words, seman-
tics, or syntax of individual languages is needed [70]. For
example, [71] shows the applicability of the character level
approach by generating an English tweet and achieving good
performance in various Twitter related tasks such as sentiment
categorization. As pointed out earlier, since this approach is
language independent, it could be an interesting technique
for text classification tasks including social media texts in
character based Asian languages such as Chinese or Japanese.

It should be pointed out that most of the tasks described
in the above sections about classical algorithms can now

also be solved with neural networks, e.g., sentiment analysis
[62]. Further usages of neural network-based approaches are
presented in section VII.

C. Geolocations of Tweets

As discussed above, nearly all geo-related applications
of Twitter data require information about the geolocation
where each tweet was posted or refers to. Around 1% of all
tweets are already geo-tagged explicitly [72]: that is around
500M [73] tweets are published per-day, and 5M of them
are geo-tagged. Each geo-referenced social media post could
easily be resolved/decoded to a specific location on Earth.
By aligning the geo-referenced social media content with
an openly available Geographic Information System (GIS),
such as OSM, we have a valuable, easily accessible, and
cheap source of information. In this context, social media data
contributes to Volunteered Geographical Information (VGI),
and, consequently, empowers “citizens as sensors” [74], [75].

When working with geo-tagged social media data, we can
differentiate between two types of geo-locations. The first is
the geo-location of the person/app who posted or created the
content, for example, the GPS coordinates of the phone from
which a tweet is posted. The second is the geo-location that
is cited within the social media post, e.g., a Point Of Interest
(POI). While the second is increasingly supported by social
media channels, the first is less and less supported, ostensibly
due to privacy issues. Twitter stopped supporting the first type
of locations in mid-2019 [76], [77], but still supports the
second one via different mechanisms, like explicitly tagging a
tweet using one of the nearby “Twitter Places”, or implicitly
mentioning a POI within the content of the tweet.

Obtaining exact/named geo-locations from social media is a
challenging issue, especially the precise location of the person
when they create a post on social media. As mentioned, this
kind of location is unsupported in social media apps/sites
and users normally do not give social media apps the right
to access their location to protect their privacy. Moreover,
a tagged POI is potentially useless because of its coarse
granularity, as in most cases users tag a country or a city (see
Table II). In addition, the implicit mention of a POI in a social
media post poses its own challenges. In textual posts, we need
a mechanism to identify named entities and then resolve them
to a precise location. In visual posts (image or video), the
challenge of identifying the POI that appears in the scene is
even greater. Above all, the volume of available data, and the
fact that social media data is unstructured, heterogeneous, and
noisy, makes social media a challenging source of information
[75]. Based on our experience with geo-referenced Twitter
data, the main data challenges can be summarized as follows.

a) Precise Locations are Unsupported: In tweets, precise
locations refer to the geo-coordinates of the person/app who
created the tweets, at the creation time. According to a Twitter
announcement,’ this type of location was well-supported be-
fore mid-2019, but has not been supported since then. This

3https://twitter.com/TwitterSupport/status/11421303437150781442s=20



ZHU ET AL., GEO-INFORMATION HARVESTING FROM SOCIAL MEDIA DATA, IEEE GRSM, ACCEPTED 7

TABLE II
GRANULARITY AND SHARE OF TAGGED PLACES OF GEO-TAGGED TWEETS
COMING FROM NATIVE TWITTER APPS. NATIVE APPS ARE: “TWITTER FOR
IPHONE”, “TWITTER FOR IPAD”, “TWITTER FOR ANDROID”, AND
“TWITTER WEB CLIENT”.

Country City Admin  Neighborhood  POI

April 2019 3.9% 84.3%  10.1% 0.1% 1.6%

May 2019 3.8% 84.4%  10.1% 0.1% 1.6%

July 2019 3.8% 84.2%  10.6% 0.1% 1.3%

August 2019 3.5% 84.6%  10.4% 0.1% 1.4%

September 2019 3.3% 84.8%  10.4% 0.1% 1.4%
TABLE III

SHARE OF TWEETS COMING FROM NATIVE AND THIRD-PARTY APPS
AMONG ALL GEO-TAGGED TWEETS. NATIVE APPS ARE: “TWITTER FOR
IPHONE”, “TWITTER FOR IPAD”, “TWITTER FOR ANDROID”, AND
“TWITTER WEB CLIENT”.

Native apps (%)  Third-party apps (%)

April 2019 84.1% 15.9%
May 2019 84.7% 15.3%
July 2019 85.7% 14.3%
August 2019 86.2% 13.8%
September 2019 87.2% 12.8%

seems to be a general tendency in the other social media
channels as well, to better protect the privacy of users. This
restriction already prevents many geo-information applications
from using social media data. For example, the building
function classification downstream task, which enables the
function of a building (e.g., commercial, residential, etc.) to
be determined based on the topics referenced near it, requires
the precise geo-location of each tweet. Consequently, the only
remaining type of supported geo-locations in Twitter data is
the geo-location of hot spots, such as POI, neighborhood,
city, country, etc., which are explicitly mentioned by users
within the tweets or implicitly assigned by the Twitter app. In
fact, even before mid-2019, the number of tweets that were
precisely geo-tagged and that came from the native Twitter
app accounted for only 8% to 25% of all geo-tagged tweets
[76].

b) Arbitrary Coordinates and Insufficient Metadata:
Each tweet consists of textual content and metadata, where
metadata is used to encode information about the tweet, such
as user ID, geo-coordinates, place type and name. The Twitter
website and Twitter native apps provide fairly rich metadata
for each tweet. However, a considerable share of all geo-
referenced tweets, around 15% (see Table III), come from
third-party apps like Instagram and Foursquare; for these
tweets, metadata is either missing or inaccurate. To sum up,
although there are many geo-referenced tweets, in many cases
the exact type of those coordinates cannot be detected; that
is, we not know if they refer to precise locations or to certain
POIs.

c) Granularity of Geo-locations: It is not only the avail-
ability of geo-referenced social media data that makes the
difference, but the granularity of their related coordinates.
For example, to classify buildings or to identify hot spots in
a city, we need geo-coordinates on a scale fine enough to

identify an individual building. After exploring Twitter data,
we found that most of the tweets are assigned city- or country-
level coordinates. It seems that if the user does not specify a
location, the platform fills the metadata field with the user’s
city- or country-level coordinates (see Table II). In addition,
a considerable number of tweets are coming with polygon
coordinates rather than a point coordinate, and the polygon is
sometimes too big to extract useful information.

Before proceeding with research that depends on such geo-
tagged data, we need to first consider two questions. First, are
the geo-locations that we need available? And if so, are they of
acceptable quality? Second, what is the available granularity
of geo-locations (e.g., building, neighborhood/polygon, city,
country)? Concerning the first question, it seems that social
media sources are increasingly providing POI locations instead
of the exact location of the person who creates the post. For the
second question, researchers need to focus on an acceptable
level of granularity, i.e., avoiding fine-granularity geo-tagged
location like buildings coordinates. Therefore, research design
needs to consider the different possibilities of increasing the
quality of the available data, looking for new sources of data,
or re-adapting the downstream applications to be compatible
with what the data offers.

As mentioned earlier, more than 99% of tweets are not
geo-tagged, which means that most tweets, in their original
state, are not usable for geo-applications. On the other hand, it
means that there is a great opportunity to increase the amount
of available geo-tagged data if these tweets [78] could be
geo-tagged, as in the example in Fig. 3. Fig. 4 shows that
using a pre-trained basic NER algorithm [79], we are able
to identify “Location” entities in 6% of all non geo-tagged
tweets. Furthermore, we were able to identify “Organization”
and “Person” entities in  13.5% and 13.3% of tweets,
respectively, where many of “Organization” and “Person”
entities could be geo-encoded to a certain location (see Fig.
3).

V. GEO-INFORMATION EXTRACTION FROM SOCIAL MEDIA
IMAGES

To gain spatial knowledge from social media images, they
must have a geo-tag that allows a precise localization of where
the image was taken. Most social media platforms enable their
users to upload images and set a location to let others know
where their images were taken. A set of such localized images
can provide deep insights into the surrounding area where
they were taken, e.g., activities, landmarks, and land cover.
Extracting knowledge from this vast variety of images requires
a structured approach: Fig. 5 sketches a general pipeline, from
data acquisition to generating machine learning-driven models,
for extracting geo-spatial knowledge.

A. Social Media Image Pre-processing

While most social media platforms let users tag their photos
with a location, external access to this information is limited.
Furthermore, the accuracy of these geo-tags must be treated
with care, since manual tagging is error-prone and GPS sensors
have limited accuracy when signals are distorted [80]. If an






