Generating a Vessel Route Model from AIS Data Using the Fréchet Distance

Tom Gerson, Thoralf Noack

Department of Nautical Systems Institute of Communications and Navigation German Aerospace Center (DLR)

Knowledge for Tomorrow

• Goal: model common routes

- Goal: model common routes
- Traffic at sea is hard to describe

- Goal: model common routes
- Traffic at sea is hard to describe
- Automatic Identification System (AIS)

• Transform AIS reports to trajectories

- Transform AIS reports to trajectories
- Cluster into common routes

- Transform AIS reports to trajectories
- Cluster into common routes.
- Final model uses cluster representatives

- Transform AIS reports to trajectories
- Cluster into common routes
- Final model uses cluster representatives

- Transform AIS reports to trajectories
- Cluster into common routes
- Final model uses cluster representatives

Define model coverage

Outline

- Prerequisites
- 2 The AIS Data
- 3 Trajectory Generation
- 4 Trajectory Clustering
- 6 Results

Route

Definition (Route)

A route is the path a ship travels via waypoints to its planned destination.

Polygonal Curve

Fréchet Distance δ_F

Fréchet Distance δ_F

Advantages of δ_F

- Metric distance
- Factors in direction
- Works with irregular sampling & different length
- Sensitive to outliers

Fréchet Distance δ_F

Definition (Decision Problem)

Given: polygonal curves P and Q and some $\epsilon \geq 0$. **Decide,** whether $\delta_F(P,Q) \leq \epsilon$.

Outline

- Prerequisites
- 2 The AIS Data
- 3 Trajectory Generation
- Trajectory Clustering
- 5 Results

The AIS Data

Figure: A density plot of the received reports with and without a map background.

Outline

- Prerequisites
- 2 The AIS Data
- 3 Trajectory Generation
- Trajectory Clustering
- 5 Results

Trajectory Generation

Temporal Segmentation

- $\Delta_{t_{moving}}$: Maximum time between 2 reports
- 10 seconds $<\Delta_{t_{moving}}<?$
- Free variable $\Delta_{t_{moving}} \rightarrow$ 180 seconds

Trajectory Generation

Temporal Segmentation

- $\Delta_{t_{moving}}$: Maximum time between 2 reports
- 10 seconds $<\Delta_{t_{moving}}<?$
- Free variable $\Delta_{t_{moving}} \rightarrow$ 180 seconds

Redundant Observations and Outliers

- Remove updates too close
- $\Delta_{p_{minzone}} := 10$ meters
- Remove outliers

Trajectory Generation

Temporal Segmentation

- $\Delta_{t_{moving}}$: Maximum time between 2 reports
- 10 seconds $<\Delta_{t_{moving}}<?$
- Free variable $\Delta_{t_{moving}} \rightarrow$ 180 seconds

Redundant Observations and Outliers

- Remove updates too close
- $\Delta_{p_{minzone}} := 10 \text{ meters}$
- Remove outliers

Anchor points

- Assumption: Ships stay idle
- $\Delta_{t_{anchoring}} := 30 \text{ minutes}$

Trajectory Generation: Examples

Figure: A one-year trajectory and the segmentation results.

Outline

- Prerequisites
- 2 The AIS Data
- 3 Trajectory Generation
- 4 Trajectory Clustering
- 6 Results

Trajectory Clustering

- Find groups of similar trajectories
- P, Q similar, if $\delta_F(P, Q) \leq \epsilon$
- Free similarity threshold variable ϵ

Trajectory Clustering

- Find groups of similar trajectories
- P, Q similar, if $\delta_F(P, Q) \leq \epsilon$
- Free similarity threshold variable ϵ
- Groupsize $\leq \tau \rightarrow$ Representative (leader curve) of group added to model
- Free travel frequency variable au

Outline

- Prerequisites
- 2 The AIS Data
- 3 Trajectory Generation
- Trajectory Clustering
- **5** Results

Model

- 2018 Jan.-Dec. Dataset
- Training Different Values for ϵ, τ

Model Training

- 2018 Jan.-Dec. Dataset
- Different Values for ϵ , τ

• 6

▶ 500m, 1000m, 1500m

 Clustering Fréchet distance similarity threshold in meters (m)

Model Parameters

▶ 0,1,2,10

• 7

 Minimum amount of support trajectories for model trajectory

Definition (Model Coverage)

A trajectory is covered by a model, if it has a Fréchet distance below ϵ_M to at least one model trajectory, where ϵ_M is the distance threshold used to generate the model M.

Definition (Model Coverage)

A trajectory is covered by a model, if it has a Fréchet distance below ϵ_M to at least one model trajectory, where ϵ_M is the distance threshold used to generate the model M.

Self Percentage of training trajectories coverage covered by the model.

Definition (Model Coverage)

A trajectory is covered by a model, if it has a Fréchet distance below ϵ_M to at least one model trajectory, where ϵ_M is the distance threshold used to generate the model M.

- Self Percentage of training trajectories coverage covered by the model.
- Test Percentage of test trajectories covered by the model.

Results

		T	au		T	au					
			0	1	2	10		0	1	2	10
	500	100	100	48.4	39.4	19.8	40.4	35.9	22.6	18	6.3
ϵ (m)	1000	100	100	84.4	80.2	62.2	85.1	79.8	74	70.3	53.9
	1500	100	100	92.7	90.3	81	91.7	90.3	87.3	85.3	78.3

(a) Self coverage (%)

		T	τ					
			0	1	2	10		
	500	301	196	32	16	2		
ϵ (m)	1000	301	90	32	23	6.3		
	1500	301	51	21	16	6.1		

(a) Model size (MB)

(b) Test coverage (%)

T	au					
	0	1	2	10		
27.1	14.3	5.5	4.1	1.7		
45	12.7	9.3	8.5	5.4		
50	12.2	10.7	9.7	8.1		

(b) Test comparison time (s)

Results

		T		au		T		au			
			0	1	2	10		0	1	2	10
	500	100	100	48.4	39.4	19.8	40.4	35.9	22.6	18	6.3
ϵ (m)	1000	100	100	84.4	80.2	62.2	85.1	79.8	74	70.3	53.9
	1500	100	100	92.7	90.3	81	91.7	90.3	87.3	85.3	78.3

(a) Self coverage (%)

(b) Test coverage (%)

		T		au				
			0	1	2	10		
	500	301	196	32	16	2		
ϵ (m)	1000	301	90	32	23	6.3		
	1500	301	51	21	16	6.1		

(a) Model size (MB)

T		au						
	0	1	2	10				
27.1	14.3	5.5	4.1	1.7				
45	12.7	9.3	8.5	5.4				
50	12.2	10.7	9.7	8.1				

(b) Test comparison time (s)

Results

Figure: The final model trajectories at $\epsilon=1500$ meters.

Summary

- Series of algorithms to automatically generate a trajectory movement model from AIS position reports
- Fréchet distance as trajectory similarity metric

Summary

- Series of algorithms to automatically generate a trajectory movement model from AIS position reports
- Fréchet distance as trajectory similarity metric
- Tests under various model settings
- Best result: 90% traffic coverage, 84% space reduction, 75% comparison time reduction

Summary

- Series of algorithms to automatically generate a trajectory movement model from AIS position reports
- Fréchet distance as trajectory similarity metric
- Tests under various model settings
- Best result: 90% traffic coverage, 84% space reduction, 75% comparison time reduction
- Discovered importance of frequently travelled routes

