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Agenda

▪ Motivation

▪ System Design

– Preliminary Design

– Aviation Design Process and MBSE

– Aircraft Level Requirements

– Functional Analysis

– Refined System Architecture 

– Design Solution

▪ Conclusion
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Image adapted from K.S.G. Krishnan

Motivation

▪ Hybrid Laminar Flow Control (HLFC) sucks air from airfoil

– Reduction of drag

– Decreasing emissions and block fuel

▪ Technology improved through several research projects

▪ Major constraints:

– High cost

– Suction system too complex and heavy

– Space constraints on the wing’s leading edge

▪ Clean Sky 2 investigates Horizontal Tailplane (HTP) and wing

– Compatibility to industrial processes

– Enable an economic operation in airline environment

– Design of a certifiable overall solution

▪ Goal: Design of a safe and certifiable HLFC system for commercial use
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Preliminary Design

Handbook Methods

Aerodynamics
• Mass flow
• Pressure distribution

Structure
• Preliminary space 

estimations

Systems
• Various system 

architectures

Concept Evaluation
- Compressor

performance
- System weight and 

size estimate
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Preliminary Design

▪ Winning concept: Separate suction applied on each segment

– Seven compressors distributed along span, each driven by own inverter

▪ Open challenges:

– Transfer preliminary design to real components 

– Ensure system would meet certification process

– Maintain low system complexity, weight and cost

▪ Approach: Undergo design process utilizing Model-Based Systems Engineering (MBSE)



T
h
is

 d
o
c
u
m

e
n
t 
is

 t
h
e
 p

ro
p
e
rt

y
 o

f 
o
n
e
 o

r 
m

o
re

 P
a
rt

ie
s
 t
o
 t
h
e
 C

le
a
n
 S

k
y
 2

 L
P

A
 I

A
D

P
 c

o
n
s
o
rt

iu
m

 a
n
d
 s

h
a
ll
 n

o
t 
b
e
 d

is
tr

ib
u
te

d
 o

r 
re

p
ro

d
u
c
e
d
 w

it
h
o
u
t 
th

e
ir

 f
o
rm

a
l a

p
p
ro

v
a
l

Slide: 6

▪ Increasing use of MBSE for system design in aviation

▪ Several aspects already covered, though some points under investigation

▪ Traceable requirement derivation and validation currently largest benefit of MBSE

Aviation Design Process and MBSE

Already covered

Under investigation

Domain-specific tools

Source: SAE ARP4754A

Source: Taibi, D. et al..: Towards a Classification
Schema for Development Technologies: an Empirical
Study in the Avionic Domain (2015)
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▪ Several requirement documents initially created by different stakeholders

▪ Central reference requirement table created, tracing to original requirement implemented

▪ Basic requirements:
– Operation between FL330 and FL410 during cruise

– Fuel savings through HLFC shall not be considered for fuel planning

– Modern aviation concepts shall be followed (Integrated Modular Avionics, More Electric Aircraft)

Aircraft Level Requirements
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Functional Analysis

▪ Breakdown of functions to be performed by the system, either by tree structure or activity diagrams

▪ Input for safety analysis, namely Functional Hazard Analysis (FHA)

▪ Initial definition of generic interfaces is applied

Aircraft Level

System Level
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Safety Analyses

▪ Previously defined functions classified for their criticality down to system level in case of:

– Total loss, partial loss (either symmetric or asymmetric) or degradation of function

– Inadvertent or incorrect operation

– Unable to stop function

▪ Critical hazards investigated through Fault Tree Analysis (FTA) 

– Refinement of system architecture

– Safety requirement development and validation

▪ Main findings:

– Compressor malfunction must be identified by redundant sensors

– Communication with the control computer must be redundant

– Emergency shut-off must be possible

▪ Risk Analysis and Assessment Modeling Language (RAAML) provides first implementation of safety 
analyses
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Refined System Architecture

▪ Output from previous steps: 

– Generic and safe system architecture including interfaces as well as crucial redundancies

– Set of requirements down to item level, defined in tables

– Iterative process until actual design can be started 
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▪ Aircraft Level/Stakeholder Needs:

– “Applicable certification standards shall be met.”

– “The drag shall be reduced by means of suction.”

– “The system shall be compatible to a More Electric Aicraft.”

▪ Item Level:

– Wiring separation and design according to standard

– Equipment classification as per DO-160G

– Required component Mean Time Between Failure (MTBF)

– Compressor mass flow and pressure ratio requirements

– Use of an electric compressor supplied by 28 VDC and 270 VDC

▪ Requirements can be traced throughout the different levels

Refined System Architecture

HLFC System

Compressor
Control 

Computer
Sensors

Requirement refinement
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Refined System Architecture

▪ Design based on defined requirements

▪ Specific design challenges:

– Limited space in the wing’s leading edge

– Spatial conflict with other system (e.g. High Lift, Ice Protection)

– Avoid use of pipes

– Ensure easy access and replaceability of components

– No commercially available components for the compressor 

→ Required power density too high and no liquid cooling feasible 

270 VDC
28 VDC
AFDX (to Control Computer) 

Wing (7x per side)

Fuselage

Wing Box
Krüger Flap

Micro-Perforated
Titanium Skin

CFRP Structure

Pressure
Chamber

CCE – Compressor Control Electronic
AFDX – Avionics Full DupleX Switched Ethernet
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▪ Spatial conflict solved by dedicated areas for each system

▪ Multi-functional rib for as structure and suction element

– No piping required

– Easy access to components through maintenance flap

▪ Exchangeable titanium skin by fasteners

▪ Preliminary HLFC compressor designed by Safran

– Compressor, sensors and inverter as one component

– High efficiency at low mass and size

Design Solution
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Design Solution

▪ HLFC performance:

– Suction power at design point (FL360): 60 kW (ca. 120 kW electrical power consumption of compressor)

– Additional mass by HLFC compressor: 160 kg (14 compressors at 11.4 kg each)

– No additional fluid cooling required

– Power: 110 g/s at pressure ratio of 2.18

Source: Pohya, A.A.: Introducing variance-based global sensitivity 
analysis for uncertainty enabled operational and economic aircraft 
technology assessment (2022)
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Conclusion

▪ HLFC hold potential for reduction of block fuel and emissions

– Yet, applications too complex and expensive for profitable operations

– Tests rather focused on feasibility demonstration 

▪ Preliminary architecture was defined, though detailed design missing

▪ Common design approach in aviation according to ARP4754A was applied supported by MBSE

▪ First design of HLFC on a wing completed:
– Low weight increase and power off-take

– Simple suction system without pipes

– Components easily accessible and replaceable

– High MTBF expected

▪ Next steps:
– Develop and validate system simulation in MBSE model 

– Integrate overall solution in ground-based demonstrator 
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