Systematic Approach to Design an Active Hybrid Laminar Flow Control System

<u>Alexander Bismark</u>, Oliver Bertram German Aerospace Center (DLR), Institute of Flight Systems

Deutscher Luft- und Raumfahrtkongress 2022 Dresden, 27.09-29.09.2022

www.cleansky.eu

- Motivation
- System Design
 - Preliminary Design
 - Aviation Design Process and MBSE
 - Aircraft Level Requirements
 - Functional Analysis
 - Refined System Architecture
 - Design Solution
- Conclusion

Motivation

- Hybrid Laminar Flow Control (HLFC) sucks air from airfoil
 - Reduction of drag
 - Decreasing emissions and block fuel
- Technology improved through several research projects
- Major constraints:
 - High cost
 - Suction system too complex and heavy
 - Space constraints on the wing's leading edge
- Clean Sky 2 investigates Horizontal Tailplane (HTP) and wing
 - Compatibility to industrial processes
 - Enable an economic operation in airline environment
 - Design of a certifiable overall solution
- Goal: Design of a safe and certifiable HLFC system for commercial use

Image adapted from K.S.G. Krishnan

Preliminary Design

Preliminary Design

- Winning concept: Separate suction applied on each segment
 - Seven compressors distributed along span, each driven by own inverter
- Open challenges:
 - Transfer preliminary design to real components
 - Ensure system would meet certification process
 - Maintain low system complexity, weight and cost
- Approach: Undergo design process utilizing Model-Based Systems Engineering (MBSE)

Architectures	Criteria								
	Mass (kg)	s (kg) Power Off Takes – POT (kW)							
Concept 1 (Baseline)	190	110	Ø						
Concept 2	300 - 360 kg (modular)	100							
Concept 3A	280	106	X						
Concept 3B	280	106							
Concept 3C	240	102							
Concept 4	272	114							
Concept 5	270	108	Unknown						
Concept 6	310	108	Unknown						

Aviation Design Process and MBSE

- Increasing use of MBSE for system design in aviation
- Several aspects already covered, though some points under investigation
- Traceable requirement derivation and validation currently largest benefit of MBSE

lean

Aircraft Level Requirements

- Several requirement documents initially created by different stakeholders
- Central reference requirement table created, tracing to original requirement implemented
- Basic requirements:
 - Operation between FL330 and FL410 during cruise
 - Fuel savings through HLFC shall not be considered for fuel planning
 - Modern aviation concepts shall be followed (Integrated Modular Avionics, More Electric Aircraft)

Legend	Ē	-	📩	Airb	us C)pera	ation	S														
→ Trace	Airbus ECS		E LAM-001 LAN	E LAM-002 LAN	E LAM-003 LAN	E LAM-004 LAN	E LAM-005 LAN	E LAM-006 LAM	E LAM-007 LAM	E LAM-008 LAM	E LAM-009 LAM	E LAM-010 LAM	E LAM-011 LAM	E LAM-012 LAM	E LAM-013 LAM	E LAM-014 LAM	E LAM-015 LAM	E LAM-016 LAM	E LAM-018 LAM	E LAM-019 LAM	E LAM-020 LAM	
SYS.ITF Interfaces	7																					
🖻 🔳 SYS.MNT Maintainability																						
MNT.MC-1		1				\nearrow																
E MNT.MC-2	1																					
E MNT.MC-3	1	1			\nearrow																	
E MNT.MC-4		1						7														
- E MNT.MC-5	2	1		7																		
E MNT.MC-6	1																					
MNT.MC-7	1																					
- E MNT.MC-8		1															7					
MNT.MI-1		1					7															
E MNT.MI-2		1												7								
		_																				

Functional Analysis

- Breakdown of functions to be performed by the system, either by tree structure or activity diagrams
- Input for safety analysis, namely Functional Hazard Analysis (FHA)
- Initial definition of generic interfaces is applied

Safety Analyses

- Previously defined functions classified for their criticality down to system level in case of:
 - Total loss, partial loss (either symmetric or asymmetric) or degradation of function
 - Inadvertent or incorrect operation
 - Unable to stop function
- Critical hazards investigated through Fault Tree Analysis (FTA)
 - Refinement of system architecture
 - Safety requirement development and validation
- Main findings:
 - Compressor malfunction must be identified by redundant sensors
 - Communication with the control computer must be redundant
 - Emergency shut-off must be possible
- Risk Analysis and Assessment Modeling Language (RAAML) provides first implementation of safety analyses

Refined System Architecture

- Output from previous steps:
 - Generic and safe system architecture including interfaces as well as crucial redundancies
 - Set of requirements down to item level, defined in tables
 - Iterative process until actual design can be started

- Aircraft Level/Stakeholder Needs:
 - "Applicable certification standards shall be met."
 - "The drag shall be reduced by means of suction."
 - "The system shall be compatible to a More Electric Aicraft."
- Item Level:
 - Wiring separation and design according to standard
 - Equipment classification as per DO-160G
 - Required component Mean Time Between Failure (MTBF)
 - Compressor mass flow and pressure ratio requirements
 - Use of an electric compressor supplied by 28 VDC and 270 VDC
- Requirements can be traced throughout the different levels

#	Name	Text	Derived From		
1	SYS HLFC System Requirem				
2	🗆 🔲 SYS.ITF Interfaces				
3	ITF.ES-1	High voltage electric power (270 VDC) shall be supplied for the compressor(s).	ITF.ES Electrical Supply		
4	ITF.ES-2	28 VDC electric power shall be supplied for sensors and the outlet actuator.	ITF.ES Electrical Supply		
5	ITF.AC-2	Air data shall be provided to the controls resources via the data network (AFDX).	ITF.AC Avionics Concept		
6	ITF.AC-3	System data shall be provided to the controls resources via the data network (AFDX).	ITF.AC Avionics Concept		

Refined System Architecture

- Design based on defined requirements
- Specific design challenges:
 - Limited space in the wing's leading edge
 - Spatial conflict with other system (e.g. High Lift, Ice Protection)
 - Avoid use of pipes
 - Ensure easy access and replaceability of components
 - No commercially available components for the compressor
 - ightarrow Required power density too high and no liquid cooling feasible

CCE – Compressor Control Electronic AFDX – Avionics Full DupleX Switched Ethernet

Design Solution

- Spatial conflict solved by dedicated areas for each system
- Multi-functional rib for as structure and suction element
 - No piping required
 - Easy access to components through maintenance flap
- Exchangeable titanium skin by fasteners
- Preliminary HLFC compressor designed by Safran
 - Compressor, sensors and inverter as one component
 - High efficiency at low mass and size

Design Solution

- HLFC performance:
 - Suction power at design point (FL360): 60 kW (ca. 120 kW electrical power consumption of compressor)
 - Additional mass by HLFC compressor: 160 kg (14 compressors at 11.4 kg each)
 - No additional fluid cooling required
 - Power: 110 g/s at pressure ratio of 2.18

Source: Pohya, A.A.: Introducing variance-based global sensitivity analysis for uncertainty enabled operational and economic aircraft technology assessment (2022)

Conclusion

- HLFC hold potential for reduction of block fuel and emissions
 - Yet, applications too complex and expensive for profitable operations
 - Tests rather focused on feasibility demonstration
- Preliminary architecture was defined, though detailed design missing
- Common design approach in aviation according to ARP4754A was applied supported by MBSE
- First design of HLFC on a wing completed:
 - Low weight increase and power off-take
 - Simple suction system without pipes
 - Components easily accessible and replaceable
 - High MTBF expected
- Next steps:
 - Develop and validate system simulation in MBSE model
 - Integrate overall solution in ground-based demonstrator

Thank you for your attention!

Contact

Alexander Bismark

German Aerospace Center (DLR). Institute of Flight Systems

Lilienthalplatz 7, 38108 Braunschweig

Alexander.Bismark@dlr.de; +49 (0)531-2953425

Acknowledgement

This project has received funding from the Clean Sky 2 Joint Undertaking (JU) under grant agreement CS2-LPA-GAM-2020-2023-01. The JU receives support from the European Union's Horizon 2020 research and innovation programme and the Clean Sky 2 JU members other than the Union.

Disclaimer

The results, opinions, conclusions, etc. presented in this work are those of the author(s) only and do not necessarily represent the position of the JU; the JU is not responsible for any use made of the information contained herein.

