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ABSTRACT

Context. Stellar photometric variability and instrumental effects, such as cosmic ray hits, data discontinuities, data leaks, instrument
aging, and so on, lead to difficulties in the characterisation of exoplanets. Therefore, they can impact the accuracy and precision of the
modelling and the detectability of their transits, occultations, and phase curves.
Aims. This paper is aimed at improving the transit, occultation, and phase-curve modelling in the presence of strong stellar variability
and instrumental noise. To this end, we invoke the wavelet formulation.
Methods. We explored the capabilities of the software package Transit and Light Curve Modeller (TLCM). It is able to perform (1) a
joint radial-velocity and light-curve fit or (2) a light curve-only fit. It models the transit, occultation, beaming, ellipsoidal, and reflection
effects in the light curves (including the gravity-darkening effect). Here, the red noise, stellar variability, and instrumental effects were
modelled via wavelets. The wavelet fit was constrained by prescribing that the final white noise level must be equal to the average of
the uncertainties of the photometric data points. This helps to avoid overfitting and regularises the noise model. The approach was
tested by injecting synthetic light curves into short-cadence Kepler data and modelling them.
Results. The method performs well over a certain signal-to-noise (S/N) ratio. We provide limits in terms of the S/N for every studied
system parameter that is needed for accurate parameter retrieval. The wavelet approach is able to manage and remove the impact of
data discontinuities, cosmic ray events, and long-term stellar variability and instrument ageing, as well as short-term stellar variability,
pulsation, and flares (among others).
Conclusions. We conclude that precise light-curve models combined with the wavelet method and with well-prescribed constraints on
the white noise are able to retrieve the planetary system parameters, even in the presence of strong stellar variability and instrumental
noise, including data discontinuities.

Key words. methods: data analysis – planets and satellites: atmospheres – planets and satellites: interiors –
planets and satellites: general – techniques: photometric

1. Introduction

The light curve of an exoplanetary system may show transits,
occultations, and phase-curve variations. The transit technique
offers a unique opportunity to accurately determine the radii of
transiting exoplanets. By complementing the photometric tran-
sit observations with radial velocity data, we can establish the
planetary mass and mean density. The phase curves describe
the scattering and reflecting properties of an atmosphere at dif-
ferent orbital phase. Available phase curves and occultations
are considered to offer the best opportunity to study the three-
dimensional (3D) structure of planetary atmospheres (Winn
2010; Parmentier & Crossfield 2018).

In such analyses of the transits as well as the phase curves,
the following four problems may arise: (i) The stellar activ-
ity, stellar variability (including pulsation and granulation), and

instrumental noise cause difficulties in finding and restoring the
exact shape of the transit and phase curves (e.g. Oshagh 2018;
Sulis et al. 2020; Wong et al. 2020). The transit depth can be
also affected by stellar spots yielding the wrong planetary radii
(Oshagh et al. 2013; Szabó et al. 2021). If sudden and discon-
tinuous flux variations (jumps) occur in the flux measurements
due to a cosmic ray hit or other kind of instrumental effect, then
establishing the mean flux level of the host star is difficult. This
can lead to further changes in the transit depth because the nor-
malised flux levels are different before and after the jump (e.g.
Mislis et al. 2010). (ii) The beaming effect might be degener-
ate with the reflection effect and care is needed to separate them
from each other (Csizmadia 2020). (iii) The ellipsoidal effect
(when significant) must also be separated from the phase vari-
ation. The ellipsoidal and reflection effects have higher order
harmonics of the orbital frequency. If it is not modelled carefully,
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a badly modelled ellipsoidal effect can affect the shape of the
reflection curve, possibly leading to erroneous conclusions. We
refer to Sect. 2 for a detailed explanation of the beaming, reflec-
tion, and ellipsoidal effects. (iv) In addition, the exact shape of
the phase curve is not known without detailed a priori knowledge
of the atmosphere (composition, scattering, and reflecting prop-
erties, scale height, clouds, particle sizes of the aerosols, and so
on; see Garcia Munoz & Isaak 2015).

We carried out extensive tests on synthetic light curves to
overcome the problem identified by point (i), namely, the stel-
lar and instrumental noise sources were modelled by a wavelet
transform. We investigated how well the wavelet method can fil-
ter out the stellar variability and instrumental noise effects. We
show in the present study that the wavelet transform is a power-
ful tool to model flux variations of stellar and instrumental origin
which increase the accuracy and precision of parameter retrieval.
In a subsequent paper, we will apply our method to KELT-9b
(Csizmadia et al. 2023, hereafter Paper III). We also demonstrate
the benefits of the wavelet-based noise handling approach in the
precision and accuracy of the transit parameters via a direct com-
parison to a method where no noise treatment was implemented
in Kálmán et al. (2023, hereafter Paper II).

One way to solve problems (ii-iv) is to use prescribed forms
of the phase curve and to improve the description of the ellip-
soidal effect. In Paper III, we attempted to fit single cosinusoidal
and Lambertian, as well as Kane-Gelino- and Kopal-type phase
curves (Kopal 1959; Madhusudhan & Burrows 2012; Kane &
Gelino 2011; Luger et al. 2022) to the time-series data of
KELT-9b obtained by the TESS space telescope. These four
different phase functions yield reflection curves that exhibit sig-
nificantly different shapes. In Sect. 2, we detail the models of the
ellipsoidal, beaming, and reflection effects used for the detailed
analysis of the KELT-9b light curve in Paper III. We also update
the gravity-darkening model of TLCM in Sect. 3. The wavelet
model and its validation are presented in Sect. 4. The summary
of this study and our conclusions can be found in Sect. 5.

2. Modelling of out-of-transit variations

The out-of-transit variation is usually divided into components
of reflection and ellipsoidal effects. When it became observ-
able with space-based telescopes, this list was extended by the
beaming effect component (Zucker et al. 2007; Faigler & Mazeh
2011). Then the out-of-transit variation is defined as the sum
of the ellipsoidal, beaming, and reflection effects. Hereafter, we
describe our modelling of these effects. There are other kinds
of photometric variations that we consider part of our red noise
model (see Sect. 4), such as stellar pulsation, stellar activity, pos-
sible additional eclipses caused by another star, instrumental,
and other (non-white noise-like) effects. We note that we distin-
guish between the phase curve (only the reflection effect, without
the beaming and ellipsoidal effects) and the phase function that
contains the time-dependence of the phase curve.

2.1. Phase curve

We utilised the Transit and Light Curve Modeller (TLCM,
Csizmadia 2020) code, which expresses the phase-curve varia-
tion (Fph) according to the following form:

Fph

Fstar
=

 Iplanet

Istar

(
Rplanet

Rstar

)2

+ Ageometric

(
Rplanet

Rstar

Rstar

d

)2

Φ(α)

 . (1)

Here, Fph and Fstar are the reflected and stellar fluxes, respec-
tively. The phase-angle α in the phase function Φ is:

cos(α + ε) = cos(ω + v) sin ip, (2)

where ω is the argument of the periastron of the planetary orbit
and v is the true anomaly. The inclination of the planetary orbit
is denoted by ip. In Eq. (1), I is the surface specific intensity
in the passband of the observation, d is the mutual star-planet
actual distance, R refers to the radii, and Ageometric is the so-called
wavelength-dependent geometric albedo.

The angle ε takes into account that there can be a phase shift
in the phase curve due to atmospheric circulation, namely, the
brightest point of the planet can be shifted eastward or westward
relative to the substellar point1 (Parmentier & Crossfield 2018).
The observed values of ε vary widely: from –70 to +50 degrees
(Parmentier et al. 2016; Bell et al. 2021, and references therein).

For the star, the phase curve can be obtained in a similar way,
that is, by interchanging the indices appropriately and shifting
the phase curve by 180◦. This may be important for detached
eclipsing binary stars, which TLCM can also model, taking into
account all these effects for both stellar components (Csizmadia
2020).

2.2. Time dependence of the phase function

The exact form of the phase function Φ strongly depends on
wavelength, the chemical composition of the atmosphere, the
particle size in it, optical depth, cloud properties, and the single
scattering albedo (e.g. Garcia Munoz & Isaak 2015). Estab-
lishing the exact form of the phase function requires a priori
knowledge of the atmospheric properties, which is not always
available. In addition, it requires complex and lengthy numerical
calculations (Garcia Munoz & Isaak 2015). For the data anal-
ysis, analytically expressed approximations are often the best
approach. In this paper series, we try the following four phase
functions offered by TLCM on KELT-9b, as follows.

The first is a simple cosine function:

Φ(α) =
1
2

(1 − cosα). (3)

The second is Lambertian, as per:

Φ(α) =
sinα − α · cosα

π
. (4)

The third is taken from Kane & Gelino (2011), where the phase
angle must be measured in degrees:

Φ(α) = 10.0−0.4·(0.09(α/100◦))+2.39(α/100◦)2)−0.65(α/100◦)3). (5)

This formula is based on observations of Venus and Jupiter
and it takes into account that these planets have significant
backward-scattering due to their clouds (Hilton 1992). On eccen-
tric orbits, the atmospheric particle properties can change due to
the variable insolation. According to Kane & Gelino (2011), the
geometric albedo in Eq. (1) must be replaced by A′(d) for this
case, as:

A′(d) =
(
Ageometric + 0.2

ed−1 − e1−d

ed−1 + e1−d

)
. (6)

1 Positive values of ε correspond to an eastward, and negative values
to a westward shift.
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Of course, we may question how well this Kane-Gelino phase
function performs for hot Jupiters, where the response of the
atmosphere can be quite different than in the case of the cooler
Jupiter and the terrestrial Venusian atmosphere. We explore this
more fully in Paper III, where we apply this phase function to
KELT-9b.

The fourth and final phase function tried here is based on the
theory of binary star phase function, which accounts for umbral
and penumbral effects up to the fourth order in phase-angle. This
is taken from Kopal (1959):

Φ(α) = C0 +C1 cosα +C2 cos 2α +C4 cos 4α, (7)

where

C0 =
8

3π2
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R j

d

)2
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1
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R j

d

)3
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and the limb darkening correction is given for the reflection in a
linear form as:

K j = 1 −
12
5π

5 + (π − 5)u1

3 − u1
. (12)

According to Kopal (1959), C3 is zero. For the planet, a first-
order approximation consists of taking the linear limb darkening
coefficient, u1 = 0. When we calculate the planet’s reflection
effect, j = 2,where R2 = Rplanet; while if one calculates the star’s
reflection effect, j = 1, with R1 = Rstar. We note that in the case
of a detached binary system, these are the primary ( j = 1) and
the secondary stars ( j = 2, respectively.) This phase function
also takes back-warming effects into account, which are other-
wise negligible in star-planet systems but can be important for
detached or even closer binary star systems.

The planet-to-star radius ratio (Rplanet/Rstar) and the scaled
semi-major axis ratio (a/Rstar) are known from analysis of the
transit light curve, or (as in this study) they are fitted simultane-
ously with the phase curve parameters.

In eccentric orbits, the star–planet distance, d, varies as:

d =
a(1 − e2)
1 + cos v

, (13)

where e is the orbital eccentricity (not to be confused with the
Euler number in Eq. (6)).

2.3. Dayside and nightside emission

Clearly, the dayside and the nightside phase curves are varying
in the opposite phase and therefore we have

Φnightside(α) = 1 − Φdayside(α). (14)

The total planetary phase curve is the sum of the dayside and the
nightside emission at a certain phase:

Fph = Fnightside(1 − Φ(α)) + Fdayside

(a
d

)2
Φ(α). (15)

Comparing Eq. (15) to Eq. (1), we can relate the measured
quantities to the parameters we are searching for via:

Fnightside

Fstar
=

Iplanet

Istar

(
Rplanet

Rstar

)2

(16)

and

Fdayside

Fstar
=

Fnightside

Fstar
+ Ageometric

(
Rplanet

Rstar

Rstar

a

)2

. (17)

We note that Iplanet/Istar, Rplanet/Rstar, Ageometric and the reciprocal
of Rstar/a are fitting parameters in TLCM and they can be mea-
sured from the simultaneous fit to the transit, occultation, and
phase curves.

We note that we assumed the very same phase function for
the reflected light and for the dayside and nightside emission
in TLCM, which is, of course, just an approximation of reality.
However, we used the simplest possible approach.

2.4. Ellipsoidal effect

The flux variation caused by the ellipsoidal shapes of the compo-
nents is characterised following Kopal (1959; j = 1 for the star
and j = 2 for the planet):

Fellipsoidal,j

Fstar

= f j
M3− j

M j
Σ4

l=2w jl

(
1 + e cos v

1 − e2

)l (R j

a

)l+2

Pl

(
cos(v + ω) sin ip

)
,

(18)

with the gravity-darkening correction,

τ =
4 × 14388.0µm · K

λTeff, j
(
1.0 − e−14388.0/λ/Teff, j

) . (19)

Here, hc/kB = 14388µm · K, the effective wavelength of the
observation λ is given in microns, Teff is in kelvins, and accord-
ing to Kopal (1959):

w2 =
2(15 + u1) × (1 + k2)

5(6 − 2u1 − 3u2)
(
1 + τ4

(
5

1+k2
− 1

)) , (20)

w3 =
(35u1 + 48u2) × (1.0 + k3)

7(6 − 2u1 − 3u2)
(
1.0 + τ

10

(
7

1+k3
− 2.0

)) , (21)

w4 =
9
8

9(4u1 + 7u2 − 4) × (1.0 + k4)

8(6 − 2u1 − 3u2) ×
(
1.0 + τ

18

(
9.0

1.0+k4
− 3.0

)) . (22)

The limb-darkening coefficients u1,2 of Kopal (1959) are from
the transit fit. They are related to the limb darkening coefficients
ua and ub of Claret (2004) via u1 = ua + 2 · ub and u2 = −ub.
We note, of course, that the limb-darkening coefficients can be
different for the two objects in the system. The apsidal motion
constants, ki, are functions of stellar mass, metallicity, radius,
and evolutionary status. The ki values of the primary star or of
the host star are fixed at their theoretically calculated values from
Claret (2004). We note that the apsidal-motion constant is half of
the Love number (Csizmadia et al. 2019). In addition, in Eq. (18),
we have f1 = 1 for the star and f2 = Iplanet/Istar(Rplanet/Rstar)2

for the planet (or secondary star) in the respective photometric
passband (same as in Eq. (16)).
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2.5. Beaming effect

The beaming effect is characterised as

B j = ± f j

(
R j

a

)2

Ω j

(
Teff, j, log g j,Z j

) K j

c
(e cosω + cos(v(t) + ω)).

(23)

Here, B is the contribution of the beaming effect to the observed
flux in units of the stellar flux, Ω j is the spectral index derived
from theoretical stellar spectra of Munari et al. (2005), effec-
tive temperature, surface gravity, log g, and metallicity, Z. These
spectra were convolved with the response function of the applied
photometer (Csizmadia 2020). The star and the companion are
distinguished by the index j as before. Then, K and c are the
radial velocity amplitudes and the speed of the light, respec-
tively. The plus sign is valid for the companion and the minus
sign for the star. For further details on the reflection, ellipsoidal,
and beaming effects see Csizmadia (2020).

3. Gravity darkening
3.1. Gravity-darkening model

The previous version of TLCM was able to model the gravity-
darkening effect with some simplifications and, therefore, our
former treatment was valid only for planets where Rplanet/Rstar <
0.2. That approach was first presented as part of Lendl et al.
(2020). In a nutshell, that approach projected the intensity distri-
bution of a gravity-darkened star to the spherical stellar surface.
The transit event was calculated via the usual spherical star-
spherical planet assumption (Mandel & Agol 2002) and the light
loss was corrected for by modifying the light loss event with the
intensity of the gravity-darkened star behind the planetary centre
(Lendl et al. 2020).

In the newer version of TLCM, a simplification-free model is
used for modelling the gravity-darkening phenomenon. We used
a full Roche-geometry (Wilson 1979) to describe the exact shape
of the star and to calculate the viewing angles and derivatives of
the potential on the surface. The new approach is valid for any
planet-to-star radius ratio.

The effect of gravity darkening is taken into account in
the following way. The local surface effective temperature is
calculated from:

Tlocal = T∗

(
|∇V |)
|∇V |pole

)β
, (24)

where the local surface potential2 is with q = Mplanet/Mstar:

V =
n2a3

(1 + q)r
+

1
2
ω2

rotr
2 sin2 b. (25)

The polar temperature is not equal to the mean effective temper-
ature of the star in the case of rotating stars (cf. Eq. (8) of Wilson
1979). The mean motion is denoted by n and b is the stellar lati-
tude. The rotational angular velocity,ωrot, can be calculated from
the known stellar radius, the measured or fitted Vrot sin Istar, and
the fitted stellar inclination:

ωrot =
(V sin Istar)sp

Rstar sin Istar
. (26)

While Istar is a fitting parameter, the spectroscopically measured
(V sin Istar)sp value can be kept fixed during the fit or it can be

2 The stellar gravitational potential V = GMstar/Rstar was expressed by
more easily measurable quantities via Kepler’s third law.

used as a Gaussian prior. The stellar radius, Rstar, is taken from
isochrones at every iterational step in the following way: the
effective temperature and metallicity of the star are known from
spectroscopic measurements, while the mean stellar density can
be obtained from the scaled semi-major axis a/Rstar, which is
strongly related to the transit duration (Seager & Mallén-Ornelas
2003; Winn 2010; Csizmadia et al. 2015):

ρstar =
3π

GP2(1 + q)

(
a

Rstar

)3

. (27)

Then, the Rstar value is given by the corresponding isochrones
which are obtained from ρstar, Teff , and metallicity, as described
in Csizmadia (2020).

In this new approach, we calculate the total flux coming
from the unobscured visible stellar surface that is used to nor-
malise the light curve; then, we calculate numerically the light
loss behind the visible disc of the planet with the help of a 2D
Gauss-Legendre integration.

We fit two angles: the inclination of the stellar rotational
vector and its longitude of the node. These values, along with
the planet’s sky-projected position, define the local temperature
behind the planetary disc. Then this temperature is converted via
flux convolving the response function of TESS with the spectral
library of Munari et al. (2005). We note that such conversions are
also available for CoRoT, Kepler/K2, and CHEOPS in TLCM at
present.

We note that longitude of node of the stellar rotational axis
(denoted by Ωstar) is related to the angle between the projected
view of the stellar rotational axis and the planetary orbit’s angu-
lar momentum vector via cos λ = ± cos(Ωplanet − Ωstar). Since
we have set Ωplanet = 90◦ for sake of simplicity, we have λ =
90◦ − Ωstar. The modelling is invariant against this transforma-
tion because only the difference between the longitudes of the
nodes can be measured from photometry, so we can fix one of
them.3 Barnes et al. (2011) pointed out that photometry does not
distinguish between prograde or retrograde rotation of the host
star; therefore, there is a degeneracy in the modelling results.
According to their analysis, the following scenarios are also pos-
sible if we obtain Ωstar as a solution: 360◦ − Ωstar, 180◦ − Ωstar,
and 180◦ + Ωstar – as directly follows from the aforementioned
expression of cos λ.

3.2. Validation of the gravity-darkening approach

The gravity-darkening part of TLCM was tested on the first 18.2
days of the Kepler light curve of Kepler-13Ab. This sanity check
used the SAP-FLUX data of Kepler, which were cleaned by a
floating median box-car filter. We selected the data points for this
check, which have a phase of ±0.14 around the primary eclipse.
We obtained a total of 11,169 data points. We fit these data
with a cosine-like baseline variation and we applied the same
period, effective temperature (Teff = 8600 K), and contamination
value as in Szabó et al. (2020). We set V sin Istar = 76.96 km s−1

(Johnson et al. 2014). All other parameters were free. We com-
pare our results to those of Szabó et al. (2020) and Johnson et al.
(2014):

istar: Szabó et al. (2020) found, from Kepler and TESS exten-
sive photometry, the stellar rotational axis inclination to be
istar = 102.5◦ ± 0.8◦, while we have found istar = 103.2◦ ± 2.7◦
with the old, simplified approach (Lendl et al. 2020) and istar =
110.0◦ ± 2.1◦ with the present new, Roche-geometry approach.

3 These equations stem directly from the unnumbered equations in
Sect. 2.2 of Csizmadia (2020).
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λ: Johnson et al. (2014) found, from spectroscopic Rossiter-
Mclaughlin measurements, the projected stellar obliquity to be
λ = 58.6◦ ±2.0◦, while we have found λ = 55.9◦ ±13.8◦ with the
old, simplified approach (Lendl et al. 2020) and λ = 57.1◦ ± 9.1◦
with the present new, Roche-geometry approach.

It is worth noting that Szabó et al. (2020) fixed the value of λ
for their photometric fit at the value obtained by Johnson et al.
(2014), however, we did not. Those authors used all available
Kepler and TESS photometry, whereas we used only 18.2 days
of Kepler data for our check. These factors explain our larger
error bars. The agreement between us and others are therefore
reasonable; the TLCM approach is validated.

4. Wavelet-based method to remove stellar activity
signals and noise-reduction

We used wavelets to remove any signal induced by stellar activ-
ity or variability and to reduce the noise level stemming from
unknown instrumental effects. This method is also able to correct
for the jumps in the light curve. These jumps or data discon-
tinuities are sudden flux increases due to a cosmic ray impact
event or due to instrumental properties after rotating the satellite
to re-point the solar panels or stopping observations to down-
load data or telescope re-alignment, and so on. For instance,
such data download gaps can be seen in the middle of every
light curve in each sector of TESS. The mean data level shift
of the same target between sectors of TESS or quarters of Kepler
may be due to different satellite rotation, pointing, and contam-
ination levels; so, for our purposes, they can act as flux jumps
once again.

The model of TLCM we used is based on Csizmadia (2020).
It is a sum of the gravity-darkened transit + occultation + beam-
ing + reflection + ellipsoidal variations + wavelet-based red noise
model + radial velocity curve (if available). The parameters
describing the different effects are fitted simultaneously.

The wavelet model is based on the work of Carter & Winn
(2009). This needs only two parameters to characterise the red
(or pink) noise present in the light curve: the white noise level
(root mean square, rms), σw, and the red-noise factor, σr. We
note that the latter is not related to the rms of the red noise
component.

One difficulty in the application of the wavelets is that we
do not know (a priori) the values of σw and σr. When only tran-
sits and occultations are present and the out-of-transit light-curve
part is free of any beaming, reflection, or ellipsoidal variation,
then the model gives a normalised flux = 1.0 for all out-of-transit
and out-of-occultation points. Then the difference between the
model and the observations can be used to estimate the wavelet
parameters. However, we do not have any points where we know
(a priori) the model flux parameters if out-of-transit variations
are present, except the normalisation point at phase 0.25. This
one point is not enough to estimate σw and σr.

Therefore, we fit the wavelet parameters simultaneously with
the free system parameters and we apply a penalty function
(prior) in the fit. The penalty function was based on the require-
ment that the one-sigma scatter of the residuals to the fit must
be equal to the average uncertainties of the photometric points.
Mathematically, this meant the following: the residual curve is
defined as:

ri = Oi − Mi, (28)

where Oi and Mi are, respectively, the observed and model fluxes
for the ith observations. The residual of the ith data point is

Table 1. Parameter range for the injected transits, occultations, and
phase curves.

Parameter Range

a/Rstar 1...55
Rplanet/Rstar 0...0.6
b 0...1.2
u+ −1.05...1.95
u− −1.35...1.65
Contamination 0
f 0...2
P 0.48...1.48 (days)
Epoch 131.96...132.06 (Kepler BJD)
K 0...173 (km s−1)
q 0...0.81
ε −80◦...+80◦
A1 1.0
A2 0...3
Rstar/R⊙ 0.1...2.0

denoted by ri. Then we calculated the log-likelihood of the noise
model. To do so, we transferred the noise parameters, σw, σr,
and all ri values to the routines and algorithm of Carter & Winn
(2009). These routines return with the log-likelihood of the noise
model (the definition of this likelihood can be found in Carter &
Winn 2009). This log-likelihood is penalised as:

− log Lnew = − log L + 0.5 × Ndata ×

(
S (rRN)
M(σi)

− 1.0
)2

, (29)

where σi is the photometric uncertainty of the ith observation
and M(σi) is the mean of the individual photometric uncertain-
ties. Here, log Lnew is the log-likelihood to be minimised during
the optimisation process and used for the error estimation in the
MCMC analysis. Also, log L is the log-likelihood of the wavelet
fit to the residuals given by the algorithm of Carter & Winn
(2009); Ndata is the number of data points; and S (rRN) is the
standard deviation of the residuals after removing the red noise
component, RNi, which is also provided by the routines of Carter
& Winn (2009):

rRN,i = Oi − Mi − RNi. (30)

For the subsequent tests, the free parameters are the
scaled semi-major axis a/Rstar, the planet-to-star radius ratio,
Rplanet/Rstar, the impact parameter, b, the sum and the difference
of the linear and quadratic limb darkening coefficients, u+ =
ua + ub and u− = ua − ub, the mass ratio, q = Mplanet/Mstar, the
surface brightness ratio, J, the geometric albedo of the planet,
A2, the reflection shift parameter, ε, period, P, epoch, T0, and the
wavelet parameters, σw and σr. We assume a circular orbit and
thus we fix e = 0 for the tests. The radius of the star is assumed
to be known and it is used as a prior in the way described in
Csizmadia (2020).

This last approach was tested in the following way. We
took 310 ten-day long segments of 1 min (short cadence, SC)
light curves from the Kepler Q1 database. We convolved these
light curves with simulated systems, which exhibit all previously
mentioned effects: transit, occultation, beaming, ellipsoidal, and
reflection effects. The parameter range tested can be found in
Table 1 and the effects occurred in the light curves and success-
fully tested here are listed in Table 2. For all tests in this paper, we
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Table 2. Effects present in the light curves used for the tests and
successfully modelled (LC: light curve).

Effect Removal by wavelets

Stellar pulsation ✓
Spot modulation ✓
Ellipsoidal in an eclipsing binary ✓
Reflection effect in an eclipsing binary ✓
Eclipses in an eclipsing binary (a) ✓
Beaming effect in an eclipsing binary ✓
Long-term, continuous flux increase/decrease ✓
Discontinuities ✓
Flux-jumps ✓
Outlier removal ✓
Granulation noise on out-of-eclipse part of the LC ✓
Granulation noise in-transit part of the LC Partly

Notes. (a)The ellipsoidal/reflection/beaming effect of an eclipsing
binary over the transits and phase curve of a circumbinary planet was
removed successfully without removing the same of a transiting planet
(which usually have a different period than the eclipsing one).

selected random combinations of the input parameters from the
ranges below (or we kept their values fixed as noted in Table 1).
We note that more tests were done in the Rplanet/Rstar < 0.2 range
than over this limit. The transit impact parameter was always
checked to provide b < 1 + Rplanet/Rstar and if this was not ful-
filled (condition of having a transit for circular orbits), a new,
random b was selected until this condition holds. We assumed
circular orbits for all tests but this does not limit the results only
to non-eccentric orbits. We note the high range of K (RV ampli-
tude), which is due to some of the large mass ratios we included
in the tests. Of our test cases, 28% had mass ratios less than
0.005 and 50% of them had less than 0.03. We then modelled
these light curves in the above-mentioned way, with TLCM. We
plotted the difference between the simulated parameters and the
retrieved ones as a function of the signal-to-noise (S/N) ratio. For
the ellipsoidal effect (q) we used the following expression for the
S/N ratio:

S/N(q) =
q
(

Rstar
a

)3√
σ2

w + σ
2
r

×
√

N, (31)

where N is the number of points in the light curve. For other
phase-curve parameters (K, ε, A2), we used:

S/N(A) =
A2

(Rplanet

Rstar

)2 (
Rstar

a

)2√
σ2

w + σ
2
r

×
√

N, (32)

while for J we used:

S/N(J) =
J
(Rplanet

Rstar

)2√
σ2

w + σ
2
r

√√√
PRstar

πatexp

√(
1 +

Rplanet

Rstar

)2

− b2
√

Noccultations,

(33)

and for the transit parameters (a/Rstar, Rplanet/Rstar, b, limb
darkening coefficients), we used:

S/N =

(Rplanet

Rstar

)2
√

PRstar
πatexp

√
(1 + Rplanet/Rstar)2 − b2√
σ2

w + σ
2
r

√
Ntransit, (34)

where we took into account that transit and occultation duration
and, hence, the number of in-transit (in-occultation) points are
different for different impact parameters.

In Figs. 1–4, we show some examples of the tests: the
injected light curve, the convolved light curve which contains
all the red noise effect included in the Kepler light curves, the
comparison of the synthetic ‘observations’, and the modelling,
along with the red-noise-corrected light curve and the fits. We
give further examples of the performance of the simultaneous fit
of the transit + phase curve model + wavelet-based noise model
in Appendix A.

We also show the results of the tests in Figs. 5–14. From
these figures we can read the minimum S/N ratio needed to
get reasonable accuracy in the parameter retrieval. The accu-
racy hereafter is defined by dividing the difference between the
injected and retrieved values of the parameter by their respec-
tive injected values. For instance, PLATO defines the desired
accuracy in planet-to-star radius in this way (Rauer et al. 2014).
In some cases, the accuracy is defined differently from this, as
the absolute difference between injected and retrieved parameter
(b, i, ε, A2, J, and the limb-darkening coefficients). Such a dis-
tinction is necessary in the definition of accuracy because of the
presence of cyclic variables (angles).

Our conclusions are as follows. First, when stellar variability
or instrumental effects are present and they produce red noise
in the light curve, we can set the following signal-to-noise ratio
limits for the retrieval of the parameters with a wavelet + model
fit with the following reasonable accuracies:

– a/Rstar: even at S/N ∼ 1 we can get good results (better
than 6% relative error) and if S/N > 3, then we can get 2%
or better accuracy in the scaled semi-major axis ratio. This is
not surprising because we set a Gaussian prior on the stel-
lar radius that is strongly related to this parameter (via transit
duration). We can safely assume that in most of the cases,
we can obtain the stellar radius a priori from the SED fit
combined with the Gaia parallax, asteroseismology, or other
methods (Fig. 5).

– b: if S/N > 40, the impact parameter can be retrieved
with high accuracy. To determine the impact parameter, we need
a precisely known stellar radius (3% or better). If the stellar
radius is less precisely known (3–6%), then most of the solu-
tions lie in a good range, but some outliers appear (gray dots
in Fig. 6). However, if we translate the impact parameter to
inclination via cos i = b/(a/Rstar), we find that the inclination
values are always better than ±5◦ when S/N > 40 (Fig. 7).
This causes very little difference in the planetary mass when the
inclination value is used in the mass function to determine the
planetary mass.

– Rplanet/Rstar: the planet-to-star radius ratio is always better
determined than ±2% if the S/N > 50. Even in the range
of 10 < S/N < 50, Rplanet/Rstar is better than 5%. While
Morris et al. (2020) found that this precision cannot be reached
with PLATO, our work differs from theirs in two ways. Firstly,
we did not take the effect of granulation into account, but
Morris et al. (2020) did. We note that if the number of tran-
sits are small – in our example, it was made to vary between
6 and 24 – then the granulation is not averaged out but
it acts similarly to pseudo-red noise (Chiavassa et al. 2017).
Morris et al. (2020) fitted their simulated light curves using a
Gaussian process model and the residuals were still found to be
on the order of 100 ppm. We do not resolve here the question
of whether the wavelet method can model the effects of gran-
ulation, but it remains a possibility. Secondly, we considered
that the stellar radius is known to a precision of (at worst) 2%
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a) b)

c) d)

Fig. 1. Example of performance of the wavelet-based light-curve fit when jumps are present in the light curve. a: Kepler Q1 light curve segment
convolved with the injected model, used for the test (Kepler target: 001571088). b: injected model light curve. c: raw Kepler Q1 light curve segment
(black dots) and the model+wavelet fit. d: the red noise-corrected light curve (raw flux – wavelet based red noise, black dots) and the model fit (red
line).

a) b)

c) d)

Fig. 2. Example of performance of the wavelet-fit when stellar spot modulation is present in the light curve with the same layout as Fig. 1. Kepler
target: 002556755 with injected test light curve.

(as for PLATO’s primary sample, this will be provided SED
fitting or by asteroseismology) and we used this prior in
our fit, whereas Morris et al. (2020) did not. If the granula-
tion is negligible or being a white noise it can be averaged
out by many transit measurements. However, when we observe
only two or three transits, granulation can play a role in
radius ratio determination (Chiavassa et al. 2017). Then the
use of the stellar radius constraint from asteroseismology or an
SED fit results is needed, especially for small planets – as in
the case of an Earth-Sun radius ratio (k ∼ 0.009; Rauer et al.
2014, Fig. 8).

– q: When S/N(q) > 20 then the approach is able to recover
the mass ratio with a better accuracy than 10% with some
rare exceptions when the accuracy achieved is just 20%. This
is enough to validate a planet candidate and may even con-
firm the planetary mass measurement independently of RV
measurements (Fig. 9).

– A2: The geometric albedo of the planet can be retrieved
with at least ±0.05 accuracy if S/N(A) > 11 (Fig. 10). The
accuracy increases steeply with increasing S/N ratio.

– ε: To get the value of the reflection shift with this wavelet-
based filtering method with a ±4◦ accuracy, we need at least
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a) b)

c) d)

Fig. 3. Example of performance of the wavelet-fit when stellar pulsation-like stellar variability is present in the light curve with the same layout as
Fig. 1. Kepler target: 004044353 with injected test light curve.

a) b)

c) d)

Fig. 4. Example of performance of the wavelet-fit when stellar pulsation-like stellar variability is present in the light curve with the same layout as
Fig. 1. Kepler target: 010285114 with injected test light curve.

S/N(A) = 11, while to get it with better accuracy than ±2◦,
S/N(A) > 25 is required (Fig. 11).

– J: To recover the surface brightness ratio of the star and the
planet – which is possible from occultations – we need S/N(J) >
10 (Fig. 12).

– limb darkening: The limb-darkening coefficient com-
binations u+ and u− can be retrieved with ±0.01 accuracy
of S/N > 100, but in some rare cases, exceptions occur
(Figs. 13 and 14).
These results cannot be achieved if we do not have a good
prior on the stellar radius, which helps to constrain the transit
duration and thus the impact parameter. We note that wavelets
cannot replace the variable contamination effect. If the contami-
nation is variable from sector to sector of TESS or variable from
frame to frame as a consequence of the rotation of CHEOPS, for
instance, then this contamination must be corrected before the

fitting procedure. Otherwise, it must be modelled explicitly and
not subsumed into the wavelet model.

5. Summary and conclusions

Using numerical tests and synthetic planetary light curve mod-
els, we have shown that in an ideal case, where the right model
of physical reality is well known, wavelets are able to reconstruct
and to filter out stellar variability and instrumental noise effects,
such as jumps, cosmic ray hits, discontinuities, detector ageing,
and so on. In Sect. 4, we have provided limits in terms of signal-
to-noise ratio for the accuracy of the planet and system parameter
retrieval. The wavelet approach has worked well on a wide vari-
ety of possible noise sources and stellar variability phenomena
and it was able to manage even high-amplitude or rapid stellar
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Fig. 5. Result of the light curve test for the a/Rstar parameter. The ordi-
nate is the S/N-ratio defined by Eq. (34). The y-axis is the difference
between the simulated and the retrieved scaled semi-major axis in per-
centage. Black dots denote the solutions where the stellar radius value
was obtained to be with 3% accuracy relative to the injected stellar
radius, while gray points represent the cases where we had obtained
them with 3–6% accuracy.

Fig. 6. Result of the light curve test for the impact parameter b. The
ordinate is the S/N-ratio defined by Eq. (34). The y-axis is the differ-
ence between the simulated and the retrieved impact parameter. We also
plotted the 1σ error bar of the impact parameter for this figure. See the
meaning behind the black and gray points in Fig. 5.
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Fig. 7. Result of the light curve test for the inclination. The ordinate is
the S/N-ratio defined by Eq. (34). The y-axis is the difference between
the simulated and the retrieved inclination values. The vertical lines are
the 1σ error bars. See the meaning of the black and gray points in Fig. 5.

Fig. 8. Result of the light curve test for the planet-to-star radius ratio
parameter, k = Rplanet/Rstar. The ordinate is the S/N-ratio defined by
Eq. (34). The y-axis is the difference between the simulated and the
retrieved planet-to-star radius ratio values (k = Rplanet/Rstar). The red and
blue points are the small super-Earths and Earths with 0.015 < k < 0.03
(red) and 0.005 < k < 0.015 (blue). We note that these radius ratios cor-
respond to Super-Earth- and Earth-sized (red) as well as Neptune-sized
(blue) planets around a solar-sized star. We also note that the horizontal
dashed lines denote ±2% relative errors in the radius ratio. For bigger
companions, black dots denote the solutions where the stellar radius
value was obtained with a 3% accuracy relative to the injected stellar
radius, while gray points represent the cases where we had obtained
them with a 3–6% accuray.

Fig. 9. Result of the light curve test for the mass ratio parameter
q = Mplanet/Mstar. The ordinate is the S/N-ratio defined by Eq. (31). The
abcissa is the difference between the simulated and the retrieved planet-
to-star mass ratio values. The horizontal dashed lines denote ±10%
relative errors in the radius ratio.

variability and instrumental noise sources (see the examples in
Figs. 1–4).

To reach this high level of performance, we needed a penalty
function during the optimisation and uncertainty estimation
process. The penalty function decreased the likelihood of the
solution if the root mean square of the residuals of the system
+ wavelet fit deviated from the average uncertainty of the data
points. In other words, we prescribed the white noise level that
must be reached by the wavelet-based noise modelling. Without
such a precondition, there is a danger of overfitting, namely, we
fit everything with combinations of wavelets instead of extract-
ing the system information. This is further illustrated by the
example of stellar pulsational such as the variability of KELT-9
in Paper III: it was fully modelled with wavelets and the pulsation
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10 100 

S/N(A) 

Fig. 10. Result of the light curve test for the albedo. The ordinate is
the S/N-ratio defined by Eq. (32). The y-axis is the difference between
the simulated and the retrieved planetary albedo values. The horizon-
tal dashed lines denote ±0.05 absolute errors in albedo-determination.
Note: in this figure, the x-axis has a logarithmic scale for better visibil-
ity. See the meaning of the black and gray points in Fig. 5.

Fig. 11. Result of the light curve test for the reflection shift parame-
ter ε (cf. Eq. (2)). The ordinate is the S/N-ratio defined by Eq. (32). The
abscissa is the difference between the simulated and the retrieved reflec-
tion shift values. The horizontal dashed lines denote ±2◦ relative errors
in the radius ratio. Note: in this figure, the x-axis has a logarithmic scale
for better visibility. See the meaning behind the black and gray points in
Fig. 5.

was not visible in the red noise-corrected flux-residuals. This
example in Paper III sets a caveat: every unmodelled, unknown
effect will be incorporated into the wavelets and the information
is lost. Therefore, a good model must be selected for the fits when
we are working with wavelet-based noise models.

However, data overfitting can occur with other methods as
well, for example, with Gaussian processes. In addition, the
wavelet procedure of Carter & Winn (2009) used here needs only
two free parameters. For Gaussian processes, the number of free
parameters can be much larger and it can be that one selects an
inappropriate kernel for that noise modelling approach. While
the red noise factor of the wavelet-based noise model has no
physical meaning, sometimes the Gaussian process parameters
can be linked to some physical process.

We left the limb-darkening coefficients free in the test. We
can assume that applying a good prior on the limb darkening may
further increase the performance and we can get better results at
even lower S/N ratios. We refer to Csizmadia et al. (2011) for
details of how the impact parameter, scaled semi-major axis, and

Fig. 12. Result of the light curve test for the surface brightness ratio.
The ordinate is the S/N-ratio defined by Eq. (33). The abcissa is the
difference between the simulated and the retrieved planet-to-star surface
brightness ratio values. Note: in this figure, the x-axis has a logarithmic
scale for better visibility. See the meaning of the black and gray points
in Fig. 5.

Fig. 13. Result of the light curve test for the limb darkening coefficient
u+. The ordinate is the S/N-ratio defined by Eq. (34). The abscissa is the
difference between the simulated and the retrieved u+ limb darkening
coefficient combination values. See the meaning of the black and gray
points in Fig. 5.
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Fig. 14. Result of the light curve test for the limb darkening coefficient
u−. The ordinate is the S/N-ratio defined by Eq. (34). The abscissa is the
difference between the simulated and the retrieved u− limb darkening
coefficient combination values. See the meaning of the black and gray
points in Fig. 5.
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planet-to-star radius ratio are degenerate with limb-darkening
coefficients. However, the present knowledge of limb darkening
results in a preference for leaving the limb darkening coefficients
as free parameters in the fit (Csizmadia et al. 2013; Espinoza &
Jordán 2015; Agol et al. 2020).

We also validated the gravity-darkening treatment of TLCM
for planets by modelling the Kepler light curve of Kepler-13Ab,
a well-known object with asymmetric transits. We found results
that are fully compatible with the spin-orbit angle λ obtained by
Doppler-tomography results (Johnson et al. 2014) and with the
stellar inclination value of Szabó et al. (2020) within 2 degrees
(i.e. within the error bars).

The latest version of TLCM with the updated ellipsoidal
and reflection effects have been made available online4 upon
publication.
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Appendix A: Modelling test result examples

In Figures A.1-10, we give further examples of how the simulta-
neously fitted transit+phase curve model + wavelet-based model
performs on the Kepler Q1 light curves with injected transits.

Fig. A.1: Kepler target 004851239, 1 min cadence data. Here (and in
other Figures of the appendix) black dots are the SAP fluxes while the
red line is the simultaneous fit of the transit+phase curve model and the
noise model. Note: the transits and phase curve variations here and in
other test cases in this paper were not in the original Kepler data: they
were injected by us for test purposes.

Fig. A.2: Kepler target 004566474.

Fig. A.3: Kepler target 004464952.

Fig. A.4: Kepler target 002284679.

Fig. A.5: Kepler target 001719472.

Fig. A.6: Kepler target 012062443.

Fig. A.7: Kepler target 012020590.
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Fig. A.8: Kepler target 011873252.

Fig. A.9: Kepler target 011128126.

Fig. A.10: Kepler target 011127190.
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