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ABSTRACT
Acode couplinghas beenestablished for performingefficient fan tone shielding simulations of aerial
vehicleswithunconventional engine installations. In particular, the FastMultipole Boundary Element
Method (FM-BEM) which is formulated to solve a surface integral based on the Kirchhoff-Helmholtz
wave equation for large geometries is combined with a volume resolving Discontinuous Galerkin
(DG) method which is well suited for the compact region around a jet engine intake where strong
mean flow gradients are present. The Möhring-Howe acoustic analogy is utilised during the back-
ward data exchange process for derivation of acoustic velocities in presence of a mean flow. The
method can help to overcome a major difficulty related to computational complexity when solving
fan noise shilding and scattering problems for a complete aircraft geometry.
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1. Introduction

Noise reduction comes into play alongside electromag-
netic scattering and signature detection when dealing
with problems of unmanned aerial vehicles (UAV). A
multi-level fast multipole boundary element method
(subsequently referred to as FM-BEM) has been imple-
mented into the FMCAS code of DLR. The code can
be used both in thread parallel and MPI modes and
has an outstanding performance when it comes to solv-
ing large scale aircraft scattering and shielding problems
(Lummer et al., 2013). For example, a fast BEM applied
by Papamoschou (2010) and Papamoschou and May-
oral (2013) has proved to be valuable for computing jet
source acoustic diffraction. Recently, Hu et al. (2017),
Nark andHu (2021)made considerable progress in devel-
oping a time domain fast BEM method. Also, for prob-
lems requiring solutions in the frequency domain, fast
BEM can be very effective on its own, as demonstrated
in the work of Wolf and Lele (2011), providing that
sound sources are well defined and mean flow effects
are of minor importance. However, because of the afore-
mentioned limitations, the FM-BEM cannot be used for
solving installed fan noise problems. In that case, a vol-
ume resolving Discontinuous Galerkin (DG) method
may be well suited for computing the wave propagation
through a highly non-uniform flow with a wide range
of Mach numbers, typically found in the vicinity of a
turbofan engine intake. With that being said, applying
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volume resolving methods to a full-scale aircraft requires
substantial high-performance resources as of today. A
high level of detail and the requirement to solve for fre-
quencies up to several kHz result in a soaring effort,
making such approach unsuitable for design. The com-
putational effort can be reduced to some extent by using
an integration surface and applying the Ffowcs Williams
and Hawkings (1969) (FWH) integral method for deter-
mining the far-field pressure. For example, see the work
of Ren et al. (2022)where FEMwas combinedwith acous-
tic analogy for simulating a complicated centrifugal fan
problem. In this context, a coupled DG / FM-BEM can
be regarded as an extension of a deterministic integral
methodwhere it is easily possible to enclose all diffracting
airframe surfaces.

In the field of Computational Aero-Acoustic (CAA)
the use of coupled methods is not a novel concept. For
example, Casenave et al. (2014) applied the BEM to FEM
coupling to solve an acoustic cylinder flow problem. Liu
et al. (2021) investigated acoustic-structure interactions
in combustion chambers featuring rigid/elastic baffles
with the dual-reciprocity BEM coupled to FEM, where
the latter was used to model the structural dynamics of
elastic walls. In our work, the DG method is coupled
to FM-BEM where a fast multipole formulation is bet-
ter suited for solving engineering problems. The coupled
method should be able to efficiently overcome the prob-
lem of high computational complexity when there is a
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significant disparity between intake and free-stream flow.
In addition to that, for unconventional engine installa-
tions it can be challenging to isolate the near-field. For
that reason an efficient implementation of a two-way
strong coupling is presented which makes our approach
unique. The simulation begins in a DG sub-domain
where theAcoustic Perturbation Equations (APE) (Ewert
& Schröder, 2003) are solved on aRANSbackgroundflow
using a relatively small bounded domain. Thus, the global
boundary conditions can be enforced on the DG sub-
domain via feedback from the FM-BEM.Here, the fluctu-
ating enthalpy is used as a mediator between both worlds
which iswrapped up in theMöhring-Howe acoustic anal-
ogy (Heitmann et al., 2016). During the feedback phase,
the Fast Multipole Method (FMM) is utilised for efficient
data plotting on all degrees of freedom at permeable DG
boundaries. Our investigation of different engine place-
ments indicate that feedback can be important if strong
reflections are produced by some neighbouring aircraft
components. At the end of a full cycle, the updated near-
field will have the new source information available for
the FM-BEM. Then, a more accurate global solution can
be established via an iterative process where the two
methods complement each other by exploiting the full
potential in terms of performance and fidelity. This was
demonstrated at the 2021 Aviation Forum by applying
the coupledmethod for solving a full-scale flow-acoustics
problem (Proskurov et al., 2021).

2. Boundary element method for CAA

2.1. Boundary integral equation

The FM-BEM simulations are performed using DLR’s
FMCAS code (Fast Multipole Code for Acoustic Shield-
ing) (Lummer, 2019). This section introduces the reader
to the fundamental physical concept of the method.
In technical acoustics, sound waves can be regarded as
small disturbances generated by a turbulent flow and if
viscous effects are neglected, the relationship between
pressure and velocity can be described by the Euler
equation. In CAA, usually, the linearised form (LEE)
is applied. However, the LEE may also contain non-
acoustic disturbances, and thus, special vorticity-free ver-
sion called the Acoustic Perturbation Equations (APE)
can be used instead. The APE equations were derived by
Ewert and Schröder (2003) to eliminate the problem of
unbounded growth of hydrodynamic instabilities and in
contrast to the LEE rely on the isentropic assumption.
This is generally valid for computing the acoustic wave
propagation both at the near- and far-field. For the FM-
BEM, the APE equations have been reduced to the clas-
sical Helmholtz equation via the Taylor transformation

(Taylor, 1978). Assuming theMach number is small com-
pared to 1, a divergence-free mean flow implies ∇ · v0 =
∇2�0 = 0 where v0 = ∇�0 and v′ = ∇φ′ are the defi-
nitions of a mean and acoustic potential. Using the above
quantities on the L.H.S. of Equation (1), namely the
convective part of the APE-4 equations,

∂p′

∂t
+ c20∇ ·

(
ρ0v′ + v0

p′

c20

)
= 0

∂v′

∂t
+ ∇

(
v0 · v′ + p′

ρ0

)
= 0 (1)

as well as applying a simplified1 convection operator
Dt ≡ ∂

∂t + ∇�0 · ∇ and substituting for pressure, yields
the convective wave equation for the velocity potential:

D2
t φ

′ − c20∇2φ′ = 0 (2)

In the next step, Equation (2) is divided throughout by c20
and expanded into the governing acoustics equation for
steady isentropic potential flow at low Mach number,(

1
c20

∂2

∂t2
+ 2

M
c0

∇� · ∇ ∂

∂t
− ∇2

)
φ′ = S′ (3)

where c0 is the speed of sound at infinity, t the time,
M ≡ v∞

c0 is the Mach number at infinity, � ≡ �0
v∞ is

the mean potential divided by the speed of the uni-
form stream at infinity, (�0 ≡ c0M�) and φ′ is the
acoustic velocity potential which is subject to the added
source S′. In the derivation of Equation (3), the term
(∇�0 · ∇)2φ′ has been omitted due to an assumption
of a slowly varying mean gradient (on acoustic scale)
which is applied together with the Mach number restric-
tion. Following the transformation of Taylor (1978), the
ansatz function for the acoustic potential reads:φ′(x, t) =
ψ̂ ′(x,ω)eiωteiκM�(x) where ψ̂ ′ is the Taylor transformed
acoustic velocity potential, κ = ω

c0 is the wavenumber
and i − the imaginary unit. The source term becomes
S′(x, t) = Ŝ′(x,ω)eiωt . The acoustic sources must sat-
isfy a causality condition which ensures the behaviour
of an outgoing wave at infinity. Substituting these into
Equation (3) results in the Taylor transformed convected
wave equation,(

κ2 + 2iκM∇� · ∇ + ∇2) ψ̂ ′ (x,ω)T (x,ω)
= −Ŝ′ (x,ω) (4)

where T (x,ω) ≡ eiκM�1(x) stands for the Taylor phase
factor and x ≡ (x, y, z) are the space coordinates. The
following transformation rules apply:

∇ = ∇x − iκM∇�
∇2 = ∇2

x − 2iκM∇� · ∇x + M2|∇�|2κ2
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∇x =
(
∂

∂x
,
∂

∂y
,
∂

∂z

)
; ∇2

x =
(
∂2

∂x2
,
∂2

∂y2
,
∂2

∂z2

)
(5)

In the second equation of Equation (5), the last term is
dropped by assumption, |∇�|2 = 0. Then, by using the
properties of Equations (5) in (4) and dropping O(M)2
terms once again, we arrive at the Helmholtz equation
for the Taylor transformed acoustic velocity potential
ψ̂ ′(x,ω),

(κ2 + ∇2)ψ̂ ′(x,ω) = −Ŝ′(x,ω)T −1(x,ω) x ∈ 	+
(6)

where 	+ is the exterior CAA domain. Consider a free
field Green’s function, G(x, y) = e−iκr

4πr where r2 = (x −
y)2 denotes the separation distance between two points in
space (Agarwal&Morris, 2006). TheHelmholtz equation
for the Green’s function is (κ2 + ∇2

x )G(x, y) = −δ(x −
y). The boundary integral equation can be obtained fol-
lowing the standard procedure (Crighton et al., 1992).

ξ(x)ψ̂ ′(x,ω) = ψ̂ ′
V(x,ω)+

∫
∂	

[
ψ̂ ′(y,ω)

∂G(x, y)
∂ny

+ G(x, y)
∂ψ̂ ′(y,ω)
∂ny

]
d	 (7)

In Equation (7), ξ (x) is a free term coefficient which
depends on the location of point x ({0} outside the
domain, {1/2} on a surface or {1} anywhere in a vol-
ume inside the domain) and ψ̂ ′

V is the incident poten-
tial term which accounts for the source. In a classical
BEM approach, the surface velocity potential ψ̂ ′(y,ω) is
derived from an incident source which is present some-
where in the volume. In addition to that, it is possible to
directly prescribe ψ̂ ′ and ∂ψ̂ ′

∂n on some part of a scattering
body, denoted as d	s (e.g. via interpolation from DG).
Then, d	s can be treated as a source surface which can
entirely substitute the necessity of having the ψ̂ ′

V term.
Hence, ψ̂ ′(x,ω) can be obtained from a partially known
surface solution. Also, at this stage it is convenient to
relate the gradient on the surface ∂ψ̂ ′(y,ω)

∂ny to ψ̂ ′(y,ω) by
introducing the proportionality function Y(y),

∂ψ̂ ′(y,ω)
∂ny

= Y(y)ψ̂ ′(y,ω) (8)

The specific wall admittance can be related to a complex
reflection factor which is the amplitude ratio between
reflected and incident waves. The proportionality func-
tion, Y , is zero at solid walls whereas anywhere in free
space it will be a complex number. Using the above prop-
erty we may apply the differential operator Dy ≡ ∂

∂ny −

Y(y) to Equation (7) which then yields for a point x on
the boundary:

1
2
ψ̂ ′(x,ω)−

∫
∂	

ψ̂ ′(y,ω)DyG(x, y) d	

= ψ̂ ′
V(x,ω)+

∫
∂	s

ψ̂ ′
s(y,ω)DyG(x, y) d	s,

x ∈ ∂	 (9)

Notice that in Equation (9) the R.H.S. is comprised of
two types of sources, a volume source followed by a
surface source distributed over a surface d	s, with the lat-
ter not following directly from Equation (7) but derived
analogously to the L.H.S. surface integral. In theory,
Equation (9) is the governing BEM equation which can
be discretised and solved. However, for most exterior
boundary value problems the solution of Equation (9) is
not unique if the wavenumber κ is an eigenvalue of the
inner problem of the body with surface ∂	. One possible
solution to overcome the uniqueness problem is to con-
sider the Burton-Miller approach (Burton&Miller, 1971)
where a linear combination of Equation (9) and its nor-
mal derivative w.r.t. x is used. This is equivalent to apply-
ing a simple operator to the above equation, Bx = 1 +
α ∂
∂nx where a common choice for a non-zero coupling

constant, α ≈ i/κ .

1
2
Bxψ̂

′(x,ω)− Bx

∫
∂	

ψ̂ ′(y,ω)DyG(x, y) d	

= Bxψ̂
′
V(x,ω)+ Bx

∫
∂	s

ψ̂ ′
s(y,ω)DyG(x, y) d	s

x ∈ ∂	 (10)

2.2. Discretisation

The boundary integral equation, Equation (10), has to be
reduced to a system of linear equations for the surface
values ψ̂ ′(x,ω) in order to be solvable numerically. First,
a surface is discretised into N triangles:

∂	 =
N−1⋃
j=0

∂	j x ∈ ∂	 (11)

Second, while solving for oneω at a time, a constant value
ψj can be assumed on each element. This allows taking it
outside of the boundary integral in Equation (10) sim-
plifying the summation. Then, using the quadrature for-
mula with collocation points yjm and integration weights
Wm

j on ∂	j, the summation operator is defined as
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follows:

K∂	j(x) ≈
∑
m

Wm
j DyG(x, yjm) (12)

The system of linear equations for ψj reads:

Cxiψi − Bxi

N−1∑
j=0

ψjK∂	j(xi)

= BxiψVi + Bxi

Ns−1∑
m=0

ψsmK∂	sm(xi),

i = 0, 1, . . . ,N − 1 (13)

where Cx ≡ 1/2[1 + αY(x)] uses the properties of wall
admittance combined with the Burton-Miller operator.
The above system is solved with the FMM procedure
using the plane wave expansion for the free field Green’s
function in Equation (12). The far-field signature is
related to the near-field signature via a function which
is known as the transfer function (Lummer, 2019).

2.3. Implementation of the FMM

The FM-BEM represents a fast summation method which
is applied to solve a linear system in Equation (13) reduc-
ing the number ofmatrix-vector product operations from
O(N2) which is equivalent to solving an ‘N-body prob-
lem’ to O(N3/2) for a single-level FMM and eventually
to O(N logN) for a multi-level FMM, where N denotes
the number of surface elements. For the FMM imple-
mentation, a domain has to be subdivided into a set of
cubes. If the solution is to be determined for any chosen
cube the basic idea is to perform a matrix-vector prod-
uct with all its neighbours and use a suitable far-field
approximation for the remaining cubes. In doing so, the
computational complexity can be reduced from O(N2)

toO(N3/2)where the FMMuses transfer of the signature
functions on cubes of equal size.

For the multi-level FMM (MLFMM) the scattering
geometry is placed inside large cubes which are recur-
sively sub-divided into child cubes in the form of an
octree. The far-field signatures are moved up the octree
from the child cubes to the centre of the parent cube.
The accumulated information has to be carefully inter-
polated onto the collocation points of the parent cube
(Orszag, 1974). The near-field signatures are transported
in the opposite direction, being passed down to the child
cubes from the top level. This results in a very efficient
algorithm ≈ O(N logN). (See Figure 1)

Many details and methodologies have to be taken into
account for an efficient numerical implementation of the
MLFMM which cannot be covered in this paper. Since

Figure 1. Time matrix vector multiplication, showing the FMM
implemented in FMCAS.

the FMCAS code is almost a standard implementation
it is possible to refer to the literature (Sylvand, 2003;
Wolf & Lele, 2009, 2010). In our version of the MLFMM
the iterative solvers from the Portable Extensible Toolkit
for Scientific Computation (PETSc) library are used for
improved performance and code optimisation. In par-
ticular, the GMRES solver was preferred for its supe-
rior convergence property that was employed together
with the Generalised Additive Schwarz Method (GASM)
(Goossens et al., 1996) to precondition the system of
linear equations on a triangulated grid.

3. Discontinuous Galerkin method

The following section outlines general properties of the
DISCO++ DG code (Mößner et al., 2018), mainly
focussing on the features relevant to DG / FM-BEM cou-
pling. Fundamentally, DG is a high-order method used
for solving partial differential equations on unstructured
meshes. The DGmethod used in this work, which solves
the APE system (Ewert & Schröder, 2003) in a steady
nonuniform mean flow, has been converted into the fre-
quency domain to cope with the frequency domain for-
mulation of the FM-BEM. The additional term in the
governing Equation (14) that includes iω factor is a result
of time to frequency space conversion where a conven-
tion f̂ = ∫ ∞

−∞ f (t)e−iωt dt is used.

∂Aq̂
∂x

+ ∂Bq̂
∂y

+ ∂Cq̂
∂z

+ iωq̂ = Ŝ (14)

In Equation (14), q̂ = {p̂ û v̂ ŵ}T is a complex vari-
able and A, B and C are flux matrices. Multiplication
of the APE system with a test function, integration over
volume and application of the Gauss theorem yields a
weak formulation of the APE equations as in the stan-
dard DG approach. A quadrature-free implementation
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is achieved via linear mapping of volumes onto tetra-
hedral cells. There are ten degrees of freedom per face
(four nodes on each edge and one face-central) which
make up a total of 20 collocation points per tetrahe-
dral cell. This allows for using third-degree polynomials
with nodal shape functions (Mößner et al., 2018). In the
current implementation, the method is used without p-
adaptivity where a desired frequency resolution governs
the refinement and coarsening of the mesh. Since the fre-
quency solver only deals with a single frequency at a time,
such compromise is well justified, also, improving the
usability of the DG method while expanding its range to
new research problems, solution advancing schemes and
equations. The coupling concept presented in this paper,
once implemented, applies to DG methods of arbitrary
order of accuracy in space.

After discretising the governing equation with the DG
method, the linear system of equations is solved with
a pseudo-time marching method. Integrating with the
4th order Runge-Kutta scheme (RK4) robustly solved all
cases tried up to date. As amatter of fact, the timemarch-
ing accuracy is irrelevant for frequency solutions where
stability and convergence are the decisive factors. There-
fore, the solution path followed bymeans of either explicit
or implicit schemes will not affect the quality of the final
result providing the same convergence criteria have been
reached.

3.1. Boundary conditions

The DISCO++ code features several flux reconstruc-
tion schemes which can be used for determining the
DG solution between unstructured elements. The default
choice for the solution of APE equations is to compute
the upwind flux via characteristic splitting. First, the left
and right Eigenvector matrices are defined in the rotated
local coordinate system such that the normal vector n̂
points from left to right. Second, depending on the nor-
mal velocity the correct set of matrices is used for deter-
mining the global solution between elements. For a one-
dimensional advection problem this approach is always
exact as discussed in Godunov (1959) with relation to
fluid dynamics equations. The same quality should hold
for a 3D simulation as long as the direction vector can
be precisely determined for all element faces. Concep-
tually, the DG method allows for discontinuities across
the faces but for most subsonic CAA problems the solu-
tion should remain continuous. However, such feature is
desirable for the coupled method since solution jumps
may appear when receiving information from another
solver. In case of strong wave reflections and scattering,
the FMCAS solution is expected to be out of agreement
with the near-field at least for the first update.

Every coupled simulation begins in a DG sub-domain
with the following acoustic boundary conditions:

(1) Full-slip condition is applied at solid walls which is
deemed to be appropriate for most CAA applica-
tions. The wall boundary condition could be pre-
scribed directly on selected cell faces by introducing
a specialised treatment where the normal velocity
component is removed from fluctuations. Our prac-
tice showed that such treatment is stable only for a
very mildly compressible mean flow. For improved
stability, the face flux can be calculated using a ghost
state (Mengaldo et al., 2014).

V̂g = V̂ in − 2
(
V̂ in · n̂

)
n̂ (15)

where V̂g = {ûg v̂g ŵg}T and V̂ in = {ûin v̂in ŵin}T
are fluctuating velocity vectors on the ghost and
inner side of the same degree of freedom respec-
tively, and p̂g = p̂in which completes the slip wall
definition for all four variables contained in q̂. The
boundary flux is calculated via the characteristic
decomposition such as H̃I

i = H̃I
i (q̂in, q̂g) at every

high order point on a boundary face.
(2) The standard radiation boundary conditions are

prescribed to outflow boundaries, and likewise the
ghost cell method is applied to boundary faces such
that the information can be received from the FM-
BEM by updating the incoming flux on the ghost
side. The forward coupling, DG to FM-BEM, is per-
formed via a permeable surface placed in the region
of potential flow. (See Figure 2) The surface is trian-
gulated to meet the requirements of the FM-BEM.
Then, the DG solution interpolated to the radiation
surface becomes part of the BEM problem which
now includes the entire scattering geometry. Thus,
the FM-BEM problem can be solved for the remain-
ing unknowns based on the partly given surface
solution.

Unlike with most fine-scale turbulence resolving
methods where the location of an integration surface
affects the quality of CAA results, e.g. due to excessive
numerical dissipation, such limitation does not apply to
the wave propagation computed by DG. In general, one
is free to set the appropriate scope as long as the cou-
pling surface is in a potential region. Particular attention
is given to communication between CAA regions since
the ability to accurately exchange data is the key feature
of coupling. The information between DG and FM-BEM
can be exchanged via the fluctuating enthalpy using the
Möhring-Howe acoustic analogy (Heitmann et al., 2016).
Alternatively, one may choose to reformulate complex
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Figure 2. Sketch of DG / FM-BEM coupling mechanism.

pressure and velocity values in terms of the acoustic
potential based on properties of the wave equation. In the
Möhring-Howe approach, the main variable of the per-
turbation system is the fluctuating enthalpy, given for an
ideal gas:

B̂′ = γ

γ − 1
1
ρ0

(
p̂′ − c20

γ
ρ̂′

)
+ v0 · v̂′ (16)

In an isentropic region ρ′ = p′/c20, substituting into the
above equation yields,

B̂′ = 1
ρ0

p̂′ + v0 · v̂′ (17)

where the acoustic pressure and velocity computed in a
mean flow are readily available from the DG simulation.
For an irrotational flow region, the acoustic velocity can
be related to the gradient of the fluctuating enthalpy,

v̂′ ≡ ∇φ̂′ = −∇B̂′

iω
(18)

and upon proper gauge the above relationship infers:

B̂′ (x,ω) = −iωφ̂′ (x,ω) (19)

As discussed in Section 2.1, the Taylor phase factor is
applied to the potential in the framework of the Tay-
lor transformation, φ̂′ = T ψ̂ ′. Next, the Taylor trans-
formed acoustic potential can be derived from Equa-
tions (17)–(19) in terms of the DG variables on the
coupling surface (indicated by subscript s),

ψ̂ ′
s = i

ω

[
p̂′
s
ρ0

+ v0 · v′
s

]
e−iκM�(x) (20)

Also, the normal gradient ∂φ̂′
s/∂n is required. The follow-

ing expression can be deduced at the coupling surface:

∂φ̂′
s

∂n
≡ v̂′

s · n = T ∂ψ̂
′
s

∂n
+ ∂T
∂n
ψ̂ ′
s (21)

recalling that T = eiκM�0(x)/v∞ = e−iκM�(x), it follows
that ∂T

∂n ψ̂
′
s = −B̂′

s(M∇� · n)/c0. Then using the proper-
ties of Equations (18) and (19) in Equation (21) and sub-
stituting for the fluctuating enthalpy using Equation (17)
one can obtain the surface normal derivative of the Tay-
lor transformed acoustic potential in terms of the DG
variables on the coupling surface up to linear order in M,

∂ψ̂ ′
s

∂n
=

(
v̂′
s · n + p̂′

s
c20ρ0

v0 · n
)
e−iκM�(x) (22)

By examining Equations (20) and (22) it is possible to
see how information is exchanged by using theMöhring-
Howe acoustic analogy. On one side the DG method
operates with p̂′ and v̂′ variables and on the other side the
FM-BEM uses the Taylor transformed acoustic poten-
tial which is derived from the fluctuating enthalpy for a
surface source.

The feedback information arriving to the DG bound-
ary ghost points must contain a full velocity matrix in
addition to pressure to comply with the APE system.
Since velocity vectors cannot be supplied directly from
the FM-BEM solution, they have to be extracted from the
gradient of fluctuating enthalpy, refer to Equation (18).
The gradient is evaluated as part of the FM-BEM solu-
tion. At the same time, the pressure is evaluated bymeans
of Equation (17) using the v̂′ term that has just been
derived, and thus, the mean flow term in Equation (17)
can be also accounted for in the DG system.

It is important to recognise that incoming character-
istics may significantly alter the DG solution and when
convergence within the source region is reached for the
second time, data exchange takes place once again. The
iterative process repeats until the residual is sufficiently
small. From experience, only one or two updates are
required to arrive at an established solution which also
accounts for the source correction.

In summary, one iteration cycle of the two-way data
exchange depicted in Figure 2 can be described as follows.

DG FM-BEM:

(1) Acoustic pressure and velocity data (p̂′, v̂′) are inter-
polated from a volume DG grid onto a coupling
surface which consists of elements compatible with
the FMCAS (FM-BEM) code.

(2) The acoustic variables on the coupling surface are
cast into the Taylor transformed acoustic poten-
tial ψ̂ ′

s and its gradient ∂ψ̂ ′
s/∂n by means of Equa-

tions (20) and (22), respectively.
(3) The coupling surface acts as a surface source in the

FM-BEM where the FM-BEM equations are solved
for a new update of ψ̂ ′ on all surfaces
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FM-BEM→DG:

(1) From the given FM-BEM solution for ψ̂ ′, the FMM
plotting function (evaluation of volume data from
the surface solution) is applied for rapid calcula-
tion of the potential φ̂′ and its gradient ∇φ̂′ ≡ v̂′
at the given DG outflow boundary points where
Equations (18) and (19) are utilised going via the
fluctuating enthalpy.

(2) The fluctuating pressure is computed from
Equation (17): p̂′ = ρ0B̂′ − ρ0v0 · v̂′.

(3) Finally, (p̂′, v̂′) data are used in the APE equa-
tions to prescribe incoming acoustic wavemodes via
the characteristic far-field boundary condition, and
thus, resuming a volume resolving DG step.

3.2. Acoustic sources in DG

Acoustic sources can be defined on a surface or in a vol-
ume depending on the source type. For concept valida-
tion, amonopole source is placed in front of a rectangular
screen. The source is enclosed by a box meshed with
tetrahedra. Overall, the DG domain has five radiation
faces and one solid boundary (on the face adjacent to the
screen). Constant mean flow ofMa 0.2 is prescribed par-
allel to the solid boundary. Figure 3 depicts the acoustic
potential evaluated on the BEM surface. The rectangular
screen of finite thickness has a solid wall boundary con-
dition whereas the protruded part is a permeable source
surface which can be referred to as the DG / FM-BEM
coupling surface. Both the screen and radiation parts of
the BEM surface feature an opening but together form a
commonwatertight surface. Any reflected acoustic waves
coming from the screen do not see the source surface as
an obstacle and the idea is to prescribe accurate incoming
characteristics to the restricted DG domain.

Notice that at first, the DG solution cannot account
for acoustic shielding effects on its own since there is
no information about the scattering body. The FM-BEM
solution, on the other hand, can be used to predict
the acoustic potential on the solid rectangular screen
of finite thickness, subsequently establishing the global
solution. For evaluating the surface integral in Equa-
tions (9) and (10), the FM-BEM needs pressure and
velocity vectors supplied from DG which have to be
recast into surface sources. More sophisticated acoustic
sources other than generic monopoles can be also pre-
scribed in the frequency version of the DG code. Chan-
nel modes can be inserted at circular boundaries closely
resembling engine fan noise. This is particularly useful
when a precise source definition cannot be obtained from
experimental measurements, e.g. for a scaled model. The

Figure 3. Acoustic potential on the BEM surfacewith added flow.

DISCO++ user parameters can take into account the
definition of azimuthal and radial modes, amplitude,
phase shift, inner and outer radii, local flow Mach num-
ber, frequency and propagation direction. Since noise
simulations are integrated in the design study, the above
source model is applied in Section 6 for simulating the
propagation of fanmodes inside the intake duct of a UAV
model. In some cases, it may even be possible to make
quick noise predictionswith broadband sources, sampled
on a surface in the frequency space (Reiche et al., 2017).
Before proceeding with the DG / FM-BEM coupling for
engineering cases the scattering of an acoustic monopole
by a thin flat plate is considered.

4. Monopole scattering by a plate with flow

A test case performed by Lummer (2019) with wave-
length λ = 0.25 and 0.5m was revised and extended to
higher Mach numbers. The selected wavelengths cor-
respond to the Helmholtz number (He = 2πL/λ) of
approximately 50 and 25 respectively with the character-
istic plate length of 2m. In the current implementation,
the FM-BEM is restricted to low Mach applications only,
sinceMa2 and higher order termsmust be dropped in the
definition of the Taylor transformed acoustic potential.
The solution errors resulting from the absence of correc-
tive terms may grow rapidly with the increasing Mach
number. Thus, one objective was to verify the limit at
which the solution accuracy of the FM-BEM would be
no longer acceptable for noise predictions when solving
engineering problems. The other objective was ensur-
ing that the same monopole source description was used
in both solvers not only in terms of spatial parameters
such as position and half-width but also concerning its
physical type and amplitude scaling. It is not uncommon



ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS 1697

for different methods to employ different source mod-
els so this step was essential because fine differences help
to reveal and better understand problems with coupling
which may not be picked up otherwise.

Table 1 shows the simulation parameters. All DG
simulations were executed on the DLR cluster CARA2

using 32 nodes (4 processors, 64 threads on each node)
while the FM-BEM simulations were already efficient
on a local machine running just 10 threads. The num-
ber of elements and degrees of freedom of the mesh are
displayed in millions. The next column contains an esti-
mate of points per wavelength without accounting for
the Doppler shift. A couple of quick calculations revealed
that acoustic data were resolved on the DG mesh up to
Ma ≈ 0.6 at the numerical microphones located in the
close proximity of the plate. This resulted in a suitable
testing range. Due to different aims and objectives to the
test case performed in Lummer (2019), the FW-H sur-
face was not used taking any uncertainty of additional
data processing out of the equation. Also, in contrast to
the original test case which aimed for optimal perfor-
mance, this time the simulations for a different λ were
performed on the same grid (depending on the solver).
Hence, the grid-related parameters remained identical
and only the number of iterations and the Wall Clock
Time varied between λ cases due to subtle differences in
solution advancing and convergence. In the FM-BEM the
GMRES solver was used by default and the DG simula-
tions were performed using the explicit RK4 scheme in
order to give the reader a better feel for a typical setup
and computational requirements.

A flat plate with 2m sides and 0.04m in thickness and
the midpoint located at x, y, z (0, 0, 0) fully replicates
the plate used in Lummer (2019). A compact monopole
source with the half-width of 0.04m was placed asym-
metric (0.7, 0.7, 0.1) to the plate geometry close to the
trailing edge of the upper surface. A constant mean flow
was prescribed in the x direction. The computational DG
domain was a cube with dimensions −3 < x, y, z < 3.
Figure 4 shows a slice cut off-centre through the 3Dmesh.
The mesh was refined in the source zone and close to
the surface fitting at least a couple of elements per plate
thickness around the edges. Figure 5(a–c) show the con-
tours of pressure for λ = 0.25 and the Mach numbers

Figure 4. Unstructured DGmesh for plate scattering.

M = 0.0, 0.2 and 0.4. The directivities in Figures 6(a)
through 7(c) were plotted at 2m radius and the DG
and FM-BEM solutions are shown together. These plots
clearly demonstrate that the largest deviation in pRMS was
obtained for the highest Mach number tested.

For a zero flow condition a perfect match is achieved
for each wavelength. The agreement atMa = 0.2 is con-
sistentwith the comparison shown in Lummer (2019) but
further doubling of the Mach number resulted in a more
pronounced deviation in all directions, especially for the
central lobe in Figure 6(c). A further inspection of the
Ma = 0.4 acoustic solution revealed that the source cen-
tre point was displaced due to the Doppler effect which
possibly caused a strong trailing edge response for λ =
0.25. The effect may be negated by extending the plate
in the flow direction but importantly, it shows that the
FM-BEM cannot account for sources which are strongly
influenced by convection. Any further increase of the
mean flow speed resulted in further deviation of the FM-
BEM pressures from the reference DG solution. Thus, it
can be concluded that reliable acoustic predictions can-
not be obtained if the flow exceeds Ma 0.4. In terms of
the absolute noise level, in the region of 0.2<Ma<0.4,
only some minor differences will be seen on the dB scale.
However, it involves large risks of obtaining incorrect
predictions for more complicated scattering problems,
especially at high frequencies.

5. Coupled DG / FM-BEM

The geometry in Figure 3 was used to set up the initial
coupling problem. In this problem a monopole source

Table 1. Simulation parameters.

Method λ NEa DOFb ppwc procd itere WCT (s)f Mem (GB)

DG 0.25 5.257 105 16 2048 200,000 52,446 91
FM-BEM 0.25 0.0335 0.0168 50 10 19 20.5 0.235
DG 0.5 5.257 105 32 2048 200,000 51,159 92
FM-BEM 0.5 0.0335 0.0168 100 10 23 16.9 0.225

a Number of unstructured mesh cells (millions), b Degrees of freedom in the entire mesh (millions), c

Points per wavelength, d Number of parallel processes, e Total iterations, f Wall clock time
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Figure 5. DG contours of x, z slice through pressure field for λ = 0.25. (a)Ma = 0.0 (b)Ma = 0.2 (c)Ma = 0.4.

Figure 6. Directivity of acoustic pRMS around y-axis, λ = 0.25. (a)Ma = 0.0 (b)Ma = 0.2 (c)Ma = 0.4.

with a wavelength of 0.3704 was placed at the centre
point of a square plate with dimensions 2 × 2 × 0.2,
precisely 0.5m away from the plate. Figure 8(a) shows
the triangulated surface where the DG / FM-BEM data
were exchanged via the protruded purple interface which
became part of the BEM surface. The real part of the pres-
sure potential shown in Figure 8(b) was obtained in the

outcome of the coupled simulation for a zero mean flow
condition. TheRe(ψ) solution appears to be fairly consis-
tent across the interface despite the connection between
surfaces being at a right angle which is unfavourable for
computing the pressure gradients. Figure 8(c) shows the
total pressure plotted for the cross-section which gives
the reader a view of the scattered field. Notice a few hot

Figure 7. Directivity of acoustic pRMS around y-axis, λ = 0.5. (a)Ma = 0.0 (b)Ma = 0.2 (c)Ma = 0.4.
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Figure 8. Triangulated surface with coupled parts, Re(ψ) solution and pTot cross section plot.

Figure 9. Sound Pressure Level for the coupled simulation (left) and FM-BEM reference (right).

spots which appear at the scattering surface. This side
effect is caused by the FMM plotting having to evaluate
the solution very close to the surface inside the near field
of some fast multipole cube.

Initially, by solving the problemwithout a background
flow allowed checking the scattering pattern for symme-
try. See Figure 9 which shows the SPL contour compari-
son plotted on a large (20 × 20) plane six screen lengths
below the source. At that point the coupled solution
underwent three cycles of back and forth data exchange
and concluded to be fully converged. The reference FM-
BEM solution shown on the right consisted of a point
monopole source distributed over a sphere with a radius
corresponding to a half-width of the DG source. One of
the objectives was to ensure that the coupled approach
can provide accurate noise shielding predictions, on the
same level with theDG / FM-BEMcomparison presented
in Figures 6(a) and 7(a), for the proposed method to be
taken a step further.

The DG simulations were performed up to numerical
microphones similar to monopole scattering simulations
presented in the previous section. The pRMS directivity
data shown in Figures 10(a) through 10(c) were sampled
at a radius of 2m from the centrepoint of the plate using

360 numerical probes. The probes were rotated around
the vertical axis and alignedwith the flowdirection paral-
lel to the screen surface. Figure 10(a) shows that all three
simulations are in perfect agreement when computed
without potential. In Figure 10(b) for the Mach num-
ber,Ma = 0.2, the most pronounced difference between
solutions is visible along the 180◦ axis where the acoustic
pressure amplitude of the FM-BEM simulation is signif-
icantly under-predicted in comparison to the reference
DG and coupled solutions which both came to a good
agreement. The FM-BEM simulation was repeated with
an ideal point source which resulted in exactly the same
behaviour. After revisiting equations for the Taylor trans-
formed potential, (see Equation (23) for the acoustic
pressure which is at the core of the transformation), it
follows that the mean gradient term, ∇�, which is the
local Mach number vector becomes zero when evalu-
ated along the source axis normal to flow. For compact
sources, the correction along 180◦ is simply absentmean-
ing that the amplitude and shape should correspond to
the case without potential. The central lobe obtained for
the FM-BEM in Figure 10(b) is indeed equivalent to the
one in Figure 10(a) forMa = 0.0. The same shortcoming
of the Taylor transformation can be expected also on the
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Figure 10. Directivity of acoustic pRMS around the vertical axis, λ = 0.3704. (a)Ma = 0.0 (b)Ma = 0.2 (c)Ma = 0.4.

shadow side (at 0◦) which is not visible here because all
noise was shielded.

p(x) = c0ρ0[iκψ(x)− ∇x�(x) · ∇xψ(x)]e−iκ�(x)

(23)
For the coupled case, the source surface was about 3
wavelengths wide which led to the correct contribution
at 180◦ at a far-field observer using the same formu-
lation. The problem was not encountered in the previ-
ous test case because a monopole source was placed at
the edge of the plate, and thus, always positioned at an
angle relative to the far-field microphones. Notice the
upstream radiation from a monopole source being vis-
ible in all simulations with added potential where the
flow vectors are aligned with the positive y-axis (pointing
at 90◦). Figure 10(c) continues the trend for Ma = 0.4.
Here, the applied Taylor transformation under-predicted
the upstream radiation by a big margin primarily due
to divergence from its validity bounds which is consis-
tent with results obtained for the first validation problem.
In fact, when the Mach number correction was disabled,
the upstream lobes (pointing towards 240◦) of the cou-
pled problem overshot the directivity obtained by DG
forMa = 0.4. This confirms that the transformationwith
added potential has a significant effect on the radiation
amplitude.

6. Coupled simulations for a UAV intake noise
predictions

The original UAV configuration was developed in the
framework of NATO STO Task Group AVT-251 a cou-
ple of years ago. Their goal was to perform aerodynamic
optimisation of the UAV model through the application
of CFDmethods. The AVT-318 task group worked inde-
pendently on low noise aero-acoustic turbofan design

Figure 11. DLR F-24 MULDICON configuration showing intake
and exhaust ducts.

based on the previous research started by the groupAVT-
233 whose mission was to explore the aero-acoustics of
engine installation onmilitary air vehicles. The collective
effort led to the design and construction of the current
UAV MULDICON model. The DLR-F24 MULDICON
features a new design for intake and exhaust ducts but
the original planform proposed by the AVT-251 which
was later modified by FOI (Swedish Defence Research
Agency) remained untouched. Figure 11 presents an
overview of the model focussing on the intake and
exhaust ducts. The T-junction was designed to provide
a controlled high-velocity intake flow in the low-speed
acoustic (DNW-NWB Braunschweig) wind tunnel.

6.1. RANS simulation

In the initial phase of the CAA study discussed in this
paper, the focus was solely on the intake radiation noise.
Figure 12 shows the contour slice of theMach number for
theDLR-F24MULDICONwith a realistic jet engine inlet
profile. The RANS simulation was provided by Airbus
Defence and Space (ADS) and the free flight conditions
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Figure 12. DLR F-24 MULDICON intake RANS flow Mach number
for a free flight setup.

were chosen close to those which can be replicated for the
wind tunnel tests. From the noise modelling view point
this also meant that the exterior flow of Ma = 0.175 is
well within the scope of the FM-BEM tool. It can be seen
that the Mach number quickly rises as the flow enters the
intake duct reaching a peak of 0.75 at the inlet of a virtual
fan.

6.2. Intake radiation

In the acoustic simulation, the initial step consisted of
generation and propagation of channel modes through
the duct using the DG method with and without the
background RANS flow solution. A spherical coupling
surface was placed over the inlet for restricting the DG
volume domain to the region of a highly non-uniform
flow. Figure 13 shows the triangulated FM-BEM geom-
etry with the attached coupling surface. According to the

theory of BEM, radiation surfaces can be immersed in
potential flow atmost. However, this condition cannot be
satisfied for a small portion of the coupling surface where
it must naturally penetrate a boundary layer to form a
closed surface with the UAV aircraft exterior. Also, since
the FMM plotting must be used in the two-way coupled
mode for performance, it can possibly cause accuracy
problems at any DG point located close to the scatter-
ing body, i.e. in its ‘near-field’. The second problem can
be eliminated via careful integration treatment and the
significance of the first problem can be assessed by com-
paring feedback data for the same simulation performed
without the flow.

In the wind tunnel experiments, a laser pulse will be
used to excite rotatingmodes inside the intake duct at the
fan position. The numerical results for two frequencies of
interest, 5 and 10 kHz, are provided as a proof of concept.
Figure 14(a,b) show the real part of the total pressure fluc-
tuations computed inside the duct for the 5kHz rotating
modes. It is clearly visible that the radiation is heavily
suppressed by a strong flow inside the duct to an extent
where the external contours can no longer fit well on the
same scale. Also, notice that the noise pattern is altered.
It was ensured that the grid resolution was not a limiting
factor through performing a convergence study, espe-
cially for the cases with flow. One has to bear inmind that
naturally, some modes cannot propagate due to cut-on /
cut-off condition imposed by the flow. Itwill be part of the
CAA design study to obtain reliable predictions for com-
plicated shape ducts with a varying cross-section before
conducting an experiment. Figure 15(a,b) show the com-
parison at 10 kHz. The trend is similar for both frequen-
cies where amuch stronger radiation is foundwithout the
added flow. For the current UAV design, the noise radi-
ates predominantly upstream in the direction towards the
ground which is not optimal and highlights the impor-
tance of aero-acoustic design. The amplitude of the sig-
nal tends to decrease with increasing frequency. Also,

Figure 13. FM-BEM surface mesh for a coupled simulation.
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Figure 14. Acoustic Re(ptot) pressure fluctuations propagated from intake at 5kHz without flow (a), with added flow (b).

Figure 15. Acoustic Re(ptot) pressure fluctuations propagated from intake at 10kHz without flow (a), with added flow (b).

Figure 16. CAA fan noise solution for the UAV model.

one can expect forward radiating fan noise to decrease
with the increasing Mach number where at cruise condi-
tions,Ma = 0.8 and at high altitudes the noise signature
is expected to be negligible. Therefore, for the future

acoustic design optimisation of the UAV configuration
the focus remains on improving our noise prediction
methods at lowMachnumbers. This corresponds to take-
off and approach conditions where noise can be detected
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on the ground. The numerical coupling is formulated for
the noise sources in a background flow typically encoun-
tered during this critical part of the mission.

Figure 16 shows the real part of the total pressure
for the coupled FM-BEM surface at 10kHz without the
added mean flow and the noise footprint plotted on a
large plane which represents the ground. TheUAVmodel
was rotated to get a better view of the coupling inter-
face. A smooth transition of the surface pressure from
the radiation to the scattering surface is a good indica-
tion that two methods communicated the data correctly.
Due to a highly directed pattern of a forward radiat-
ing intake noise, the two-way coupling did not result in
any significant correction to the DG solution. Yet big
savings were achieved with the coupled method in com-
parison to potentially computing the DG propagation
in a domain which has to include the UAV if not dis-
tant observers. Arguably, using a FW-H surface in place
of the coupling surface would have resulted in similar
noise predictions for this configuration. However, the
idea of applying global boundary conditions on a highly
restricted DG domain via performing the two-way cou-
pling must be superior for computing accurate noise
scattering and shielding by large geometries.

7. Conclusion

Amedium fidelity technique that is based on strong cou-
pling of two advanced CAAmethods has been presented
to accurately predict sound shielding for largeUnmanned
Aerial Vehicles (UAV). First step consists of the acoustic
wave propagation in a highly non-uniform flow using a
volume resolving method. Then the radiated waves are
sampled on a coupling surface. The acoustic scattering
produced by the geometry of the UAV is accounted for
by the FM-BEM that has been proven to be very effi-
cient for determining surface solutions. Depending on
the configuration, performing a oneway couplingmay be
insufficient for accurate noise predictions due to absence
of feedback provided to the sound source region. Thus,
the backward data exchange takes place on the DG out-
flow boundaries which is equivalent to prescribing global
boundary conditions to the entireDGdomain. The infor-
mation is exchanged via a fluctuating enthalpy and the
incoming characteristics introduce a change into the vol-
ume region. A background flow available for the volume
region can be based on a RANS solution which naturally
accounts for boundary layers.

In the current framework, all CAA simulations were
performed in the frequency spacewhere a new converged
state was quickly reached from a ‘virtual re-start’ where
feedback data were prescribed on the far-field bound-
ary. The cycle was followed by another DG / FM-BEM

exchange. It has been determined that a fully converged
solution results after just a couple of data exchanges even
for cases with strong wave reflections of a scattering
geometry.

The noise prediction technique described in this work
has been developed with the objective to quickly evalu-
ate new design concepts. The future work would involve
application of the coupled method for simulating fan-
tone shielding for a full-scale supersonic aircraft. It can
be challenging to optimise a supersonic nacelle for take-
off and approach subsonic phase. Currently, the method
is limited to predictions in a free-stream flow of up to
M ≈ 0.3 in the FM-BEM domain. This limitation comes
from a lowMach number assumption used in the formu-
lation of the BEM equations. It appears that there are no
simple ways to overcome this restriction, also, bearing in
mind that the FMM feature is very desirable and has to be
retained for efficacy when solving engineering problems.

Nomenclature

c speed of sound at infinity
f (t) arbitrary function of time
i imaginary number, i2 = −1
p′ acoustic pressure
p̂′ Fourier transformed acoustic pressure
q̂ complex variable
v′ acoustic velocity vector
v0 mean flow velocity vector
vg ghost velocity vector
vin inner side velocity vector
yjm quadrature collocation point of surface

element	j
A,B, C convection-term matrices
B′ fluctuating enthalpy, B′ = B − B0
Bx Burton-Miller operator
Cx Bx/2 on surface
Dt , Dy shorthand for differential operators
G free field Green’s function
H̃ approximate Riemann flux
K summation operator
M Mach number
Q acoustic source strength
S generic source term
T Taylor phase factor
V̂ fluctuating velocity vector
Wm

j quadrature integration weight
Y proportionality function
α Burton-Miller coupling constant
κ wavenumber
ρ0 mean flow density
ξ constant free term coefficient
φ acoustic velocity potential, v′ = ∇φ′
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ψ Taylor transformed acoustic velocity poten-
tial, φ′(x, t) = eiωtT (x,ω)ψ̂ ′(x,ω)

ω angular frequency
�0 mean flow velocity potential, �0 ≡ v∞� =

cM�
	 CAA domain, subscript s for source surface

subdomain
i, j · · · component of space vector

Notes

1. mean pressure and mean density are assumed constant
in contrast to a more general formulation of the wave
equation which follows from the APE equations.

2. TheDLR cluster CARA (Computer for Advanced Research
in Aerospace) in Dresden is powered by the AMD Epyc
7601 32C 2.2GHz processors, interconnected by Infini-
band HDR. The 2,300 nodes cluster has 145,920 cores and
291 TB memory with the theoretical peak performance of
2.568 PFlop/s.
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