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Abstract
An empirical wall law for the mean velocity in an adverse pressure gradient is presented, 
with the ultimate goal of aiming at the improvement of RANS turbulence models and wall 
functions. For this purpose a large database of turbulent boundary-layer flows in adverse 
pressure gradients from wind tunnel experiments is considered, and the mean velocity in 
the inner layer is analysed. The log law in the mean velocity is found to be a robust feature. 
The extent of the log-law region is reduced in ratio to the boundary layer thickness with 
increasing strength of the pressure gradient. An extended wall law emerges above the log 
law, extending up to the outer edge of the inner layer. An empirical correlation to describe 
the reduction of the log-law region is proposed, depending on the pressure-gradient param-
eter and on the Reynolds number in inner viscous scaling, whose functional form is moti-
vated by similarity and scaling arguments. Finally, there is a discussion of the conjecture of 
the existence of a wall law for the mean velocity, which is governed mainly by local param-
eters and whose leading order effects are the pressure gradient and the Reynolds number, 
but whose details can be perturbed by higher-order local and history effects.

Keywords Turbulent boundary layer · Log law · Adverse pressure gradient · Half-power 
law

1 Introduction

Significant uncertainties are still associated with predicting of turbulent boundary-layer 
flows over smooth surfaces subjected to an adverse pressure gradient (APG) and flow sepa-
ration using statistical turbulence models based on the Reynolds-averaged Navier-Stokes 
(RANS) equations. The lack of knowledge about an empirical wall law for the mean veloc-
ity in an adverse pressure gradient is a primary hurdle for the improvement of RANS tur-
bulence models.
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For turbulent boundary-layer flows at zero pressure gradient, there is a wide consensus 
that the mean velocity U in the inner part of the boundary layer at sufficiently large Reyn-
olds numbers can be described by the log law (see Marusic et al. 2013)

Here y is the wall-distance, and inner viscous scaling u+ = U∕u� , y+ = yu�∕� is used with 
the wall shear stress �w , the density � , the friction velocity u� =

√
�w∕� , and the kinematic 

viscosity � . The outer edge of the region occupied by the log law is near y = 0.15� , with 
� being determined from a fit of the composite law-of-the-wall/law-of-the-wake (Marusic 
et al. 2013). The region y < 0.15𝛿 will be referred to as the inner layer.

The resilience of the log law for the mean velocity in an APG is widely reported in 
Coles and Hirst (1969), Galbraith et al. (1977), Perry et al. (1966), Alving and Fernholz 
(1995), and Johnstone et  al. (2010). The region occupied by the log law in ratio to � is 
found to be reduced, compared to the zero-pressure-gradient case, as the effect of the APG, 
e.g., the pressure-gradient parameter in inner viscous scaling

becomes stronger (see Alving and Fernholz 1995; Knopp 2016). Here P is the pressure 
and s is the wall-tangential direction of the mean velocity as y → 0 (see Sect. 2.1). Some 
researchers report that a so-called half-power law or square-root law (abbreviated: sqrt-
law) emerges above the log law (see Perry et al. 1966; Kader and Yaglom 1978, and Tel-
bany and Reynolds 1980). To be more precise, these authors used the half-power law for 
zero-skin-friction flow by Stratford (1959) (given in equation (15) in Sect. 2.3). Note that 
the half-power law is related to the y-scaling of the mixing length (see Stratford 1959). 
This distance-from-the-wall scaling was recently found for the turbulent structures of the 
APG flow by Romero et  al. (2022). Alternatively, an extended wall law was applied in 
the entire inner layer above the buffer layer (see Szablewski 1960; Townsend 1961, and 
Afzal 2008), which is asymptotic to the log law at low values of Δp+

s
 and asymptotic to 

the half-power law at large values of Δp+
s
 . (The extended wall law is given in equation (14) 

in Sect. 2.3). The extended wall law was used in Knopp et al. (2021) to describe the mean 
velocity above the log law in an APG. (In Knopp et al. (2021) and in the present work, the 
designation ”half-power law” is used loosely for the extended wall law (14)).

Regarding the breakdown of the log law in an APG, the work by Alving and Fernholz 
(1995) supports the idea of a breakdown if Δp+

s
 exceeds some threshold, e.g., Δp+

s
> 0.05 , 

rather than the onset of instantaneous reverse flow. The breakdown of a region where u+ 
grows linearly with log(y+) needs to be distinguished from a change of � and B. Regarding 
the latter, some theoretical results and experimental observations indicate that the values 
for � and B could change for strong values of Δp+

s
 (see Nickels 2004; Dixit and Ramesh 

2008, and Knopp et al. 2021). This question is not studied in the present work, mainly due 
to the significant effect of the accuracy to determine u� on the values inferred for � (see 
Knopp et al. 2021).

The great question is the existence of a wall-law region in which the mean-velocity 
profile depends only on local flow quantities. Such a region was proposed, among others, 
by Perry et al. (1966), who divided the boundary layer into a wall region and a historical 
region. In the wall region, only the local flow quantities/variables (1∕�)dP∕ds , �w∕� , � , 
and y govern the mean-velocity profile, and higher derivatives of (1∕�)dP∕ds and �w∕� 
could be involved above a certain wall-distance. In the historical region, the mean-velocity 

(1)u+ =
1

�
log(y+) + B .

(2)Δp+
s
= �∕(�u3

�
)dP∕ds
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profile is influenced by upstream events. The existence of a local wall law can be moti-
vated by and is related to the concept of moving equilibrium. Following Kader and Yaglom 
(1978), a boundary-layer flow is in moving equilibrium if the free-stream velocity U∞ and 
the kinematic pressure gradient (1∕�)dP∕ds are varying only slowly with the streamwise 
coordinate s so that the boundary layer adjusts to these variations and its structure at any 
value of s depends essentially on the relevant local parameters (at the same s) only, not on 
the upstream history of the flow.

Similar results were found for Couette-Poiseuille (CP) flow by Telbany and Reynolds 
(1980), reporting that the logarithmic layer is eroded, and ultimately vanishes, as the 
stress gradient increases in importance. Here the wall-normal stress gradient is given by 
the streamwise pressure gradient. Moreover, a correlation is reported for the y+-location 
of transition between the logarithmic layer and the so-called gradient layer (being the half-
power law region), i. e., y+ = 90�−1∕2 using the parameter � = Δp+

s
Re�,h , with Re�,h based 

on u� and on the channel half-width h. The systematic reduction of the log-law region and 
the appearance of a half-power law for CP flow can therefore be seen as a consequence of 
the pressure gradient and not a history effect, as CP flow is a self-similar flow in dynamic 
equilibrium in the sense of Gungor et al. (2016). The findings for CP flow are seen to sup-
port the conjecture of a local wall law.

The present approach to find a wall law in an APG uses a combination of data analysis 
and theoretical arguments. A large database from wind tunnel experiments was analysed. 
The initial preliminary results were presented in Knopp (2016). The core of the database is 
the famous test case collection (Coles and Hirst 1969) published at the seminal 1968 Stan-
ford conference on turbulent boundary layers.

Analysis of the database prompts the following hypotheses about an empirical wall law 
for the mean velocity in an adverse pressure gradient:

• The log law in the mean-velocity profile is a robust feature in an APG;
• The log-law region is thinner than its zero-pressure-gradient counterpart at the same 

Re� and does not extend up to y = 0.15�;
• The extent of the log-law region in ratio to � is decreasing with increasing Δp+

s
;

• An extended wall law (designated loosely as ”half-power law”) emerges above the log 
law in a large part of the region the log law occupies at zero pressure gradient.

Note that an additional hypothesis states that the von Kármán constant � changes with Δp+
s
 

and that this can be described by the model by Nickels (2004); however, this is not consid-
ered in the present work. In the present paper, the focus is directed at the mean velocity in 
the inner part of turbulent boundary layers. Recent work focusing mainly on the outer part 
of the boundary layer in an adverse pressure gradient can be found in Maciel et al. (2018), 
Bobke et al. (2017) and Vila et al. (2017).

This work is restricted to turbulent boundary-layer flows. Internal flows with streamwise 
pressure gradients like Couette-Poiseuille flows (Telbany and Reynolds 1980) or flows in 
divergent channels are not considered. The analysis is restricted to the case of plane-wall, 
two-dimensional flow. Effects of streamwise curvature are ignored. The effects of three-
dimensional boundary-layer flows with sweep and cases with a three-dimensionality of 
the flow due to a spanwise expansion of the geometry or spanwise surface curvature are 
excluded. Streamwise curvature leads to a departure from the log law which is increas-
ing with increasing y+ . The profile for u+ turns below the log law in the case of a concave 
wall and above in the case of a convex wall (see Kim and Rhode 2000). In three-dimen-
sional turbulent boundary layer flows, a streamwise and a spanwise component of the 
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mean velocity arise (defined in a local coordinate system with the x-axis aligned with the 
freestream or with the wall shear stress vector), and a spanwise pressure gradient results in 
flow skewing (see Devenport and Lowe 2022). A wall law for the mean-velocity compo-
nent aligned with the wall shear stress and the transverse component perpendicular to it is 
described in van den Berg (1973), van den Berg (1975), which accounts for streamwise and 
spanwise pressure gradients.

The paper is organized as follows. The theoretical background is described in Sect. 2. 
The database is presented in Sect.  3. The methods used for the evaluation of the mean-
velocity profiles are described in Sect. 4. The results are presented in Sect. 5. The correla-
tions for the wall law in an APG are given in Sect. 6. An attempt to discuss the issues of a 
local wall law, the moving-equilibrium concept, history effects, and effects of the measure-
ment accuracy is given in Sect. 7. The conclusions are given in Sect. 8.

Finally, as implied in the title, the connection between the present analysis and RANS 
turbulence models is briefly described. A preliminary APG modification was presented in 
Knopp (2016). The idea is to use a model augmentation term in conjunction with a blend-
ing function. The augmentation term is added to the transport equation for the specific 
rate of turbulent dissipation � . It is designed to obtain the assumed solution for the mean 
velocity and the turbulence quantities in the half-power law region. The blending function 
is used to activate the augmentation term only in the half-power law region. It is based on 
the correlations that describe the regions of the log law and the half-power law as functions 
of y+ , Re� , Δp+s  and y∕� (see Sect. 6).

2  Boundary‑Layer Theory

This section presents the theoretical results used for the design and the calibration of the 
wall law.

2.1  Boundary‑Layer Approximation

Two-dimensional, incompressible turbulent boundary-layer flow in a wall-fitted coordinate 
system with streamwise wall-parallel direction s, wall-normal direction y and correspond-
ing velocity components U, V is assumed (see Hinze 1975)

The subscript w indicates values at y = 0 . Integration of (3) from the wall to the wall-
distance y gives the following relation for the total shear stress �

where �w denotes the wall shear stress and with the following notation

for the integrated convective term and the Reynolds normal stress term.

(3)�
�2U

�y2
−

�u�v�

�y
=

1

�

dPw

ds
+ U

�U

�s
+ V

�U

�y
+

�

�s

(
u�2 − v�2

)
.

(4)
�

�
≡ �

�U

�y
− u�v� =

�w

�
+

1

�

dPw

ds
y + Icu(y) + Icv(y) + Ir (y)

(5)Icu(y) = ∫
y

0

U
𝜕U

𝜕s
dỹ , Icv(y) = ∫

y

0

V
𝜕U

𝜕ỹ
dỹ , Ir (y) = ∫

y

0

𝜕

𝜕s

(
u�2 − v�2

)
dỹ
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Note that in the three-dimensional case, the direction s used in (2) is defined by the 
direction of the wall-parallel velocity as y → 0 (being the direction of the skin friction 
vector).

2.2  A Local Model for the Total Shear Stress

The next step is to motivate local surface parameters to characterise the different terms 
in the mean momentum balance and hence the mean-velocity profile in the inner layer. A 
first-order local model for the total shear stress was proposed by Coles (1956) and Perry 
(1966). It is based on the following ansatz for the mean-velocity profile in the inner layer

As described in van den Berg (1973) and Knopp et al. (2015), the mean-inertia term can be 
written as

By substitution of (7) into (5) and neglecting the contribution of the Reynolds normal 
stress term I+

r
(y+) in (5), the result for �+ = �∕�w is

showing that the total shear stress in the inner layer not only depends on Δp+
s
 but also on 

the wall-shear-stress-gradient parameter Δu+
�,s

 , which describes the local flow deceleration. 
The approximation to neglect I+

r
(y+) if the flow is far from incipient separation is supported 

by the DLR/UniBw experiment II (see Figs. 7.1 and 7.2 in Knopp 2019). Note that in the 
y+-region where the mean-velocity profile follows the log law I+

1
 can be approximated by 

Eq. (8) in Galbraith et al. (1977)

for y+ > 30 with constants k1,… , k4 depending only on � and B. The total shear stress is 
approximated by a linear relation in e.g. McDonald (1969)

where � is a constant smaller than one, and �+ ≡ �Δp+
s
 is called the effective pressure gra-

dient. The linear approximation (10) can be inferred from (9) for small values of Δu+
�,s

 and 
y+.

A higher-order model for �+ can be obtained by extending (6), motivated by the depend-
ence of f on Δp+

s
 in the half-power law

to account for higher-order effects on �+ . The extended model for �+ , which is described 
in detail in Knopp et al. (2015), includes the additional local flow parameter Δ2p+

s
 which 

involves d2P∕ds2 . This higher-order local parameter will be used in the discussion of the 
conjecture of a local wall law in Subsects. 7.1 and 7.2.

(6)U(s, y) = u� (s) f (y
+(s, y)) , y+(s, y) = u� (s)y∕� .

(7)∫
y

0

U
𝜕U

𝜕s
dỹ + ∫

y

0

V
𝜕U

𝜕ỹ
dỹ = 𝜈

du𝜏

ds ∫
y+

0

f 2 dỹ+ .

(8)𝜏+(y+) = 1 + Δp+
s
y+ + Δu+

𝜏,s
I+
1
, Δu+

𝜏,s
=

𝜈

u2
𝜏

du𝜏

ds
I+
1
= ∫

y+

0

f 2dỹ+

(9)�+ = 1 + Δp+
x
y+ + Δu+

�,x

[
y+
(
k1
(
log y+

)2
+ k2 log(y

+) + k3

)
+ k4

]

(10)�+ = 1 + �+y+ , �+ ≡ �Δp+
s
,

(11)U(s, y) = u� (s) f (y
+(s, y),Δp+

s
(s)) , y+(s, y) = u� (s)y∕�
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2.3  Log Law/Half‑Power Law

For the mean-velocity profile in an adverse pressure gradient, a log-law/half-power-law 
structure is assumed, motivated by the findings described in the introduction

with the log law

and the extended wall law (involving the parameter �+ defined in (10))

The designation ”half-power law” is used loosely for the extended wall law.
Note that there is an intermediate region in which neither the log law nor the half-power 

law describes the mean velocity. The important parameters for the calibration are y+
log,max

 
and y+

sqrt,min
 . They describe the reduction of the log-law region, and are supposed to depend, 

among other effects, on the pressure gradient and on the Reynolds number. They will be 
calibrated using the database. The half-power law is assumed to extend up to the outer edge 
of the inner layer. The value for � is assumed to be constant with � = 0.41 , and K will be 
studied in Sect. 6.4. The value of y+

log,min
 is expected to depend on the Reynolds number 

and possibly on the pressure gradient, but is not considered in this work. Note the alterna-
tive form of the half-power law by Stratford (1959) for zero-skin-friction flows

which was recently confirmed by the DNS of Coleman et al. (2017).

2.4  A Velocity Scale for the Inner Layer

The classical velocity scale for the inner layer u� leads to well-known issues as the flow 
approaches separation. As u� → 0 , the profile u+ versus y+ is not defined. Moreover, bound-
ary-layer parameters involving u� , e.g.,

and Δp+
s
 , are approaching zero or infinity. In particular, the Reynolds number �+ is found to 

give decreasing values as the flow approaches separation, whereas Re� and Re∗
�
 are increas-

ing, and Δp+
s
 and �RC can reach high values mainly due to the small values of u�.

(12)u+ =

{
u+
log

if y+ ∈ (y+
log,min

, y+
log,max

)

u+sqrt if y+ ∈ (y+
sqrt,min

, y+sqrt,max)

(13)u+
log

=
1

�
log(y+) + B

(14)u+
sqrt

=
1

K

[
2
(
(1 + �+y+)

1

2 − 1
)
+ log(y+) + 2 log

(
2

(1 + �+y+)
1

2 + 1

)]
+ Bo .

(15)U(y) =
2

K

(
1

�

dP

ds

)1∕2

y1∕2 + C

(16)Re� ≡ �+ =
�u�

�
, �RC =

�∗

�u2
�

dPw

ds
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A modified velocity scale for the inner layer was devised in Nickels (2004) as a part of an 
analytical model for the mean velocity depending on the local value of Δp+

s
 . It involves the 

quantity y+
c
 , which is associated with the thickness of the viscous sublayer and related to a 

critical value of the local Reynolds number based on the total shear stress (cf. (8), neglecting 
the convective term)

The assumption that Rec has a universal value for all wall-bounded flows ( Rec = 12 ) leads 
to a cubic equation for y+

c
 , which can be interpreted as the critical value above which the 

viscous sublayer becomes unstable,

The physically relevant solution for yc is the smallest positive root of (18).
The exact solution for yc follows from the formula by del Ferro, Tartaglia, and Cardano 

(see Nickels 2004). For large Δp+
s
 this solution may be approximated by

(see also eq. (10.1) in Nickels (2004)). As u� → 0 (and Δp+
s
→ ∞)

i.e., uT converges to the non-zero value Re1∕3c up . Here up = |�∕�dPw∕ds|1∕3 is the so-called 
pressure-viscosity velocity by Stratford (1959) with Δp+

s
= (up∕u� )

3.
For 0 < Δp+

s
< 0.1 , the analytical solution of (18) can be approximated by

(17)Rec =
uTyc

�
, uT =

(
�|y=yc
�

)1∕2

, �+|y=yc = 1 + Δp+
s
y+
c
.

(18)Δp+
s

(
y+
c

)3
+
(
y+
c

)2
− Re2

c
= 0 .

(19)y+
c
=

Re
2∕3
c (Δp+

s
)2∕3 −

1

3

Δp+
s

(20)uT = u� (1 + Δp+
s
y+
c
)1∕2 → Re1∕3

c
up ,

(21)y+
c
≈ Rec(1 + y+

c,0
Δp+

s
)−1∕3 , y+

c,0
= 16 .

∆

∆

∆

τ

∆

Fig. 1  Behaviour of y+
c
 (left) from (18), (19), (21) and modified velocity scale uT (right)
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Figure 1 provides some illustration for y+
c
 (left) and for uT∕u� (right).

The above model could require modification for large values of Δp+
s
 . Then the mean-

inertia term can become important and needs to be accounted for in the approximation of 
�+ in (17).

2.5  Self‑Similarity

The existence of a wall law is related to the question of self-similarity of the mean-velocity 
profile in the inner layer. The classical approach is to seek a similarity solution of the form

Note that the choice for ut for a self-similar scaling of the Reynolds stresses is still open in 
the literature (see Elsberry et al. 2000). Then consider (3), with the streamwise gradients 
of the Reynolds stresses being neglected. Substitution of (22) yields (see e.g. Dixit and 
Ramesh 2008)

A similarity solution exists only if the coefficients are independent of s

Note that �H is the Hartree parameter in the laminar case. It can be written as

and alternatively in the form �H = −�RC Re
2
�
Re−1

�∗
 . Traditionally, �RC is seen to be the gov-

erning parameter of the similarity solution.

3  Database

A database study was performed to account for the variety of turbulent boundary-layer 
flows in an APG and the richness of the parameter space. Based on the assumption that an 
asymptotic structure of the mean velocity profile arises only for sufficiently large Re, the 
focus is on mean-velocity profiles at Re𝜃 > 8000.

3.1  Experimental Data

The database covers the famous test-case collection Coles and Hirst (1969). Addition-
ally, the more recent experiments by Samuel and Joubert (1974), Skare and Krogstad 
(1994), Marusic and Perry (1995), and Romero et al. (2022) are used. For the data in 
the collection by Coles and Hirst (1969), their identifiers (IDENTs, abbreviated IDs) are 

(22)U(s, y) = Ue(s)f
�(�) , u�v� = u2

t
(s) t(�) , �(s, y) =

y

�(s)
.

(23)−
�Ue

�

d�

ds

[
f ��f

]
+

�2

�

dUe

ds

[
(f �)2 − f ��f − 1

]
= f ��� +

Ue�

�

(
ut

Ue

)2

t� .

(24)�1 ≡ �Ue

�

d�

ds
= const , �H ≡ �2

�

dUe

ds
= const , �3 ≡ Ue�

�

(
ut

Ue

)2

= const .

(25)�H =
�2

�

dUe

ds
= −Δp+

s
Re2

�

(
u�

Ue

)
.



579Flow, Turbulence and Combustion (2022) 109:571–601 

1 3

used. The flows by Clauser and by Bradshaw are equilibrium flows. Moreover, two joint 
DLR/UniBw turbulent boundary-layer experiments are considered. They were designed 
to achieve large values of Δp+

s
 and Re�.

Two data sets at small Re are included. For the wind tunnel experiment by Nagano 
et al. (1991) the mean-velocity profiles are for 481 ≤ Re� ≤ 639 , 1290 ≤ Re� ≤ 3350 and 
0.009 ≤ Δp+

s
≤ 0.025 . For the DNS of a turbulent boundary layer with separation and reat-

tachment by Coleman et al. (2018), Re� is up to 880 and 2000 ≤ Re� ≤ 6400 in the APG 
region, and Δp+

s
 is increasing from 0.001 to values exceeding 1 as the flow is approaching 

separation. Note that the low-Re data are used only in Sect. 7.3 to assess the validity of the 
wall law for small Re. The test cases and their acronyms are summarised in Table  1.

3.2  Boundary‑Layer Characterisation

The characterisation of turbulent boundary-layer flows in adverse pressure gradients 
using suitable boundary-layer parameters is still open (cf. Vila et al. 2017). The param-
eter space is much wider than for the zero-pressure-gradient case. Figure 2 (left) shows 
�RC versus Re� . Each symbol corresponds to a mean-velocity profile. The number of 
data points for Re𝜃 > 30000 is small. The strength of the APG felt in the inner layer can 
be described by Δp+

s
 . The values of Δp+

s
 plotted against Re� are shown in Fig. 2 (right). 

Only in a small number of experiments are values of Δp+
s
> 0.02 reached.

4  Methods for Data Evaluation

This section describes the methods used for the evaluation of the data. The methods to 
determine the friction velocity u� and the boundary-layer thickness � are described in 
Sect. 4.1. Section 4.2 describes the methods used to identify the regions of the log law 

θ

β

τ

∆

Fig. 2  Characterisation of the turbulent boundary-layer flows in the database
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and the half-power law. Finally, the assessment of the data in the region of the half-
power law is described in Sect. 4.3.

4.1  Fit to the Law‑of‑the‑Wall/Law‑of‑the‑Wake

In the collection by Coles and Hirst (1969), the boundary-layer thickness � , the wake fac-
tor Π , and the friction velocity u� were determined such that the root-mean-square (r.m.s.) 
deviation of the data from the law-of-the-wall/law-of-the-wake

is minimised. The values � = 0.41 and B = 5.0 by Coles & Hirst were used for all cases 
throughout this work, except for the experiments by DLR/UniBw experiments and by UNH 
and the two flows at small Re, for which almost direct values for u� are provided. A similar 
evaluation as in Coles and Hirst (1969) was provided for the flows by Skare and Krogstad 
(1994) and Marusic and Perry (1995). Note that the recently proposed methods to deter-
mine the boundary-layer thickness by Coleman et al. (2018) and Vinuesa et al. (2016) are 
not used in the present method, as they require additional data which are not available for 
most of the old data sets in the database.

The first step was a review of the values reported for � , Π , and u� . First, the mean-veloc-
ity profiles were plotted in viscous units and compared with the log law to assess u� . The 
original values for u� could be supported and were used for the data analysis. This concurs 
with the result by Patel (1965), reporting an uncertainty within 6% for Δp+

s
< 0.015 for the 

Preston tube. This was seen to be acceptable, given the different sources of uncertainties.
The next step was to review the values for � . The aim was to ensure comparable and 

consistent values for � among all test cases. The mean-velocity profiles in viscous units 
were compared with (26) in the law-of-the-wake region, and overall, the values reported 
for � and Π were found to give a good agreement. For some data sets, minor adjustments 
in � by visual inspection were applied to obtain a similar matching between the experimen-
tal data and (26) near the boundary-layer edge. This is summarised in Table  1, which is 
explained at the end of this section.

The evaluation of u� and � was different for the UNH experiment Romero et al. (2022) 
and for the DLR/UniBw experiments Knopp et al. (2015) and Knopp et al. (2021). For the 
UNH flow, the values for u� were determined by matching the hot-wire data for the mean 
velocity with the LES mean-velocity profiles by Bobke et al. (2017) for y+ < 40 . Note that 
the values for u� were confirmed by the author using the Clauser-chart method (CCM). The 
relative deviation in u� was found to be below 1.5% . Regarding the boundary-layer thick-
ness, the values by Romero et al. (2022) are used, which were determined using an indirect 
method involving the profile for u′2 (see Romero et al. 2022). The values were supported 
by the evaluation of �99.5 by the author.

For the DLR/UniBw experiment II at x = 9.944m , u� was determined using oil film 
interferometry (OFI) and from the 2D μPTV and 3D LPT data using an (almost) direct 
method based on a least-squares fit of the data with the mean-velocity profile by Nickels 
for y+ < 20 (see Knopp et al. 2021). For the other positions, u� was determined from the 
2D2C PIV data using the standard CCM. For the boundary-layer thickness �99.5 was used, 
as a close matching with (26) could not be obtained, possibly due to history effects. Note 
that for all flows, �99.5 was found to be in close agreement with � (see Fig.  3 (left)).

(26)u+ =
1

�
log(y+) + B +

2Π

�

(
sin

(
��

2

))2

, � =
y

�
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The data evaluation is summarised in Table  1. The fourth column gives the source for 
the value used for u� . In the fifth column, the method used to determine the boundary-layer 
thickness is specified. Here � denotes the approach by Coles and Hirst (1969). The values 
used for � are given in the sixth column. These are mainly the values by Coles and Hirst 
(1969), although the recomputed values (denoted by re) are used for some of the stream-
wise evolving flows. For the flow by Marusic & Perry, the recomputed values are used. For 
the flow by Samuel & Joubert, � was determined by the author. The next column gives the 
maximum deviation for � in percent between the original value and the recomputed value. 
The number in brackets gives the number of mean-velocity profiles for which the deviation 
is greater than 1%. This shows that the deviation between the values by Coles and Hirst 
(1969) and the recomputed values is small compared to the other sources of uncertainties. 
Note that for the flow by Marusic & Perry, the deviation between the original values for � 
and the recomputed values was smaller than 8% for the last four profiles in the region of 
the strongest APG. The next column specifies the values for � and B used to determine the 
extent of the log-law region y+

log,max
 (see the next subsection). The log-law with � = 0.41 

and B = 5.0 by Coles & Hirst is denoted by ” Coles and Hirst (1969)”, whereas ”fit” indi-
cates that � and B are fitted to the mean-velocity profile, which is described in detail in the 
next section. The last column summarises the assessment for the calibration of the half-
power law using the criteria C1 - C4 described in Subsect. 4.3.

4.2  Identification of Log Law and Half‑Power Law

The next step was the identification of the log-law and the half-power law region. The log-
law region is referred to as the region in which the mean-velocity profile can be fitted by 
a log law. The half-power law region is defined analogously. The notation introduced in 
Sect. 2.3 is used. For illustration, Fig.  4 shows the mean-velocity profiles for the flow by 
Ludwieg & Tillmann (1108) at Δp+

s
= 3.05 × 10−3 , Re� = 25870 and Re� = 5031 (left) and 

for the flow by Samuel & Joubert at Δp+
s
= 0.00735 , Re� = 13804 and Re� = 2990 (right).

β

δ
δ

δ δ

β

δ
Fig. 3  Comparison of �99.5 and � (left) and y+

log,max
∕� versus �RC (right)
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For the evaluation of y+
log,max

 , for each mean-velocity profile, the maximum wall-dis-
tance was determined up to which the experimental data for u+ follow the log law (13). 
The method to determine y+

log,max
 was based on visual inspection and the determination 

of the y+-position, where a best-approximation polynomial through the data points 
above the log-law region smoothly joins the log law. The results for y+

log,max
 are plotted 

against �RC in Fig.  3 (right). Here � = 0.41 and B = 5.0 was used in (13) for all flows, 
except for the flows by DLR/UniBw and UNH. Note that the influence of using a fitted 
value for � versus a constant value is discussed below for the DLR/UniBw experiment 
and in Sect. 7.3.

For the flows by DLR/UniBw and UNH, u� was determined independently of the 
assumption of the log law. The profiles for u+ show a departure from the log law with 
� = 0.41 and B = 5.0 . An iterative method was used to determine the fitted values for � 
and B and y+

log,max
 simultaneously under the constraint to minimise the least-squares 

error in the y+-interval used for the fit, which was successively adjusted.
For the DLR/UniBw experiment, a study was made to assess the sensitivity of 

y+
log,max

 on details of the method used. The details are given in appendix B. The main 
conclusion is that the sensitivity of y+

log,max
 on details of the evaluation is small for the 

DLR/UniBw flow compared to the uncertainties of the older flows in the data base (see 
Sect. 6.5).

The outer edge of the half-power law is assumed to extend up to y = 0.2� . The 
motivation for this assumption is the observation that the half-power law, if fitted up 
to y = 0.15� , describes the mean-velocity profile even up to y = 0.2� . The choice of 
y = 0.2� has the advantage of increasing the number of data points for the half-power 
law fit compared to y = 0.15�.

The inner edge of the half-power law, denoted by y+
sqrt,min

 , is determined iteratively. 
In the first step, the two data points below and above y = 0.15� are chosen and a pre-
liminary fit is computed. Then this stencil is extended successively above and below 
y = 0.15� . The points with the smallest y+ value are removed if such improves the 

Π Π

Fig. 4  Left: Ludwieg & Tillmann, mild APG (1108) at Δp+
s
= 3.05 × 10−3 and Re� = 5031 . Right: Samuel 

& Joubert, mild APG at Δp+
s
= 7.35 × 10−3 and Re� = 2990
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overall fit; alternatively additional points are included successively if they are in agree-
ment with the fit. For the final evaluation of the half-power law and after a comparison 
among all test cases, the outer edge is set to the constant value y = 0.21� . For the inner 
edge, the value determined by the iterative method described above is employed. The 
results are shown in Fig.  5. In case the above method does not identify two points for 
the half-power law fit below y = 0.21� , the outer edge is increased, but these data sets 
are then used with special care (see criterion C1 in Sect. 4.3).

4.3  Data Assessment for the Half‑Power Law Region

For the calibration of the half-power law, the individual mean-velocity profiles need to be 
assessed, so that only the suitable ones are considered for the calibration. The number of 
data points in the half-power law region Nsqrt is an important quantity for the assessment, 
and is shown in Fig.  6 (left). This number can become large if Re� is large, if y+

sqrt,min
 is 

∆

δ

∆

δ
Fig. 5  Inner edge (left) and outer edge (right) used for the fit to the half-power law

∆ ∆

δ
∆

Fig. 6  Number of data points Nsqrt in the half-power law region (left) and �+Δp+
s
 versus Δp+

s
 (right)
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significantly smaller than 0.15�+ , or if the wall-normal spacing between adjacent data 
points Δy+ is small. The largest values for Nsqrt are reached for the DLR/UniBw experiment 
II, exceeding 80 for the 2D2C PIV measurements and 250 for the 3D LPT measurement 
technique. For some mean-velocity profiles, the number of data points for the half-power 
law fit is only two. These profiles are considered with special care (see criterion C2 below) 
for the calibration of the wall law in Sects. 5 and 6.

A theoretical criterion for a half-power law in the form (15) was proposed by Yaglom 
(1979). Based on the three length scales �� = �∕u� , �p = �u2

�
∕(dP∕ds) , and � , the criterion 

can be written in the form 𝛿𝜈 ≪ 𝛿p ≪ 𝛿 (cf. Kader and Yaglom (1978), Yaglom (1979)), or 
alternatively in the form Δp+

s
≪ 1 and 𝛿+Δp+

s
≫ 1 (see Alving and Fernholz (1995)). The 

values of �+Δp+
s
 versus Δp+

s
 are shown in Fig.  6 (right) for the mean-velocity profiles in 

the database. From Fig.  6 (right) the downstream profiles of most data sets are meeting the 
criterion 𝛿+Δp+

s
> 15 (see criterion C3 below), albeit a value of several tens is not consid-

ered to be very high by Yaglom (1979). However, 𝛿+Δp+
s
> 100 is reached only for a few 

mean-velocity profiles.
To summarise: for the assessment of the half-power law region, the following criteria 

are used:

• C1: Two data points in the half-power law region below y∕� = 0.21 and 
ysqrt,max∕� ≤ 0.21 in Fig.  5 (right);

• C2: Nsqrt ≥ 3 for most of the mean-velocity profiles (see Fig.  6 (left));
• C3: 𝛿+Δp+

s
> 15 for at least two mean-velocity profiles (see Fig.  6 (right));

• C4: No significant history effects in the APG region.

The assessment of these criteria is given in the last column of Table   1. An additional 
minor criterion is the smoothness of the data. The calibration of the half-power law relies 
mainly on the data sets that satisfy all criteria. The mean-velocity profiles by Perry, Skare 
& Krogstad, and Schubauer & Klebanoff are at a high Re, exhibit a relatively thick half-
power law region and match all criteria C1 - C4. Among them, the lowest number of data 
points is for the case by Schubauer & Klebanoff, being only between three and five due to 
the large Δy+-spacing. Note that some of the mean-velocity profiles by Perry, by Schubauer 
& Klebanoff, and by Skare & Krogstad show some wiggles.

Some of the flows are not considered for the final calibration of the half-power law 
(see Table 1), violating already criteria C1 and C2. An additional difficulty is caused by 
the substantial wiggles in the data observed for the flows by Clauser and by Schubauer & 
Spangenberg. Nevertheless, these flows are useful to assess the calibration found for the 
more suitable data sets.

5  Results and Analysis

This section describes the results of the data evaluation and their analysis. The log-law/
half-power-law fit for a variety of mean-velocity profiles of the database is illustrated in 
Sect.  5.1. The robustness of the log law and the reduction of the extent of the log-law 
region in an APG are described in Sect. 5.2.
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5.1  Mean‑Velocity Profiles

This section illustrates the wall law and the results of the fitting method described in 
Sect.  4. First, two examples at moderately large values of Δp+

s
 are shown. The mean-

velocity profile for the flow by Marusic & Perry Marusic and Perry (1995) at x = 3.08m , 
Δp+

s
= 7.55 × 10−3 and at moderately large Re� = 19188 and Re� = 3406 is shown in 

Fig.  7 (left). The profile for the flow by Perry at Δp+
s
= 7.85 × 10−3 and high values of 

Re� = 73201 and Re� = 7926 (ID 2907) is given in Fig.  7 (right).

Π Π

Fig. 7  Left: Marusic & Perry at Δp+
s
= 7.17 × 10−3 and Re� = 3406 . Right: Perry (ID 2907) at 

Δp+
s
= 7.89 × 10−3 and Re� = 7926

Π
µ

Fig. 8  Left: Skare and Krogstad at station 4 at Δp+
s
= 0.012 and Re� = 5117 . Right: DLR/UniBw flow I for 

U∞ = 12m∕s at Δp+
s
= 0.049 and Re� = 2376
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Subsequently, profiles at large values of Δp+
s
 are studied. For the equilibrium flow 

by Skare & Krogstad, the mean velocity profile at Δp+
s
= 0.012 , Re� = 49107 and 

Re� = 5117 is given in Fig.   8 (left). Finally, the mean-velocity profile for the DLR/
UniBw experiment I for U∞ = 12m∕s at Δp+

s
= 0.049 , Re� = 20784 and Re� = 2376 is 

shown in Fig.  8 (right).
The log law in the mean velocity is found to be a robust feature for all flows. The 

region occupied by the log law is observed to be a large part of the inner layer for mod-
erate values of Δp+

s
 , but is found to be significantly smaller than 0.15� for Δp+

s
> 0.01 . 

For y+-values above the log-law region, the mean velocity turns upward above the log 
law and can be fitted by a half-power law. The upward turn above the log law in the 
inner layer is found to be increasing with increasing values of Δp+

s
 . The increase of the 

upward turn can be described by the half-power law and its dependency on Δp+
s
 . In the 

following, these qualitative observations are studied in more detail.

5.2  Reduction of the Log‑Law Region

The question is as to whether the log-law region extends up to y∕� = 0.15 as for ZPG. 
The results for ylog,max∕� versus Δp+

s
 are shown in Fig.  9 (left). Error bars for the indi-

vidual test cases are included, as described in Sect. 6.5. The log-law region extends up 
to y∕� = 0.15 only for the equilibrium flows in a mild APG by Bradshaw and Clauser 
(see Fig.  9 (left)). For the equilibrium flows in a larger APG by Bradshaw, Clauser, and 
Skare & Krogstad, ylog,max∕� is found to be reduced already at the first measurement 
position in the APG region.

Next, consider the flows which evolve from a region of almost ZPG and then enter 
the APG region. These are the flow by Ludwieg and Tillmann in a mild APG, the flows 
B and E by Schubauer & Spangenberg, the flow by Marusic & Perry, and the flow by 
Schubauer & Klebanoff. For these flows, the outer edge of the log law is near 0.15� in 

∆

δ

∆

δ
Fig. 9  Reduction of the extent of the log-law region in an APG in two different scalings
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the ZPG region, and a clear reduction is already found at the first measurement station 
in the APG region (see Fig.  9 (left)).

The DLR/UniBw experiment necessitates some additional comments. The flow 
passes a region of mild convex curvature and streamwise changing pressure gradient 
from favourable to adverse before entering the APG focus region, leading to a remark-
ably large reduction of the log-law region (see Figs. 13 and 14 in Knopp et al. 2021). 
Therefore, the low values found for ylog,max∕� are supposed to be influenced by history 
effects.

To summarise, the values for ylog,max∕� are found to be decreasing with increasing 
values of the pressure-gradient parameter, both in terms of Δp+

s
 and �RC . The overall 

observation is that ylog,max∕� is below 0.11 for Δp+
s
> 0.005 and 𝛽RC > 4.5 , and below 

0.08 for Δp+
s
> 0.015 and 𝛽RC > 12.

6  Correlations for a Wall Law

Now the aim is to describe the empirical correlations of the wall law. The functional 
form of the correlations is described in 6.1. The correlations are described in Sects. 6.2 
and 6.3. The analysis of the slope coefficient K of the half-power law (14) is given in 
Sect. 6.4. The uncertainties are estimated and discussed in Sect. 6.5.

6.1  Theoretical Considerations

The functional form of the correlations is prompted by two heuristic arguments, i.e., a similar-
ity argument and a scaling argument.

6.1.1  Similarity Arguments

The first step is to find the basic functional dependency using arguments from the self-similar-
ity analysis in Sect. 2.5. From this analysis, it is expected that y+

log,max
 will depend on the Reyn-

olds number and on the pressure-gradient parameter, in agreement with Yaglom (1979) and 
Klewicki et al. (2009). The first assumption is that �H is the most important parameter for the 
solution of (23). Consider the reduced Hartree parameter

based on (25). This neglects the influence of u�∕Ue . Note that u�∕Ue is expected to be rele-
vant for the outer layer as it determines the wake factor Π . For the inner layer, the influence 
of u�∕Ue is assumed to be small at the moment. The functional dependency of the log law 
and the half-power law is irrespective of its formulation in terms of u+(y+) and f �(�) . Then 
the following ansatz is made

with q ∈ ℝ to be determined. The next idea is to determine the value of s (later being 
related to q) so that the plot of y+

log,max
∕Res

�
 versus Δp+

s
 gives the least amount of spreading 

(27)−�H,red = Δp+
s
Re2

�

(28)�log,max =
y+
log,max

Re�
= C�

q

H,red
= CRe2q

�

(
Δp+

s

)q
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among the flows at different Re� in the database. This prompts the assumption 
y+
log,max

∼ Res
�
 . Then q can be inferred from

The least amount of spreading was found for s = 1∕2 (see Fig.  9 (right)), in agreement 
with the Re�-dependency found in Klewicki et al. (2009), Romero et al. (2022). The inter-
mediate result is

6.1.2  Scaling Arguments

The simplification of using (27) neglects an additional Re-dependence involved in 
u�∕Ue . Therefore, (30) is revisited and modified using the ansatz

with s = 2q� + 1 . A relation for q′′ can be found from a scaling argument. Consider the 
boundary-layer parameters in the modified scaling for the inner layer (see Sect. 2.4) for the 
Reynolds number based on uT

and for the pressure-gradient parameter in the modified inner scaling

When approaching separation, Δp+
s,T

→ 1∕Rec = 1∕12 due to (20) and does not approach 

infinity. Similarly �+
T
→ Re

1∕3
c �up∕� does not go to zero. Written in modified inner scaling, 

relation (31) becomes

The explicit dependence on u�∕uT disappears if q�� = 2q�∕3 . The choice q� = −1∕4 based 
on s = 1∕2 leads to q�� = −1∕6 . Note that the dependency on (uT∕u� )−2q

�+3q�� is only mild 
for q�� = −1∕5 (with −2q� + 3q�� = −0.1) and q�� = −0.13 (with −2q� + 3q�� = 0.11) found 
below.

6.2  The Extent of the Log‑Law Region

Motivated by these heuristic arguments, we obtained the final calibration mainly from 
the data fit, which is shown in Fig.  9 (right)

(29)�+
log,max

= CRe2q
�

(
Δp+

s

)q
=

y+
log,max

Re�
∼ Res−1

�
⇔ q =

s − 1

2
.

(30)y+
log,max

= CRe2q+1
�

(Δp+
s
)q , q = −

1

4
.

(31)y+
log,max

= CRe2q
�+1

�

(
Δp+

s

)q��

(32)�+
T
=

�uT

�
= �+

uT

u�

(33)Δp+
s,T

=
�

�u3
T

dPw

ds
= Δp+

s

(
u�

uT

)3

=

(
up

uT

)3

.

(34)y+
log,max,T

= CRe
2q�+1

T
(Δp+

s,T
)q

��

(
u�

uT

)2q�−3q��

.
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Note the change of the correlation (35) compared to the prior work in Knopp (2016), due 
to a revised analysis of the database and accounting for Re-effects.

The variability of the data points and possible reasons for the deviation from (35) 
are discussed in Sects. 7.1, 7.2, and 7.3. The variability is due, on the one hand, to the 
uncertainty in the data and in the method used to determine the extent of the log-law 
region, and, on the other hand, to possible additional physical effects and parameters 
beyond Δp+

s
 and Re� unaccounted for in (35).

6.3  Variation of the Half‑Power Law Region

The correlation for the beginning of the half-power law region is obtained in a similar 
manner to that employed for (35), using a data fit and guided by the heuristic arguments 
above. The same dependency on Re� as in (35) is used. The dependency on Δp+

s
 is a 

compromise due to the spreading in the data. The correlation becomes

The result is shown in Fig.  10 (left). Large symbols are used to highlight the data sets used 
with the highest priority for the calibration. Additional data are needed for Δp+

s
< 0.002 

and Δp+
s
> 0.03 at high Re.

6.4  The Slope Coefficient of the Half‑Power Law

In the half-power law (14), the question is as to whether K can be described by a con-
stant or follows a functional dependency, e.g., K = f (Δp+

s
) . For each profile of the data-

base, the value for K was determined by a least-squares fit of (14) to the experimental 

(35)y+
log,max

= 1.78Re1∕2
�

(Δp+
s
)−1∕5 .

(36)y+
sqrt,min

= 4.05Re1∕2
�

(Δp+
s
)−0.13 .

∆

δ

∆

Fig. 10  Variation of y+
sqrt,min

∕(�+)1∕2 (left) and results for K (right) using large filled symbols to highlight 
the data sets used for the calibration



592 Flow, Turbulence and Combustion (2022) 109:571–601

1 3

data in the half-power law region. Note that K depends on the choice for �+ in (14). As 
in all the present work, �+ = Δp+

s
 is used both for equilibrium flows and streamwise 

evolving flows. The results for K are shown in Fig.  10 (right). The data sets used for the 
calibration (SKr, SKl, MP, SJ, LT1) satisfy all criteria C1-C4 and are plotted using large 
filled symbols. The data sets by Perry and the DLR/UniBw experiments are considered 
at a lower priority, due to supposed history effects, and are plotted using small filled 
symbols. The other data sets not used for the calibration are plotted using open symbols. 
The values for K are found to scatter around a value of K = 0.45 ± 0.15 . The variabil-
ity in K is assumed to be due, on the one hand, to an uncertainty in the data and in the 
method of determining K (see Sect.  6.5), and possibly, on the other hand, to differences 
in the flow characteristics (see Sects. 7.1-7.3).

For comparison, values reported in the literature for flows with non-zero skin friction 
are K = 0.48 ± 0.03 in Townsend (1961), K = 0.48 in Perry (1966), and values between 
0.41 and 0.51 in Szablewski (1960). For large values of Δp+

s
�+ , values reported are 

K = 0.447 in Kader and Yaglom (1978) and K = 0.57 in Afzal (2008). Note that the val-
ues obtained for K depend on the form of the half-power law, i.e., (14) or (15), and on 
the region used for the least-squares fit. For example, if the half-power law fit is applied 
above the log-law region, as proposed by Perry (1966), then smaller values are obtained 
than if the fit is applied to all data in the inner layer above the buffer layer, as used e.g. 
by Afzal (2008).

To summarise, a constant value for K = 0.45 ± 0.15 is advocated, whose magnitude 
is congruent with previous findings in the literature.

6.5  Discussion of the Uncertainties

The variability of the results due to the uncertainty in the data and in the method for the 
data evaluation needs to be studied. First the uncertainties for y+

log,max
 and y+

sqrt,min
 are 

discussed. The first aspect is the uncertainty due to the distance Δy+ between adjacent 
data points. The second aspect is the uncertainty due to the wiggles in each mean-veloc-
ity profile.

The results for the extent of the log-law region with the estimated uncertainty bars 
are shown in Fig.  9 (right). For each mean-velocity profile, the deviation of the most 
likely value for y+

log,max
 from the minimum and maximum possible value was determined, 

yielding the basic uncertainty. Additional contributions to the error bars are an esti-
mated relative uncertainty of 10% in � , of 6% in u� , and of 1% in � . The correlation is 
within or close to the uncertainty bars for most of the profiles except for the flows Br1, 
BrF, Cl1, DM2, and DM3. The results for the beginning of the half-power law region 
with the estimated error bars are shown in Fig.  10 (left). The deviations will be dis-
cussed below in Subsects. 7.1, 7.2, and 7.3.

Concerning the variability of K, two contributions are studied. The first aspect is the 
uncertainty of Δp+

s
 , which affects the value inferred for K. A relative uncertainty for Δp+

s
 

of 25% was assumed, corresponding to an average relative uncertainty of 5% in dP∕ds , 
of 6% in u� and of 1% in � and � . A Monte-Carlo type approach yields an uncertainty 
of up to 11% for K. The second aspect is the lower and upper bound used for the half-
power law fit. This was varied by adding and/or removing the first and/or the last data 
point in the half-power law region using a Monte-Carlo type approach. This uncertainty 
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was found to become large for profiles having a small number of data points in the half-
power law region and for profiles exhibiting discernible oscillations. The details of the 
uncertainty estimates are described in appendix A.

The values for K with the error bars are shown in Fig. 10 (right). The spreading of 
the data points for K is within the uncertainty bars. The values for the flow by Perry 
are found to be larger than K = 0.45 , whereas the values for the DLR/UniBw flows are 
smaller than for most of the other flows. This difference indicates that the value of K 
could be influenced by additional physical effects. This issue is discussed in Sects. 7.1 
and 7.3.

To summarise: the spreading of the data around the correlations (35), (36) and 
around K = 0.45 occurs mostly within the uncertainty bars.

7  Discussion of the Wall Law

Some aspects and issues of the wall law are worth discussing. The conjecture of a local 
wall law is discussed in Sect. 7.1. Higher-order local effects and history effects are studied 
in Sect.  7.2. The influence of the measurement accuracy improvement between the old-
est and the more recent data and the comparison with data for low-Re flows are studied in 
Sect. 7.3. The question of the breakdown of the log law is discussed in Sect. 7.4.

7.1  Conjecture of a Local Wall Law

The main conjecture is the existence of a wall law for the mean velocity in the inner layer, 
which is governed mainly by local parameters and whose leading order effects can be 
described by Δp+

s
 and Re� . Here Re� is considered as a local parameter, as it depends on 

the local value of � , albeit � is not a quantity of the near-wall flow and depends on the 
flow history. The need for Re� is described in the work by Klewicki et al. (2009). Higher-
order effects are assumed to slightly alter the wall law. Higher-order local effects are the 
mean flow acceleration described by the parameter Δu+

�,s
 , and the effects of an increasing 

or decreasing APG, described by Δ2p+
s
 based on d2P∕ds2 . The local flow parameters and 

their order of importance can be inferred from the models for the total shear stress (see 
Sect. 2.2). The first-order approximation is the linear stress distribution �+ = 1 + Δp+

s
y+ , 

and Δp+
s
 appears as the leading order parameter. The relative importance of the mean-

inertia term increases with increasing y+ . Therefore Δu+
�,s

 is interpreted as a second-order 
parameter. Additional higher-order effects involve the parameter Δ2p+

s
.

History and non-equilibrium effects can cause additional changes of the wall law. In 
streamwise evolving flows, the changing flow parameters can cause an imbalance between 
the different terms in the mean momentum equation. History effects are due to the finite 
response time of the flow to imbalancing effects (see Gungor et al. 2016). The response 
time of the mean flow is different in the different regions of the boundary layer, and the 
mean-velocity profile is the cumulative result of local conditions and history effects (see 
Gungor et al. 2016). An attempt to describe the response time of the local mean flow uses 
the eddy turn-over time Tt.o. = �y∕u∗ (see Sillero et al. 2013). The eddy turn-over length 
�t.o. = UTt.o. is the streamwise travelling distance of the local mean flow U(y) within Tt.o. . 
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By using u∗ = �1∕2 based on the total shear stress � in conjunction with (10), the following 
estimate for �t.o. as a multiple of � at the wall-distance � = y∕� can be obtained

Following Sillero et  al. (2013), the flow tends to relax to equilibrium within 2�t.o. . The 
evaluation of �t.o.∕� using (37) leads to the estimate 2�t.o. ≈ � for � = 0.1 and 2�t.o. ≈ 2� 
for � = 0.2 for Δp+

s
⪆ 0.004 . This leads to the assumption that the flow in the inner layer 

relaxes rapidly, although not instantaneously. History effects are expected to be more rel-
evant in the half-power law region than in the log-law region. The outer part of the inner 
layer can be influenced by history effects of the outer layer, given that the inner and outer 
layers are connected by an overlap region and that history effects are more prominent in the 
outer layer. In the outer layer, significant development distances are required for the large-
scale turbulent motion to adjust to the local pressure-gradient conditions and for the mean 
flow to ”forget” perturbations (see Marusic et al. 2015), and the prior path of �RC-values 
was found to be relevant for the history effects (see Bobke et al. 2017 and Vila et al. 2017).

The conjecture of a local wall law, the systematic reduction of the log-law region, and 
the appearance of a half-power law above the log law for turbulent boundary-layer flows are 
seen to be in concurrence with the findings for Couette-Poiseuille (CP) flow by Telbany and 
Reynolds (1980), as described in the introduction. Note that CP flow is a self-similar flow in 
dynamic equilibrium within the meaning of Gungor et al. (2016). This supports the proposi-
tion that the wall law is a first-order effect of the pressure gradient and not a history effect, 
given the applicability of the ”moving-equilibrium” concept, as described in Sect. 7.2.

7.2  Discussion of Higher‑Order Local and History Effects

The variability of ylog,max , ysqrt,min and K due to possible higher-order local effects depend-
ing on, e.g., Δu+

�,s
 and Δ2p+

s
 , and history effects is discussed. The question is whether any 

systematic trends can be found.

(37)
�+t.o.(�)

�+
=

�u+�

(1 + �+��+)1∕2
.

δ

∆∆

δ
Fig. 11  Reduction of the log-law region highlighting in large symbols the equilibrium flows (left) and the 
streamwise evolving flows (right) for the data of Fig.  9 (right)
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For this purpose, the data of Fig.  9 (right) are depicted again in Fig.  11 using two high-
lighted groups of data for greater clarity. The equilibrium flows are highlighted in Fig.  11 
(left) and the streamwise evolving flows are highlighted in Fig. 11 (right). The highlighted 
data sets are plotted using large symbols and include error bars, whereas the other data sets 
are plotted using small symbols and without error bars.

The variability of the extent of the log law is studied first. The equilibrium flows in a 
mild APG show slightly larger values for y+

log,max
∕(�+)1∕2 compared to the streamwise 

evolving flows in a mild APG (see Fig.  11 (left)). However, similar differences cannot be 
observed for Δp+

s
> 0.01 . Moreover, a clear effect of Δ2p+

s
 cannot be identified from the 

flows by Perry and by Samuel & Joubert. For the variability of y+
sqrt,min

∕(�+)1∕2 , similar 
observations can be made.

The significantly lower values found for y+
log,max

∕(�+)1∕2 for the two DLR/UniBw experi-
ments are supposed to be due to history effects originating from a region of convex curva-
ture and streamwise changing pressure gradient upstream of the APG region. Note that the 
ratio of � to the radius of curvature was increased by a factor of two in the DLR/UniBw 
experiment II compared to the experiment I. This could explain the larger effects observed 
for the experiment II. The role of the measurement accuracy is discussed in Sect. 7.3.

The variability of K in Fig.  10 (right) is supposed to be attributed to both higher-order 
local and history effects. Both are expected to be increasing with increasing wall-distance. 
Equilibrium flows and streamwise evolving turbulent boundary-layer flows cannot be 
clearly distinguished. The largest values for K are found for the flow by Perry Perry (1966). 
The values at the first three stations (which are at the lowest Δp+

s
-values) could be influ-

enced by history effects due to the flow acceleration upstream of the APG region. For the 
DLR/UniBw experiment, the relatively small values for K are supposedly due to history 
effects of the upstream region of streamwise convex curvature and streamwise changing 
pressure gradient.

To summarise, no systematic trends of the variability of ylog,max , ysqrt,min and K on 
higher-order local effects can be found. History is found to have an effect, but more data 

∆

δ

∆

δ

Fig. 12  Influence of measurement accuracy on y+
log,max

∕(�+)1∕2 (left, some acronyms omitted in legend) and 

of small Re for y+
log,max

∕(�+)1∕2 (left) and y+
sqrt,min

∕(�+)1∕2 (right)
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sets are needed to find systematic trends. This leads to the conclusion that a more refined 
model than (35), (36) cannot be found given the uncertainties of the present data sets.

7.3  Measurement Accuracy and Low‑Re Effects

The values for y+
log,max

∕(�+)1∕2 for the DLR/UniBw data are found to be significantly lower 
than for the other flows. Although a physical explanation for this can be given, it is worth-
while to investigate as to whether, between the oldest and the more recent data, there is also 
an influence of the measurement accuracy improvement. For this purpose, the results of 
Figs.  10 and 11 are revisited. The more recent experimental data sets by Skare & Krog-
stad, Marusic & Perry, Samuel & Joubert and the DLR/UniBw flows are highlighted in 
Fig.  12 (left) using large symbols. Moreover, the DNS data by Coleman et al. (2018) and 
the experiment by Nagano et al. (1991) at low Re are included and highlighted. The dashed 
line is for the value C = 1.78 found in (35). The dash-dotted line is for C = 1.68 , which is 
only a small modification to improve the agreement with the highlighted data. The first 
conclusion is that the correlation is useful over a large range of Re, as the low-Re data are 
close to the high-Re data. The second conclusion is the suggestion that the constant in (35) 
be changed to C = 1.68.

Now the role of the measurement accuracy and the details of the method to determine 
y+
log,max

 are studied. On the one hand, the number of data points in the log-law region is 
increased for the more recent data. For example, Marusic & Perry achieved 13 data points 
in the log-law region below y+

log,max
= 252 at Δp+

s
= 7.5 × 10−3 compared to four points for 

Schubauer & Spangenberg (flow E) at a similar Δp+
s
 . The larger number of data points 

gives a more critical view on the r.m.s. deviation between the u+-profile and the log law. 
This can lead to smaller values for y+

log,max
.

To illustrate, consider the DLR/UniBw flow II data for U∞ = 36m∕s . The results 
denoted by DM3v use an enlarged interval for the least-squares fit of u+ to the log law up to 
y+ = 250 (see Table  3). The idea is to emulate possible effects of the least-squares fit 
method used by Coles & Hirst. The increased interval yields larger values for 
y+
log,max

∕(�+)1∕2 , reducing the deviation to the other flows. However, this is at the cost of a 
larger r.m.s. deviation and hence questionable. It is concluded that the measurement accu-
racy can explain in parts the deviation of the DLR/UniBw data. However, such cannot 
explain the full deviation, indicating that additional physical effects are causing the large 
bulk of the deviation.

It is worth commenting on the use of � = 0.41 and B = 5.0 for the older flows. An indi-
rect method for u� might mask the subtle changes of � and B in  situations in which the 
mean velocity deviates from the universal log law (see Wei et al. 2005). Note that for the 
flows by Marusic & Perry and Samuel & Joubert, the agreement with the log law with 
� = 0.41 and B = 5.0 is very good. For the flows by Skare & Krogstad and by Perry, an 
assessment is not possible due to the wiggles in the u+-profile. The changes of y+

log,max
 if fit-

ted values for � and B are used, are well within the error bars. Moreover, for the old data, 
changes of � and B could be masked by near-wall measurement errors in the mean velocity 
using Pitot tubes, as recently revealed by Bailey et al. (2013).

The results for y+
sqrt,min

∕(�+)1∕2 for the low-Re flows are included in Fig.  12 (right). The 
data by Nagano and by Coleman et al. are highlighted using large symbols. They evince 
good agreement with the other data at moderate and high Re as well as with the correlation 
(36).
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To summarise, the focus on the more recent data sets and the use of two flows at low Re 
confirm the results found in Sect. 6. As a minor change, the constant C in (35) is changed 
from 1.78 to 1.68.

7.4  On the Breakdown of the Log Law for 1p+
s
> 0.05

The hypothesis of the breakdown of the log law, if Δp+
s
 exceeds some threshold, e.g., 

Δp+
s
> 0.05 (see Alving and Fernholz 1995) is considered. The breakdown of the log law is 

understood here as the breakdown of a log-linear region u+ ∼ log(y+) , and is distinguished 
from a change of � and B. Correlation (35) yields y+

log,max
= 3.24(�+)1∕2 for Δp+

s
= 0.05 . 

This implies that the log law extends up to y+ = 92 for Re� = 800 , indicating a rather thin 
region, whereas it extends up to around y+ = 162 for Re� = 2500 reached in the DLR/
UniBw experiment I. Here, it is noteworthy that the outer edge of the log law in an APG 
from (35) is even smaller than the widely believed start of the log-law region in ZPG flows 
(see Marusic et al. 2013). Thus (35) is seen to be in agreement with the previous work by 
Alving and Fernholz (1995).

8  Conclusion

An empirical wall law for the mean streamwise velocity for turbulent boundary-layer flows 
in an adverse pressure gradient is presented from a database analysis and from scaling and 
similarity arguments. The wall law describes the inner 20% of the boundary layer and is 
composed of a log law and a half-power law above the log law. For the slope coefficient 
of the half-power law K, a value of K = 0.45 ± 0.15 is found, in agreement with previous 
findings in the literature. An empirical correlation for the reduction of the log-law region 
in ratio to the boundary-layer thickness is proposed. The leading order parameters are the 
pressure-gradient parameter Δp+

s
 and Re� . The results support the conjecture of the exist-

ence of a local wall law for the mean velocity and the moving equilibrium concept by 
Kader and Yaglom (1978). Systematic changes of the wall law due to higher-order local 
effects and significant differences between equilibrium flows and streamwise evolving 
flows cannot be identified, given the uncertainties in the data. History effects are larger 

Table 2  Uncertainty estimation for the method to determine K of the half-power law (14)

Author ID �(K) due to 
�(Δp+

s
) = 0.25(%)

�(K) due to �(Isqrt ) = Δy+
i
(%) Sum �(K)

�60(%) �80(%) �95(%) �sum(%)

Ludwieg & Tillmann, mild 1100 8.8 13.1 21.8 29.1 30.6
Ludwieg & Tillmann, strong 1200 9.1 13.7 20.8 39.0 29.9
Schubauer & Klebanoff 2100 11.2 11.0 21.8 23.1 33.0
Perry 2900 11.1 6.7 13.9 28.2 25.0
Samuel & Joubert – 9.4 3.6 9.7 14.0 19.1
Marusic & Perry – 9.5 3.1 5.0 8.5 18.0
Skare & Krogstad – 10.9 5.8 16.9 28.9 27.8
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in the half-power law region than in the log-law region and contribute to the variability 
observed for K.

The correlation proposed for the erosion of the log-law region in an adverse pressure 
gradient can describe the hypothesis of the breakdown of the log law, if Δp+

s
 exceeds some 

threshold, e.g., Δp+
s
> 0.05 , as described by Alving and Fernholz (1995). Moreover, the 

correlation implies that strict self-similarity of the mean-velocity profile in the inner layer 
cannot be expected, given the same value of the Rotta-Clauser pressure-gradient parameter 
�RC alone, in agreement with the findings reported in Bobke et al. (2017) and Vila et al. 
(2017).

The correlation to describe the reduction of the log-law region in an adverse pressure 
gradient could also be of interest for experimental methods. The correlation could be used 
as an initial guess to identify the region of data points to which the Clauser-chart method 
can be applied.

Uncertainty Estimation

The uncertainty estimation for the slope coefficient K of the half-power law (14) is summa-
rised in Table 2. The sensitivity of K on Δp+

s
 is found to be increasing from around 9% for 

Δp+
s
= 0.005 to 11% for Δp+

s
= 0.015 . The sensitivity of K on the lower and upper bound 

of the interval Isqrt used for the half-power law fit was studied using a Monte-Carlo type 
approach, where �(Isqrt ) = Δy+

i
 denotes the variation of Isqrt by adding and/or removing one 

measurement point at the lower and/or upper bound of Isqrt , as described in Sect. 6.5. The 
values found for the confidence intervals for the levels 60% , 80% , and 95% are given in the 
table. The total uncertainty (denoted by �sum ) is the sum of �(Δp+

s
) and �80(Isqrt ) . As an 

exception, �95(Isqrt ) is used for the flow by Marusic & Perry, due to the low values for this 
test case.

Table 3  Sensitivity study for y+
log,max

 for the DLR/UniBw experiment at U∞ = 36m∕s

U∞ in m∕s x in m Meas. techn. 
for U

Method 
for u�

Log law fit 
y+
min

Log law fit 
y+
max

� (fit) B (fit) y+
log,max

 log 
law region

36 9.944 3D LPT dir. 86 154 0.379 3.45 174
36 9.944 3D LPT dir. 86 185 0.372 3.20 193
36 9.944 3D LPT dir. 86 215 0.364 2.92 195
36 9.944 3D LPT dir. 86 250 0.353 2.49 225
36 9.944 3D LPT CCM 86 154 0.369 3.69 160
36 9.944 3D LPT CCM 86 185 0.360 3.34 184
36 9.944 2D PIV CCM 86 185 0.325 1.86 183
36 10.02 2D PIV CCM 80 150 0.316 1.49 203
36 10.02 2D PIV CCM 80 185 0.317 1.51 204
36 10.02 2D PIV CCM 80 215 0.315 1.34 210
36 10.02 2D PIV CCM 80 250 0.312 1.06 248
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Sensitivity Study of the Method for y+
log,max

The sensitivity study described in Sect. 4.2 for y+
log,max

 for the DLR/UniBw experiment at 
U∞ = 36m∕s is summarised in Table 3. The different values for y+

log,max
 were obtained by a 

variation of the interval (y+
min

, y+
max

) used to compute the least-square fit of the u+-profile to 
the log law as described in Sect. 4.2. The results for y+

log,max
 are given in the last column. 

The values obtained for � and B from the fit are also given in the table.
For y+

max
= 185 the r.m.s. deviation is relatively small and u+ follows the log law up to 

significantly larger y+-values ( y+
log,max

 up to 200) than used for the fit. For y+
max

 up to 215, 
the changes of y+

log,max
 are much smaller than the changes of y+

max
 . For y+

max
= 250 , the r.m.s. 

deviation becomes larger and the increased values for y+
log,max

 are more questionable. The 
assessment of the r.m.s. deviation is possible only thanks to the large number of data points 
in the log-law region and the smoothness of the data. Note that such is not possible for 
most of the old data sets in the database. The changes of y+

log,max
 are much smaller than the 

changes in � and B. The values for � and B are adversely affected by the lower resolution of 
the 2D PIV method, by a too large interval for If it , and by the indirect method to determine 
u� (see Knopp et al. 2021). Note that the resolution of the 2D PIV method was too low in 
the log-law region for an accurate determination of � and B. If u� is determined from the 
CCM, then the y+

log,max
-values are reduced by around 6% , due to the reduction of u� for the 

CCM compared to the direct method.
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