
Combinatorial Problems in
Programming Quantum Annealers

Dissertation zur Erlangung des akademischen Grades

doctor rerum naturalium
(Dr. rer. nat.)

von M.Sc. Elisabeth Lobe ,

geboren am 17.01.1990 in Meißen,

genehmigt durch die Fakultät für Mathematik

der Otto-von-Guericke-Universität Magdeburg,

begutachtet von Prof. Dr. Volker Kaibel und

Prof. Dr. Frauke Liers,

eingereicht am 25. Januar 2022,

verteidigt am 13. Mai 2022,

betreut am Institut für Softwaretechnologie des

Deutschen Zentrums für Luft- und Raumfahrt

von Dr. Tobias Stollenwerk und

Dr.-Ing. Achim Basermann

https://orcid.org/0000-0002-3473-8906
https://orcid.org/0000-0001-5445-8082
https://orcid.org/0000-0003-3637-3231

Ehrenerklärung

Ich versichere hiermit, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne
Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; verwendete fremde und
eigene Quellen sind als solche kenntlich gemacht.

Ich habe insbesondere nicht wissentlich:

� Ergebnisse erfunden oder widersprüchliche Ergebnisse verschwiegen,

� statistische Verfahren absichtlich missbraucht, um Daten in ungerechtfertigter Weise zu
interpretieren,

� fremde Ergebnisse oder Veröffentlichungen plagiiert oder verzerrt wiedergegeben.

Mir ist bekannt, dass Verstöße gegen das Urheberrecht Unterlassungs- und Schadensersatzan-
sprüche des Urhebers sowie eine strafrechtliche Ahndung durch die Strafverfolgungsbehörden
begründen kann.

Die Arbeit wurde bisher weder im Inland noch im Ausland in gleicher oder ähnlicher Form als
Dissertation eingereicht und ist als Ganzes auch noch nicht veröffentlicht.

Declaration of Honor

I hereby declare that I produced this thesis without prohibited assistance and that all sources of
information that were used in producing this thesis, including my own publications, have been
clearly marked and referenced.

In particular, I have not wilfully:

� Fabricated data or ignored or removed undesired results.

� Misused statistical methods with the aim of drawing other conclusions than those warranted
by the available data.

� Plagiarised data or publications or presented them in a distorted way.

I know that violations of copyright may lead to injunction and damage claims from the author
or prosecution by the law enforcement authorities.

This work has not previously been submitted as a doctoral thesis in the same or a similar form
in Germany or in any other country. It hast not previously been published as a whole.

Magdeburg, 25. Januar 2022

Elisabeth Lobe

Zusammenfassung

Bevor auf einer Quanten-Annealing-Maschine, wie der der Firma D-Wave Systems Inc., Be-
rechnungen durchgeführt werden können, sind zwei grundlegende Schritte notwendig, um das
Originalproblem in ein Format zu übertragen, das von solchen Maschinen gelöst werden kann:
Als Erstes muss ein mit dem Problem assoziierter Graph in den speziellen Hardwaregraphen
eingebettet werden und als Zweites müssen die Parameter des eingebetteten Problems entspre-
chend weiterer Hardwarerestriktionen gewählt werden, sodass die Lösungen des eingebetteten
Problems beweisbar äquivalent zu den ursprünglichen Lösungen sind. Diese Doktorarbeit adres-
siert graphentheoretische Fragestellungen und kombinatorische Optimierungsprobleme, die bei
der genaueren Betrachtung beider Schritte auftreten.

Im ersten Teil dieser Arbeit analysieren wir die Komplexität des Einbettungsproblems im Quan-
ten-Annealing-Kontext, das heißt für Chimera- und Pegasus-Hardwaregraphen mit zum Teil
nicht nutzbaren, „defekten“ Qubits. Wir beweisen die Schwere des Hamiltonkreisproblems, ei-
nem Spezialfall des Einbettungsproblems, in solchen Graphen durch die Konstruktion defekter
Chimera-Graphen aus speziellen Graphen, für welche die Schwere des Problems bereits bekannt
ist. Da der Chimera- ein Subgraph des Pegasus-Graphen ist, können wir das Resultat auf letzteren
übertragen.

Ein weiterer Spezialfall ist die Einbettung eines vollständigen Graphen, welcher ein universel-
les Template für die Einbettung von beliebigen Graphen mit einer kleineren oder gleich großen
Zahl an Knoten darstellt. Durch die Formulierung als Matchingproblem mit zusätzlichen linearen
Nebenbedingungen können wir zeigen, dass das Problem eingeschränkt auf die sich natürlich erge-
bende Einbettungsstruktur „fixed-parameter tractable“ ist, wenn wir die Zahl der defekten Qubits
im Chimera-Graphen als Parameter betrachten. Wir vergleichen unser Verfahren mit vorherigen,
heuristischen Ansätzen auf verschiedenen, zufällig generierten defekten Hardwaregraphen. Dabei
können wir einen Vorteil unserer Methode gegenüber den anderen hinsichtlich der gefundenen
Graphengrößen in der Praxis zeigen. Zusätzlich geben wir ein heuristisches Modell mit weniger
Nebenbedingungen an, welches noch bessere Resultate liefert.

Der zweite Teil beschäftigt sich mit der Wahl der geeigneten Parameter, für welche wir hinreichen-
de Bedingungen formulieren können. Durch die Betrachtung eines einzelnen Originalknotens und
verschiedener, von der Hardware abgeleiteter Zielsetzungen können wir spezielle lineare Optimie-
rungsprobleme extrahieren. Die Analyse eines entsprechenden Polyeders der zulässigen Lösungen
zeigt, dass optimale Lösungen zu diesen Problemen in vielen Fällen in Linearzeit gefunden wer-
den können. Für die verbleibenden Fälle konstruieren wir einen Algorithmus, der die Parameter
in höchstens kubischer Laufzeit angibt. Aufgrund der Problemstruktur gelten diese Resultate
sogar, wenn wir uns auf Ganzzahligkeit einschränken.

Abstract

Before being able to perform calculations on a quantum annealing device such as D-Wave’s, two
essential steps are required to transfer the original problem into a format which can be solved by
these machines: First, a graph associated with the problem needs to be embedded into the specific
hardware graph and, secondly, the parameters of the embedded problem need to be chosen, in
accordance with further hardware restrictions, such that the solutions to the resulting problem
are provably equivalent to those of the original problem. This thesis addresses graph theoretical
questions and combinatorial optimization problems appearing in the closer examination of both
steps.

In the first part of this work, we analyze the complexity of the embedding problem in the
quantum annealing context, this means when restricting to Chimera or Pegasus hardware graphs
containing unavailable, ‘broken’ qubits. We prove the hardness of the Hamiltonian cycle problem,
a special case of the embedding problem, in such graphs by constructing broken Chimera graphs
from certain graphs for which it is known that finding a Hamiltonian cycle is hard. As the
Chimera graph is a subgraph of the Pegasus graph, we can easily extend the result to the
latter.

A further special case is the embedding of a complete graph, forming a universal template for
the embedding of all arbitrary graphs with a smaller or equal number of vertices. By formulating
this problem as a matching problem with additional linear constraints, we can prove that the
problem restricted to the naturally arising embedding structure is fixed-parameter tractable in
the number of broken vertices in the Chimera graph. By testing our model against previous,
heuristic approaches on various random broken hardware graphs, we can further show that our
method performs superior in practice. Additionally, we provide a heuristic model with less
constraints, showing an even better performance.

The second part is concerned with the problem of setting feasible parameters for the machine,
for which we can formulate sufficient requirements. Considering a single original vertex and
different objectives derived from the hardware restrictions, we extract certain linear optimization
problems. By analyzing a corresponding polyhedron of feasible solutions, we can show that
optimal solutions to these problems can be found in linear time for a lot of cases. For the
remaining cases, we construct an algorithm providing the parameters in at most cubic time. Due
to the problem structure, these results even hold if we restrict ourselves to integer problems.

Acknowledgments

I gratefully acknowledge the Jülich Supercomputing Centre (JSC) for supporting this work by
providing the access to the D-Wave 2000Q through the Jülich UNified Infrastructure for Quantum
computing (JUNIQ).

Furthermore, I am very thankful for the working conditions and the support that I found at
the German Aerospace Center (DLR), where I prepared this thesis at the Institute for Software
Technology.

Contents

1 Introduction 1

1.1 The Black Box . 1

1.2 Programming a Quantum Annealer . 3

1.3 Outline . 5

2 Restricted Ising Problem over Chimera Graph 7

2.1 General Notation . 7

2.2 Ising Problem . 8

2.3 Chimera Graph . 11

3 Minor Embedding 13

3.1 Minors and Embeddings . 13

3.1.1 Basic Definitions . 13

3.1.2 In Quantum Annealing . 15

3.1.3 Related Work . 16

3.2 NP-Completeness Proof . 18

3.2.1 Reduction of the Hamiltonian Cycle Problem 18

3.2.2 Basics of Grid Graphs . 20

3.2.3 Broken Chimera Graph Construction . 22

3.2.4 Hamiltonicity . 27

3.2.5 Transfer to Pegasus . 40

3.3 Largest Complete Graph . 43

3.3.1 Matching Problem Approach . 43

3.3.2 Extension of the Chimera Graph Description 45

3.3.3 ILP Formulation . 47

3.3.4 Analysis . 53

3.3.5 Heuristic ILP . 57

3.3.6 Experimental Setup . 58

3.3.7 Results . 59

4 Weight Distribution 63

4.1 Problem Extraction . 63

4.1.1 Embedded Ising Model . 63

4.1.2 Synchronization . 66

4.1.3 Related Work . 68

4.1.4 Single Vertex Evaluation . 69

4.2 Optimization Problem Formulation . 71

4.2.1 Instance Definition . 71

4.2.2 Simplifications . 75

4.2.3 LP Formulation . 82

4.2.4 Case Distinction . 85

I

Contents

4.3 Special Cases . 87
4.3.1 Trivial Weighting . 87
4.3.2 Zero Weight . 88

4.4 Simplified Description of the Θ-Polyhedron . 92
4.4.1 Connected Vertex Sets . 92
4.4.2 Arcs in Trees . 98
4.4.3 Eliminating the Gap Requirement . 100
4.4.4 Unique Root . 102
4.4.5 Contraction of Multiple Roots . 104

4.5 Strength-Only Problem on Trees . 106
4.5.1 Objective Value . 106
4.5.2 Straightforward Weights . 109
4.5.3 Second-level Weight Optimization . 112
4.5.4 De-contraction . 119

4.6 Full Problem on Trees . 122
4.6.1 Uniqueness . 123
4.6.2 Non-negative Weights . 125
4.6.3 Weight Calculation Algorithm . 130
4.6.4 Adjusted Algorithm Including De-contraction 142

4.7 Integer Programming . 147
4.7.1 The Problems . 147
4.7.2 Straightforward Insights . 148
4.7.3 Rounded Up . 149

5 Conclusions 155

Lists III

Problems . III
Figures . III
Tables . V
Algorithms . VI

Bibliography VII

II

1 Introduction

Quantum computing devices have gained growing attention in recent years. By the exploitation of
quantum mechanical effects, this new technology promises to defeat classical computers in solving
difficult problems, at least prospectively with the ongoing development of these machines: While
a classical bit can only be in one of two possible states, ‘0’ or ‘1’, a quantum bit, in short qubit,
can be in two states at the same time. This property, called superposition, enables the quantum
parallelism, which allows to calculate on both values at the same time.

Even more such powerful quantum mechanical properties exist, which draw a distinction between
the quantum and the classical world. By transferring their advantages to new models of com-
putation, new machines shall be built that execute computations based upon these properties
more efficiently than classical devices. A decisive step has been done by the Canadian com-
pany D-Wave Systems Inc. with the development of the first commercially available quantum
annealer.

1.1 The Black Box

The quantum device of D-Wave implements a specific physical model, the Ising model, named
after the German physicist Ernst Ising, who investigated the ferromagnetism in solids together
with his doctoral advisor Wilhelm Lenz [27]. The quantum processor of such a machine con-
sists of overlapping superconducting loops, in which the direction of a current flow causes a
magnetic spin. This spin points up or down, thus is in state ‘+1’ or ‘−1’, or is in a quantum
mechanical superposition of both, thus in ‘+1’ and ‘−1’ simultaneously. Due to this feature, the
superconducting loops can represent qubits in a quantum system [29].

Where two loops are coupled by a joint, they influence each other in one of two possible ways:
If the coupling is ferromagnetic, the spins of both loops tend to point in the same direction, if it
is antiferromagnetic, they point to different directions. By applying an external magnetic field,
the quantum annealer can adjust the magnetism. The pairwise interactions between all qubits
can therefore be described by a quadratic function with quadratic terms for all interacting loops
weighted depending on the magnetism. The minimal solution of this function corresponds to the
state of the quantum system with the lowest possible energy, the ground state. In other words,
we can construct a quantum system that represents the objective function of a quadratic binary
optimization problem and, in order to solve this problem, we need to prepare the ground state.

D-Wave applies the following strategy: The machine starts in a configuration of the quantum
system whose ground state can easily be set up and is formed by all qubits being in a super-
position. Afterwards, the magnetic fields are modified to yield the desired quantum system,
meanwhile the superpositions may break up. If the manipulation is done ‘sufficiently slow’, the
resulting system is still in the ground state and, by measuring the system, we obtain the (clas-
sical) optimal spin states according to the magnetism and with them an optimal solution to the
encoded optimization problem.

1

1 Introduction

‘Sufficiently slow’ means here by an adiabatic evolution process in accordance with the adiabatic
theorem, a fundamental result in quantum mechanics, stated in its original form in [8]. Therefore,
the underlying concept is also called adiabatic quantum computation [19]. This needs however to
be distinguished from ‘conventional’ quantum computation because it does not yield universal
programmability in a straightforward way, which means in terms of implementing quantum
circuits with quantum logical gates. Corresponding machines are rather built for executing only
a single ‘algorithm’. Representing a natural process, the devices are sometimes also referred to
as analog quantum computers [17]. Nevertheless, in [3] the authors could show that adiabatic
quantum computation can efficiently simulate quantum circuits by encoding their output as the
final ground state. For detailed background information about the computational concept, we
refer to the comprehensive review in [4].

The adiabatic theorem is only applicable under ideal conditions. The realization of this theoret-
ical concept however turns out to be difficult due to several physical restrictions. One of them
is, for instance, the shielding against noise from the environment, which can never be achieved
entirely. Thus, the D-Wave machines in reality rather serve as a sampler of the low-energy dis-
tribution of the desired quantum system: By repeating the adiabatic evolution process several
times with the same configuration, various solutions are obtained in a single run [31].

Although some empirical studies, such as [30], show that the computational output is in general
close to the optimal objective value, the probability of finding the optimal solution at least once
in such a run varies greatly and cannot be determined in advance. Therefore, these ‘imperfect’
devices can only be considered as heuristic solvers. For the distinction from the computational
concept, the term quantum annealing, with reference to the classical heuristic simulated anneal-
ing, has been established nowadays to describe the process of heuristically solving optimization
problems through adiabatic evolution [41].

Several factors can suppress what is known as the success probability of the quantum annealers
even further. Some of them can be influenced by user-defined system parameters, such as the
annealing time. Those are listed and explained in detail in the documentation of D-Wave [14].
However, it is in general hard to predict which choices for these parameters yield the best
performance for a specific problem because they strongly depend on it.

In any case, the D-Wave machines can only process a specific problem, a restricted version of
what is called, in analogy to the physical concept, the Ising problem. We explain it in detail in
Chapter 2. Several studies, such as [45, 48, 49, 51], have revealed that interesting applications
usually do not match this kind of problem structure, which is why several transformation steps
are required in advance to transfer the actual problem to the specific format, adding another
level of complexity. The process of determining the final input parameters of the optimization
problem instance is what we call the programming of the quantum annealer.

This is the point where this thesis builds upon and extends the current developments. While
the step from an arbitrary combinatorial optimization problem to a general Ising problem can
easily be done using standard techniques of mathematical optimization, see e.g. [38], the next
step to the restricted Ising problem leaves some open questions and unsolved problems, although
the limitations are quite well examined and understood [31]. These gaps need to be closed
before the user can perform useful calculations on the machine and understand its advantages
and disadvantages over classical approaches. This means, in this work, we focus on the specific
programming restrictions, but apart from that, we consider the annealing machines as a black
box without questioning their ability to actually solve the programmed problems. In Figure 1.1,
we illustrate the abstraction steps that usually precede calculations on a D-Wave machine and
highlight the circle this work aims to close.

2

1.2 Programming a Quantum Annealer

comb. opti.
problem

model
problem

real world
problem

physical
model

Ising
problem

restricted

Ising over
Chimera

solutionsolutionapplication resultsolution solution output

Figure 1.1: Layers of abstraction in transferring a problem to D-Wave’s quantum annealer, de-
picted in upper right corner

1.2 Programming a Quantum Annealer

The main reference for programming quantum annealers is still the work of V. Choi published in
2008 and 2011 [12, 13]. There the author has presented the two main steps, the minor embedding
and the parameter setting, and how they could be approached. Although the machines have
developed over time, these steps have consisted due to the general underlying structure of these
machines.

To run a problem on the D-Wave machine, the user simply sends the coefficients of the objective
function of the Ising problem over the programming interface. However, due to the physical
layout of the superconducting loops, we do not have an all-to-all connectivity between the qubits
and thus only a limited structure for non-zero coefficients. The available quadratic monomials,
corresponding to two interacting qubits each, form specific graphs, for which D-Wave introduced
the terms Chimera and Pegasus graph [6]. The latter describes the most recent architecture,
which was released in 2020 and is derived from the Chimera structure.

An Ising problem with a different coefficient structure is however associated with a different
graph. This means, in order to solve such an arbitrary problem with the quantum annealer,
we need to simulate the desired connectivity of the problem graph with the limited one of the
hardware graph. This is done by what is known as a minor embedding : A vertex of the problem
graph is mapped to several vertices of the hardware graph. We give a precise definition of such
an embedding in Section 3.1.1.

The Chimera graph was designed to yield a simple straightforward embedding of the complete
graph [13], which enables to embed all graphs with a less or equal number of vertices. Due to
the regular underlying structure of both, the Chimera graph and the embedding instructions,
this layout can easily be extended for growing hardware graphs. While the number of vertices
in the complete graph grows linearly, the number of required vertices in the Chimera however
grows quadratically. For example, in the currently operating DW_2000Q solver of D-Wave, we
can therefore embed only up to 65 completely connected vertices, although it contains 2048
qubits [32]. This overhead is a general problem of the annealers, requiring the actual problem to
be significantly smaller than what the hardware parameters promise at first sight.

Another limiting factor is that the regular built-in hardware structure does not transfer one-to-
one to the available hardware graph. Some qubits, or in rare cases the couplings between them,
are inaccessible through the programming interface. They are taken offline because they do not
operate in the expected way [14]. With every calibration of the machine, the location of such

3

1 Introduction

‘broken’ qubits changes unpredictably. However, recalibration is only necessary in the order of
months or even years, which means the hardware graphs remain over this period.

As a result of these broken vertices, standard embedding schemes do not apply anymore. Those
are nevertheless only available for a few graphs closely related to the Chimera structure [35]. This
means we always need to solve the embedding problem before being able to run experiments on
the quantum annealer. Even with the ongoing development of the machines, we do not expect
the problem to vanish. The development of an all-to-all connectivity is unlikely due to several
physical limitations and, with an increasing total number of qubits, the probability of a broken
qubit will probably decrease but not be equal to 0. The embedding problem will thus remain
relevant for calculations with the annealing machine in the long-term.

After the embedding has been found, the parameters of the Ising problem which shall be solved
originally need to be transferred to the new coefficient structure. The resulting embedded Ising
problem should indeed represent the original Ising problem such that the corresponding solutions
can (in theory) be retrieved from the output of the quantum annealer. This non-trivial problem
of finding suitable parameters for the provable equivalence of the problems is called by V. Choi
the parameter setting [12].

Unfortunately, we need to take further restrictions on the parameters into account. First of all,
they can only be chosen within a certain interval, where the concrete boundary values might
vary between the different architectures. At first sight, this does not seem to be problematic:
We can simply scale the whole objective function of the Ising problem by multiplying a constant
factor. This however decreases the absolute difference between the coefficients.

The parameter precision is the most critical restriction of D-Wave’s annealing machines. Due
to the transmission over the analog control circuits, the problem defining parameters experience
different perturbations [31]. This means that the actually solved problem differs slightly from
the one specified by the user. Thus, problems which shall be solved with these machines need to
be chosen carefully to yield some kind of ‘robustness’ in the parameter precision.

Although the programming interface allows to insert arbitrary float values within given ranges,
the machine can actually realize only a limited discrete coefficient range [30]. In [49], a precision
of about 1

30 was estimated for the specific annealer used in the experiments. For problems with
a higher precision, the success probability is drastically reduced because the annealing machine
is not capable of resolving the parameters. In more recently released machines, the precision
is probably improved. However, the specific values are not precisely known and can only be
estimated through further experiments.

For a user, the programming of such annealing machines is only worth the effort if the machine
can find the optimal solution to the provided problem in a certain number of runs, that is, if an
acceptable success probability can be achieved. This in turn requires the models to possess certain
properties concerning their defining parameters. As the boundaries of the necessary parameters
cannot be specified exactly, we can rather formulate some objectives aiming to improve the
success probability as much as possible.

A first step when encoding a problem as an Ising problem is therefore to keep the largest appearing
coefficients as small as possible (without scaling). In presence of a very large coefficient, two
others might appear too close to each other for the machine. This becomes particularly important
when Ising models on other graphs than the hardware graphs shall be solved: Such large values
usually appear with the ‘strong coupling’ of the vertices in the embedding of a single original

4

1.3 Outline

vertex, where the corresponding quadratic terms obtain large absolute coefficients to enforce that
the qubits behave collectively during the annealing process.

Furthermore, the former considerations support the assumption that it is preferable to have as
few different values for the coefficients in the Ising model as possible, while those should have the
largest possible pairwise absolute difference to achieve an acceptable success probability. Rather
than dealing with rational coefficients, a possible approach would be to fix the distance to 1
by only allowing for integer parameters in a certain range. Again the concrete bounds are not
precisely known. Therefore, the largest absolute integer coefficient should be minimized.

1.3 Outline

In this thesis, we address both programming steps, the minor embedding and the parameter
setting, as they still form a bottleneck preventing successful computations on the machines, even
before the problems are sent to these machines.

We start with introducing the specific optimization problem the quantum annealers can process
in Chapter 2. Afterwards, we investigate the embedding problem in detail in Chapter 3 and prove
hardness results for the corresponding embedding problems which are relevant in the quantum
annealing context. Furthermore, we provide optimization problem formulations to approach the
special case of the complete graph embedding in the broken Chimera graph.

In Chapter 4, the parameter setting problem is approached by the derivation of different op-
timization problems from the sufficient requirements on the coefficients of the embedded Ising
model. These problems are analyzed in detail and, after the description of an efficient algorithm
to calculate the coefficients, we transfer the results into the integer programming framework to
overcome the precision issue of the machines. Finally, we conclude our work in Chapter 5.

5

2 Restricted Ising Problem over Chimera

Graph

D-Wave’s quantum annealing machines can only solve a very restricted problem, which we in-
troduce in detail in this section. We start with the general notation used throughout this thesis
in Section 2.1. After presenting the general mathematical Ising model in Section 2.2 with the
corresponding parameter requirements, we present the specific graph derived from the hardware
structure in Section 2.3, to which the solvable Ising models are restricted.

2.1 General Notation

First, we introduce some general notations used throughout this work. For some 𝑛,𝑚 ∈ N, let
[𝑚;𝑛] := {𝑚,𝑚 + 1, . . . , 𝑛} be the enumeration from 𝑚 to 𝑛, where we have [𝑚;𝑛] = ∅ for
𝑛 < 𝑚. For shortness, we use [𝑛] := [1, 𝑛] for enumerating from 1, where we say [0] = ∅. If a
set 𝑆 is the disjoint union of two sets 𝑆1 and 𝑆2, that means 𝑆1 ∪ 𝑆2 = 𝑆 and 𝑆1 ∩ 𝑆2 = ∅, we
use 𝑆 = 𝑆1 ·∪ 𝑆2. With 2𝑋 we denote the set of all subsets of a set 𝑋.

For the basic graph definitions, we generally follow the standard literature in graph theory and
optimization, see e.g. [18] or [34], and briefly recapture the main notations here: With 𝐺 = (𝑉,𝐸)
we always refer to a simple undirected finite graph with the finite set of vertices 𝑉 and the set of
edges 𝐸 ⊆ {{𝑣, 𝑤} : 𝑣, 𝑤 ∈ 𝑉 }. Given a graph𝐺, 𝑉 (𝐺) and 𝐸(𝐺) provide the vertex and the edge
set, respectively, if those are not named specifically. While a subgraph of 𝐺 is formed by arbitrary
subsets of edges and vertices of 𝐺, 𝐺[𝑆] for some vertex set 𝑆 ⊂ 𝑉 (𝐺) refers to the vertex-induced
subgraph of graph 𝐺, where we have 𝑉 (𝐺[𝑆]) = 𝑆 and 𝐸(𝐺[𝑆]) = {{𝑣, 𝑤} ∈ 𝐸(𝐺) : 𝑣, 𝑤 ∈ 𝑆}.
With 𝐾𝑛 and 𝐾𝑛,𝑛, we denote the complete graph with 𝑛 vertices and the complete bipartite
graph with 𝑛 vertices in each partition, respectively.

For shortness, we abbreviate an edge {𝑣, 𝑤} with the commutative product 𝑣𝑤. Where applicable,
we also identify the tuple (𝑥, 𝑦) ∈ 𝑋 × 𝑌 for two sets 𝑋 and 𝑌 with 𝑥𝑦, although 𝑥 and 𝑦 do
not commute in this case. In general, it is clear from the context whether reverting the product
ordering is feasible. As a rule of thumb, we use 𝑥𝑦 for integer coordinates in the two-dimensional
space, while 𝑣𝑤 refers to an edge of a graph.

We denote the neighbors of a vertex 𝑣 in the graph 𝐺 with

𝑁𝐺(𝑣) := {𝑤 ∈ 𝑉 (𝐺) : 𝑣𝑤 ∈ 𝐸(𝐺)},

where we drop the subscript 𝐺 when it is clear from the context that we have 𝑣 ∈ 𝑉 (𝐺). The
incident edges are

𝛿𝐺(𝑆) := {𝑣𝑤 ∈ 𝐸(𝐺) : 𝑣 ∈ 𝑆,𝑤 ∈ 𝑉 (𝐺) ∖ 𝑆},
𝛿𝐺(𝑆, 𝑇) := {𝑣𝑤 ∈ 𝐸(𝐺) : 𝑣 ∈ 𝑆,𝑤 ∈ 𝑇} = 𝛿𝐺(𝑆) ∩ 𝛿𝐺(𝑇),

7

2 Restricted Ising Problem over Chimera Graph

where we again drop the subscript 𝐺 when it is clear that we have 𝑆, 𝑇 ⊆ 𝑉 (𝐺). We use 𝛿(𝑣) to
abbreviate 𝛿({𝑣}).

For indexed parameters or variables 𝑥 ∈ 𝑋𝐼 with the index set 𝐼 and the value set 𝑋, we use
𝑥𝐽 = (𝑥𝑖)𝑖∈𝐽 for a subset 𝐽 ⊆ 𝐼 of the indices to refer to a subset of these parameters or variables,
respectively, the corresponding vector. In turn, we ‘apply’ 𝐽 by

𝑥(𝐽) =
∑︁
𝑖∈𝐽

𝑥𝑖.

We denote the vector containing only 1’s or 0’s by 1 and O, respectively. For both, we add the
subscript for the corresponding index set wherever necessary.

We further use the Big-O notation 𝒪(𝑓) for the set of functions that are asymptotically bounded
from above by a constant times the function 𝑓 .

Finally, we give a short style guide: New and important terms are highlighted in italic. Newly de-
fined mathematical symbols are marked in bold on their first appearance and indicated with ‘:=’.
Additionally, if some of the introduced symbols are considered to be given and fixed over a longer
textual part, we mention and highlight them accordingly in the beginning of that section. Apart
from the global enumeration of referenced equations, we use a local enumeration with small
roman letters, for example (i) - (iii), inside of proofs, which is not referenced outside.

2.2 Ising Problem

In the quantum annealing processor, the magnetism of the loops and their couplings can be
adjusted with user-defined input parameters. This means we can encode different quadratic
functions. The term ‘Ising model’ also refers to these objective functions because they are
closely related to the formulation of the physical model [12]. We use throughout this work:

Definition 2.1. An Ising model over graph 𝐺 with weights 𝑊𝑊𝑊 ∈ R𝑉 (𝐺) and strengths 𝑆𝑆𝑆 ∈ R𝐸(𝐺)

is a function 𝐼𝑊,𝑆𝐼𝑊,𝑆𝐼𝑊,𝑆 : {−1, 1}𝑉 (𝐺) → R with

𝐼𝑊,𝑆(𝑠) :=
∑︁

𝑣∈𝑉 (𝐺)

𝑊𝑣𝑠𝑣 +
∑︁

𝑣𝑤∈𝐸(𝐺)

𝑆𝑣𝑤𝑠𝑣𝑠𝑤.

We call 𝐺 the interaction graph of the Ising model.

Usually, we keep the interaction graph fixed. To be able to differ between two Ising models for
the same graph, we use the symbol 𝐼𝑊,𝑆 with the corresponding weights and strengths in the
subscript. In case those are clear from the context, we drop the subscript.

Using this definition, we can formulate a general version of the optimization problem the quantum
annealing machine can process:

Ising Problem. Given a graph 𝐺, 𝑊 ∈ R𝑉 (𝐺) and 𝑆 ∈ R𝐸(𝐺), find 𝑠 that solves

min
𝑠∈{−1,1}𝑉 (𝐺)

𝐼𝑊,𝑆(𝑠).

8

2.2 Ising Problem

D-Wave’s quantum annealer can indeed only implement float values with 𝑊 ∈ [−𝑚,𝑚]𝑉 (𝐺) and
𝑆 ∈ [−𝑛, 𝑛]𝐸(𝐺) for specific 𝑚,𝑛 ∈ N. For instance, for the current Chimera architecture, we
have 𝑚 = 2 and 𝑛 = 1. However, due to possible scaling, this is not a hard restriction. A value
which provides more insight in the coefficient distribution is the maximal absolute coefficient

𝐶max𝐶max𝐶max := max
{︀
‖𝑊‖∞, ‖𝑆‖∞

}︀
= max

{︂
max

𝑣∈𝑉 (𝐺)
|𝑊𝑣|, max

𝑣𝑤∈𝐸(𝐺)
|𝑆𝑣𝑤|,

}︂
,

in particular when compared with its counterpart, the minimal absolute coefficient being unequal
to zero, or the minimal difference between two absolute coefficients

min
{︀
|𝑥− 𝑦| : 𝑥 ̸= 𝑦 ∈ {0} ∪ {𝑊𝑣 : 𝑣 ∈ 𝑉 (𝐺)} ∪ {𝑆𝑣𝑤 : 𝑣𝑤 ∈ 𝐸(𝐺)}

}︀
.

If we further restrict the weights and strengths to Z according to the differentiation considera-
tions, which means on the integer range [−𝑚;𝑚] = {−𝑚,−𝑚 + 1, ...,𝑚}, respectively, [−𝑛;𝑛],
the latter becomes 1 after scaling. Thus, the maximal absolute coefficient 𝐶max is a decisive
value to estimate whether the problem is suitable to be solved with the annealer. According
to [49], we need at least 𝐶max ≤ 30 to achieve an acceptable success probability.

The decision problem corresponding to the Ising Problem is known to be NP-complete [5].
This means a variety of problems can be mapped to it in polynomial time [38]. In particu-
lar, it is closely related to the Quadratic Unconstrained Binary Optimization Prob-
lem (QUBO), more commonly known and well studied in combinatorial optimization. Such
problems are defined analogously to the Ising problems apart from working on binary variables
𝑥 ∈ {0, 1}𝑉 (𝐺). The objective function is then also called a quadratic pseudo-Boolean func-
tion. The corresponding broader class of pseudo-Boolean optimization was extensively studied
by E. Boros and P. L. Hammer, for instance, in [10].

Both problems, QUBO and Ising, can easily be transferred into each other with the affine trans-
formation 𝑥𝑣 = 1

2(𝑠𝑣 +1) for 𝑣 ∈ 𝑉 (𝐺). This changes the weights and strengths of the objective
function, nevertheless, the graph defined by the non-zero strengths remains the same. A pos-
sibly appearing constant can be extracted from the optimization problem, but surely needs to
remembered in case the original objective value is of further interest.

Apart from some direct mappings, for instance, as listed in [38], the most common way to obtain
an Ising model starts with an optimization problem, which is usually transformed to a QUBO
in the intermediate step. The reduction steps are well known and mainly consist of

� the encoding of the integer variables as binary variables,

� the reduction of the degree by the introduction of new variables being enforced to represent
a product of variables,

� the transformation of inequalities to equalities by the use of slack variables and

� the reduction of equality constraints by adding penalty terms to the objective function.

See, for example, [33] for more details.

Usually, there are several possibilities how to combine the above transformation steps, resulting
in different Ising models equivalently representing the same original problem. As all of these
steps can also influence 𝐶max decisively, they however might need to be chosen with great care
to obtain an Ising model that fits the requirements of the annealing hardware.

9

2 Restricted Ising Problem over Chimera Graph

Due to the close relation of QUBO and Ising problems, we could apply preprocessing steps
as introduced in [9] to the corresponding QUBO to simplify the considered model in advance.
However, there are similar preprocessing methods for directly manipulating the Ising model. One
of them is applicable if the weight of a vertex exceeds the influence of the strengths of the incident
edges. We recall the well known result here for completeness because it implies the exclusion of
a certain case in the investigations in Chapter 4.

Lemma 2.2. For an Ising model 𝐼𝑊,𝑆 : {−1, 1}𝑉 (𝐺) → R over a graph 𝐺 with 𝑊 ∈ R𝑉 (𝐺) and
𝑆 ∈ R𝐸(𝐺), if we have

|𝑊𝑣| >
∑︁

𝑛∈𝑁(𝑣)

|𝑆𝑣𝑛|

for some vertex 𝑣 ∈ 𝑉 (𝐺), every optimal solution

𝑠* ∈ argmin
𝑠∈{−1,1}𝑉 (𝐺)

𝐼𝑊,𝑆(𝑠)

fulfils 𝑠*𝑣 = − sign(𝑊𝑣).

Proof. We extract the part of 𝐼𝑊,𝑆 containing 𝑠*𝑣 with

𝐼𝑊,𝑆(𝑠
*) =

∑︁
𝑤∈𝑉 (𝐺)∖{𝑣}

𝑊𝑤𝑠
*
𝑤 +

∑︁
𝑤𝑢∈𝐸(𝐺)∖𝛿(𝑣)

𝑆𝑤𝑢𝑠
*
𝑤𝑠

*
𝑢 +𝑊𝑣𝑠

*
𝑣 +

∑︁
𝑛∈𝑁(𝑣)

𝑆𝑣𝑛𝑠
*
𝑣𝑠

*
𝑛⏟ ⏞

=:𝐼𝑣(𝑠*𝑣)

,

where we keep the other 𝑠-variables apart from 𝑠*𝑣 fixed. With the condition for vertex 𝑣, we
have

|𝑊𝑣| >
∑︁

𝑛∈𝑁(𝑣)

𝑡𝑛𝑆𝑣𝑛 ∀𝑡 ∈ {−1, 1}𝑁(𝑣)

and therefore can observe that

𝐼𝑣(sign(𝑊𝑣)) = |𝑊𝑣|+
∑︁

𝑛∈𝑁(𝑣)

𝑆𝑣𝑛
(︀
sign(𝑊𝑣)𝑠

*
𝑛

)︀
> 0

> −|𝑊𝑣|+
∑︁

𝑛∈𝑁(𝑣)

𝑆𝑣𝑛
(︀
− sign(𝑊𝑣)𝑠

*
𝑛

)︀
= 𝐼𝑣(− sign(𝑊𝑣)).

This shows that the contribution of 𝑠*𝑣 = sign(𝑊𝑣) is always larger than the negated choice
independently of the assignment of the other 𝑠-variables.

Remark: It is also easy to see that, if the equality holds in the above condition for 𝑣, the optimal
solution does not necessarily hold the value − sign(𝑊𝑣) for 𝑠

*
𝑣. Still, this only happens if the last

inequality in the proof collapses to an equality. Therefore, both choices yield the same optimal
value and we can nevertheless choose to set 𝑠*𝑣 = − sign(𝑊𝑣) in advance.

Based on this result, we can formulate a simpler Ising model: By fixing 𝑠𝑣 to the predetermined
value− sign(𝑊𝑣), with 𝑣 of the above lemma, but keeping the other variables arbitrary, the former
quadratic terms corresponding to the incident edges become linear and therefore integrate into

10

2.3 Chimera Graph

the weights of the neighbors of 𝑣. We get the new Ising model 𝐼𝑊,𝑆 : {−1, 1}𝑉 (𝐺)∖{𝑣} → R with

𝑊 ∈ R𝑉 (𝐺)∖{𝑣}, 𝑆 ∈ R𝐸(𝐺)∖𝛿(𝑣) and

𝑊𝑤 =𝑊𝑤 ∀𝑤 ∈ 𝑉 (𝐺) ∖ ({𝑣} ∪𝑁(𝑣)),

𝑊𝑤 =𝑊𝑤 − sign(𝑊𝑣)𝑆𝑣𝑤 ∀𝑤 ∈ 𝑁(𝑣),

𝑆𝑒 = 𝑆𝑒 ∀𝑒 ∈ 𝐸(𝐺) ∖ 𝛿(𝑣).

Note that, in this new model, the constant |𝑊𝑣| is omitted. Thus, the objective values of the old
and the new model differ by this value.

However, when solving problems with D-Wave’s annealing machines, we cannot choose the in-
teraction graph 𝐺 arbitrarily. It needs to correspond to the currently operating hardware graph,
such as the Chimera graph. Only if 𝐺 is a subgraph of the hardware graph, we can directly
solve the Ising Problem with the D-Wave annealer (with some probability) by setting surplus
parameters to 0.

2.3 Chimera Graph

In this section, we introduce the specific hardware graph of D-Wave’s quantum annealer, the
Chimera graph. It was first described in [42] and released in 2011 with the first machine. The
Chimera graph is derived from the structure of the overlapping superconducting loops forming
the qubits and represents their connectivity. Due to the arrangement in a checkerboard pattern,
it is easily extendable. Thus, the term rather refers to a family of graphs depending on a given
size. We define:

Definition 2.3. Let𝐶𝑐𝑟𝐶𝑐𝑟𝐶𝑐𝑟 be the Chimera graph with the number of columns 𝑐 ∈ N and the number
of rows 𝑟 ∈ N of unit cells of complete bipartite subgraphs with 4 vertices in each partition. The
𝐾4,4-unit cells are arranged in a grid pattern and connected as shown in Figure 2.1. In accordance
with the figure, we also add the attribute of the orientation to the vertices: We say a vertex is
oriented horizontally if it lies in the horizontal partition of a unit cell, is thus connected vertically
to vertices in other unit cells above and/or below, oriented vertically otherwise. In short, we use
the term horizontal, respectively, vertical vertex. Therefore, let 𝑉 (𝐶𝑐𝑟) := 𝑉hori(𝐶𝑐𝑟)𝑉hori(𝐶𝑐𝑟)𝑉hori(𝐶𝑐𝑟) ·∪𝑉vert(𝐶𝑐𝑟)𝑉vert(𝐶𝑐𝑟)𝑉vert(𝐶𝑐𝑟)
with the corresponding sets of vertices.

Let 𝐶∞𝐶∞𝐶∞ be the Chimera graph with an infinite number of unit cells in all 4 directions. This
means we also allow negative row and column unit cell coordinates. Thus, there is no boundary
and all vertices have a degree of 6. We call this graph infinite Chimera graph in the following.

Figure 2.1: Bipartition in the Chimera graph 𝐶3,3

11

2 Restricted Ising Problem over Chimera Graph

Although all hardware released until now is symmetric, which means we have 𝑟 = 𝑐, these values
can vary in theory, as well as the number of vertices in the unit cell partitions. We refer to the
latter as the depth of the Chimera graph. In this work, we deal with the ‘standard’ depth of 4.

The Chimera graph is bipartite itself, as it can be seen by the vertex coloring in Figure 2.1.
Wherever necessary, we use the terms ideal or non-broken Chimera graphs for 𝐶𝑟𝑐 or 𝐶∞ to
clearly distinguish them from the following:

Definition 2.4. We call a Chimera graph broken if it is a vertex-induced subgraph of an ideal
Chimera graph, that is, 𝐶∞[𝑊] for some 𝑊 ⊆ 𝑉

(︀
𝐶∞
)︀
.

Let 𝒞𝒞𝒞 denote the set of all finite broken Chimera graphs, which means derived from 𝐶𝑟𝑐 ⊂ 𝐶∞
with 𝑐, 𝑟 <∞.

In this work, we only refer to vertex-induced subgraphs because stand-alone broken edges are
very rare in current hardware. Even if such an edge appeared in an operating machine after the
calibration, we could simply mark one of the incident vertices as broken and thus continue with
the same derivations as follows.

To provide insight, a currently operating D-Wave machine has 16 times 16 unit cells in the
Chimera hardware structure. It is referred to as solver DW_2000Q_6 in the current calibration
status. From the 2048 vertices implemented in the hardware, seven vertices are considered to be
broken. With them, 40 edges are removed and only two additional edges are also broken [14].

Just recently, a new hardware architecture was released operating in parallel to the Chimera
machines. The corresponding graph is called the Pegasus graph. It is derived from the Chimera
structure by stretching the superconducting loops. As this is done asymmetrically, the Pegasus
graph has a much more complicated structure but realizes a larger connectivity. In particular,
the unit cell connectivity is not limited anymore to unit cells neighbored in the grid pattern but
rather connects them diagonally in different ways. This however is currently only achieved at
the expense of a more than six times larger ratio of broken qubits.

In this work, we mainly focus on the Chimera architecture, but we are confident that most of
our results can be transferred because the Pegasus graph is still closely related to the Chimera
graph. This can also be seen in the example of Section 3.2.5, where we use the subgraph relation
between both graphs to prove the NP-completeness of the embedding problem restricted to
broken Pegasus graphs based on the equivalent result for the Chimera graph.

12

3 Minor Embedding

Once the Ising model for a specific application, which shall be solved on a D-Wave machine,
is formulated, we are given the interaction graph corresponding to the quadratic terms. This
problem graph does in most cases not have any relation to the Chimera or Pegasus hardware
graphs, if it is not explicitly customized to fit them. Therefore, the first step to calculate on the
annealing machines is to solve the embedding problem, which is investigated in more detail in
this chapter.

The work presented in this chapter is already published in two articles. The proof of the NP-
completeness of the embedding problem when restricting to the specific hardware graphs of
Section 3.2 is presented in [36] and was developed in collaboration with Annette Lutz. The
examination of the special case of a complete problem graph of Section 3.3 appeared in the
Journal ‘Quantum Information Processing’ [37] and was produced in joint work with Lukas
Schürmann and Dr. Tobias Stollenwerk. Both publications are adopted with only slight revisions
due to a uniform style of this work and the extraction of common preliminaries. With the latter,
we start in the following Section 3.1.

3.1 Minors and Embeddings

When dealing with the D-Wave annealing machines, we always have the discrepancy between the
problem graph and the actually realized hardware graph. Usually, we refer to both as 𝐺 and 𝐻,
respectively. In this section, we connect the two concepts of minors and embeddings and transfer
them into the context of quantum annealing. As the embedding is essential to run experiments
on the D-Wave quantum annealing machine, it is studied broadly in this context. Therefore, we
summarize the existing approaches at the end of this section.

3.1.1 Basic Definitions

Graph minors are a basic concept in graph theory. We refer to [18] and [34] for more details. In
the following, we introduce graph minors and their relation to the embedding as well as some
hardness results in a more descriptive way.

Although several different definitions for graph minors exist, most of them are equivalent. We
use the following one from [34]:

Definition 3.1. Given two arbitrary graphs 𝐺 and𝐻, 𝐺 is called aminor of𝐻 if 𝐺 is isomorphic
to a graph that can be formed from 𝐻 by a series of the following operations: edge contraction,
edge or vertex deletion.

13

3 Minor Embedding

The term ’edge contraction’ means here that the endpoints of a single edge are replaced by a
single new vertex whose neighbors are formed by the union of the neighbors of these endpoints.
By this no multiple edges or loops appear and we always keep the resulting graphs simple.
Furthermore, note that, if we reasonably assume that no vertex is deleted that is formed by an
edge contraction, the ordering of the operations is arbitrary. It is also easy to see that the minor
relation is transitive, which means a minor of a minor of some graph 𝐻 is itself a minor of 𝐻.

Several results concerning minor relations exist. The most straightforward question is a classical
problem in graph theory:

Minor Containment Problem. Given two arbitrary graphs 𝐺 and 𝐻, does 𝐻 contain
𝐺 as a minor?

It is a generalization of the Subgraph Homeomorphism Problem mentioned in [20]. We
recall the analogously applicable proof for the following hardness result because we use the same
argumentation later on:

Lemma 3.2. The Minor Containment Problem is NP-complete.

Proof. The problem is in NP since the edge contractions and edge and vertex deletions that
need to be applied to 𝐻 provide a polynomial certificate. Moreover, it includes the NP-complete
Hamiltonian Cycle Problem as a special case by 𝐺 being a cycle graph with the same
number of vertices as 𝐻.

We briefly connect the given minor definition here with a concept that is more widely used in
the quantum annealing context. There graph minors usually appear in terms of an embedding :
To overcome the very restricted hardware architecture and simulate an arbitrary problem con-
nectivity, several hardware vertices need to be combined to form a logical vertex. This is, e.g.,
described in [13]. In [18], we find the more formal definition:

Definition 3.3. For two graphs 𝐺 and 𝐻, an embedding of 𝐺 in 𝐻 is a map 𝜙𝜙𝜙 : 𝑉 (𝐺)→ 2𝑉 (𝐻)

fulfilling the following properties, where we use 𝜙𝑣𝜙𝑣𝜙𝑣 := 𝜙(𝑣) for 𝑣 ∈ 𝑉 (𝐺) for shortness:

a) all 𝜙𝑣 for 𝑣 ∈ 𝑉 (𝐺) induce disjoint connected subgraphs in 𝐻, more precisely
� we have 𝜙𝑣 ∩ 𝜙𝑤 = ∅ for all 𝑣 ̸= 𝑤 ∈ 𝑉 (𝐺) and
� 𝐻[𝜙𝑣] is connected for all 𝑣 ∈ 𝑉 (𝐺),

b) for all edges 𝑣𝑤 ∈ 𝐸(𝐺), there exists at least one edge in 𝐻 connecting the sets 𝜙𝑣 and 𝜙𝑤,
which means we have 𝛿(𝜙𝑣, 𝜙𝑤) ̸= ∅.

We call 𝐺 embeddable into 𝐻 if such an embedding function for 𝐺 and 𝐻 exists.

With this we can formulate an analogous question to above:

Embedding Problem. Given two arbitrary graphs 𝐺 and 𝐻, is 𝐺 embeddable into 𝐻?

We can easily see that the Minor Containment Problem and the Embedding Problem
are equivalent in the following sense:

14

3.1 Minors and Embeddings

Lemma 3.4. Given two arbitrary graphs 𝐺 and 𝐻, 𝐺 is a minor of 𝐻 if and only if 𝐺 is
embeddable into 𝐻.

Proof. We start with the implication, if 𝐺 is embeddable into 𝐻, it is a minor of 𝐻. Given the
map 𝜙, the graph 𝐺 can be obtained from 𝐻 by successively contracting all edges in 𝐻[𝜙(𝑣)],
labelling the resulting vertex with 𝑣 for all 𝑣 ∈ 𝑉 (𝐺) and deleting all surplus vertices and edges
that are not in 𝑉 (𝐺) and 𝐸(𝐺), respectively.

Reversely, if 𝐺 is a minor of 𝐻, we can always find an embedding: All vertices concerned by edge
contractions that finally form a single vertex 𝑣 of 𝐺 are included in its embedding 𝜙(𝑣), while
all deleted vertices and edges can be ignored.

Due to this relation, also the term minor embedding is used and we refer to both problems
equivalently by the Minor Embedding Problem in the following.

3.1.2 In Quantum Annealing

In the quantum annealing context, the hardware graph 𝐻 refers to a Chimera graph, while the
problem graph 𝐺 is derived from the specific application and its concrete Ising formulation and
can therefore indeed be fully arbitrary. As an example, an embedding of the complete graph in
the ideal Chimera graph is illustrated in Figure 3.1.

However, the quantum annealing machines do not realize an ideal Chimera graph but rather a
subgraph, where certain vertices are unavailable due to physical effects. The locations of these
broken vertices change with every recalibration of the machine. With the definitions of the former
sections, we can now formulate the relevant question in quantum annealing:

Broken Chimera Minor Embedding Problem. Given an arbitrary graph 𝐺 and
some 𝐶 ∈ 𝒞, is 𝐺 a minor of 𝐶, i.e., is 𝐺 embeddable into 𝐶?

We show in the following work that this problem remains hard, although or rather because the
Chimera graphs do have a very specific structure. Thus, the template approach of introducing
an intermediate virtual hardware graph layer remains of practical relevance to exploit possible
advantages of the annealing machines. The most general template is the complete graph, which
leads to the question:

(a) complete graph (b) standard triangular embedding

Figure 3.1: Standard triangular complete graph embedding in the ideal Chimera graph, where
each color represents a single logical vertex in the complete graph

15

3 Minor Embedding

Largest Complete Graph Embedding Problem. Given 𝐶 ∈ 𝒞, find the maximal
𝑛 ∈ N such that 𝐾𝑛 can be embedded into 𝐶.

It is easy to see that this is an optimization problem that reduces to the Broken Chimera
Minor Embedding Problem: By enumerating all complete graphs according to their size, we
can check for each of them successively whether it is a minor of the given Chimera graph. If
we have shown that 𝐾�̃� is not a minor of 𝐶 for some �̃�, we also know that 𝐾𝑛 is not a minor
of 𝐶 for 𝑛 > �̃� because 𝐾�̃� is a subgraph of 𝐾𝑛. The maximal choice of 𝑛 in this procedure is
bounded from above by the size of Chimera graph.

The Largest Complete Graph Embedding Problem is also known as the search for the
largest clique minor [7], as the complete graph can be supplemented by the vertices which are
not used for the embedding of the complete graph, forming a larger graph. The largest clique of
this minor corresponds to the maximal embeddable complete graph.

3.1.3 Related Work

Graph minors have been a research topic of high interest even before the D-Wave machine was
released. Particularly, the work of Robertson and Seymour has mainly influenced the develop-
ments in this area. In their extensive research around such graph relations, they could show
among other things that there exists a polynomial algorithm to decide whether 𝐺 can be em-
bedded in 𝐻 when 𝐺 is fixed to a single graph and only 𝐻 is part of the input [46], although for
the general problem, given two arbitrary graphs 𝐺 and 𝐻, it is NP-hard to answer this question.
The latter can be seen by a simple reduction, which we show in more detail in Section 3.2.1.

As the constructive approach of Robertson and Seymour requires the knowledge about what is
known as the forbidden minors of 𝐺, their complexity result hides constants depending exponen-
tially on the size of 𝐺. A concrete algorithm following Robertson and Seymour’s idea is given
for hardware graphs with fixed branchwidth in [24], which is further improved by [2], and for
planar hardware graphs in [1]. Although the bounds were improved, the dependence on 𝐺 is still
exponential and the algorithms thus are practically infeasible for larger graphs.

The embedding problem in the quantum annealing context deals with a different case, as 𝐺 is
an arbitrary graph derived from the specific application, while 𝐻 is fixed to be in the class of
all Chimera or Pegasus graphs with broken vertices. Even though the hardware graphs are very
well structured, no comparable results to Robertson and Seymour’s are known in that case. In
the contrary, we show in this work that the Broken Chimera Minor Embedding Problem
remains hard. This is stated more formally in Section 3.2.1 by Theorem 3.5.

This means the embedding problem is in general as hard as the actual problem that shall be solved
on the D-Wave machine, which has some implications in practice. Usually, several possibilities
to encode an arbitrary optimization problem as an Ising model exist. E.g., by introducing more
vertices, the connectivity between them could be reduced. However, in view of our hardness
result, we cannot expect to identify an easy to recognize set of graph properties which the chosen
formulation should fulfil to be better embeddable than others or to be embeddable at all into
the current hardware graph.

Up to this point, apart from problem specific approaches, like in [45], current research has mainly
split up into two directions: On the one hand, the goal is to develop efficient generic heuristics
that can embed as many arbitrary graphs as possible ‘on-the-fly’. The first polynomial algorithm

16

3.1 Minors and Embeddings

was shown by Cai et al. in [11] and is based on finding shortest paths in the hardware graph𝐻. As
it considers both, 𝐺 and 𝐻, to be arbitrary input graphs, broken vertices in a non-ideal Chimera
are already taken into account. It is still the standard algorithm the package minorminor of
the D-Wave API is based on [16]. An improvement of this algorithm is suggested in [43] and
just recently compared to two new algorithms of Zbinden et al. [53], which show even better
performance.

Although such heuristics work well in practice at the moment, especially for sparse input graphs,
with growing hardware sizes, they will most likely not be able to scale as well. Furthermore,
they have another drawback: If the heuristic fails to embed a graph, it remains unclear whether
an embedding is not possible at all or whether the heuristic just could not find it. There is
no guarantee that an embedding can be found or how often the heuristic needs to be repeated
until we find one if it exists. We will always have to deal with the tradeoff between quality and
runtime.

To overcome such a possible bottleneck, the second strategy is to insert an intermediate step in the
embedding process by using a template with a precomputed fixed embedding, acting as a ‘virtual
hardware’ graph. Such an intermediate layer between the actual hardware and the problem graph
has a much simpler structure than the Chimera graph and shifts the expensive computation
away from the user. Thus, on the one hand, the computational resources needed to calculate an
embedding are decreased and, once it is found, it can be reused for the whole operational period
of the machine. On the other hand, simple certificates can be formulated whether a graph is
embeddable or not. The idea of precalculated templates was already introduced in [22].

A universal template is the complete graph, enabling to embed all graphs with the same or a
smaller number of vertices or edges. It completely circumvents the necessity of calculating an
embedding for each individual instance but rather provides it straightforwardly. Due to physical
restrictions, the Chimera graph of D-Wave was designed to be sparse but nevertheless yield an
efficient embedding of the complete graph [13]. The TRIAD layout, presented in [13], forms the
basis for the triangle embedding structure of the complete graph in the (ideal) Chimera graph
as shown in Figure 3.1(b) on page 15 for 𝐾12.

Unfortunately, the shown template, as well as other existing ones, are not applicable in real
hardware due to broken physical vertices. Thus, an algorithm was proposed in [32] trying to fit
a related triangular scheme in the broken Chimera graph. This approach was further generalized
in [7], showing even better results. As K. Boothby is one of the main contributors of the D-Wave
API, we assume this algorithm is implemented in the package minorminor. We go into a bit
more detail about their constructions when deriving our approach of [37] to solve the Largest
Complete Graph Embedding Problem in Section 3.3.1. For our algorithm solving the
corresponding restricted embedding problem, we can show that the runtime is exponential only
in the number of broken vertices.

Due to the very limited size of the maximal complete graph, there are various other graphs
with less connectivity but a larger number of vertices considered, too. Another good template
candidate is the complete bipartite graph, whose embedding is closely related to the one of the
complete graph. The idea of [22] is to find the smallest number of vertices that have to be split
up into the two partitions such that the resulting graph is bipartite and can thus be embedded
using this template. In [47], this approach was elaborated and generalized to related partitioned
graph structures.

Known minors can then be collected in a lookup table. The authors of [23] suggest to precompute
all ‘maximal minors’ of the complete bipartite graph. This means an input graph is embeddable

17

3 Minor Embedding

if it is a subgraph of one of the contained minors. Another template family, for instance, is
comprised of the Cartesian products of complete graphs as discussed in [52].

3.2 NP-Completeness Proof

In this section, we show the proof that the ‘minor embedding in broken Chimera and Pegasus
graphs is NP-complete’, based on the correspondingly named work [36]. Our construction to
prove the stated complexity result was mainly inspired by the ideas of [28]. There Itai et al.
showed that theHamiltonian Cycle Problem for grid graphs is NP-complete. As theHamil-
tonian Cycle Problem reduces to the Embedding Problem, we adopt several of their
definitions and results for the grid graphs and, in the first place, transfer them to the Chimera
graphs.

For this we formulate the main question and reduction steps in Section 3.2.1 and introduce the
basic grid concepts in Section 3.2.2. Afterwards, we show the construction of specific Chimera
graphs in Section 3.2.3, for which we establish several results about Hamiltonian paths and
cycles in Section 3.2.4. With this we can conclude the proof of the NP-completeness of the
Hamiltonian Cycle Problem and thus of the embedding problem for Chimera graphs. The
extension to Pegasus graphs is then shown in Section 3.2.5.

3.2.1 Reduction of the Hamiltonian Cycle Problem

In this section, we show how the Broken Chimera Minor Embedding Problem reduces to
the Hamiltonian Cycle Problem to adopt the known complexity results for this problem.
Note that, until now, there is no result about the complexity status of the related question
whether a given graph is actually itself a broken Chimera graph, more formally

Broken Chimera Recognition Problem. Given an arbitrary graph 𝐺, do we have
𝐺 ∈ 𝒞?

This means to check whether 𝐺 is a vertex-induced subgraph of an ideal Chimera graph. The
number of rows and the number of columns of unit cells of a corresponding Chimera graph can be
bounded by the number of vertices in 𝐺. Clearly, this problem is not harder than the arbitrary
Induced Subgraph Isomorphism Problem, thus is in NP, but it remains open whether it is
easier. We do not examine this problem further because, by the practical conditions, we know
we are given a broken Chimera graph.

We proceed with the main complexity result, which we prove in the course of this section:

Theorem 3.5. The Broken Chimera Minor Embedding Problem is NP-complete.

As the Broken Chimera Minor Embedding Problem is a special case of the Minor Con-
tainment Problem, it is in NP. But does the restriction to Chimera graphs as hardware graphs
result in better solvability?

The Hamiltonian Cycle Problem was shown not to be hard for the ideal Chimera graph [35].
Thus, the argument in the proof of Lemma 3.2 does not apply for those graphs. However, the
presented construction of a Hamiltonian cycle cannot be transferred easily if the Chimera graph
is broken. In fact, we show in general

18

3.2 NP-Completeness Proof

Lemma 3.6. The Hamiltonian Cycle Problem for graphs 𝐶 ∈ 𝒞 is NP-complete.

By this Theorem 3.5 is proven straightforwardly with the same arguments as for the general
Minor Containment Problem in the proof of Lemma 3.2. To prove in turn Lemma 3.6, we
use a special set of graphs ℬ where we already know that

Lemma 3.7 ([28] Lemma 2.1.). The Hamiltonian Cycle Problem for graphs 𝐵 ∈ ℬ is
NP-complete.

Here, ℬℬℬ is the set of all planar bipartite graphs with maximum degree 3. Note that two necessary
conditions for the existence of a Hamiltonian cycle are an equal number of vertices in each
partition and that no vertex has a degree of 1. Thus, we further restrict ℬ to such graphs in the
following.

We show how to construct a broken Chimera graph, denoted by 𝐶(𝐵), from a graph 𝐵 ∈ ℬ such
that it fulfils the following two properties:

Lemma 3.8. For all 𝐵 ∈ ℬ, 𝐶(𝐵) can be constructed in polynomial time.

Lemma 3.9. For all 𝐵 ∈ ℬ, 𝐶(𝐵) has a Hamiltonian cycle if and only if there exists a Hamil-
tonian cycle in 𝐵.

This means that theHamiltonian Cycle Problem is hard for the constructed broken Chimera
graphs with a size polynomial in the size of the graph 𝐵 and it thus is hard for 𝐶 ∈ 𝒞 in general,
holding Lemma 3.6. We have summarized the reduction steps in Figure 3.2, where the highlighted
step is the one we prove in the following course of the section.

Note that we use broken Chimera graphs as given in Definition 2.4, that is, with only vertices
being broken. By additionally allowing edges to be broken, the construction in Section 3.2.3 still
works and could even be simplified while it would require less broken vertices. However, the

any NP problem

Hamiltonian Cycle Problem

for 𝐵 ∈ ℬ

Hamiltonian Cycle Problem

for 𝐶 ∈ 𝒞

Broken Chimera Minor Embedding Problem

for graph 𝐺 and 𝐶 ∈ 𝒞

𝐶 = 𝐶(𝐵)

𝐺 cycle graph with |𝑉 (𝐺)| = |𝑉 (𝐶)|

Figure 3.2: Polynomial reduction steps of the proof

19

3 Minor Embedding

probability of a broken edge is comparably small in currently operating hardware. To address
the more restricted case, we focus on vertex-induced subgraphs in this work. If the hardness
result holds for this subset, it also holds for all subgraphs of hardware graphs.

Furthermore, we use a depth, the size of the partitions in a unit cell, of 𝑑 = 4 according to existing
hardware. However, our approach can be extended to arbitrary 𝑑 ≥ 4 because a Chimera graph
with depth 𝑑1 is a vertex-induced subgraph of all Chimera graphs with depth 𝑑2 ≥ 𝑑1. Thus, it
is contained in the corresponding set of broken Chimera graphs.

3.2.2 Basics of Grid Graphs

Itai et al. showed an analogous result to Lemma 3.6 for grid graphs in [28]. We adopt the proof
to the Chimera graph and reuse some of their constructions. For this we recall and rephrase
some of their definitions and results about grid graphs in this section.

Definition 3.10. Let

𝐺∞𝐺∞𝐺∞ :=
(︀
Z2,
{︀
{𝑎𝑏, 𝑥𝑦} ⊂ Z2 : |𝑎− 𝑥|+ |𝑏− 𝑦| = 1

}︀)︀
be the infinite (non-broken) grid graph with vertices defined by integer coordinates in two-
dimensional space. A grid graph is an arbitrary subgraph of the infinite grid graph.

A (non-broken) rectangular (grid) graph with one corner at coordinate 𝑎𝑏 ∈ Z2 and the opposite
at 𝑥𝑦 ∈ Z2 with 𝑥𝑦 ̸= 𝑎𝑏 is a special grid graph and defined by

𝑅𝑎𝑏
𝑥𝑦𝑅𝑎𝑏
𝑥𝑦𝑅𝑎𝑏
𝑥𝑦 := 𝐺∞

[︀{︀
min{𝑎, 𝑥}, ...,max{𝑎, 𝑥}

}︀
×
{︀
min{𝑏, 𝑦}, ...,max{𝑏, 𝑦}

}︀]︀
,

where we abbreviate 𝑅𝑐𝑟 := 𝑅1,1
𝑐𝑟 for a rectangular graph of size 𝑐 × 𝑟 for a number of columns

𝑐 ∈ N and rows 𝑟 ∈ N placed at (1, 1).

Remarks:

� With the grid vertices 𝑎𝑏, 𝑥𝑦, 𝑎𝑦, 𝑥𝑏 as corners, we have 𝑅𝑎𝑏
𝑥𝑦 = 𝑅𝑥𝑦

𝑎𝑏 = 𝑅𝑥𝑏
𝑎𝑦 = 𝑅𝑎𝑦

𝑥𝑏 .

� 𝑅𝑎𝑏
𝑥𝑦 is of size (|𝑎− 𝑥|+ 1)× (|𝑏− 𝑦|+ 1) and with 𝑐 = |𝑎− 𝑥|+ 1 and 𝑟 = |𝑏− 𝑦|+ 1, we

have 𝑅𝑎𝑏
𝑥𝑦
∼= 𝑅𝑐𝑟.

Analogously to the broken Chimera graph, we call a rectangular graph broken if it is a vertex-
induced subgraph of a rectangular graph, the graphs [28] is dealing with. A rectangular subgraph
denotes an arbitrary subgraph of a rectangular graph, thus a grid graph that can be bounded by
a rectangular shape. We further need the following special rectangular graphs:

Definition 3.11. A grid strip is a rectangular graph 𝑅𝑎𝑏
𝑥𝑦 for 𝑎𝑏, 𝑥𝑦 ∈ Z2 with

a) |𝑎− 𝑥| = 1 and |𝑏− 𝑦| ≥ 1 or

b) |𝑏− 𝑦| = 1 and |𝑎− 𝑥| ≥ 1,

thus a vertex width of 2 in one of the dimensions and arbitrary in the other. To the latter we
refer as the length of the strip. We say a strip is vertically oriented in case a) and horizontally
oriented in case b). In short, we use the term vertical, respectively, horizontal strip.

Remark: Only 𝑅2,2 is both vertically and horizontally oriented.

The main concepts presented here are still taken from [28], but especially the following is defined
slightly differently:

20

3.2 NP-Completeness Proof

Definition 3.12. A grid tentacle is the union of a series of alternately oriented grid strips
(𝑆𝑖)𝑖=1,...,𝑛 =

(︀
𝑅𝑎𝑖𝑏𝑖

𝑥𝑖𝑦𝑖

)︀
𝑖=1,...,𝑛

, where we have for all 𝑖 = 1, ..., 𝑛− 1:

a) 𝑉 (𝑆𝑖) ∩ 𝑉 (𝑆𝑖+1) = {𝑎𝑖+1𝑏𝑖+1, 𝑎𝑖+1𝑦𝑖+1} with 𝑉 (𝑆𝑖) ∩ 𝑉 (𝑆𝑖+1) ∩ {𝑎𝑖𝑦𝑖, 𝑥𝑖𝑦𝑖} ≠ ∅ or

b) 𝑉 (𝑆𝑖) ∩ 𝑉 (𝑆𝑖+1) = {𝑎𝑖+1𝑏𝑖+1, 𝑥𝑖+1𝑏𝑖+1} with 𝑉 (𝑆𝑖) ∩ 𝑉 (𝑆𝑖+1) ∩ {𝑥𝑖𝑏𝑖, 𝑥𝑖𝑦𝑖} ≠ ∅.

This means, in a tentacle, we always attach the two ’starting points’ of the next strip to the side
of the strip before, by which always one of the ’end points’ of the latter is reused. We have the
first option of the above disjunction when a vertical strip is followed by a horizontal one and the
second option for the reverse case. This is shown in Figure 3.3.

Definition 3.13. Let the parity of a grid vertex 𝑥𝑦 ∈ Z2 given by: If 𝑥+ 𝑦 ≡ 0 mod 2 we call
the vertex even, otherwise odd. Let the vertex sets be correspondingly denoted by the disjoint
sets 𝑉even(𝐺∞) and 𝑉odd(𝐺∞).

It is easy to see that the even and odd vertices define a bipartition of the grid graph and with
this also of grid strips and tentacles. By calling one arbitrary partition of 𝐵 ∈ ℬ even and the
other odd, thus 𝑉 (𝐵) = 𝑉even(𝐵) ·∪ 𝑉odd(𝐵), we can define analogously to [28]:

Definition 3.14. A parity-preserving embedding of a graph 𝐵 ∈ ℬ in the grid graph is a injective
function 𝜓𝜓𝜓 : 𝑉 (𝐵)→ 𝑉 (𝐺∞), where

a) the parities of 𝑣 and 𝜓(𝑣) are the same for all 𝑣 ∈ 𝑉 (𝐵),

b) for all 𝑣𝑤 ∈ 𝐸(𝐵), there exists a path from 𝜓(𝑣) to 𝜓(𝑤) in 𝐺∞ such that the inner of all
these paths do not intersect.

Note that this is a different type of embedding than in Definition 3.3 because it defines a one-
to-one mapping of the vertices from the problem graph, here 𝐵, and the hardware graph, the
infinite grid, while the representation of edges is generalized to paths. Although both embedding
concepts are related, it is not necessary for our construction to go into details about this here.

The above definition would also be valid for arbitrary bipartite graphs, but we are especially
interested in graphs 𝐵 ∈ ℬ, as in [28] the authors could show that the size of the grid graph
needed for a parity-preserving embedding can be bounded:

Lemma 3.15 ([28] Lemma 2.2). For 𝐵 ∈ ℬ, we can construct in polynomial time a parity-
preserving embedding of 𝐵 in a rectangular graph 𝑅𝑛𝑛 with 𝑛 = 𝑘 |𝐵| (for some constant 𝑘 ∈ N).

S1 S2

S3

a1b1

a1y1

x1b1

x1y1
= a2b2

a2y2

x2b2 = x3b3

a3y3 x3y3

x2y2

a3b3

Figure 3.3: Grid tentacle example composed of three grid strips with even (white) and odd ver-
tices (black)

21

3 Minor Embedding

v3

v2

v1

w3

w2

w1

(a) 𝐵* ∈ ℬ

v1 w1 v3

v2 w2

w3

(b) 𝑅(𝐵*)

Figure 3.4: Example graph and its rectangular representation from [28] with even (white) and
odd vertices (black)

For a fixed 𝐵𝐵𝐵 ∈ ℬ, let 𝜓𝜓𝜓 : 𝑉 (𝐵)→ 𝑉 (𝑅𝑛𝑛) be such an embedding, which we assume to be fixed
in the following, too. Let 𝑅(𝐵)𝑅(𝐵)𝑅(𝐵) ⊆ 𝑅𝑛𝑛 denote the grid graph resulting from this embedding,
where we have 𝜓(𝑉 (𝐵)) ⊆ 𝑉 (𝑅(𝐵)). We call 𝑅(𝐵) the rectangular representation of 𝐵. Note
that 𝑅(𝐵) is a rectangular subgraph but not a broken rectangular graph in our sense.

An adopted example from [28] is shown in Figure 3.4. Although there might be a much simpler
rectangular representation, on the one hand, it is not guaranteed to be found by the last lemma
and, on the other hand, the shown example includes several different cases, which we handle in
the following sections. Thus, we reuse the same example throughout the whole section.

3.2.3 Broken Chimera Graph Construction

In this section, we show the construction of 𝐶(𝐵) for an arbitrary 𝐵 ∈ ℬ. To ensure that
the existence of a Hamiltonian cycle is mutually induced between the original graph 𝐵 and the
constructed broken Chimera graph 𝐶(𝐵), we use a very restricted version of the broken Chimera
graph. Although this might not be necessary for the hardness of the problem, which means we
could most likely reduce the number of broken vertices, we want to keep the Hamiltonian cycle
construction mostly unambitious.

We start by giving an overview about the overall concept by evolving the underlying grid graph.
Afterwards, we introduce the representations of the single elements, the vertices and edges.
Finally, we combine the elements to the full broken Chimera graph corresponding to 𝐵.

Underlying Rectangular Subgraph

The rectangular representation 𝑅(𝐵) is the base line for our construction. However, it is not
sufficient to be used directly. In this section, we therefore evolve the full underlying grid structure
of the final Chimera graph. Later the grid vertices are replaced with unit cells, where the
coordinates of the grid vertices correspond to the coordinates, columns and rows, of the unit
cells.

Definition 3.16. Let 𝐿(𝐵)𝐿(𝐵)𝐿(𝐵) be the enlarged rectangular representation of 𝐵, a rectangular sub-
graph obtained from 𝑅(𝐵) by the following manipulations: We start with tripling the size of the
rectangular representation 𝑅(𝐵) in each direction by replacing each edge by a straight path of

22

3.2 NP-Completeness Proof

length 3. This means that an original vertex 𝑣 of 𝐵, represented in 𝑅(𝐵) by 𝑥𝑦 = 𝜓(𝑣) for a
parity-preserving embedding 𝜓 as found by Lemma 3.15, is now represented by the coordinate
3𝑥 3𝑦. Due to the odd factor 3, the parity of the vertices is preserved.

Afterwards, we extend the produced graph by adding the vertices �̃�(𝑦 + 1), (�̃� + 1)𝑦 and
(�̃�+ 1)(𝑦 + 1) and the edges {�̃�𝑦, �̃�(𝑦 + 1)}, {�̃�𝑦, (�̃� + 1)𝑦}, {�̃�(𝑦 + 1), (�̃� + 1)(𝑦 + 1)} and
{(�̃�+1)𝑦, (�̃�+1)(𝑦+1)} (if not present already) for each vertex �̃�𝑦 in the tripled graph. This is
shown in Figure 3.5(a). However, for the odd vertices 𝑣 ∈ 𝑉odd(𝐵) with 𝜓(𝑣) = 𝑥𝑦 we do not use
the edges {(3𝑥−1) 3𝑦, 3𝑥 3𝑦}, {(3𝑥+1) 3𝑦, (3𝑥+1)(3𝑦−1)}, {(3𝑥+1)(3𝑦+1), (3𝑥+2)(3𝑦+1)}
and {3𝑥 (3𝑦 + 1), 3𝑥 (3𝑦 + 2)} (if they were added before at all). After removing them, we ob-
tain the final enlarged rectangular subgraph for our construction 𝐿(𝐵). This is illustrated in
Figure 3.5(b) for a single odd vertex.

As it is shown exemplarily in Figure 3.6 on the next page, the resulting graph is now a combination
of grid strips and tentacles connected by one or two edges with ’space in-between’. In the following
sections, we describe the Chimera elements that replace the specific grid elements of 𝐿(𝐵). Thus,
we specify:

Definition 3.17. Let 𝑆𝑣𝑆𝑣𝑆𝑣 := 𝑅
(3𝑥+1)(3𝑦+1)
3𝑥 3𝑦 denote the 2 × 2 grid strip subgraph that represents

the original vertex 𝑣 ∈ 𝑉 (𝐵) in 𝐿(𝐵) for 𝜓(𝑣) = 𝑥𝑦. Let 𝑇𝑒𝑇𝑒𝑇𝑒 be the grid tentacle between 𝑆𝑣
and 𝑆𝑤 representing edge 𝑒 = 𝑣𝑤 ∈ 𝐸(𝐵) in 𝐿(𝐵). W.l.o.g. for 𝑣 being even and 𝑤 being odd,
𝑇𝑒 is connected to 𝑆𝑣 by two edges and to 𝑆𝑤 by a single edge.

Concerning the overall graph, it is easy to see that

Corollary 3.18. For all 𝐵 ∈ ℬ, 𝐿(𝐵) can be constructed in polynomial time.

Proof. Because the number of manipulations is bounded by the number of vertices and the
number of edges of 𝑅(𝐵), the claim follows directly from Lemma 3.15.

Remark: The enlarged rectangular representation 𝐿(𝐵) is a subgraph of a rectangular graph of
size at most (3𝑛− 1)× (3𝑛− 1) for constant 𝑛 from Lemma 3.15.

x

y

↓

3x 3x+ 1

3y

3y + 1

(a) even vertex

x

y

↓

3x 3x+ 1

3y

3y + 1

(b) odd vertex

Figure 3.5: Manipulation of grid vertices and incident edges of the rectangular representation
to obtain the tripled rectangular representation (black) with its extension (green)
illustrated in the lower part

23

3 Minor Embedding

Sv1 Sw1 Sv3

Sv2 Sw2

Sw3Tv1w3

Tv2w1

Tv2w3

Tv3w3

Tv3w2

Tv1w1 Tv3w1

Tv2w2

Figure 3.6: Tripled (black) and extended (green) rectangular representation forming the enlarged
rectangular representation 𝐿(𝐵*) corresponding to the example of Figure 3.4 with
the sets of 2× 2 vertices (underlaid in gray) corresponding to the original even (light
gray) and odd vertices (dark gray) and the connecting tentacles (underlaid in light
green)

Vertices as Broken Chimera Subgraphs

In this section, we explain the broken Chimera graphs that represent the single vertices. Re-

member each vertex 𝑣 ∈ 𝑉 (𝐵) is represented in 𝐿(𝐵) by the grid strip 𝑆𝑣 = 𝑅
(3𝑥+1)(3𝑦+1)
3𝑥 3𝑦 with

𝜓(𝑣) = 𝑥𝑦 for the parity-preserving embedding 𝜓. Now we replace the corresponding 2× 2 grid
vertices by a specific broken Chimera graph of size 2× 2 as illustrated in black in Figure 3.7.

In a grid graph, each vertex can have at most 4 neighbors. We restrict our construction to
graphs 𝐵 ∈ ℬ, where each vertex has a degree of 2 or 3. No matter where the unused edge in
the rectangular representation 𝑅(𝐵) is placed, the incident edges of a vertex with degree 3 form
a T-like structure, which is possibly simply rotated. All vertices of degree 2 can be represented
by just dropping one of the surplus connections.

The same principle is kept for the representation of 𝑣 in 𝐿(𝐵) and also in our broken Chimera
graph: The blue edges added in Figure 3.7, ℓ1, ℓ2 and ℓ3, analogously form a ’T’. Although
those edges do not exist in a Chimera graph as shown, they illustrate the later connection to the
Chimera elements representing the original edges. Thus, we define

Definition 3.19. Let 𝐶2,2𝐶2,2𝐶2,2 ∈ 𝒞 be the broken Chimera graph with the vertex set, and thus the
connectivity, as shown in black in Figure 3.7. For 𝑣 ∈ 𝑉 (𝐵), let 𝐶(𝑆𝑣)𝐶(𝑆𝑣)𝐶(𝑆𝑣) ⊂ 𝐶∞ be the subgraph
isomorphic to 𝐶2,2, possibly rotated according to the representation of the incident edges in 𝑅(𝐵)
and placed at coordinate 3𝑥3𝑦 (with the unit cell in the lower left corner after rotation), that
represents 𝑣.

As it can be seen in the definition, we use the same broken Chimera graph for all vertices in 𝑉 (𝐵)
regardless of their parity. The distinction of even and odd vertices only becomes apparent when

24

3.2 NP-Completeness Proof

`1

`2

`3

u1

u2

u3

Figure 3.7: Broken Chimera graph representing a vertex with broken vertices (gray dashed) and
additional edges (blue)

connecting the vertex elements with the edge elements as already indicated by the construction
of 𝐿(𝐵). We go into detail about the differences in the next sections.

However, note that we did not color the Chimera subgraph’s partitions in Figure 3.7 by intention.
Their assignment changes depending on the parity of the grid coordinates. Furthermore, the
vertices 𝑢1, 𝑢2 and 𝑢3 are labelled because they mark the main entry points of the Hamiltonian
cycle constructed later on.

Edges as Chimera Tentacles

In contrast to the vertices, the construction of the edges is more straightforward because nearly
all vertices in the grid tentacles of 𝐿(𝐵) are replaced by non-broken Chimera unit cells. With
the grid definitions of [28] from the previous section, we define analogously

Definition 3.20. For 𝑇 being a grid tentacle, let the corresponding Chimera tentacle be

𝐶(𝑇)𝐶(𝑇)𝐶(𝑇) := 𝐶∞

⎡⎣ ⋃︁
𝑥𝑦∈𝑉 (𝑇)

𝑉 𝑥𝑦

⎤⎦ ,
where 𝑉 𝑥𝑦𝑉 𝑥𝑦𝑉 𝑥𝑦 is the set of vertices in the unit cell at the coordinates 𝑥𝑦 ∈ Z2 in the infinite Chimera
graph.

An example of a Chimera tentacle is illustrated in Figure 3.8(a). As a strip is also a tentacle
with just one element, the same definition holds for Chimera strips.

As mentioned in the section before, the distinction between odd and even vertices is done by the
way the tentacles are attached to the 𝐶2,2-subgraphs representing the vertices. The necessity of
this distinction becomes clear in the next section when we assemble the Hamiltonian cycle in
the constructed Chimera graph. According to the enlarged rectangular representation 𝐿(𝐵), we
restrict odd vertices to just a single edge in each direction, while even vertices get two edges.
As we focus on vertex-induced subgraphs of the Chimera graph, this is realized by additional
broken vertices in the joined tentacles leading to the removal of edges. Thus, let us define slightly
different Chimera tentacles to represent the edges:

25

3 Minor Embedding

(a) unmodified version (b) modified version with broken unit cells connect-
ing to the even (green) and the odd (blue) vertex
representation

Figure 3.8: Chimera tentacles corresponding to the example in Figure 3.3

Definition 3.21. For 𝑒 = 𝑣𝑤 ∈ 𝐸(𝐵) and, w.l.o.g., 𝑣 even and 𝑤 odd, let 𝐶(𝑇𝑒)𝐶(𝑇𝑒)𝐶(𝑇𝑒) be the modified
Chimera tentacle representing edge 𝑒, where the first two unit cells, connecting to 𝑆𝑣, are replaced
by the element highlighted in green in the example in Figure 3.8(b) and the last two unit cells,
connecting to 𝑆𝑤, by the one highlighted in blue.

Remarks:

� As we triple the rectangular representation, we ensure that we have a Chimera strip of
length at least one between 𝑆𝑣 and the next vertex or a possible corner in the tentacle in
each direction for all vertices 𝑣 ∈ 𝑉 (𝐵). Thus, the above replacement is always possible in
straight elements.

� If the tentacle 𝑇𝑒 for some 𝑒 ∈ 𝐸(𝐵) only consists of a single strip of length 1, we only use
the element for odd vertices highlighted in blue.

� By the definitions, 𝐶(𝑇) and 𝐶(𝑇) are broken Chimera graphs for all grid tentacles 𝑇 .

� If 𝑇 is finite, which means that the series of strips defining 𝑇 only consists of a finite
number of strips of finite lengths, 𝐶(𝑇) and 𝐶(𝑇) are finite and we have 𝐶(𝑇), 𝐶(𝑇) ∈ 𝒞.

Composition of all Elements

In this section, we show how the single elements are combined to form the broken Chimera graph.
In Figure 3.9, we show how the subgraph for the vertices and the tentacles are finally connected
by an example of two neighboring vertices. Now we have all elements to combine the full broken
Chimera graph. Thus, we can now formally define:

Definition 3.22. Let

𝐶(𝐵)𝐶(𝐵)𝐶(𝐵) := 𝐶∞

⎡⎣ ⋃︁
𝑣∈𝑉 (𝐵)

𝑉
(︀
𝐶(𝑆𝑣)

)︀
∪

⋃︁
𝑒∈𝐸(𝐵)

𝑉
(︀
𝐶(𝑇𝑒)

)︀⎤⎦
be the broken Chimera graph corresponding to 𝐵 ∈ ℬ.

26

3.2 NP-Completeness Proof

↓

Figure 3.9: Combined Chimera graph elements derived from 𝐿(𝐵) representing neighboring odd
and even vertices in 𝐶(𝐵) with three incident edges each

In other words, 𝐶(𝐵) is the broken Chimera graph derived from 𝐿(𝐵) by replacing 𝑆𝑣 with 𝐶(𝑆𝑣)
for all 𝑣 ∈ 𝑉 (𝐵) and 𝑇𝑒 with 𝐶(𝑇𝑒) for all 𝑒 ∈ 𝐸(𝐵) and connecting those elements with the
corresponding edges. By this we can already conclude Lemma 3.8 with

Proof of Lemma 3.8. Analogously to Corollary 3.18, the replacements of grid vertices and paths
of 𝐿(𝐵) by Chimera elements can be done in linear time.

Remember, this also means that 𝐶(𝐵) is finite (if 𝐵 is finite) and we have 𝐶(𝐵) ∈ 𝒞.

3.2.4 Hamiltonicity

In this section, we establish some results about Hamiltonian paths and cycles, first in the single
elements and finally in the full constructed broken Chimera graph 𝐶(𝐵). After introducing the
overall concept, we evaluate Chimera tentacles first because we build on previous results on
Hamiltonian paths in rectangular Chimera graphs there. After analyzing the vertex elements,
we can finally combine the full Hamiltonian cycle.

Concept of Return and Cross Paths

While a Hamiltonian cycle visits every single vertex, just a subset of edges is covered. In our
construction, we extend single edges to paths, which means we add further vertices. Even if the
edge is not used in a Hamiltonian cycle of 𝐵, those vertices need to be covered by a Hamiltonian
cycle of 𝐶(𝐵).

To handle this issue in their construction for grid graphs, the authors of [28] introduced the
concept of cross and return paths. The principle is illustrated in Figure 3.10. While paths
corresponding to edges used in the Hamiltonian cycle are simply passed over, thus form a cross

27

3 Minor Embedding

v3

v2

v1

w3

w2

w1

(a) in 𝐵*

v1 w1 v3

v2 w2

w3

(b) in 𝑅(𝐵*)

Figure 3.10: Hamiltonian cycles in the example graph and its rectangular representation of Fig-
ure 3.4 with additional loops (blue)

path, the cycle is extended by loops to cover the vertices in the remaining paths. These loops
are called return paths.

Clearly, the resulting cycle in the rectangular representation is not a Hamiltonian cycle anymore
because some vertices are visited twice. However, we can use this as a base line for our Chimera
graph construction where the grid vertices are replaced with unit cells. As unit cells can be
crossed more than once without using a vertex twice, the loops form a valid extension of the
cycle finally resulting in a Hamiltonian cycle.

Due to the parity-preserving embedding, every path in the rectangular representation still con-
nects vertices of different parity. Thus, we can decide that all the return paths start in even grid
vertices representing even original vertices. In this case, the loops cross the vertices along the
path until they reach the last before the odd vertex, corresponding to the original odd neighbor,
and return from there.

Chimera Tentacles

In the following, we establish some results about Hamiltonian cycles and paths in the Chimera
tentacles. This can be used later on to construct the desired return and cross paths in the full
broken Chimera graph 𝐶(𝐵). Note that we only handle finite strips and tentacles.

The Chimera graph consists of unit cells of complete bipartite subgraphs with an equal number
of vertices in the partitions in the non-broken case. Thus, paths completely covering these unit
cells need to fulfil a certain condition: Each unit cell needs to be entered and left by such a path
over an equal number of horizontal and vertical edges. This can be realized in different ways, for
which we show some combinations in Figure 3.11. One or more vertex pairs, consisting of one
horizontal and one vertical vertex each, can be traversed after each other to cross the unit cell
in an L-shape. Alternatively, by splitting up these pairs, the unit cell can be crossed straight
or in a U-turn. Note that the latter parts can only appear in pairs when there are no broken
vertices.

For the Chimera tentacles handled in the following, we only use L-turns. Those can still be
realized even if pairs of horizontal and vertical vertices are removed, like in unit cells at the
beginning and the end of the modified Chimera tentacles. After establishing the general results
for the non-modified Chimera tentacles, we show how to transfer them to the modified versions
required for 𝐶(𝐵).

28

3.2 NP-Completeness Proof

(a) 1 L (b) 2 L (c) 3 L (d) 1 U, 1 I (e) 2 U, 1 L

Figure 3.11: Different possibilities for parts of a Hamiltonian path to cross a unit cell, where the
letters L, U and I stand for L-turn, U-turn and crossing straight, respectively

Realizing Return Paths In our Chimera construction, we need to make sure that the Chimera
tentacles are suitable to realize return paths. By [35], we know every Chimera strip has a
Hamiltonian cycle. There the concept of alternating ’snake paths’ was shown to cover all unit
cells of a rectangular shaped Chimera graph crossing them only using L-turns. Here, we briefly
recall the construction and extend the statement to Chimera tentacles:

Lemma 3.23. There exists a Hamiltonian cycle for all (finite) Chimera tentacles.

Proof. We provide the single elements that can be combined to form a cycle covering all vertices
in all unit cells of the Chimera tentacle. The cycle consists of two parallel parts along the long
sides of the strips: Like in the construction of [35], both parts alternately loop to the other side
of the strips by doing two L-turns. The principle is illustrated in the underlying grid tentacle in
Figure 3.12(a) on the next page. The parts are finally connected in the beginning and the end
of the tentacle to close the cycle.

On the Chimera level, the L-turns of the alternating parts are realized by at least one vertex
pair, consisting of a horizontal and a vertical vertex, in each unit cell. The remaining vertex
pairs inside the unit cell could be used in either of the parts. For symmetry reasons, we use two
pairs in each straight part, however, this is not required. An example is shown in Figure 3.12(b).
In the unit cells in the corners and at the ends of the tentacle, we can do the turn by simply
covering all vertices, which is shown in Figures 3.12(c) and (d). In the inner unit cell of the
corner, the lower left in Figure 3.12(c), the parts meet over three L-turns. This way, we can
assemble the full cycle as shown in the example in Figure 3.12(e).

Finally, in Figures 3.12(b)-(d), we show the possible set of components that is sufficient, apart
from rotation of the elements and permuting the ordering of horizontal or vertical vertices in a
unit cell due to the symmetry, to construct a Hamiltonian cycle in a tentacle.

From the constructed Hamiltonian cycle, we can now easily get a Hamiltonian path that allows
to cover the whole tentacle by a return path.

Corollary 3.24. Let 𝐶(𝑇) be a Chimera tentacle derived from a grid tentacle 𝑇 beginning with
strip 𝑆 = 𝑅𝑎𝑏

𝑥𝑦. There exists a Hamiltonian path in 𝐶(𝑇)

a) from a horizontal vertex in 𝑉𝑎𝑏 to a horizontal vertex in 𝑉𝑥𝑏 if 𝑆 is oriented vertically or

b) from a vertical vertex in 𝑉𝑎𝑏 to a vertical vertex in 𝑉𝑎𝑦 if 𝑆 is oriented horizontally.

Proof. We can use the same construction as before in the proof of Lemma 3.23 just with an open
straight element rather than a closing loop at the beginning of the tentacle.

29

3 Minor Embedding

(a) illustration in the grid tentacle

(b) straight
elements

(c) corner (d) closing
loop

(e) Chimera tentacle with a possible
Hamiltonian cycle

Figure 3.12: Hamiltonian cycle construction in the Chimera tentacle example with the two dif-
ferent alternating parts

Remark: By cutting the closing loop between the final unit cells, we can also find a Hamiltonian
path from a vertical vertex in 𝑉𝑎𝑏 to a vertical vertex in 𝑉𝑥𝑏 if 𝑆 is oriented vertically or from a
horizontal vertex in 𝑉𝑎𝑏 to a horizontal vertex in 𝑉𝑎𝑦 if 𝑆 is oriented horizontally. However, this
is not necessary for our construction.

Realizing Cross Paths Similarly to the paragraph before, we show the suitability of Chimera
tentacles to realize cross paths here. First of all, we establish a relation between the partitions
of the Chimera graph and the parity of the grid vertices. W.l.o.g., we can specify the parity of
the Chimera graph vertices in the following way: The vertices in the horizontal partition of the
unit cell at coordinate (1, 1) are called even and in the vertical partition odd.

Due to the alternating orientation of the partitions of the Chimera graph over the unit cells,
remember Figure 2.1, the parity of the other vertices can directly be deduced from the parity
of the unit cell coordinates: The above relation is repeated in every unit cell at an even grid
coordinate, while it is reversed if the grid coordinate is odd. In other words, for two different unit
cells with coordinates of the same parity their horizontal vertices belong to the same partition,
so do the vertical vertices. Now we can simply deduce

Corollary 3.25. Let 𝑣 ∈ 𝑉𝑎𝑏 and 𝑤 ∈ 𝑉𝑥𝑦 with 𝑎𝑏, 𝑥𝑦 ∈ Z2 be two vertices in 𝐶∞. The vertices 𝑣
and 𝑤 are of different parity if either

a) 𝑎𝑏 and 𝑥𝑦 have different parity and 𝑣 and 𝑤 are oriented equally or

b) 𝑎𝑏 and 𝑥𝑦 have the same parity and 𝑣 and 𝑤 have different orientation.

With these parity relations, we can now build the base for Hamiltonian paths from ’the beginning’
to ’the end’ of a Chimera tentacle, thus forming a cross path. We start with simple strips and
show the following claim exemplarily for horizontal strips, but it symmetrically holds for vertical
ones (by replacing 𝑥𝑏 with 𝑎𝑦 in the last sentence).

30

3.2 NP-Completeness Proof

Lemma 3.26. Let 𝑆 = 𝑅𝑎𝑏
𝑥𝑦 be a horizontal grid strip. There exists a Hamiltonian path from

𝑠 ∈ 𝑉𝑎𝑏 to 𝑡 ∈ 𝑉𝑥𝑦 in the Chimera strip 𝐶(𝑆) if 𝑠 and 𝑡 have different parity. The same holds if
we replace 𝑥𝑦 with 𝑥𝑏 (the other corner point at the end of the strip).

Proof. The partitions in a Chimera strip are of the same size due to the equal number of horizontal
and vertical vertices in the full unit cells. Thus, a Hamiltonian path needs to start in one partition
and end in the other. It remains to show that there always exists a Hamiltonian path in this case.

As already mentioned before, we need to enter, respectively, leave a unit cell horizontally in the
same number as vertically. The easiest way to realize a Hamiltonian path respecting this is a
single snake path only consisting of L-turns, analogously to one of the parts as in the proof of
Lemma 3.23.

Assume the starting vertex 𝑠 belongs to the vertical partition. By iteratively covering all vertices
of a unit cell once entered, the path snakes along the strip as shown in Figure 3.13(a). The
principle can be illustrated more simply in the grid, see Figure 3.13(b).

Such a snake path has the following properties:

� The snake path can be extended analogously to cover a strip of arbitrary length.

� Due to the symmetry of the unit cells, we can interchange the ordering of the horizontal
and the vertical vertices along the path in a unit cell arbitrarily.

� The final unit cell is either at 𝑥𝑦 or 𝑥𝑏 depending on the length of the strip.

� We always enter the final unit cell vertically and thus end up in a vertical vertex.

� As the path also respects the bipartition of the grid graph, the final unit cell has a different
parity than the first one.

All in all, this means, if 𝑡 is a vertical vertex like 𝑠, it needs to be in the final unit cell according
to Corollary 3.25 and we are done.

s t

(a) snake path from a vertical vertex to a
vertical vertex

ab

xy

xb

ay

(b) illustration of (a) in the grid strip

s

t

(c) snake path from a vertical vertex to a
horizontal vertex

ab

xy

xb

ay

(d) illustration of (c) in the grid strip

Figure 3.13: Hamiltonian path construction in a Chimera strip example

31

3 Minor Embedding

If 𝑡 is a horizontal vertex instead, it can only be in the unit cell in the other corner as in the
case before. By slightly modifying the snake path using an additional loop, we can also finish
the path there. This is demonstrated in Figure 3.13(c) and (d). We can observe that the final
unit cell is now of the same parity as the starting one. Furthermore, it is entered horizontally,
which means that the path finishes in a horizontal vertex.

In the reverse case, where 𝑠 is a horizontal and 𝑡 a vertical vertex we can simply use the whole
construction in the reverse direction, which means we either need to rotate it, in case of 𝑡 ∈ 𝑉𝑥𝑦, or
mirror it, if 𝑡 ∈ 𝑉𝑥𝑏. Note that, by both transformations, the way the path ’snakes’ is inverted.
Finally, if both 𝑠 and 𝑡 are horizontal, we need to apply the additional loop at both ends of
the strip.

Now we can generalize the result to Chimera tentacles. Note that, with a vertex being oriented
orthogonally to a strip it is contained in, we mean that it is oriented vertically if the strip is
oriented horizontally and vice versa.

Lemma 3.27. Let 𝑇 =
⋃︀𝑛

𝑖=1 𝑆𝑖 be a grid tentacle of a series of strips (𝑆𝑖)𝑖=1,...,𝑛 for 𝑛 ∈ N
with 𝑆𝑖 = 𝑅𝑎𝑖𝑏𝑖

𝑥𝑖𝑦𝑖 . There exists a Hamiltonian path from 𝑠 ∈ 𝑉𝑎1𝑏1 to 𝑡 ∈ 𝑉𝑥𝑛𝑦𝑛 in the Chimera
tentacle 𝐶(𝑇) if 𝑠 and 𝑡 have different parity.

Proof. The necessity of the parity condition follows the same arguments as given in the proof of
Lemma 3.26. We still need to proof the existence of a Hamiltonian path. Analogously to the
proof of Lemma 3.23, we provide one sufficient set of components which can be assembled to a
Hamiltonian path. Those components are derived from the paths in the single strips as shown
in Lemma 3.26, which can easily be combined to form a Hamiltonian path through the whole
Chimera tentacle.

We explain the concept using the underlying rectangular tentacle as illustrated in Figure 3.14(a).
Assume the starting vertex 𝑠 lies in a partition that is oriented orthogonally to the starting
strip 𝑆1. Then we can use a simple snake path through the first strip, like in the proof of
Lemma 3.26, finishing in one of the two ’end points’. When crossing over to the next strip, we
have two cases: Either the next strip is attached to the side of the strip where the snake path
ends or it is attached to the other side.

In the first case, the path can be extended along the edge that both strips share back to the
already covered other starting point of the next strip. By this an inner corner is formed and the
snake path can continue in the next strip. This is shown in Figure 3.14(a) in the left corner.
In the latter case, we can use the additional loop as explained in the proof of Lemma 3.26 to
move to the other side of the strip and continue from there, forming an outer corner, like in
Figure 3.14(a) at the transition from 𝑆2 to 𝑆3.

By successively adding the next strip according to the specific case, we can assemble the whole
path ending up again in a vertex being oriented orthogonally to the final strip. Using the
additional loop again, we can change the final vertex to be in a partition oriented equally as the
strip. The remaining cases can be achieved by adding the loop in the beginning of the tentacle.
However, this again switches the route of the snake path and thus the cases for all corners as well.

Because the whole construction only uses L-turns and does not enter a grid vertex representing
a unit cell more than twice, it can easily be realized on the Chimera level like shown in Fig-
ure 3.14(e) with the components of Figures 3.14(b)-(d). With all rotated and reordered variants
of these components we can assemble Hamiltonian paths in all Chimera tentacles.

32

3.2 NP-Completeness Proof

a1b1

x3y3

(a) illustration in the grid tentacle

(b) straight
elements

(c) inner
corner

(d) outer
corner

s

t

(e) Chimera tentacle with a possible
Hamiltonian path

Figure 3.14: Hamiltonian path construction in the Chimera tentacle example

Modified Chimera Tentacles The previous statements about the Hamiltonicity always refer
to arbitrary Chimera tentacles. However, we use the modified version in the constructed broken
Chimera graph 𝐶(𝐵). But we observe the results are easily transferable:

Corollary 3.28. Lemma 3.23 and Corollary 3.24 still hold for modified Chimera tentacles.

Proof. In the proof of both claims, the unit cells corresponding to the start and end points are
fully covered by forming an L-turn in the underlying rectangular representation. Pairs consisting
of one horizontal and one vertical vertex can be removed from these closing elements until a
single pair is left without disturbing the construction.

Unfortunately, we cannot state the same for Lemmas 3.26 and 3.27: The possibly necessary
additional loops in the beginning or the end of the tentacle might require more vertices than the
modified Chimera tentacles provide because the corresponding unit cells need to be entered more
than once. However, by excluding these cases, we can analogously deduce the following result.

Corollary 3.29. Let 𝑇 =
⋃︀𝑛

𝑖=1 𝑆𝑖 be a grid tentacle of a series of strips (𝑆𝑖)𝑖=1,...,𝑛 for 𝑛 ∈ N
with 𝑆𝑖 = 𝑅𝑎𝑖𝑏𝑖

𝑥𝑖𝑦𝑖 . There exists a Hamiltonian path from 𝑠 ∈ 𝑉𝑎1𝑏1 to 𝑡 ∈ 𝑉𝑥𝑛𝑦𝑛 in the modified

Chimera tentacle 𝐶(𝑇) if 𝑠 and 𝑡 have different parity and 𝑠 and 𝑡 are oriented orthogonally to
the strips 𝑆1 and 𝑆𝑛, respectively.

Thus, return and cross paths can analogously be realized in modified Chimera tentacles repre-
senting edges in the constructed Chimera graph. We can now continue with connecting these
paths in the corresponding vertex elements.

33

3 Minor Embedding

Vertex Elements

In contrast to the Chimera tentacles representing the edges, we have certain broken vertices
placed at specific positions in 𝐶2,2, respectively, in 𝐶(𝑆𝑣) for all 𝑣 ∈ 𝑉 (𝐵). Remember Figure 3.7
and Definition 3.19 of Section 3.2.3. In particular, the unit cell in the upper left corner (without
rotation) has an unequal number of vertices in the different partitions. This means we cannot
pair all vertices anymore, like in Figures 3.11(a)-(c), and a Hamiltonian path in 𝐶(𝑆𝑣), as a part
of the overall Hamiltonian cycle, cannot cover all vertices in this unit cell by simple L-turns. It
rather needs to follow a more complicated path by using an uneven number of U-turns or straight
paths.

Recapturing the notation introduced with Figure 3.7, we can establish the following statement
about paths in these graphs starting and finishing in the labelled vertices 𝑢1 to 𝑢3.

Lemma 3.30. There exists a Hamiltonian path in 𝐶2,2 from

(a) 𝑢1 to 𝑢2 using none of the additional edges,

(b) 𝑢1 to 𝑢2 using additional edge ℓ3 (and not ℓ1, ℓ2),

(c) 𝑢1 to 𝑢3 using none of the additional edges,

(d) 𝑢1 to 𝑢3 using additional edge ℓ2 (and not ℓ1, ℓ3),

(e) 𝑢2 to 𝑢3 using none of the additional edges,

(f) 𝑢2 to 𝑢3 using additional edge ℓ1 (and not ℓ2, ℓ3).

Proof. By inspection, compare Figure 3.17 on page 37.

Assembly

Now we have collected all the single elements that are necessary to assemble a full Hamiltonian
cycle in the broken Chimera graph 𝐶(𝐵). In this section, we show that all these pieces indeed
fit together.

For this let us specify the vertices forming the junctions between the elements: By 𝑢𝑣𝑤𝑢
𝑣
𝑤𝑢
𝑣
𝑤, 𝑢

𝑣
𝑥𝑢
𝑣
𝑥𝑢
𝑣
𝑥

and 𝑢𝑣𝑦𝑢
𝑣
𝑦𝑢
𝑣
𝑦, we denote the vertices in 𝐶(𝑆𝑣) isomorphic to 𝑢1, 𝑢2 and 𝑢3 of 𝐶2,2 according to the

corresponding neighboring vertices 𝑤, 𝑥, 𝑦 ∈ 𝑁(𝑣). In other words, if the Chimera tentacle 𝐶(𝑇𝑒)
for edge 𝑒 = 𝑣𝑤 ∈ 𝐸(𝐵) replaces ℓ𝑖 for some 𝑖 ∈ {1, 2, 3} in the depiction of 𝐶(𝑆𝑣) according to
Figure 3.7, the vertex isomorphic to 𝑢𝑖 is now denoted by 𝑢𝑣𝑤. The vertex corresponding to 𝑢𝑗 ,
𝑗 ∈ {1, 2, 3}, of 𝐶(𝑆𝑤) is now denoted by 𝑢𝑤𝑣 . Let 𝑡

𝑣
𝑤𝑡
𝑣
𝑤𝑡
𝑣
𝑤 ∈ 𝑉 (𝐶(𝑇𝑒)) further be the unique Chimera

tentacle vertex which is connected to 𝑢𝑣𝑤 with 𝑡𝑣𝑤𝑢
𝑣
𝑤 ∈ 𝐸(𝐶(𝐵)). This notation is also illustrated

in Figure 3.15.

As we do not know the trace of the Hamiltonian cycle in 𝐵 in advance, and therefore also not
in 𝐶(𝐵), we need to ensure that all possible ways of traversing 𝐵 can equivalently be realized in
𝐶(𝐵). At first, this means wherever we have an edge between two vertices in 𝐵, we need to be
able to cover the corresponding Chimera tentacle by a cross path and with this, in particular,
connect the corresponding vertex representations in 𝐶(𝐵).

Although this seems trivial by the snake paths introduced before, we need to pay attention to the
following: The way such a possible snake path covers a tentacle is predetermined by the single

34

3.2 NP-Completeness Proof

C̃(Tvw) C̃(Tvy)

C̃(Tvx)

C̃(Sv)

uv
w

uv
x

uv
y

tvw

tvx

tvy

Figure 3.15: Vertices joining the vertex Chimera element 𝐶(𝑆𝑣) with the edge Chimera elements
𝐶(𝑇𝑣𝑛) for 𝑛 ∈ 𝑁(𝑣) = {𝑤, 𝑥, 𝑦} for 𝑣 being an even vertex (including the dashed
vertices and edges) or odd (excluded)

edge connecting the representation of the odd vertex with the tentacle. It is not straightforward
to see that the snake path reaches the other end of the tentacle, such that we can always enter
the representation of the element of the neighboring even vertex 𝑣 as expected, that is, in the
vertex 𝑡𝑣𝑤, from where we can enter 𝑢𝑣𝑤 and continue according to Lemma 3.30. We can show
that this is indeed true due to the kept properties of the parity-preserving embedding.

Lemma 3.31. For all edges 𝑒 = 𝑣𝑤 ∈ 𝐸(𝐵), a Hamiltonian path in 𝐶(𝑇𝑒) from 𝑡𝑤𝑣 to 𝑡𝑣𝑤 exists.

Proof. In the Chimera graph, the parity of the unit cell coordinates influences which vertices of
which partition of the unit cell are even or odd: In particular, for w.l.o.g. 𝑣 being an even original
vertex, the corresponding coordinate 3𝑥 3𝑦 in 𝐿(𝐵) is even and we thus observe 𝑢𝑣𝑛 are even for
all 𝑛 ∈ 𝑁(𝑣). Reversely, for 𝑤 as the neighbor of 𝑣 being odd, all 𝑢𝑤𝑚, 𝑚 ∈ 𝑁(𝑤), are odd, too.
Note that this remains valid even if we rotate the 𝐶2,2-subgraph structure. In turn, this means
that their neighboring vertices 𝑡𝑣𝑛 and 𝑡𝑤𝑚 are odd and even, respectively. Moreover, 𝑡𝑣𝑤 and 𝑡𝑤𝑣 are
oriented orthogonally to their corresponding Chimera strip of 𝐶(𝑇𝑒) and therefore the conditions
of Corollary 3.29 are met and we find a Hamiltonian path accordingly.

As the next step, we show that crossing a vertex in 𝐵, using two arbitrary edges out of three
possible, can be analogously realized in 𝐶(𝐵). Because a Hamiltonian cycle always uses one
edge to enter and one edge to leave a vertex, for a vertex of degree 3, we have one outgoing edge
left that is not covered by a Hamiltonian cycle. The corresponding Chimera tentacle needs to
be covered by a return path. Thus, we need to make sure that we are able to loop from the
representation of an even vertex in all three directions. This means in turn that all odd vertices
can be touched by a return path. More precisely, we show

Lemma 3.32. For all edges 𝑒 = 𝑣𝑤 ∈ 𝐸(𝐵), with w.l.o.g. 𝑣 even and 𝑤 odd, exists a Hamiltonian
path in 𝐶(𝑆𝑣) ∪ 𝐶(𝑇𝑒) from 𝑢𝑣𝑥 to 𝑢𝑣𝑦 with 𝑤 ̸= 𝑥, 𝑦 ∈ 𝑁(𝑣).

35

3 Minor Embedding

Proof. By Lemma 3.30, we know how to traverse the vertex element from 𝑢𝑣𝑥 to 𝑢𝑣𝑦 analogously
including the additional edge in the direction of the attached tentacle. This means that the vertex
element is covered partly, left over vertex 𝑢𝑣𝑤 and is entered again in the neighboring unit cell in
a vertex whose partition is equally oriented to 𝑢𝑣𝑤. Equivalently, the loop in the Chimera tentacle
starts and ends in the first strip of the tentacle in equally oriented vertices, more precisely, in 𝑡𝑣𝑤
and the corresponding vertex in the neighboring unit cell, respectively. Thus, these vertices have
different parity and there exists a Hamiltonian path between these vertices by Corollary 3.24,
forming the desired return path in the Chimera tentacle. By finally covering the remaining
vertices in the vertex element, we can build the whole desired Hamiltonian path.

Remark: In case vertex 𝑣 has a degree of only 2, where w.l.o.g. 𝑦 is not an element of 𝑁(𝑣),
the above lemma still holds when we keep the notation 𝑢𝑣𝑦 to identify the corresponding vertex.
However, these cases are not relevant when constructing the overall cycle because 𝑣 can only be
crossed over the edges 𝑣𝑤 and 𝑣𝑥. Thus, the element 𝐶(𝑆𝑣) can only be entered over the edges
𝑡𝑣𝑤𝑢

𝑣
𝑤 and 𝑡𝑣𝑥𝑢

𝑣
𝑥.

For the sake of completeness, we provide the parts of all possible pathways in the elements of a
vertex of degree 3 illustrated in the grid in Figure 3.16 and in the Chimera graph in Figure 3.17.
Additionally, we show in Figure 3.18 on page 38 how these parts of the Hamiltonian cycle are
connected in the extracted example of Figure 3.9. With this we can now conclude our example
with the illustration of the full Hamiltonian cycle in the grid in Figure 3.19.

(a) even vertex with loop to the right (b) odd vertex with loop from the right

(c) even vertex with loop to the left (d) odd vertex with loop from the left

(e) even vertex with loop to below (f) odd vertex with loop from below

Figure 3.16: Parts of the Hamiltonian cycle through the broken Chimera graph representing a
vertex with three incident edges illustrated in the underlying grid graph

36

3.2 NP-Completeness Proof

(a) even vertex with loop to the right (b) odd vertex with loop from the right

(c) even vertex with loop to the left (d) odd vertex with loop from the left

(e) even vertex with loop to below (f) odd vertex with loop from below

Figure 3.17: Parts of the Hamiltonian cycle through the broken Chimera graph representing a
vertex with three incident edges

37

3 Minor Embedding

Figure 3.18: Parts of the Hamiltonian cycle in neighboring vertices of the example in Figure 3.9

Figure 3.19: Cycle in 𝐿(𝐵*) illustrating the Hamiltonian cycle in 𝐶(𝐵*)

38

3.2 NP-Completeness Proof

Mutual Induction

In this section, we bring together the results of all the previous sections and conclude the overall
complexity result with the proof of Lemma 3.9. It consists of two different parts that need to be
shown for all 𝐵 ∈ ℬ:

a) If there exists a Hamiltonian cycle in 𝐵, there exists a Hamiltonian cycle in 𝐶(𝐵).

b) If there exists a Hamiltonian cycle in 𝐶(𝐵), there exists a Hamiltonian cycle in 𝐵.

We actually prove two even stronger statements. As 𝐶(𝐵) is specifically designed to fulfil the
following property, we can easily show at first:

Lemma 3.33. A Hamiltonian cycle in 𝐵 ∈ ℬ induces a Hamiltonian cycle in 𝐶(𝐵).

Proof. Let 𝐻 be a Hamiltonian cycle in 𝐵. We have two cases for the edges in 𝐵: For all edges
in the cycle 𝑒 = 𝑣𝑤 ∈ 𝐸(𝐻), we can find a Hamiltonian path from 𝑡𝑣𝑤 to 𝑡𝑤𝑣 in 𝐶(𝑇𝑒) according
to Lemma 3.31. For all remaining edges 𝑒 = 𝑣𝑤 ∈ 𝐸(𝐵) ∖ 𝐸(𝐻), let 𝑣 denote the even incident
vertex. As 𝑣 is also covered by the Hamiltonian cycle, it needs to have two further neighbors
𝑥, 𝑦 ̸= 𝑤 ∈ 𝑁(𝑣) with 𝑣𝑥, 𝑣𝑦 ∈ 𝐸(𝐻). By Lemma 3.32, we can find a Hamiltonian path in
𝐶(𝑆𝑣)∪𝐶(𝑇𝑒) from 𝑢𝑣𝑥 to 𝑢𝑣𝑦. Thus, all vertices in the Chimera tentacles representing the edges
are covered.

By the latter edge case, we have indeed handled all even vertices of degree 3 already. For the
remaining vertices, 𝑣 ∈ 𝑉 (𝐵) being odd or having degree 2, we can find a Hamiltonian path
from 𝑢𝑣𝑤 to 𝑢𝑣𝑥 equivalently to Lemma 3.30 for 𝑤, 𝑥 ∈ 𝑁(𝑣) being the neighboring vertices where
we have 𝑣𝑤, 𝑣𝑥 ∈ 𝐸(𝐻). Hence, all vertices in the Chimera vertex elements are covered, too.
By finally connecting all Hamiltonian path elements for the vertices and edges with the bridging
Chimera edges 𝑡𝑣𝑤𝑢

𝑣
𝑤 and 𝑡𝑤𝑣 𝑢

𝑤
𝑣 for all edges in the original Hamiltonian cycle 𝑣𝑤 ∈ 𝐸(𝐻), we

have assembled the corresponding Hamiltonian cycle in 𝐶(𝐵).

For the reverse direction, we cannot assume that a possible Hamiltonian cycle in 𝐶(𝐵) exactly
follows our construction. Nevertheless, we can show the analogous result to above using the
following simple result about the Hamiltonicity of graph minors formed by contracting an edge
of a Hamiltonian cycle:

Lemma 3.34. Let 𝐺 be an arbitrary simple graph with more than 3 vertices and Hamiltonian
cycle 𝐻. Furthermore, let 𝑒 ∈ 𝐸(𝐻) be an edge of 𝐺 that is covered by the Hamiltonian cycle 𝐻,
�̃� be the graph that is formed by contracting edge 𝑒 and �̃� be the cycle in �̃� that is analogously
formed by contracting edge 𝑒. Then �̃� is a Hamiltonian cycle of �̃�.

Proof. By contracting an edge, the cycle remains a cycle. As it still covers all vertices of �̃�
including the newly formed vertex from the contraction, it also remains Hamiltonian.

Remark: In case of 𝐺 having only 3 vertices, the graph and thus also the Hamiltonian cycle
is a triangle. Only in case we allow multiple edges, the graph resulting from contracting an
edge still has a Hamiltonian cycle. However, by the formerly mentioned additional removal of
multiple edges, the resulting simple graph collapses to a single edge and no Hamiltonian cycle
exists anymore.

By contracting along a set of edges 𝑃 forming a path, we mean in the following that each edge
in 𝑃 is successively contracted until just a single vertex is left. Consequently a Hamiltonian cycle

39

3 Minor Embedding

containing 𝑃 in the original graph induces a Hamiltonian cycle in the graph resulting from the
contraction of 𝑃 . Now we can prove our final lemma

Lemma 3.35. A Hamiltonian cycle in 𝐶(𝐵) induces a Hamiltonian cycle in 𝐵 ∈ ℬ.

Proof. Let 𝐻 be a Hamiltonian cycle in 𝐶(𝐵). We show in the following that it is possible to con-
tract 𝐶(𝐵) along paths in 𝐻, such that the resulting graph corresponds to 𝐵 and the analogously
contracted cycle derived from 𝐻 is a Hamiltonian cycle in 𝐵 according to Lemma 3.34.

For all edges 𝑒 = 𝑣𝑤 ∈ 𝐸(𝐵) with w.l.o.g. 𝑣 even and 𝑤 odd, the corresponding Chimera
tentacle 𝐶(𝑇𝑒) is connected to the vertex element 𝐶(𝑆𝑣) by two edges and to 𝐶(𝑆𝑤) by a single
edge. Thus, 𝐻 can only enter and leave the tentacle a single time. The corresponding part of
the cycle forms a Hamiltonian path in the tentacle, always either from and to the even vertex
representation or from the even to the odd vertex representation. How these paths are realized
in detail is not of interest, but they form a kind of return or cross paths, like in our construction
of a Hamiltonian cycle in 𝐶(𝐵).

We can analogously revert the steps of the construction by contracting along the Hamiltonian
paths in the single elements: Each Chimera tentacle is contracted, such that only a single
edge remains connecting the different vertex representations. While cross paths result in an
edge covered by the resulting Hamiltonian cycle, return paths are contracted into the even
vertex representation. The single edge between the representation of the odd vertex and the
Chimera tentacle is kept. It is not covered by the Hamiltonian cycle in 𝐶(𝐵) and also not in
the contraction. By further contracting the paths in the vertex elements until a single vertex
remains, we can obtain the original graph 𝐵 together with a Hamiltonian cycle in it.

Finally, by the last two lemmata, the proof of Lemma 3.9 follows directly and we have completed
the reductions of Section 3.2.1.

3.2.5 Transfer to Pegasus

In this section, we briefly transfer our findings about the Chimera graph to the newly released
hardware structure, the Pegasus graph. It is derived from the Chimera graph by stretching
and shifting the underlying superconducting loops. By this the grid structure of unit cells is
preserved, but a larger connectivity between the vertices can be realized, in particular, bridging
different unit cells. As the Pegasus graph is less accessible than the Chimera, we do not go into
more details here. Please see [6] for a complete formal description of the Pegasus graph 𝑃𝑛𝑃𝑛𝑃𝑛 for
𝑛 ∈ N and its different derived versions.

Here, we concentrate on the ‘standard’ Pegasus graph, which means with the default shift,
as currently available in hardware by the D-Wave advantage system. We use the same term
‘broken’ as for the Chimera graph when considering a vertex-induced subgraph of a Pegasus
graph. Analogously to 𝒞, let 𝒫𝒫𝒫 be the set of all finite broken Pegasus graphs. We can now state
a similar question as before, where we can show that the hardness of this question relates to the
one for the Chimera graph.

Broken Pegasus Minor Embedding Problem. Given an arbitrary graph 𝐺 and
some 𝑃 ∈ 𝒫, is 𝐺 a minor of 𝑃 , i.e., is 𝐺 embeddable into 𝑃?

40

3.2 NP-Completeness Proof

Figure 3.20 on the next page illustrates the relation between the Chimera and the Pegasus graph.
The highlighted subgraph of the depicted Pegasus graph does nearly have the same connectivity
as the Chimera graph apart from the additional edges inside the unit cells marked in red. Let 𝐶+

𝑐𝑟𝐶+
𝑐𝑟𝐶+
𝑐𝑟

be the Chimera graph derived from 𝐶𝑐𝑟 by adding these edges. This means an edge from the
first to the second vertex and an edge from the third to the fourth vertex in each partition in
each unit cell of 𝐶𝑐𝑟, when enumerating the vertices along the depicted ordering. Now we can
easily see from the figure that 𝐶+

𝑐𝑟 is isomorphic to a vertex-induced subgraph of a (standard)
Pegasus graph. In other words, it is a broken Pegasus graph.

By enclosing the additional edges, wherever both incident vertices are non-broken, in each par-
tition of each unit cell in all broken Chimera elements of Section 3.2.3, we can construct anal-
ogous elements: For 𝐶(𝑆𝑣) of Definition 3.19 and 𝐶(𝑇𝑒) of Definition 3.20, respectively, 𝐶(𝑇𝑒)
of Definition 3.21 we get 𝐶+(𝑆𝑣) for all 𝑣 ∈ 𝑉 (𝐵) and 𝐶+(𝑇𝑒), respectively, 𝐶

+(𝑇𝑒) for all
𝑒 ∈ 𝐸(𝐵) and thus finally 𝐶+(𝐵)𝐶+(𝐵)𝐶+(𝐵) for 𝐵 ∈ ℬ. This can still be done in polynomial time and we
have 𝐶+(𝐵) ∈ 𝒫.

Although 𝐶+(𝐵) is not bipartite anymore, we also keep the chequered pattern of even and
odd vertices. It is easy to see that all the statements, lemmas and corollaries, in Section 3.2.4
still hold when replacing all occurrences of Chimera elements with the corresponding ones from
above. In particular, the proof of Lemma 3.35 remains valid because the additional edges just
concern vertices inside a unit cell and the Chimera tentacles are thus still connected to the vertex
elements by only three edges in total.

This way, we can deduce the following:

Lemma 3.36. The Hamiltonian Cycle Problem for graphs 𝑃 ∈ 𝒫 is NP-complete.

Similarly to the treatment of Chimera graphs, this implies

Theorem 3.37. The Broken Pegasus Minor Embedding Problem is NP-complete.

Note that we could replace the set of edges added between the vertices in each unit cell in 𝐶+(𝐵)
by a different one. This would not interfere with our Hamiltonian cycle construction nor with
the argument for the reverse induction of a Hamiltonian cycle in the original graph. Even if
we consider a Chimera graph structure but with unit cells forming a complete subgraph, the
above argumentation also holds. Thus, the decisive pattern here is having a vertex-induced
subgraph that consists of unit cells with a 𝐾4,4-subgraph being arranged and connected in a grid
pattern. This means, for all new hardware architectures, if they fulfil this property, the Minor
Embedding Problem remains hard in general.

41

3 Minor Embedding

Figure 3.20: Inner of the Pegasus graph 𝑃5 without the incomplete unit cells at the boundary

42

3.3 Largest Complete Graph

3.3 Largest Complete Graph

Although the Broken Chimera Minor Embedding Problem is NP-complete for arbitrary
graphs, as shown in the previous section, some special cases might yield an advantage. In this
section, we investigate the complete graph as a minor serving as a universal template. By the
restriction to a naturally arising embedding structure, we can formulate a restricted matching
problem and show that finding the largest correspondingly embeddable complete graph in a given
broken Chimera graph is fixed-parameter tractable in the number of broken vertices. The full
section is based on [37].

In Section 3.3.1, we start with the explanation of the overall approach. Afterwards, we introduce
a certain indexing of the Chimera graph, followed by the actual derivation of the optimization
problem formulation in Section 3.3.3. At the end of that section, the complete ILP is summarized.
Afterwards, the problem is analyzed theoretically in Section 3.3.4. The results of the experiments
explained in Section 3.3.6 are evaluated in Section 3.3.7.

Note that, in this section, we focus on the Chimera graph only and leave the extension to the
Pegasus graph, which has a larger connectivity for the same number of vertices [6], to future
research. As the Pegasus graph is derived from the Chimera graph, we are confident that our
results are transferable.

3.3.1 Matching Problem Approach

In the standard embedding scheme for the complete graph, remember Figure 3.1(b), the set
of qubits representing a single logical vertex forms a path, which is also called a chain in the
quantum annealing context. By extending the triangle structure, as shown in Figure 3.21(a),
each of the chains becomes cross-shaped. Therefore, we call them crosses in the following.
Additionally, each pair of crosses is now connected by two edges. Due to this redundancy,
the embedding can be extended by splitting one of the crosses into its vertical and horizontal
part. Thus, we can gain one additional logical vertex. According to [7], this scheme yields an
embedding for the complete graph with the largest possible number of vertices. This means, in
the ideal Chimera graph, the Largest Complete Graph Embedding Problem is trivial.

To take advantage of this scheme in real hardware with broken vertices, where the shown tem-
plates are not applicable, the authors of [32] proposed an algorithm trying to extract a subgraph
of the broken Chimera where the extended triangle embedding can still be applied and has as

(a) extended triangular (b) permutation of diago-
nal elements

Figure 3.21: Different variants of complete graph embeddings in the ideal Chimera graph

43

3 Minor Embedding

many chains as possible. In [7], this approach is generalized by breaking up the triangle structure
and placing L-shaped blocks such that all of them overlap pairwise. The principle is illustrated
in Figure 3.21(b). The approach of Boothby et al. [7] to find a largest possible complete graph
shows a significant advantage over [32] regarding graph sizes. In this work, we further generalize
both approaches to still allow for crosses of qubits representing a single logical vertex but also
open up the triangle structure.

Figure 3.22(a) shows another variant of a complete graph embedding in the ideal Chimera graph.
In this construction, every row of qubits is connected to a column of qubits like in the extended
triangular embedding in Figure 3.21(a). But in contrast to Figure 3.21(a), the edges connecting
the horizontal and vertical cross parts of Figure 3.22(a) do not lie on the diagonal of the Chimera
but are distributed over the graph. We call those edges crossroads in the following, forming the
crosses representing a single original vertex in the embedding.

As each of the crosses occupies the full horizontal, respectively, vertical part, every row, respec-
tively, every column of qubits belongs to a specific cross. For each row and column combination,
there is a unique crossroad connecting them. Thus, such an embedding is defined by a matching
of rows to columns. In turn, each matching of rows to columns defines a complete graph em-
bedding in the ideal Chimera graph. This means there are a factorial number of possibilities to
embed the complete graph.

The redundant edges connecting two crosses would again allow for one more logical vertex by
spitting one of the crosses at the crossroad. However, we disregard this, as the redundancy offers
another opportunity: The ends of the crosses could be cut off to make room for broken qubits as
shown in Figure 3.22(b). There the remaining, shorter crosses still have an edge to every other
cross and thus form a complete graph embedding. But given an arbitrary broken Chimera graph,
how do we place the crosses such that this is fulfilled?

By choosing a certain edge connecting a row and a column to locate a crossroad there, the
corresponding cross is well defined: Both the horizontal and the vertical part are extended until
we reach the boundary of the Chimera graph or a broken qubit. To place two crossroads, we need
to ensure the resulting crosses ‘meet’ each other, which means there is at least one edge connecting
both. Thus, this approach can be reformulated as: How do we match rows with columns to form
crossroads, like in Figure 3.22(c), such that all resulting crosses meet each other?

Clearly, the more restricted the graph the smaller is the number of suitable matchings. While
just a few broken vertices might still yield a variety of complete graph embeddings, in particular,
if the Chimera graph is very broken, none of the originally large number of possibilities might

(a) permutation over all
rows and columns

(b) crosses in broken Chimera (c) crossroads in broken
Chimera to be found

Figure 3.22: Complete graph embeddings in a broken Chimera graph with permuted crossroads

44

3.3 Largest Complete Graph

be valid anymore. Hence, we might not be able to embed the same number of vertices as in
the ideal case, leading to the question: Which matching results in the largest possible complete
graph? This question is an optimization problem, whose construction we show in the following
sections.

For simplification of the notation, we show the construction for the standard symmetric form of
the Chimera graph, like in current hardware. But this approach can be extended to arbitrary
dimensions. We further concentrate on finding just a single solution rather than enumerating all
possibilities of the same, optimal size because one embedding is sufficient to start calculating on
the annealing machine.

The next step after the pure graph embedding in the process of obtaining an embedded Ising
model is the distribution of the original problem weights over the various physical vertices. The
final weight distribution depends not only on the original Ising model but also on parameters of
the embedding and might influence the performance of the annealing process significantly. For
instance, one of the factors that is assumed to have a relevant influence is the chain length, here
more precise the cross size, that is, the number of vertices in the crosses.

As we aim for plain embeddability here, no further parameters apart from the complete graph
size are part of the optimization. To get the final embedding, the crosses are extended until the
boundary of the Chimera, whether this introduces redundancy in the connecting edges or not.
However, exploiting this redundancy might lead to better solutions in terms of the embedding
parameters: By cutting off unnecessary vertices from the end of the crosses, the cross size can
be reduced. Another option is to select the embedding from the full set of equivalent optimal
solutions, where, for example, the cross size is minimal. Both of the mentioned options introduce
a second optimization level, which would lead far beyond the scope of this work. We keep this
for future work.

3.3.2 Extension of the Chimera Graph Description

In this section, we present the Chimera hardware graph with a specific indexing of the graph
vertices, being suitable for the ILP formulation of our matching version of the Largest Com-
plete Graph Embedding Problem, and the variable input parameters. Furthermore, we
specify the sets of broken qubits according to their orientation in the Chimera graph. Note
that the distinction of horizontal and vertical vertices is interchanged compared to the original
publication [37] in favor of a uniform notation. Remembering Definition 2.3, we refer here to the
arrangement of the vertex partitions in the depiction of the Chimera graph.

Vertex Indexing

A Chimera graph is defined by a lattice structure of complete bipartite subgraphs, which are
called unit cells. Based on current hardware, the reference here is always the ideal symmetric
Chimera graph with the number of rows and columns of unit cells given by size 𝑠𝑠𝑠 ∈ N, which we
shortly denote by 𝐶𝑠𝐶𝑠𝐶𝑠 := 𝐶𝑠𝑠. For the following construction, we assume 𝑠 to be given and fixed
and therefore drop the reference to 𝐶𝑠 for shortness.

Due to the lattice structure, each vertex can be represented as a tuple of indices referring to
its row and column. With 𝐸(𝐶𝑠) = 𝐸cell ·∪ 𝐸inter and 𝑉 (𝐶𝑠) = 𝑉hori ·∪ 𝑉vert and the index sets
𝑆𝑆𝑆 := [𝑠] and 𝑁𝑁𝑁 := [𝑛] with 𝑛𝑛𝑛 := 4𝑠, we have

45

3 Minor Embedding

h = (rh, ch)

1

2

1 2 3 4 5 6 7 8 9 101112

(a) horizontal vertices

v = (rv , cv) 1 2

1
2
3
4

5
6
7
8

9
10
11
12

(b) vertical vertices

(r, c) 1 8

2

5

(c) edge examples
(2, 8) and (5, 1)

Figure 3.23: Specific indexing in the Chimera graph

� the horizontal vertices 𝑉hori𝑉hori𝑉hori := 𝑆 × 𝑁 with 𝑠 rows and 𝑛 columns, illustrated in blue in
Figure 3.23(a),

� the vertical vertices 𝑉vert𝑉vert𝑉vert := 𝑁 × 𝑆 with 𝑛 rows and 𝑠 columns, illustrated in green in
Figure 3.23(b),

� the inter unit cell edges 𝐸inter𝐸inter𝐸inter ⊂ 𝑉 2
hori ∪ 𝑉 2

vert connecting vertices of different unit cells,
which are not needed explicitly in the following and therefore are not specified here, and

� the edges inside of the single unit cells

𝐸cell𝐸cell𝐸cell :=
{︁
(ℎ, 𝑣) =

(︀
(𝑟ℎ, 𝑐ℎ), (𝑟𝑣, 𝑐𝑣)

)︀
∈ 𝑉hori × 𝑉vert : 𝑟ℎ = 𝑢(𝑟𝑣), 𝑐𝑣 = 𝑢(𝑐ℎ)

}︁
.

In the latter, we use the function 𝑢𝑢𝑢 : 𝑁 → 𝑆 with 𝑢(𝑥) =
⌈︀
𝑥
4

⌉︀
, being the mapping from the inner

row/column to the unit cell row/column index, in the equality constraints to ensure that the
paired vertices lie in the same unit cell. Since the unit cell rows and columns are given implicitly
with this function, we can use the congruent representation

𝐸cell
∼=
{︀
(𝑟𝑣, 𝑐ℎ) : 𝑟𝑣, 𝑐ℎ ∈ 𝑁

}︀
=
{︀
𝑟𝑐 : 𝑟, 𝑐 ∈ 𝑁

}︀
= 𝑁2

in the following. In general, we use

𝑟𝑟𝑟(.) : (𝑥1, 𝑥2) ↦→ 𝑥1,

𝑐𝑐𝑐(.) : (𝑥1, 𝑥2) ↦→ 𝑥2

for providing the row, respectively, column for a given vertex, whereas 𝑟 and 𝑐 (without further
index) always refer to some inner row, respectively, column indices without specifying a certain
corresponding vertex. Furthermore, we identify the tuple (𝑟, 𝑐) with the non-commutative prod-
uct 𝑟𝑐 for shortness to describe an inner unit cell edge. An example for the indexing of edges is
shown in Figure 3.23(c).

Broken Vertices

With regard to real hardware, we consider some vertices to be unavailable. For the symmet-
ric Chimera graph 𝐶𝑠 with 𝑠 ∈ N as described in the previous section, let 𝐵hori𝐵hori𝐵hori ⊂ 𝑉hori and
𝐵vert𝐵vert𝐵vert ⊂ 𝑉vert be the sets of different broken vertices and 𝐵 := 𝐵hori ·∪𝐵vert. In our experiments,

46

3.3 Largest Complete Graph

we vary the ratio of broken vertices to the total number of vertices in an ideal Chimera graph,
that is,

𝑏𝑏𝑏 :=
|𝐵|

|𝑉hori|+ |𝑉vert|
=
|𝐵|
8𝑠2

.

While for an ideal Chimera graph the set of possible crossroads defining the crosses in the
embedding is just 𝐸cell, the available combinations in a broken Chimera graph are restricted to
those inner unit cell edges which do not contain a broken vertex:

𝐴𝐴𝐴 :=
{︀
(ℎ, 𝑣) ∈ 𝐸cell : ℎ ∈ 𝑉hori ∖𝐵hori, 𝑣 ∈ 𝑉vert ∖𝐵vert

}︀
∼=
{︀
𝑟𝑐 ∈ 𝑁2 :

(︀
(𝑢(𝑟), 𝑐), (𝑟, 𝑢(𝑐))

)︀
∈ 𝐸cell ∩ ((𝑉hori ∖𝐵hori)× (𝑉vert ∖𝐵vert))

}︀
.

3.3.3 ILP Formulation

In this section, we construct an ILP for the introduced complete graph embedding problem over
arbitrary input parameters 𝑠, 𝐵hori, and 𝐵vert as described in the previous section.

Bipartite Matching Problem

In general, the restricted Largest Complete Graph Embedding Problem as we consider it
here is a matching problem: Which row can be matched with which column to form a crossroad
in an optimal embedding following our construction rules? Thus, we call the corresponding
problem the Largest Complete Graph Matching Problem, whose full ILP formulation
is given later in this work, to distinguish it from the general problem formulation.

The decision which of the available combinations is taken can be encoded in binary problem
variables 𝑥𝑥𝑥 ∈ {0, 1}𝐴 with

𝑥𝑟𝑐 =

{︃
1 if row 𝑟 is matched to column 𝑐,

0 otherwise.

We say a crossroad 𝑟𝑐 is activated if its corresponding binary variable 𝑥𝑟𝑐 is activated in an
optimal solution, which means it is set to 1. For simplification, we use 𝑥 ∈ {0, 1}𝑁×𝑁 in the
following with disabling all unavailable row-column pairs by presetting 𝑥𝑟𝑐 = 0 for all 𝑟𝑐 ∈ 𝑁2∖𝐴,
although this extends the model with additional variables.

As the goal is to match as much as possible, we want to maximize the number of activated binary
variables and the objective is ∑︁

𝑟𝑐∈𝐴
𝑥𝑟𝑐 =

∑︁
𝑟𝑐∈𝑁2

𝑥𝑟𝑐.

Our construction is based on crossroads joining full rows and columns. Therefore, only one
crossroad per row and column is allowed. This can be enforced by the matching constraints∑︁

𝑟𝑐∈𝐴
𝑥𝑟𝑐 =

∑︁
𝑟∈𝑁

𝑥𝑟𝑐 ≤ 1 ∀𝑐 ∈ 𝑁,∑︁
𝑟𝑐∈𝐴

𝑥𝑟𝑐 =
∑︁
𝑐∈𝑁

𝑥𝑟𝑐 ≤ 1 ∀𝑟 ∈ 𝑁.
(3.1)

47

3 Minor Embedding

Those types of constraints are also called cardinality constraints because they enforce choosing a
certain number of members, here just one, out of a given set. By these restrictions, the optimal
value of the objective function corresponds to the size, that is, the number of vertices, of the
largest embeddable complete graph. Additionally, they confirm the upper bound on the objective
function of 𝑛 = 4𝑠, which is the maximal size of a complete graph in 𝐶𝑠 using our construction
as explained in Section 3.3.1.

Until now, the constructed problem is just a simple maximum bipartite matching problem.
In the following, we show further constraints that need to be added.

Mutually Exclusive Sets Constraints

If a vertical vertex is broken, it interrupts the horizontal path from the left to the right. This
prevents a cross occupying this row to be extended to the boundaries of the Chimera graph. It
is analogous for a broken horizontal vertex and a cross using the corresponding column. This
needs to be taken into account when considering possible crossroad candidates for the embedding.
Figure 3.24 depicts examples of such a situation. Due to the broken vertices, the corresponding
crosses for certain pairs of crossroads might not meet. This means there do not exist any
edges between the different vertices of the crosses, even if they reach the same unit cell like in
Figure 3.24(b). But at least one edge is needed to provide a valid embedding of two vertices of
the complete graph. Therefore, those crossroads cannot be activated together and we need to
introduce further constraints enforcing the activation of only one of them.

We see that there are not only isolated pairs but clusters of crossroads all being pairwise forbid-
den, which means that only one of all of them can be activated. We call those clusters mutually
exclusive sets (MES). The construction of those sets differs for certain pairs of broken vertices.
We have the following cases, which are handled separately in the next paragraphs:

1. two broken vertical vertices,

2. two broken horizontal vertices,

3. two different broken vertices, one vertical and one horizontal.

(a) in different unit cell rows

(b) in the same unit cell row

Figure 3.24: Crosses that do not meet due to broken vertices (gray dashed)

48

3.3 Largest Complete Graph

1. Let 𝑣 = (𝑟𝑣, 𝑐𝑣) ̸= 𝑤 = (𝑟𝑤, 𝑐𝑤) ∈ 𝐵vert be two broken vertical vertices, as illustrated
in Figure 3.25. Due to the horizontal interruption, the crossroads on the left and the right of
the two vertices are affected. In Figure 3.25(b), both broken vertices lie in the same inner row.
As the matching constraints already permit only one crossroad per row, no further constraints
are necessary in this case and we can restrict to vertices with 𝑟𝑣 ̸= 𝑟𝑤, which is the case shown
in Figure 3.25(a). There we have two MES, which are highlighted in different colors. Each of
the blue crossroads in the right top corner cannot be activated together with the others in this
corner due to the matching constraints, and they cannot be activated together with the blue in
the left bottom corner because their corresponding crosses would not meet. The same holds for
the green crossroads in the opposite corners.

For the definition of the MES, we need all crossroads from the left boundary until the leftmost
broken vertex and all crossroads from the rightmost broken vertex until the right boundary in
the two corresponding inner rows. The incident edges (light green) to the broken vertices are
excluded by definition of 𝐴, respectively, set to 0, but again are included in the definition of the
two sets for simplicity. Let for example 𝑣 be the top left broken vertex in Figure 3.25(a) and
𝐼left ⊆ 𝑁 describe the interval of columns on the left and 𝐼right ⊆ 𝑁 on the right. The set of blue
crossroads in the left top corner is then given by combining the row 𝑟𝑣 with each of the columns
in 𝐼left. The remaining blue crossroads combine 𝑟𝑤 with 𝐼right. This results in the MES(︀

{𝑟𝑣} × 𝐼left
)︀
∪
(︀
{𝑟𝑤} × 𝐼right

)︀
.

For the green crossroads, we get symmetrically(︀
{𝑟𝑤} × 𝐼left

)︀
∪
(︀
{𝑟𝑣} × 𝐼right

)︀
.

The intervals of columns, 𝐼left and 𝐼right, can be derived from the broken vertices’ columns
depending on the relational position of the vertices. To describe this more formally, for the fixed
size 𝑛 let

𝐼(𝑠1, 𝑠2)𝐼(𝑠1, 𝑠2)𝐼(𝑠1, 𝑠2) :=

{︃
[4𝑠1] if 𝑠1 ≤ 𝑠2,
[4(𝑠1 − 1) + 1;𝑛] = [4𝑠1 − 3;𝑛] otherwise

be the interval to or from 𝑠1 depending on the relation to 𝑠2 for 𝑠1, 𝑠2 ∈ 𝑆. The multiplication
with 4 is needed for the conversion of unit cell to inner columns. The behaviour of this function
is illustrated in Figure 3.26 for different relations. By the subtraction of 1

2 , we can circumvent

(a) two different MES due to different rows

(b) MES in same row already handled by matching constraints

Figure 3.25: Sets of mutually exclusive crossroads caused by two broken vertical vertices

49

3 Minor Embedding

4s1 4s2 4s̃1

I(s1, s2)
I(s̃1, s2)

I(s2, s̃1)
I(s2, s1)

I(s2, s2)
I(s2, s2 − 1

2)

Figure 3.26: Illustration of the interval function

the fact that 𝐼 only returns the left interval for identical inputs when we need the right one.
The resulting sets of mutually exclusive crossroads can then be defined for each combination of 𝑣
and 𝑤 with

𝑋1(𝑣, 𝑤)𝑋1(𝑣, 𝑤)𝑋1(𝑣, 𝑤) :=
(︀
{𝑟𝑣} × 𝐼(𝑐𝑣, 𝑐𝑤)

)︀
∪
(︀
{𝑟𝑤} × 𝐼(𝑐𝑤, 𝑐𝑣 − 1

2)
)︀
,

𝑋2(𝑣, 𝑤)𝑋2(𝑣, 𝑤)𝑋2(𝑣, 𝑤) :=
(︀
{𝑟𝑤} × 𝐼(𝑐𝑣, 𝑐𝑤)

)︀
∪
(︀
{𝑟𝑣} × 𝐼(𝑐𝑤, 𝑐𝑣 − 1

2)
)︀
.

(3.2)

Therefore, we get the cardinality constraints for 𝑖 = 1, 2∑︁
𝑟𝑐∈𝑋𝑖(𝑣,𝑤)

𝑥𝑟𝑐 ≤ 1,

where the sum, e.g. for 𝑖 = 1, can also be written as∑︁
𝑐∈𝐼(𝑐𝑣 ,𝑐𝑤)

𝑥𝑟𝑣𝑐 +
∑︁

𝑐∈𝐼(𝑐𝑤,𝑐𝑣− 1
2)

𝑥𝑟𝑤𝑐.

2. Two horizontal broken vertices, with ℎ = (𝑟ℎ, 𝑐ℎ) ̸= 𝑘 = (𝑟𝑘, 𝑐𝑘) ∈ 𝐵hori, can be handled
analogously to the case before by exchanging row and column: We can restrict on 𝑐ℎ ̸= 𝑐𝑘. Taking
all rows from the upper boundary to the uppermost broken vertex and all from the bottom to
the lowest broken vertex results in the sets of mutually exclusive crossroads

𝑋1(ℎ, 𝑘)𝑋1(ℎ, 𝑘)𝑋1(ℎ, 𝑘) :=
(︀
𝐼(𝑟ℎ, 𝑟𝑘)× {𝑐ℎ}

)︀
∪
(︀
𝐼(𝑟𝑘, 𝑟ℎ − 1

2)× {𝑐𝑘}
)︀
,

𝑋2(ℎ, 𝑘)𝑋2(ℎ, 𝑘)𝑋2(ℎ, 𝑘) :=
(︀
𝐼(𝑟ℎ, 𝑟𝑘)× {𝑐𝑘}

)︀
∪
(︀
𝐼(𝑟𝑘, 𝑟ℎ − 1

2)× {𝑐ℎ}
)︀
.

(3.3)

Therefore, we get exemplary the constraint for 𝑖 = 1∑︁
𝑟𝑐∈𝑋1(ℎ,𝑘)

𝑥𝑟𝑐 =
∑︁

𝑟∈𝐼(𝑟ℎ,𝑟𝑘)
𝑥𝑟𝑐ℎ +

∑︁
𝑟∈𝐼(𝑟𝑘,𝑟ℎ− 1

2)

𝑥𝑟𝑐𝑘 ≤ 1.

Let us combine the MES for all combinations in

𝒳vert𝒳vert𝒳vert :=
⋃︁{︀{︀

𝑋1(𝑣, 𝑤), 𝑋2(𝑣, 𝑤)
}︀
: 𝑣, 𝑤 ∈ 𝐵vert, 𝑟𝑣 ̸= 𝑟𝑤

}︀
,

𝒳hori𝒳hori𝒳hori :=
⋃︁{︀{︀

𝑋1(ℎ, 𝑘), 𝑋2(ℎ, 𝑘)
}︀
: ℎ, 𝑘 ∈ 𝐵hori, 𝑐ℎ ̸= 𝑐𝑘

}︀
.

3. The case with two different broken vertices ℎ = (𝑟ℎ, 𝑐ℎ) ∈ 𝐵hori and 𝑣 = (𝑟𝑣, 𝑐𝑣) ∈ 𝐵vert

is different to the ones before. As shown in Figure 3.27(a), we have four different cases depending
on the relational position of the two vertices, whether the horizontal vertex is above or below,

I) 𝑟ℎ < 𝑢(𝑟𝑣) or

II) 𝑟ℎ > 𝑢(𝑟𝑣),

50

3.3 Largest Complete Graph

(9, 3)

(2, 8)

(4, 5) (4, 14)

(2, 15)

Ia)

IIa)

Ib)

IIb)

(a) four different relations of positions

(rv , cv)

(rh, ch)

(b) single crossroad (green) being pairwise forbidden
with all crossroads in rectangle (blue)

(c) no further constraints due to same unit cell row

Figure 3.27: Mutually exclusive crossroads caused by two different broken vertices

and left or right,

a) 𝑐𝑣 > 𝑢(𝑐ℎ) or

b) 𝑐𝑣 < 𝑢(𝑐ℎ),

of the vertical broken vertex.

Figure 3.27(b) shows the combination Ia) exemplary. The other cases Ib), IIa) and IIb) can
be derived analogously but mirrored to different corners. This is covered by the definition of 𝐼,
which we use again in the following construction; therefore, this holds for all cases. Further, we
can see in Figure 3.27(c) that no additional constraints are provided if both vertices lie in the
same unit cell row or column, respectively. Therefore, we can restrict on cases with 𝑟ℎ ̸= 𝑢(𝑟𝑣)
and 𝑐𝑣 ̸= 𝑢(𝑐ℎ).

Due to the path interruption by the broken vertices, we get exactly one crossroad,

𝑟𝑣𝑐ℎ ∼=
(︀
𝑢(𝑟𝑣), 𝑐ℎ, 𝑟𝑣, 𝑢(𝑐ℎ)

)︀
,

illustrated in green in the lower left corner of Figure 3.27(b), which is pairwise forbidden with
all the crossroads in a rectangle, which are shown in blue. In the following, we refer to 𝑟𝑣𝑐ℎ as
the common crossroad. In the case shown in Ia), the rectangle includes all rows from the upper
boundary until the unit cell of the broken horizontal vertex ℎ and all columns starting at the
unit cell of the broken vertical vertex 𝑣 until the right boundary, which are the combinations in
[4𝑟ℎ]× [4(𝑐𝑣 − 1) + 1;𝑛]. More generally, the rectangle is described by

𝐼(𝑟ℎ, 𝑢(𝑟𝑣))× 𝐼(𝑐𝑣, 𝑢(𝑐ℎ)).

The pairwise constraints

𝑥𝑟𝑣𝑐ℎ + 𝑥𝑟𝑐 ≤ 1 ∀𝑟𝑐 ∈ 𝐼(𝑟ℎ, 𝑢(𝑟𝑣))× 𝐼(𝑐𝑣, 𝑢(𝑐ℎ))

51

3 Minor Embedding

would therefore be sufficient to describe our problem. But taking advantage of the matching
constraints (3.1) again, we can aggregate the crossroads in the rectangle: either all in one inner
row or all in one inner column. To keep the optimization problem description as small as possible,
we take the smallest number of resulting MES. This is given by the minimum of the dimensions
of the rectangle, hence the number of rows |𝐼(𝑟ℎ, 𝑢(𝑟𝑣))| or the number of columns |𝐼(𝑐𝑣, 𝑢(𝑐ℎ))|.
With

𝑋𝑟(ℎ, 𝑣)𝑋𝑟(ℎ, 𝑣)𝑋𝑟(ℎ, 𝑣) := {𝑟𝑣𝑐ℎ} ∪
(︀
{𝑟} × 𝐼(𝑐𝑣, 𝑢(𝑐ℎ))

)︀
,

describing the aggregated MES for a row 𝑟 ∈ 𝐼(𝑟ℎ, 𝑢(𝑟𝑣)), and analogously

𝑋𝑐(ℎ, 𝑣)𝑋𝑐(ℎ, 𝑣)𝑋𝑐(ℎ, 𝑣) := {𝑟𝑣𝑐ℎ} ∪
(︀
𝐼(𝑟ℎ, 𝑢(𝑟𝑣))× {𝑐}

)︀
,

for a column 𝑐 ∈ 𝐼(𝑐𝑣, 𝑢(𝑐ℎ)), we can define

𝒳mix(ℎ, 𝑣)𝒳mix(ℎ, 𝑣)𝒳mix(ℎ, 𝑣) :=

{︃{︀
𝑋𝑟(ℎ, 𝑣) : 𝑟 ∈ 𝐼(𝑟ℎ, 𝑢(𝑟𝑣))

}︀
if |𝐼(𝑟ℎ, 𝑢(𝑟𝑣))| ≤ |𝐼(𝑐𝑣, 𝑢(𝑐ℎ))| ,{︀

𝑋𝑐(ℎ, 𝑣) : 𝑐 ∈ 𝐼(𝑐𝑣, 𝑢(𝑐ℎ))
}︀

otherwise,

choosing the set of MES with the smallest cardinality for a certain pair of broken vertices 𝑣
and ℎ. With

𝒳mix𝒳mix𝒳mix :=
⋃︁{︀
𝒳mix(ℎ, 𝑣) : (ℎ, 𝑣) ∈ 𝐵hori ×𝐵vert, 𝑟ℎ ̸= 𝑢(𝑟𝑣), 𝑐𝑣 ̸= 𝑢(𝑐ℎ)

}︀
,

we can finally summarize all cardinality constraints to∑︁
𝑟𝑐∈𝑋

𝑥𝑟𝑐 ≤ 1 ∀𝑋 ∈ 𝒳hori ∪ 𝒳vert ∪ 𝒳mix. (3.4)

Embedding ILP in a Nutshell

With the definitions of the section before, we can summarize the complete embedding problem
in the following ILP formulation. If we find an optimal solution to this ILP, its objective value
corresponds to the size of the largest embeddable complete graph using our scheme and the
activated variables define the crossroads for a corresponding embedding.

Largest Complete Graph Matching Problem. Given a broken Chimera graph,
find 𝑥 that solves

max
∑︁

𝑟𝑐∈𝑁2

𝑥𝑟𝑐

s.t.
∑︁
𝑟∈𝑁

𝑥𝑟𝑐 ≤ 1 ∀𝑐 ∈ 𝑁,∑︁
𝑐∈𝑁

𝑥𝑟𝑐 ≤ 1 ∀𝑟 ∈ 𝑁,∑︁
𝑟𝑐∈𝑋

𝑥𝑟𝑐 ≤ 1 ∀𝑋 ∈ 𝒳hori ∪ 𝒳vert ∪ 𝒳mix,

𝑥𝑟𝑐 = 0 ∀𝑟𝑐 ∈ 𝑁2 ∖𝐴,
𝑥 ∈ {0, 1}𝑁×𝑁 .

52

3.3 Largest Complete Graph

Embedding Extraction

Once a solution 𝑥* ∈ {0, 1}𝑁×𝑁 for the ILP shown in the previous section is found, we can
construct the actual embedding from the activated crossroads. For this we extend the crossroad
in the corresponding row to the left and the right and in the corresponding column to the top
and the bottom until we meet a broken vertex or the boundary of the Chimera to obtain the
corresponding cross.

For a crossroad 𝑟𝑐 ∈ 𝑁2 with 𝑥*𝑟𝑐 = 1, the vertices to the left of the crossroad are vertical vertices
located in the same row 𝑟, while the column index ranges from 1 to 𝑢(𝑐)− 1. More formally, this
means the set {𝑟}× [1;𝑢(𝑐)−1]. Remember 𝑢(𝑐) defines the unit cell column index corresponding
to the inner column index. If there is at least one broken vertex, we need to find the rightmost
one among all of them because we cannot extend the cross to the left beyond it. The rightmost
broken vertical vertex has the largest column index and can thus be found with

max
{︀
𝑐 ∈ [1;𝑢(𝑐)− 1] : (𝑟, 𝑐) ∈ 𝐵vert

}︀
.

Since the cross does not include the broken vertex, we need to introduce a shift of 1 and therefore
can obtain the vertices in the left part of the cross with

𝑃left(𝑟, 𝑐)𝑃left(𝑟, 𝑐)𝑃left(𝑟, 𝑐) := max
{︀
𝑐 ∈ [1;𝑢(𝑐)] : 𝑐 = 1 ∨ (𝑟, 𝑐− 1) ∈ 𝐵vert

}︀
,

where the disjunction with 𝑐 = 1 is needed to default to the start value 1 of the index range in
case the set of broken vertices is empty. Analogously, we can construct the parts to the right,
top and bottom with

𝑃right(𝑟, 𝑐)𝑃right(𝑟, 𝑐)𝑃right(𝑟, 𝑐) := min
{︀
𝑐 ∈ [𝑢(𝑐); 𝑠] : 𝑐 = 𝑠 ∨ (𝑟, 𝑐+ 1) ∈ 𝐵vert

}︀
,

𝑃top(𝑟, 𝑐)𝑃top(𝑟, 𝑐)𝑃top(𝑟, 𝑐) := max
{︀
𝑟 ∈ [1;𝑢(𝑟)] : 𝑟 = 1 ∨ (𝑟 − 1, 𝑐) ∈ 𝐵hori

}︀
,

𝑃bot(𝑟, 𝑐)𝑃bot(𝑟, 𝑐)𝑃bot(𝑟, 𝑐) := min
{︀
𝑟 ∈ [𝑢(𝑟); 𝑠] : 𝑟 = 𝑠 ∨ (𝑟 + 1, 𝑐) ∈ 𝐵hori

}︀
.

All in all, we obtain the plus-shaped vertex set with(︀
{𝑟} × [𝑃left(𝑟, 𝑐);𝑃right(𝑟, 𝑐)]

)︀
∪
(︀
[𝑃top(𝑟, 𝑐);𝑃bot(𝑟, 𝑐)]× {𝑐}

)︀
,

for all 𝑟𝑐 ∈ 𝑁2 with 𝑥*𝑟𝑐 = 1.

As an equivalent to the chain length, described in Section 3.3.1, an important parameter in the
further processing of the Ising model that we can observe is the cross size. The maximum number
of vertices in a cross in a Chimera of size 𝑠 is 2𝑠, which is only the case when the cross can be
extended fully to all boundaries with 𝑃left(𝑟, 𝑐) = 𝑃top(𝑟, 𝑐) = 1 and 𝑃right(𝑟, 𝑐) = 𝑃bot(𝑟, 𝑐) = 𝑠.

Clearly, by this construction we obtain embeddings with a larger number of vertices than pre-
sented in [7], where the maximum chain length is 𝑠 + 1. However, this allows for larger graph
sizes as we see in the following section.

3.3.4 Analysis

In this section, we investigate the structure of the Largest Complete Graph Matching
Problem by discussing its size, complexity and variations. The solvability of the problem can
be estimated by different parameters. The size of the ILP, more precisely the number of variables
and constraints, is of interest when directly passing the constructed ILP to ILP solvers and using
them without any further specifications. However, the specific structure of the constraints allows
for a deeper complexity analysis of the problem showing fixed-parameter tractability. At the end
of this section, we give a short outlook on how the ILP can be extended to more general Chimera
graphs.

53

3 Minor Embedding

Size of the ILP

We estimate the size of the ILP with regard to the input parameters 𝑠, 𝐵hori and 𝐵vert. The
number of variables is 𝑛2 = 16𝑠2 if we also take the unavailable combinations in 𝐴 into account.
By removing them, we get 𝑛2 − |𝐴| ≥ 𝑛2 − |𝐵hori| − |𝐵vert|, where the lower bound is achieved
only if no two broken vertices meet in one edge.

Apart from the 2𝑛 matching constraints in (3.1), we show that the number of additional con-
straints is also polynomial in the number of broken vertices. We need to count the number of
MES that are constructed in the former section for the different combinations of vertices. Taking
two unequal vertices out of the broken horizontal vertices 𝐵hori, we get(︂

|𝐵hori|
2

)︂
= 1

2 |𝐵hori| (|𝐵hori| − 1) = 1
2 |𝐵hori|2 − 1

2 |𝐵hori|

combinations. Analogously, for two broken vertical vertices out of 𝐵vert we have(︂
|𝐵vert|

2

)︂
= 1

2 |𝐵vert|2 − 1
2 |𝐵vert|

combinations. On the other hand, the number of combinations for two different broken vertices
is |𝐵hori| |𝐵vert|. Those numbers could be slightly but not significantly reduced when taking pairs
into account that lie in the same rows, respectively, columns.

For each combination of two broken vertices of the same type we have two constraints. Thus,
we have

|𝒳hori| ≤ |𝐵hori|2 − |𝐵hori| ,
|𝒳vert| ≤ |𝐵vert|2 − |𝐵vert| .

For the different broken vertices, the number of constraints depends on the size of the correspond-
ing rectangles. Here, we can only estimate the worst-case scenario, that is, 𝑛 − 1 constraints,
hence

|𝒳mix| ≤ (𝑛− 1) |𝐵hori| |𝐵vert| .

Therefore, we get a total of

|𝒳hori|+ |𝒳vert|+ |𝒳mix|
≤ |𝐵hori|2 − |𝐵hori|+ |𝐵vert|2 − |𝐵vert|+ (𝑛− 1) |𝐵hori| |𝐵vert|

additional cardinality constraints in (3.4).

Problem Complexity

The described problem is a matching problem on a bipartite graph. The simple version, without
additional constraints, can be solved in polynomial time, e.g. with the algorithm of Hopcroft and
Karp in 𝒪

(︀
𝑛2.5

)︀
[26]. Due to the constraints (3.4), introduced in Section 3.3.3, our ILP corre-

sponds to what is known as a restricted maximum matching problem. Those problems
are NP-hard in general, and this even holds for cardinality constraints with a cardinality of just 1
like ours [50]. But by exploiting the specific structure of those constraints, we can derive that
the runtime is mainly dominated by the broken vertices compared to the size of the Chimera
graph. More formally, this means:

54

3.3 Largest Complete Graph

Theorem 3.38. The Largest Complete Graph Matching Problem is fixed-parameter
tractable in the number of the broken vertices |𝐵|.

Proof. We show the fixed-parameter tractability by enumerating the decisions that have to be
made for removing constraints until the problem is a simple maximum bipartite matching
problem.

Considering the constraint for two broken vertices of the same type, we have two MES in (3.2),
respectively, (3.3). As it is shown in Section 3.3.3, both MES consist of a left and a right part
lying in different rows for broken vertical vertices, respectively, an upper and a lower part in
different columns for broken horizontal vertices. Since we can only take one of the crossroads in
an MES into a solution, this crossroad is either in the left or in the right, respectively, upper or
lower, part. Imagine we decide in advance for one part of the MES. Considering, for instance,
some 𝑋 ∈ 𝒳vert, with 𝑋 =: 𝑋left ·∪ 𝑋right for simplicity, we could choose the crossroad to be
in 𝑋left. Thus, none of the crossroads in 𝑋right can be activated in the solution, which means we
have to set 𝑥𝑟𝑐 = 0 for all 𝑟𝑐 ∈ 𝑋right. The corresponding cardinality constraint reduces to∑︁

𝑟𝑐∈𝑋
𝑥𝑟𝑐 =

∑︁
𝑟𝑐∈𝑋left

𝑥𝑟𝑐 ≤ 1.

As 𝑋left only consists of crossroads in a certain row, the above constraint is weaker than the
matching constraint of (3.1) covering this row fully. Thus, we can remove it and the resulting
optimization problem, having less variables and less constraints, is easier to solve.

By considering both exclusive options, disregarding𝑋right or𝑋left, and choosing the best solution,
we get the global optimum. This procedure can be applied for every MES in 𝒳hori and 𝒳vert,
especially this can be done iteratively to already simplified versions. With two parts for each
MES, this results in total in

2|𝒳hori| · 2|𝒳vert| ≤ 2|𝐵hori|2−|𝐵hori|+|𝐵vert|2−|𝐵vert|

different simplified problems.

For different broken vertices, we have much more constraints, but they all have one crossroad in
common that cannot be matched together with the other concerned crossroads in the rectangle.
Therefore, we can proceed similarly to before. One option is just taking the single common
crossroad into the solution and rejecting all of the rectangle. This means that the binary variable
corresponding to this crossroad is set to 1, while those for the rectangle are set to 0. By this not
only the constraints are removed, but the size of the ILP is appreciably reduced, persisting for all
problems resulting from subsequent decisions. However, for an increasing size of the rectangle it
gets more unlikely that the common crossroad is part of an optimal solution. Hence, the second
option is rejecting this single crossroad. This again results in weaker remaining constraints
than the matching constraints for the whole rectangle, and they can be dropped. These two
possibilities per broken vertex pair result in total in further 2|𝐵hori||𝐵vert| options.

Finally, we get at maximum 2𝑝, with

𝑝 = |𝐵hori| |𝐵vert|+ |𝐵hori|2 − |𝐵hori|+ |𝐵vert|2 − |𝐵vert| ,

different simplified versions of our original problem. As we removed all of the additional con-
straints along the decision tree, they are now simple maximum bipartite matching problems

55

3 Minor Embedding

and can be solved efficiently. With

𝑝 ≤ |𝐵hori|2 + |𝐵vert|2 + 2 |𝐵hori| |𝐵vert|

=
(︀
|𝐵hori|+ |𝐵vert|

)︀2
= |𝐵|2

we get a worst-case runtime in

𝒪
(︁
2|𝐵|2 𝑛2.5

)︁
and the problem is fixed-parameter tractable in the choice of the broken vertices.

According to current hardware development, we can reasonably assume that |𝐵| is small com-
pared to 𝑛. Therefore, considering |𝐵| to be fixed, the problem is efficiently solvable for increasing
size 𝑛. However, this means at the same time that the ratio of broken vertices 𝑅 is decreasing
because it is inversely proportional to 𝑛2. Thus, considering the ongoing development of the
annealing machines, the exponential dependency of the runtime on the number of broken qubits
will be negligible in contrast to the just polynomial dependency on the size of the Chimera.

Just keeping 𝑅 fixed, like we did in our experiments for comparison with [7], still provides an
exponential runtime. This aspect demands for heuristic solving approaches, like we present in
the following section. However, once the embedding is computed for a hardware graph, it can be
reused during the whole operating period. This justifies a larger runtime than in the operational
approach calculating a new embedding for each Ising instance.

Generalization

In Section 3.3.3, we show the construction of the ILP for the Largest Complete Graph
Matching Problem exemplarily for the symmetric Chimera graph with a depth of 4. But
the whole setup can also be generalized for arbitrary Chimera graphs 𝐶𝑟𝑐𝑑𝐶𝑟𝑐𝑑𝐶𝑟𝑐𝑑, which thus are
rectangular, meaning 𝑟 ̸= 𝑐, or have a different depth 𝑑. In the following, we briefly mention the
adjustments that need to be applied.

If 𝑑 is different than 4, the unit cell index function changes to 𝑢 : 𝑥 ↦→
⌈︀
𝑥
𝑑

⌉︀
. In case of 𝑟 ̸= 𝑐, we

need to split 𝑁2 up in 𝑅 × 𝐶 with the row, respectively, column sets 𝑅 = [𝑑𝑟] and 𝐶 = [𝑑𝑐].
Of course, the maximal number of vertices in an embeddable complete graph, even if it is an
ideal Chimera, is just 𝑑min{𝑟, 𝑐} in this case. As the amount of rows and columns is not equal
anymore, we have to adjust the interval function to be able to differ between maximal row or
column with

𝐼𝑋(𝑠1, 𝑠2) :=

{︃
[4𝑠1] if 𝑠1 ≤ 𝑠2,
[4𝑠1 − 3; |𝑋|] otherwise

for 𝑋 ∈ {𝑅,𝐶}. With these modifications, it is possible to construct the analogous matching
constraints as well as the MES for the cardinality constraints. Similarly, the extraction of the
embedding from a found solution can be adjusted.

One might also consider to extend the model by adding broken edges, which could possibly
be handled in a similar case differentiation as for the broken vertices. But in contrast to the
restriction to broken vertices the implications on the model construction and therefore the size
and complexity are not trivial. Further, a broken edge adjoining non-broken vertices is very rare
and can thus be handled by marking one of the concerned vertices as broken. Therefore, we do
not discuss this in more detail here.

56

3.3 Largest Complete Graph

(a) by ILP (b) optimal

Figure 3.28: Solutions for a very broken Chimera graph containing a larger complete graph than
can be found with our ILP

Delineation

In our construction, the embedding corresponding to a single logical vertex is formed by a cross.
In the case of many broken vertices, this assumption might be too restrictive. An example is
shown in Figure 3.28, where the solution to the ILP formulation from the Largest Complete
Graph Matching Problem is not as good as the optimal solution to the Largest Complete
Graph Embedding Problem. We however believe that such corner cases are of less practical
relevance since they just seem to occur for a very large ratio of broken vertices.

3.3.5 Heuristic ILP

The complexity analysis in Section 3.3.4 has shown a certain structure of the additional con-
straints. Especially for the case of two broken vertices of different types there is a strong imbal-
ance: Activating the single common crossroad excludes all the crossroad in the corresponding
rectangle. Thus, it is very unlikely that this crossroad is part of the optimal solution, in partic-
ular, for growing size of the rectangle. In this section, we show the derivation of a simpler ILP
whose solution is assumed to be close to the optimal one.

Reducing Size

We decided to test a heuristic approach based on excluding such unlikely common crossroads in
advance. This reduces the number of variables and more importantly the number of constraints.
Thus, we solve only a certain part of the decision tree constructed in Section 3.3.4 and therefore,
it is not clear whether the optimal value can be achieved.

We introduce a parameter defining which common crossroads shall be removed, respectively,
kept: The maximum rectangle ratio, denoted here by 𝑚 with 0 ≤ 𝑚 ≤ 1, gives a boundary
on the size of the rectangle relative to the Chimera graph size 𝑠 below which the common
crossroad is kept. If the number of unit cell rows times the number of columns of the rectangle
exceeds 𝑚𝑠2, the crossroad is excluded. More formally, this means, for two different broken
vertices ℎ = (𝑟ℎ, 𝑐ℎ) ∈ 𝐵hori and 𝑣 = (𝑟𝑣, 𝑐𝑣) ∈ 𝐵vert, we do not use the crossroad 𝑟𝑣𝑐ℎ, hence set
𝑥𝑟𝑣𝑐ℎ = 0 in advance, if we have 𝑀(ℎ, 𝑣) ≥ 𝑚𝑠2 with

𝑀(ℎ, 𝑣)𝑀(ℎ, 𝑣)𝑀(ℎ, 𝑣) := |𝐼(𝑟ℎ, 𝑢(𝑟𝑣))| · |𝐼(𝑐𝑣, 𝑢(𝑐ℎ))|.

57

3 Minor Embedding

Thus, a ratio of 1 means that all common crossroads are kept, while a ratio of 0 means that none
of them remain in the resulting optimization problem.

Given 𝑚, let the set of unused crossroads be

𝑈𝑚𝑈𝑚𝑈𝑚 :=
{︀
𝑟𝑣𝑐ℎ : (ℎ, 𝑣) ∈ 𝐵hori ×𝐵vert, 𝑀(ℎ, 𝑣) ≥ 𝑚𝑠2

}︀
and further let

𝒳𝑚
mix𝒳𝑚
mix𝒳𝑚
mix :=

⋃︁{︀
𝒳mix(ℎ, 𝑣) : (ℎ, 𝑣) ∈ 𝐵hori ×𝐵vert, 𝑟ℎ ̸= 𝑢(𝑟𝑣), 𝑐𝑣 ̸= 𝑢(𝑐ℎ),𝑀(ℎ, 𝑣) < 𝑚𝑠2

}︀
.

be the reduced set of MES. With this the corresponding constraints can be simplified by replacing
𝒳mix with 𝒳𝑚

mix in the Largest Complete Graph Matching Problem. This can be seen
in the following section summarizing the heuristic ILP.

Heuristic Embedding ILP in a nutshell

With the same definitions as before and a certain choice of 𝑚, we can now summarize the
heuristically reduced embedding problem in the ILP formulation:

Heuristic Largest Complete Graph Matching Problem. Given a broken
Chimera graph and ratio 𝑚 ∈ R with 0 ≤ 𝑚 ≤ 1, find 𝑥 that solves

max
∑︁

𝑟𝑐∈𝑁2

𝑥𝑟𝑐

s.t.
∑︁
𝑟∈𝑁

𝑥𝑟𝑐 ≤ 1 ∀𝑐 ∈ 𝑁,∑︁
𝑐∈𝑁

𝑥𝑟𝑐 ≤ 1 ∀𝑟 ∈ 𝑁,∑︁
𝑟𝑐∈𝑋

𝑥𝑟𝑐 ≤ 1 ∀𝑋 ∈ 𝒳hori ∪ 𝒳vert ∪ 𝒳𝑚
mix,

𝑥𝑟𝑐 = 0 ∀𝑟𝑐 ∈ 𝑁2 ∖𝐴 ∪ 𝑈𝑚,

𝑥 ∈ {0, 1}𝑁×𝑁 .

3.3.6 Experimental Setup

Random Instances

To be able to compare our approach to current state-of-the-art methods, we consider different
ratios of broken vertices for growing hardware sizes. We have generated ten instances for each
combination of the following values:

� sizes of Chimera graph: 𝑠 ∈ {4, 6, 8, . . . 32, 34},

� ratios of broken vertices: 𝑏 ∈ {0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.2}.

58

3.3 Largest Complete Graph

The ratio of the broken vertices times the total number of vertices in the ideal Chimera graph
results in the number of broken vertices for a certain size. For each of the ten instances, we
randomly chose this number out of all vertices and marked them as being broken. Due to
rounding to whole vertices, the resulting exact ratios differ slightly from the aimed ones, especially
for smaller graph sizes.

As a reference, we like to remark the parameters of two real D-Wave 2000Q systems. First, the
solver DW_2000Q_6, which we accessed though the Jülich UNified Infrastructure for Quantum
computing (JUNIQ), has a size of 16 and 7 broken vertices. This corresponds to a ratio of about
0.0034. Second, the older USRA/NASA chip with the same size had 17 broken vertices, resulting
in a ratio of about 0.0083 [30]. Thus, our experiments are much more exhaustive than current
hardware demands.

For the heuristic approach, we use 𝑚 = 0 and 𝑚 = 0.25 for our experiments as reference points
to evaluate the impact of removing a significant number of crossroads.

Solving Strategy

This work focuses on the presentation of the embedding problem as an ILP. We did not implement
an algorithm, yet, which exploits the branching procedure as described in Section 3.3.4. It is not
straightforward how the decision tree could be reduced at certain stages. As we do not consider
the ratio of broken vertices to be fixed here, there is still an exponential overhead in the number
of final simplified problems. Even the simplified heuristic version is still a hard optimization
problem.

Thus, using an ILP solver, already taking advantage of implemented branch-and-bound tech-
niques, is a good starting point to evaluate the capabilities of the model. We decided to pass
the models of the Largest Complete Graph Matching Problem and the Heuristic
Largest Complete Graph Matching Problem directly to the solver SCIP [21] without
further adjustments. It is currently one of the fastest non-commercial solvers for mixed integer
programming, which includes ILP.

Specifications

The experiments were run on a Dell Precision 5820 Tower workstation with a Intel Xeon(R)
W-2175 CPU @ 2.50GHz Ö 28, 128 RAM and operating system Ubuntu Linux 18.04.5 LTS.
We implemented our code in python and used the python interface package pyscipopt [39] to
connect to the solver SCIP with version 6.0.1 [21]. As this interface does not support parallel
mode, we could just use one core. We set a timeout of 1 hour for solving each instance with
SCIP. Building up the model was not included in there. As a start, we evaluate the capabilities
of the model and the derived heuristic version themselves. Thus, we did not optimize our code
regarding performance. Apart from the timeout, we used the default SCIP parameters.

3.3.7 Results

A good reference to estimate the quality of a solution is to compare its objective value, the found
graph size, to the largest possible size of a complete graph in the ideal Chimera graph. As stated
in Section 3.3.1 with our construction using crosses, the largest complete graph in a Chimera
graph of size 𝑠 is 𝐾4𝑠. Let 𝐺𝑠,𝑏,𝑖𝐺𝑠,𝑏,𝑖𝐺𝑠,𝑏,𝑖 be the graph size returned by SCIP within one hour for the

59

3 Minor Embedding

𝑖th instance with Chimera size 𝑠 and ratio of broken vertices 𝑏. As we consider ten instances for
each parameter combination, the found graph sizes are averaged and we introduce the averaged
solution ratio

𝑅𝑠,𝑏𝑅𝑠,𝑏𝑅𝑠,𝑏 :=
1
10

∑︀9
𝑖=0𝐺𝑠,𝑏,𝑖

4𝑠
=

9∑︁
𝑖=0

𝐺𝑠,𝑏,𝑖

40𝑠

as a measure for the solution quality. Table 3.1 shows the resulting ratios for each of the models.

In Table 3.1(a), we can see a clear boundary between the instances which can be solved in one
hour and which cannot. The former are either instances with a small Chimera size or with a
small ratio of broken vertices. Here, we already see a slight advantage in the achieved graph
sizes over [7]. Besides, we also solved the exact model for both versions of the aforementioned
D-Wave 2000Q chips with 7 and 17 broken vertices, respectively. Not surprisingly in accordance
with the results of Table 3.1(a), we were able to find an embedding of the complete graph with
64 vertices in both cases.

For the unsolved instances, we use the current best solution SCIP provides at the timeout,
being a proven lower bound on the actual optimum. As SCIP is a MIP solver, it tries to
solve a given model to proven optimality and is thus not made for calculating fast approximate
solutions. Therefore, the found solution values for instances with increasing Chimera sizes and
ratios decrease significantly, due to the sizes of the models. The instance combinations (32, 0.2)
and (34, 0.2) could not be solved at all with the exact model because SCIP ran out of memory.
Nevertheless, the remaining instances provide values comparable to those of [7].

Evaluating the heuristic approach, we can see that Table 3.1(b) for 𝑚 = 0.25 does not differ
significantly from the one for the exact model according to solvability. Having a closer look at
the values, we see no decrease for the solved instances. However, there is a slight improvement
for the unsolved instances. Thus, the model has a slight advantage regarding runtime but still
seems to yield close to optimal values.

Regarding the heuristic approach with 𝑚 = 0, shown in Table 3.1(c), we have a much stronger
difference to the exact model. A lot more instances could be solved within one hour of com-
putation time, especially those with larger ratios of broken vertices. For the combination of
sizes above 18 and ratios between about 0.02 and 0.05, we see a clear improvement through the
heuristic, although a few instances could not be solved, too. This region of parameters, where
it is reasonable to use this heuristic, is also clearly recognizable in Table 3.2, where we show the
advantage of the heuristics with either 𝑚 = 0 or 𝑚 = 0.25.

However, in Table 3.1(c), we observe that the proportions of graph sizes are much smaller for
ratios above 0.1 than for 𝑚 = 0.25. Thus, this heuristic model seems to get easier again with
an increasing ratio of broken vertices. We assume a significant number of crossroads is excluded
in advance, because of the large number of broken vertices, such that the resulting model has
only very few solutions left. In these cases, the heuristic with 𝑚 = 0 is much too restrictive and
𝑚 = 0.25 is advantageous.

In order to compare our approach to previous work by Boothby et al. [7], we similarly plot the
found graph sizes for selected ratios of broken vertices in Figure 3.29 on page 62. For larger
ratios of broken vertices, e.g. 𝑏 = 0.1 and 𝑏 = 0.05, the maximum over the found graph sizes
is comparable to [7] for both 𝑚 = 0.0 and 𝑚 = 0.25. In contrast, for smaller ratios of broken
vertices, e.g. 𝑏 = 0.01 and 𝑏 = 0.02, our heuristic approach with 𝑚 = 0.0 is able to embed larger
complete graphs than it was reported in [7]. Note that the diagonal corresponds to representing
the largest possible complete graph size.

60

3.3 Largest Complete Graph

𝑏
𝑠 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

0.005 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.91 0.82 0.85
0.02 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.95 0.77 0.68 0.70 0.63 0.60 0.60
0.03 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.63 0.59 0.59 0.58 0.51 0.51 0.52 0.44
0.04 1.00 1.00 1.00 0.99 0.99 0.99 0.88 0.60 0.61 0.56 0.50 0.52 0.43 0.44 0.43 0.39
0.05 0.99 0.99 0.98 0.99 0.98 0.94 0.65 0.59 0.43 0.51 0.44 0.43 0.38 0.37 0.35 0.38
0.1 0.95 0.93 0.86 0.81 0.69 0.52 0.37 0.35 0.30 0.29 0.25 0.25 0.24 0.22 0.21 0.17
0.2 0.72 0.60 0.53 0.48 0.39 0.22 0.20 0.16 0.17 0.17 0.12 0.14 0.11 0.10 – –

(a) for the Largest Complete Graph Matching Problem

𝑏
𝑠 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

0.005 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.88 0.87 0.86
0.02 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.83 0.75 0.76 0.77 0.73 0.69
0.03 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.78 0.70 0.67 0.67 0.62 0.62 0.61 0.59
0.04 1.00 1.00 1.00 0.99 0.99 0.99 0.97 0.74 0.70 0.63 0.61 0.60 0.56 0.53 0.49 0.48
0.05 0.99 0.99 0.98 0.99 0.98 0.95 0.72 0.67 0.60 0.57 0.52 0.50 0.49 0.45 0.42 0.41
0.1 0.95 0.93 0.86 0.81 0.71 0.59 0.43 0.41 0.36 0.32 0.31 0.29 0.28 0.23 0.24 0.21
0.2 0.72 0.60 0.52 0.48 0.42 0.36 0.31 0.22 0.17 0.16 0.13 0.12 0.11 0.09 0.09 0.08

(b) for the Heuristic Largest Complete Graph Matching Problem with 𝑚 = 0.25

𝑏
𝑠 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

0.005 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.02 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.98 0.97 0.92
0.03 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.96 0.94 0.89 0.86 0.81 0.79 0.74 0.69
0.04 1.00 1.00 1.00 0.99 0.99 0.98 0.96 0.90 0.84 0.79 0.75 0.68 0.62 0.58 0.53 0.49
0.05 0.99 0.99 0.98 0.99 0.96 0.91 0.82 0.78 0.68 0.63 0.57 0.50 0.45 0.39 0.37 0.35
0.1 0.95 0.90 0.77 0.67 0.51 0.43 0.37 0.29 0.26 0.19 0.15 0.14 0.11 0.08 0.06 0.06
0.2 0.66 0.43 0.28 0.22 0.13 0.09 0.06 0.03 0.02 0.01 0.01 0.01 0.00 0.01 0.00 0.00

(c) for the Heuristic Largest Complete Graph Matching Problem with 𝑚 = 0.0

Table 3.1: Averaged solution ratios 𝑅𝑠,𝑏 for each combination of size 𝑠 and ratio of broken ver-
tices 𝑏 with number of instances that where solved to optimality (white: all 10, yellow:
1 to 9, red: none).

𝑏
𝑠 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

0.005 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00−0.01−0.12−0.13−0.14
0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00−0.06−0.17−0.25−0.23−0.21−0.24−0.23
0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00−0.18−0.24−0.22−0.19−0.19−0.17−0.08−0.10
0.04 0.00 0.00 0.00 0.00 0.00 0.01 0.01−0.16−0.14−0.16−0.14−0.08−0.06−0.05−0.04−0.01
0.05 0.00 0.00 0.00 0.00 0.02 0.04−0.10−0.11−0.08−0.06−0.05 0.00 0.04 0.06 0.05 0.06
0.1 0.00 0.03 0.09 0.14 0.20 0.16 0.06 0.12 0.10 0.13 0.16 0.15 0.17 0.15 0.18 0.15
0.2 0.06 0.17 0.24 0.25 0.29 0.27 0.25 0.19 0.15 0.15 0.12 0.11 0.11 0.08 0.09 0.08

Table 3.2: Difference of rounded averaged solution ratios from heuristic models showing the ad-
vantage of a certain model (green: 𝑚 = 0.25, blue: 𝑚 = 0.0).

61

3 Minor Embedding

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
0

8

16

24

32

40

48

56

64

72

80

88

96

104

112

120

128

136

s

R̄
s
,b

b

0.01

0.02

0.05

0.1

Figure 3.29: Complete graph sizes against Chimera sizes 𝑠 for selected ratios of broken vertices 𝑏
for the Heuristic Largest Complete Graph Matching Problem) illustrated
by the median of 𝐺𝑠,𝑏,𝑖 over 𝑖 ∈ [10] for 𝑚 = 0.0 (solid lines) and 𝑚 = 0.25 (dashed
lines) with quartiles (shaped regions)

For a ratio of 0.05 or smaller, we observe that the proportions from the solved instances with
small size and ratio have a value very close to 1.0, which means that most of them yield a
maximal or close to maximal complete graph despite the presence of broken vertices. Due to
the heuristic results, we expect just a very small decline in the proportions for the exact model
for larger Chimera sizes, if we could solve them to the end. This is based on the fact that the
heuristics provide a lower bound on the actual optimum of the exact model. Thus, despite the
shortcomings presented in Section 3.3.4, our model is indeed very powerful.

All in all, we see that the formulated Largest Complete Graph Matching Problem can be
solved to optimality using state-of-the-art MIP solvers for small Chimera sizes or a small ratio
of broken vertices. Especially in these parameter settings, the optimal value of the heuristic
version, the Heuristic Largest Complete Graph Matching Problem, does not differ
significantly from the original one. For larger Chimera graphs with a ratio of broken vertices in
a certain range, the heuristic performs even better within the given time constraint of one hour,
due to the removal of unlikely crossroads and thus several constraints. However, if the ratio
is too large, here above 0.1, the heuristic is too restrictive and the solution quality decreases
again. Nevertheless, the complete graph sizes we have found exceed the ones from previous
approaches [32, 7].

62

4 Weight Distribution

With only the embedding, we still cannot run experiments on the D-Wave machine. We need to
find suitable parameters for an Ising model working on the hardware graph that represents the
original Ising model which we actually want to solve. As this requires to split the weight of an
original vertex over several hardware vertices, we use the term ‘weight distribution’ to describe
the problem, which is handled in this chapter.

We start in Section 4.1 by setting up the full embedded Ising problem and breaking it down into
smaller problems: By extracting the part concerning a single vertex, we derive sufficient require-
ments on the parameters concerning this vertex. We formulate and simplify the corresponding
resulting optimization problems with different objectives in Section 4.2. After the investigation
of these problems for two special cases in Section 4.3, for instance, in case we have a total weight
of 0, we establish a simplified description of the polyhedron over which the optimization prob-
lems are defined in Section 4.4. In Sections 4.5 and 4.6, we deeply analyze the solvability of
what we call the ‘strength-only’ and the ‘full’ variant of the optimization problem, respectively.
Finally, we transfer the results which we have found for the continuous problems into the integer
programming context in Section 4.7.

4.1 Problem Extraction

After the pure graph embedding, handled in the previous chapter, is found, the parameters of
the Ising model need to be transferred as well. For this we introduce the corresponding embedded
Ising model and the related concepts necessary when dealing with the D-Wave annealing machine.
The main basis for this was formed by V. Choi in [12] and [13].

We show that, by synchronizing all vertices in the hardware corresponding to a vertex of the
original problem interaction graph, we can construct an Ising model that represents the original
one in the specific hardware structure. By observing a single vertex, we can extract a specific
optimization problem, which is investigated in detail in the next sections.

4.1.1 Embedded Ising Model

The Ising model as given in Definition 2.1 is defined over arbitrary graphs, thus also over the
possible hardware graphs. As explained before, typical applications however need an embedding.
Therefore, we introduce an extended definition of the Ising model in this section to combine
both concepts. For this we first extend the embedding notation, remember Definition 3.3, by the
following graph structures:

63

4 Weight Distribution

Definition 4.1. For two graphs 𝐺 and 𝐻 and the embedding 𝜙 : 𝑉 (𝐺) → 2𝑉 (𝐻), let the
embedded graph, the subgraph of 𝐻 resulting from the embedding, be

𝐻𝜙𝐻𝜙𝐻𝜙 := 𝐻

⎡⎣ ⋃︁
𝑣∈𝑉 (𝐺)

𝜙𝑣

⎤⎦ =

⎛⎝ ⋃︁
𝑣∈𝑉 (𝐺)

𝜙𝑣, 𝐸𝜙 ·∪ 𝐸𝛿

⎞⎠
with

𝐸𝜙𝐸𝜙𝐸𝜙 :=
⋃︁

𝑣∈𝑉 (𝐺)

𝐸(𝐻[𝜙𝑣]),

𝐸𝛿𝐸𝛿𝐸𝛿 :=
⋃︁

𝑣𝑤∈𝐸(𝐺)

𝛿𝑣𝑤𝛿𝑣𝑤𝛿𝑣𝑤 :=
⋃︁

𝑣𝑤∈𝐸(𝐺)

𝛿(𝜙𝑣, 𝜙𝑤),

denoting the intra-connecting and the inter-connecting edges, respectively.

Using the embedding objects of Definition 4.1, we can now formulate an Ising model in the
given embedded graph. The following concepts are mainly well known in the quantum annealing
community, see e.g. [12] and [44], but we want to bring them into a more formal format here.

Definition 4.2. An embedded Ising model for two graphs 𝐺 and 𝐻 and an embedding 𝜙 of 𝐺
in 𝐻 is an Ising model over 𝐻𝜙, where we have 𝐼𝐼𝐼 : {−1, 1}𝑉 (𝐻𝜙) → R with

𝐼(𝑠) :=
∑︁

𝑣∈𝑉 (𝐺)

⎛⎝∑︁
𝑞∈𝜙𝑣

𝑊 𝑞𝑠𝑞 +
∑︁

𝑝𝑞∈𝐸(𝐻[𝜙𝑣])

𝑆𝑝𝑞𝑠𝑝𝑠𝑞

⎞⎠+
∑︁

𝑣𝑤∈𝐸(𝐺)

∑︁
𝑝𝑞∈𝛿𝑣𝑤

𝑆𝑝𝑞𝑠𝑝𝑠𝑞

=
∑︁

𝑞∈𝑉 (𝐻𝜙)

𝑊 𝑞𝑠𝑞 +
∑︁

𝑝𝑞∈𝐸𝜙∪𝐸𝛿

𝑆𝑝𝑞𝑠𝑝𝑠𝑞

for the weights 𝑊𝑊𝑊 ∈ R𝑉 (𝐻𝜙) and the strengths 𝑆𝑆𝑆 ∈ R𝐸(𝐻𝜙).

In this case, we call the corresponding Ising Problem of finding an 𝑠 that solves

min
𝑠∈{−1,1}𝑉 (𝐻𝜙)

𝐼(𝑠)

with the above embedded Ising model 𝐼 the Embedded Ising Problem.

With this formulation and 𝐻 = 𝐶 for 𝐶 being a currently operating broken Chimera graph
of D-Wave, we could solve the corresponding Embedded Ising Problem with the D-Wave
annealer (with some probability). However, given an arbitrary Ising model whose underlying
connectivity graph requires an embedding, we need to find a suitable corresponding embedded
Ising model. This requires to choose the weights and strengths in a certain way such that an
optimal solution of the new Ising Problem corresponds to an optimal solution of the original
one in the end.

In particular, as we usually do not only want to know the optimal value but also the optimal
solution itself, we need a recipe how to get from an embedded to an original solution. We therefore
need a ‘de-embedding’ function that can be computed easily, which means in polynomial time.
This is more formally stated by

64

4.1 Problem Extraction

Definition 4.3. An equivalent embedded Ising model 𝐼 : {−1, 1}𝑉 (𝐻𝜙) → R to a given Ising
model 𝐼 : {−1, 1}𝑉 (𝐺) → R for two graphs 𝐺 and 𝐻 and an embedding 𝜙 of 𝐺 in 𝐻 fulfils the
following properties: The corresponding Ising problems are equivalent in the sense that we have

min
𝑠∈{−1,1}𝑉 (𝐻𝜙)

𝐼(𝑠) + 𝑐 = min
𝑡∈{−1,1}𝑉 (𝐺)

𝐼(𝑡)

for some constant 𝑐 ∈ R and there exists a mapping from an optimal solution 𝑠* ∈ {−1, 1}𝑉 (𝐻𝜙)

of the Embedded Ising Problem to an optimal solution 𝑡* ∈ {−1, 1}𝑉 (𝐺) of the (unembedded)
Ising Problem which can be computed in polynomial time.

This would have been sufficient to use the quantum annealing machines in practice if the un-
derlying physical system had ideally realized the corresponding physical model. However, this is
impossible in the real world and the machines thus only work heuristically providing solutions
only with some unknown probability. In general, it remains unclear whether we have found the
optimal solution, a sub-optimal solution or no solution at all. Thus, the user does not only
need to have access to the mentioned mapping of the optimal solutions but rather needs more
information to deal with the results of the machine.

In practice, we need an extended version of the above definition to overcome this issue: For
each solution provided by the annealer, not only optimal ones, we want to know whether we
can de-embed it to an original solution and if we can, we also want to know how to do it. We
define:

Definition 4.4. An equivalent embedded Ising model 𝐼 : {−1, 1}𝑉 (𝐻𝜙) → R to a given Ising
model 𝐼 : {−1, 1}𝑉 (𝐺) → R for two graphs 𝐺 and 𝐻 and an embedding 𝜙 of 𝐺 in 𝐻 is called
de-embeddable if we have two functions

𝜓𝜓𝜓 : {−1, 1}𝑉 (𝐻𝜙) → {0, 1}

and

𝜏𝜏𝜏 :
{︀
𝑠 ∈ {−1, 1}𝑉 (𝐻𝜙) : 𝜓(𝑠) = 1

}︀
→ {−1, 1}𝑉 (𝐺)

which can both be computed in polynomial time. While

𝜓(𝑠) =

{︃
1 if 𝑠 is de-embeddable,

0 otherwise

tells whether we can compute an original solution to the embedded one, the function 𝜏 provides
the corresponding de-embedded solution, where we have

𝐼(𝑠) + 𝑐 = 𝐼(𝜏(𝑠)) ∀𝑠 ∈ {−1, 1}𝑉 (𝐻𝜙) with 𝜓(𝑠) = 1

for the constant 𝑐 ∈ R.

We call

𝜓−1(1) =
{︀
𝑠 ∈ {−1, 1}𝑉 (𝐻𝜙) : 𝜓(𝑠) = 1

}︀
the set of de-embeddable solutions.

65

4 Weight Distribution

Thus, for

𝑠* ∈ argmin
𝑠∈{−1,1}𝑉 (𝐻𝜙)

𝐼(𝑠),

we have by Definition 4.3

𝜏(𝑠*) ∈ argmin
𝑡∈{−1,1}𝑉 (𝐺)

𝐼(𝑡).

The most useful in practice would be if all original solutions had a corresponding embedded coun-
terpart, which means if 𝜏 is surjective. This in turn would mean we have 𝜓−1(1) ∼= {−1, 1}𝑉 (𝐺)

and at least 2|𝑉 (𝐺)| solutions that are de-embeddable.

To find such functions, we need to decide at some point what structure the embedded solutions
should follow. Although different options might be possible due to the large number of adjustable
parameters, the most straightforward way is to restrict the considerations to solutions where all
variables corresponding to the embedding of a single original vertex hold the same value. This
principle called synchronization is explained in the following section in more detail.

4.1.2 Synchronization

The main aspect of the equivalence of the given and the Embedded Ising Problem is the
retrieval of the original solution from the embedded one. For this we need to be able to ‘de-
embed’ the embedded solution. This in turn requires this solution to hold a certain structure.
By enforcing the synchronization of all variables in the embedded Ising model that correspond
to a single original variable, which means that all those variables should hold the same value,
we have a simple criterion on the solutions of the Embedded Ising Problem. This idea was
already introduced in [12] and means more formally

Definition 4.5. A solution of the Embedded Ising Problem 𝑠 ∈ {−1, 1}𝑉 (𝐻𝜙) is called a
synchronized solution with respect to an embedding 𝜙 of 𝐺 in 𝐻 for two graphs 𝐺 and 𝐻 if we
have

𝑠𝑞 = 𝑡𝑣 ∈ {−1, 1} ∀𝑞 ∈ 𝜙𝑣 ∀𝑣 ∈ 𝑉 (𝐺).

For such a synchronized solution, we can easily provide the functions required for the de-embed-
ding with

𝜓(𝑠) =

{︃
1 if 𝑠𝑞 = 𝑠𝑝 ∀𝑝, 𝑞 ∈ 𝜙𝑣 ∀𝑣 ∈ 𝑉 (𝐺),

0 otherwise

and

𝜏(𝑠) = 𝑠𝑋

for some vertex set 𝑋 ⊆ 𝑉 (𝐻𝜙) with |𝑋 ∩𝜙𝑣| = 1 for all 𝑣 ∈ 𝑉 (𝐺). The vertex set 𝑋 just serves
as a placeholder, as we can simply choose a random vertex from 𝜙𝑣 to obtain the value of its
variable because all of them hold the same value. It is easy to recognize that 𝜏 is surjective and
both functions can be computed in polynomial time.

In case the embedded variables do not hold a common value, it is unclear which value to assign
to the corresponding original variable. Heuristics such as majority voting might be useful, when
considering the non-optimal solutions provided by the D-Wave machine due to its physical ‘im-
perfectness’. However, if the embedded Ising model is ill-defined, which means that its optimal
solution does not yield a clear correspondence to an original solution, those heuristics will not
be able to extract the optimal original solution.

66

4.1 Problem Extraction

Thus, how do we ensure that such an embedded Ising model based on synchronization, which
means it yields the given functions as a de-embedding, is an equivalent embedded Ising model to
our given one? Obviously, the weights and the strengths of the embedded Ising model depend
on the original parameters.

If the weights and the strengths fulfil

𝑊𝑣 =
∑︁
𝑞∈𝜙𝑣

𝑊 𝑞

and

𝑆𝑣𝑤 =
∑︁

𝑝𝑞∈𝛿𝑣𝑤
𝑆𝑝𝑞,

respectively, we have for a synchronized solution 𝑠 as given in Definition 4.5

𝐼(𝑠) =
∑︁

𝑣∈𝑉 (𝐺)

⎛⎝∑︁
𝑞∈𝜙𝑣

𝑊 𝑞𝑠𝑞 +
∑︁

𝑝𝑞∈𝐸(𝐻[𝜙𝑣])

𝑆𝑝𝑞𝑠𝑝𝑠𝑞

⎞⎠+
∑︁

𝑣𝑤∈𝐸(𝐺)

∑︁
𝑝𝑞∈𝛿𝑣𝑤

𝑆𝑝𝑞𝑠𝑝𝑠𝑞

=
∑︁

𝑣∈𝑉 (𝐺)

⎛⎝∑︁
𝑞∈𝜙𝑣

𝑊 𝑞𝑡𝑣 +
∑︁

𝑝𝑞∈𝐸(𝐻[𝜙𝑣])

𝑆𝑝𝑞𝑡𝑣𝑡𝑣

⎞⎠+
∑︁

𝑣𝑤∈𝐸(𝐺)

∑︁
𝑝𝑞∈𝛿𝑣𝑤

𝑆𝑝𝑞𝑡𝑣𝑡𝑤

=
∑︁

𝑣∈𝑉 (𝐺)

𝑡𝑣

(︃∑︁
𝑞∈𝜙𝑣

𝑊 𝑞

)︃
+

∑︁
𝑣∈𝑉 (𝐺)

∑︁
𝑝𝑞∈𝐸(𝐻[𝜙𝑣])

𝑆𝑝𝑞 +
∑︁

𝑣𝑤∈𝐸(𝐺)

𝑡𝑣𝑡𝑤

⎛⎝ ∑︁
𝑝𝑞∈𝛿𝑣𝑤

𝑆𝑝𝑞

⎞⎠
=

∑︁
𝑣∈𝑉 (𝐺)

𝑊𝑣𝑡𝑣 +
∑︁

𝑣𝑤∈𝐸(𝐺)

𝑆𝑣𝑤𝑡𝑣𝑡𝑤 +
∑︁

𝑝𝑞∈𝐸𝛿

𝑆𝑝𝑞

= 𝐼(𝑡) +
∑︁

𝑝𝑞∈𝐸𝛿

𝑆𝑝𝑞.

(4.1)

This means, for all such synchronized solutions, we have 𝐼(𝑠) + 𝑐 = 𝐼(𝑡) with

𝑐 = −
∑︁

𝑝𝑞∈𝐸𝜙

𝑆𝑝𝑞.

Thus, the strengths 𝑆𝐸𝜙 only introduce an offset to the overall objective value for these solutions.
Furthermore, we ensure that for an optimal solution

𝑡* ∈ argmin
𝑡∈{−1,1}𝑉 (𝐺)

𝐼(𝑡)

we have 𝐼(𝑠*) + 𝑐 = 𝐼(𝑡*) for 𝑠* = (𝑡*𝑣1𝜙𝑣)𝑣∈𝑉 (𝐺) and 𝑠* thus also is the minimum over all
synchronized solutions, which means

𝑠* ∈ argmin
{︁
𝐼(𝑠) : 𝑠 ∈ {−1, 1}𝑉 (𝐻𝜙), 𝑠𝜙𝑣 ∈ {−1,1}∀𝑣 ∈ 𝑉

}︁
.

However, for the given 𝑠*, we do not necessarily have

𝑠* ∈ argmin
𝑠∈{−1,1}𝑉 (𝐻𝜙)

𝐼(𝑠),

which means it would also be the optimum over all solutions of the Embedded Ising Problem.
There might be unsynchronized variable assignments yielding a lower objective value. This is
the case if the contribution of the inter-connecting edges does not suffice.

67

4 Weight Distribution

As it can be seen in (4.1), if the variables 𝑠𝑞 and 𝑠𝑝 for 𝑝𝑞 ∈ 𝐸(𝐻[𝜙𝑣]) are synchronized, their
product reduces to 1 and the corresponding strength 𝑆𝑝𝑞 is added to the objective value. In
turn, if the variables are assigned to different values, the product is −1 and 𝑆𝑝𝑞 is subtracted.
Due to the minimization, it is therefore preferable to set 𝑆𝑝𝑞 to a negative value. However, its
contribution also needs to exceed the benefit of breaking the synchronization in the remaining
part of the objective function.

To ensure the synchronization, we could, in theory, set 𝑆𝑝𝑞 = −∞ for all 𝑝𝑞 ∈ 𝐸𝜙 or at least
to a very large negative value, e.g. exceeding the sum of the absolute values of all coefficients
in the embedded Ising model. In this case, we could also choose 𝑊 and 𝑆𝐸𝛿

arbitrarily within
the sum bounds. However, these large strength values cannot be realized in practice because the
annealing machines have a limited parameter precision and height due to physical restrictions.
Thus, how do we need to choose the parameters 𝑆𝐸𝜙 such that they suffice and how does their
choice influence possible choices for 𝑊 and 𝑆𝐸𝛿

and vice versa?

4.1.3 Related Work

The baseline for all the work around minor embedding and the corresponding parameter setting
was developed by V. Choi. In [12], a first upper bound on the strengths on the inter-coupling
edges depending on the original parameters is given, achieved by providing an explicit non-
uniform weighting of the vertices in the hardware graph. However, in practice, these bounds
seem to be too weak and the large strengths they introduce suppress the success probability due
to the necessary scaling factor.

By now, there is a common understanding in the quantum annealing community that the coupling
strength, the common strength that is in most cases simply applied to all inter-connecting edges,
needs to be larger than the largest absolute strength that appears in the original Ising model.
Usually, a factor of 2 is applied, as for instance is described in [44]. At the same time, the weights
are in general distributed uniformly over the vertices.

Another method used in practice is determining the scaling factor empirically, see e.g. [51]. This
means that several instances of the same original problem are transferred into Ising models, usu-
ally yielding a common structure. By successively solving the problems with certain parameters
and checking the feasibility of the found solutions afterwards, a specific bound or a bounding
function in the input parameters is estimated and assumed to hold also for all other instances
of the same problem. This however does not provide any provable equivalence of the embedded
Ising model.

In the package dwave-system, D-Wave’s programming interface offers a method to set the cou-
pling strength called ‘uniform torque compensation’ [15], which is most likely based on [44]. In
the given formulation, it only applies for chains, which means if 𝜙𝑣 for 𝑣 ∈ 𝑉 (𝐺) induces a path
in the hardware graph. The method is derived from the idea that a ‘torque’ on the central edge
of the chain, caused by the supposedly random influence of the neighboring chains, needs to be
compensated by setting the weights and strengths accordingly. As several physical dynamics of
the annealing process are included in the considerations at the same time, this approach does not
clearly divide the transformation steps towards the machine as we intend to do. Although the
results of the empirical study for certain random instances in [44] are promising, an analytical
study of the equivalence of the thus obtained solutions is missing, which is why this method can
again only be considered as a heuristic approach to obtain the coupling strength.

68

4.1 Problem Extraction

Due to its physical properties, the quantum machine does only provide solutions with a certain
probability. Thus, even if the optimal solution of the embedded Ising problem might be a
synchronized one, the machine might miss it in the annealing process and rather provide only
suboptimal and unsynchronized solutions. In such cases, the common practice is to apply a
post-processing on these unsynchronized solutions. A popular example is the majority voting,
where the original variable gets the value which appears in the majority of the assignments of
the embedded variables [31].

This however changes the contribution of some edges by their strength to the objective value.
Thus, broken embeddings might have a global impact on the assignment of a large number of
variables, which can usually not be ‘repaired locally’. In particular, applying this method to
solutions of an ill-defined embedded Ising problem will not increase the probability of finding the
optimal solution. On the other hand, we do not see a way how to construct the embedded Ising
such that we obtain the provable equivalence to the original Ising problem under such solutions,
due to the large number of possible distributions.

Although the choice of the strength(s) in the single vertex embeddings is decisive for the success
probability of the D-Wave machine [51], we are not aware of any further publication that deals
with the parameter setting problem of the embedded Ising model analogously or as an extension
to V. Choi in [12]. We analyze the problem in the following section and evaluate the resulting
optimization problem in detail in the further course of this work.

4.1.4 Single Vertex Evaluation

To answer the question stated at the end of Section 4.1.2, we extract the part of the embedded
Ising model that concerns a single original vertex 𝑣𝑣𝑣 ∈ 𝑉 (𝐺), which we assume to be fixed in the
following:

𝐼(𝑠) =
∑︁

𝑤∈𝑉 (𝐺)∖{𝑣}

⎛⎝∑︁
𝑞∈𝜙𝑤

𝑊 𝑞𝑠𝑞 +
∑︁

𝑝𝑞∈𝐸(𝐻[𝜙𝑤])

𝑆𝑝𝑞𝑠𝑝𝑠𝑞

⎞⎠+
∑︁

𝑤𝑢∈𝐸(𝐺)∖𝛿(𝑣)

∑︁
𝑝𝑞∈𝛿𝑤𝑢

𝑆𝑝𝑞𝑠𝑝𝑠𝑞

+
∑︁
𝑞∈𝜙𝑣

𝑊 𝑞𝑠𝑞 +
∑︁

𝑝𝑞∈𝐸(𝐻[𝜙𝑣])

𝑆𝑝𝑞𝑠𝑝𝑠𝑞 +
∑︁

𝑤∈𝑁(𝑣)

∑︁
𝑝𝑞∈𝛿𝑣𝑤

𝑆𝑝𝑞𝑠𝑝𝑠𝑞⏟ ⏞
=:𝐼𝑣(𝑠)𝐼𝑣(𝑠)𝐼𝑣(𝑠)

.

By this the remaining part 𝐼𝑉 (𝐺)∖{𝑣}(𝑠)𝐼𝑉 (𝐺)∖{𝑣}(𝑠)𝐼𝑉 (𝐺)∖{𝑣}(𝑠) := 𝐼(𝑠)−𝐼𝑣(𝑠) does only depend on 𝑠 ∈ {−1, 1}𝑉 (𝐻𝜙)∖𝜙𝑣 .
By replacing 𝑠 ∈ {−1, 1}𝜙𝑣∪𝑁(𝜙𝑣) with (𝑟, 𝑠) ∈ {−1, 1}𝜙𝑣 × {−1, 1}𝑁(𝜙𝑣) in 𝐼𝑣(𝑠) we get

𝐼𝑣(𝑟, 𝑠) =
∑︁
𝑞∈𝜙𝑣

𝑊 𝑞𝑟𝑞 +
∑︁

𝑝𝑞∈𝐸(𝐻[𝜙𝑣])

𝑆𝑝𝑞𝑟𝑝𝑟𝑞 +
∑︁

𝑤∈𝑁(𝑣)

∑︁
𝑝𝑞∈𝛿𝑣𝑤

𝑆𝑝𝑞𝑠𝑝𝑟𝑞

and can clearly indicate the different influencing parts. All variables corresponding to the embed-
ding of vertex 𝑣, the 𝑟-variables, now only appear in 𝐼𝑣, while the 𝑠-variables form the connection
to the remaining part, thus appear in both 𝐼𝑉 (𝐺)∖{𝑣} and 𝐼𝑣.

In the following, we want to enforce the synchronization of the 𝑟’s independently of the influence
‘from the outside’, which means for arbitrary 𝑠. Due to the minimization of the Ising models,
this means that the minimum of the partial Ising problem should always be either 1 or −1, more
formally

argmin
𝑟∈{−1,1}𝜙𝑣

𝐼𝑣(𝑟, 𝑠) ⊆ {−1,1} ∀𝑠 ∈ {−1, 1}𝑁(𝜙𝑣).

69

4 Weight Distribution

In other words, we have

min
𝑟∈{−1,1}𝜙𝑣

𝐼𝑣(𝑟, 𝑠) = min
{︀
𝐼𝑣(−1, 𝑠), 𝐼𝑣(1, 𝑠)

}︀
but with

𝐼𝑣(𝑟, 𝑠) > min
{︀
𝐼𝑣(−1, 𝑠), 𝐼𝑣(1, 𝑠)

}︀
∀𝑠 ∈ {−1, 1}𝑁(𝜙𝑣) ∀𝑟 ∈ {−1, 1}𝜙𝑣 ∖ {−1,1}.

Do these conditions ensure that the embedded problem is provably equivalent to the original
one? We can indeed show their sufficiency:

Lemma 4.6. With

𝐼𝑣(𝑟, 𝑠) > min
{︀
𝐼𝑣(−1, 𝑠), 𝐼𝑣(1, 𝑠)

}︀
∀𝑠 ∈ {−1, 1}𝑁(𝜙𝑣) ∀𝑟 ∈ {−1, 1}𝜙𝑣 ∖ {−1,1}

for all 𝑣 ∈ 𝑉 (𝐺), we have for all

𝑠* ∈ argmin
𝑠∈{−1,1}𝑉 (𝐻𝜙)

𝐼(𝑠)

that 𝑠* = (𝑡*𝑣1𝜙𝑣)𝑣∈𝑉 (𝐺) with 𝑡
* ∈ {−1, 1}𝑉 .

Proof. Assume there exists

𝑠* ∈ argmin
𝑠∈{−1,1}𝑉 (𝐻𝜙)

𝐼(𝑠)

with 𝑠*𝜙𝑣
̸∈ {−1,1} for some vertex 𝑣 ∈ 𝑉 (𝐺). Then we have

𝐼(𝑠*) = 𝐼𝑣
(︁
𝑠*𝜙𝑣

, 𝑠*𝑁(𝜙𝑣)

)︁
+ 𝐼𝑉 (𝐺)∖{𝑣}

(︁
𝑠*𝑉 (𝐻𝜙)∖𝜙𝑣

)︁
> min

{︁
𝐼𝑣
(︁
−1, 𝑠*𝑁(𝜙𝑣)

)︁
, 𝐼𝑣
(︁
1, 𝑠*𝑁(𝜙𝑣)

)︁}︁
+ 𝐼𝑉 (𝐺)∖{𝑣}

(︁
𝑠*𝑉 (𝐻𝜙)∖𝜙𝑣

)︁
by the given conditions and we can further deduce

𝐼(𝑠*) = 𝐼𝑣
(︁
𝑟*1, 𝑠*𝑁(𝜙𝑣)

)︁
+ 𝐼𝑉 (𝐺)∖{𝑣}

(︁
𝑠*𝑉 (𝐻𝜙)∖𝜙𝑣

)︁
= 𝐼
(︀
𝑠*
)︀

for 𝑠 ∈ {−1, 1}𝑉 (𝐻𝜙) with 𝑠𝑉 (𝐻𝜙)∖𝜙𝑣
= 𝑠*𝑉 (𝐻𝜙)∖𝜙𝑣

and 𝑠𝜙𝑣 = 𝑟*1 for

𝑟* =

{︃
1 if 𝐼𝑣

(︁
−1, 𝑠*𝑁(𝜙𝑣)

)︁
≥ 𝐼𝑣

(︁
1, 𝑠*𝑁(𝜙𝑣)

)︁
,

−1 otherwise.

This contradicts to 𝑠* being an optimal solution.

With this result, we can now clearly formulate the requirements on an embedded Ising model:

70

4.2 Optimization Problem Formulation

Theorem 4.7. For two graphs 𝐺 and 𝐻, an embedding 𝜙 of 𝐺 in 𝐻 and an Ising model
𝐼𝑊,𝑆 : {−1, 1}𝑉 (𝐺) → R with weights 𝑊 ∈ R𝑉 (𝐺) and strengths 𝑆 ∈ R𝐸(𝐺), the Ising model
𝐼𝑊,𝑆 : {−1, 1}𝑉 (𝐻𝜙) → R with weights 𝑊 ∈ R𝑉 (𝐻𝜙) and strengths 𝑆 ∈ R𝐸(𝐻𝜙) forms an equiva-
lent embedded Ising model to 𝐼𝑊,𝑆 if we have

𝑊𝑣 =
∑︁
𝑞∈𝜙𝑣

𝑊 𝑞 ∀𝑣 ∈ 𝑉 (𝐺),

𝑆𝑣𝑤 =
∑︁

𝑝𝑞∈𝛿𝑣𝑤
𝑆𝑝𝑞 ∀𝑣𝑤 ∈ 𝐸(𝐺),

𝐼𝑣
𝑊,𝑆

(𝑟, 𝑠) > min
{︁
𝐼𝑣
𝑊,𝑆

(−1, 𝑠), 𝐼𝑣
𝑊,𝑆

(1, 𝑠)
}︁
∀𝑠 ∈ {−1, 1}𝑁(𝜙𝑣) ∀𝑟 ∈ {−1, 1}𝜙𝑣 ∖ {−1,1}

∀𝑣 ∈ 𝑉 (𝐺).

Proof. The optimality is clear with the deductions from the beginning of this section and
Lemma 4.6. Furthermore, from an optimal solution

𝑠* ∈ argmin
𝑠∈{−1,1}𝑉 (𝐻𝜙)

𝐼(𝑠),

we can easily get a solution of the original Ising problem with 𝑡*𝑣 = 𝑠*𝑞 for an arbitrarily chosen
𝑝 ∈ 𝜙𝑣 for all 𝑣 ∈ 𝑉 due to the enforced synchronization.

Note that this theorem only shows the sufficiency of our derived conditions. However, it does
not state anything about the necessity.

4.2 Optimization Problem Formulation

For calculations on the D-Wave machine, it is essential for the user that the encoded problem
indeed represents the original problem the user wants to solve. In this section, we extract and
simplify the sufficient requirements on the parameters that need to be fulfilled such that the
resulting Embedded Ising Problem provably holds equivalent solutions to those of the given
problem.

We assume the two graphs 𝐺𝐺𝐺 and 𝐻𝐻𝐻, the embedding 𝜙𝜙𝜙 : 𝑉 (𝐺)→ 2𝑉 (𝐻) with the corresponding
graph structures of Definition 4.1 and an Ising model 𝐼𝑊,𝑆𝐼𝑊,𝑆𝐼𝑊,𝑆 : {−1, 1}𝑉 (𝐺) → R with the weights𝑊𝑊𝑊
and strengths 𝑆𝑆𝑆 to be given and fixed in the following. Given this data, how do we find an
equivalent embedded Ising model 𝐼𝑊,𝑆 : {−1, 1}𝑉 (𝐻𝜙) → R to 𝐼 with weights𝑊 and strengths 𝑆?
Note that we drop the subscripts of the Ising models in most cases for simplicity.

4.2.1 Instance Definition

In the following, we only concentrate on 𝐼𝑣(𝑠) for a fixed 𝑣 ∈ 𝑉 (𝐺). From this part of the
embedded Ising model, we derive the specific optimization problem that needs to be solved to
obtain those parameter values that ensure that the embedded vertices represent the original
ones.

71

4 Weight Distribution

Input

The part of the embedded graph 𝐼𝑣 is working on is the embedded subgraph structure

𝐻 [𝜙𝑣 ·∪𝑁(𝜙𝑣)] = (𝜙𝑣 ·∪𝑁(𝜙𝑣), 𝐸(𝐻[𝜙𝑣]) ·∪ 𝛿(𝜙𝑣) ·∪ 𝐸(𝐻[𝑁(𝜙𝑣)])),

where we have

� the connected inner graph 𝐻[𝜙𝑣] =: (𝑉,𝐸) with vertices 𝑉𝑉𝑉 and edges 𝐸𝐸𝐸,

� the outer neighbors 𝑁𝑁𝑁 := 𝑁(𝜙𝑣) ⊆
⋃︀
{𝑝 ∈ 𝜙𝑤 : 𝑤 ∈ 𝑁(𝑣)},

� the set of edges to the outer neighbors 𝑂𝑂𝑂 := 𝛿(𝜙𝑣) and

� the edges between the outer neighbors 𝐸(𝐻[𝑁(𝜙𝑣)]).

An example is shown in Figure 4.1. Note that the quadratic terms for the edges between the
outer neighbors do not include variables corresponding to vertices in 𝑉 . Therefore, they are not
considered in the definition of 𝐼𝑣. In the following section, we nevertheless argue why we can
omit these edges.

Although, apart from the constraints

𝑆𝑣𝑤 =
∑︁

𝑝𝑞∈𝛿𝑣𝑤
𝑆𝑝𝑞 ∀𝑤 ∈ 𝑁(𝑣),

we are free to choose the values for 𝑆𝑝𝑞 for all 𝑝𝑞 ∈ 𝛿(𝜙𝑣), this introduces another level of
complexity to the overall problem. Their choice does not only concern the evaluated vertex 𝑣
but also its neighbors in 𝐺. We keep this additional level for future research and assume in
the following that 𝑆𝑝𝑞 is validly chosen in advance and thus given and fixed. Nevertheless, we
discuss possible choices supporting the simplification of the problem in the following section and
see that our approach can be applied in any case.

All in all, we assume to be given

� the strengths on the outer edges 𝑆𝑆𝑆 ∈ R𝑂, where we have {𝑛 ∈ 𝑁 : ℓ𝑛 ∈ 𝑂,𝑆𝑛 ̸= 0} ≠ ∅ for
all leaves ℓ ∈ 𝑉 of 𝐺, as they otherwise could be ‘cut off’ from the embedding, and

� the total weight 𝑊𝑊𝑊 :=𝑊𝑣 ∈ R.

All of the objects marked in bold are assumed to be fixed in the following.

Figure 4.1: Example for an embedded subgraph structure of a single vertex with all outer neigh-
bors extracted from the complete graph embedding in the broken Chimera graph of
Figure 3.22(b)

72

4.2 Optimization Problem Formulation

Besides, by excluding possibly existing additional inner edges, 𝐺 could be reduced to a tree. We
use this fact later on, as several problems are much easier on trees. However, for the first steps,
we consider 𝐺 to be an arbitrary graph.

Output and Objective

With the notations and simplifications of the previous section, we have

𝐼𝑣(𝑠) =
∑︁
𝑞∈𝜙𝑣

𝑊 𝑞𝑠𝑞 +
∑︁

𝑝𝑞∈𝐸(𝐻[𝜙𝑣])

𝑆𝑝𝑞𝑠𝑝𝑠𝑞 +
∑︁

𝑤∈𝑁(𝑣)

∑︁
𝑝𝑞∈𝛿𝑣𝑤

𝑆𝑝𝑞𝑠𝑝𝑠𝑞

=
∑︁
𝑞∈𝑉

𝑊 𝑞𝑠𝑞 +
∑︁
𝑝𝑞∈𝐸

𝑆𝑝𝑞𝑠𝑝𝑠𝑞 +
∑︁
𝑞∈𝑉

∑︁
𝑞𝑛∈𝑂

𝑆𝑞𝑛𝑠𝑞𝑠𝑛

and further get by analogously replacing 𝑠 ∈ {−1, 1}𝜙𝑣∪𝑁(𝜙𝑣) with (𝑟, 𝑠) ∈ {−1, 1}𝑉 ×{−1, 1}𝑁 ,
as shown in the previous section, and renaming the parameters

𝐼𝑣(𝑠) =
∑︁
𝑞∈𝑉

𝜔𝑞𝑟𝑞 −
∑︁
𝑝𝑞∈𝐸

𝛽𝑝𝑞𝑟𝑝𝑟𝑞 +
∑︁
𝑞∈𝑉

∑︁
𝑞𝑛∈𝑂

𝑆𝑞𝑛𝑠𝑛𝑟𝑞

=: 𝐼𝑆𝜔,𝛽(𝑟, 𝑠)𝐼𝑆𝜔,𝛽(𝑟, 𝑠)𝐼𝑆𝜔,𝛽(𝑟, 𝑠),

the Ising model 𝐼𝑆𝜔,𝛽 : {−1, 1}𝑉 × {−1, 1}𝑁 → R, where we drop the bar and the superscript 𝑣
for simplicity. We now search for the parameters:

� the weights 𝜔𝜔𝜔 :=𝑊𝜙𝑣 ∈ R𝑉 and

� the strengths 𝛽𝛽𝛽 := −𝑆𝐸(𝐻[𝜙𝑣]) ∈ R𝐸 .

The larger we choose 𝛽𝑝𝑞, the stronger the vertices 𝑝 and 𝑞 are coupled due to the negative sign

in 𝐼𝑆𝜔,𝛽 . As discussed in Section 2.2, we cannot simply set these strengths to some very large
value compared to the remaining parameters due to the machine restrictions. In literature, the
coupling strength is mentioned to be decisive for the success probability, however usually yielding
the maximal absolute coefficient 𝐶max at the same time. Therefore, the question arises: How
small can we set these strengths such that we can still achieve an equivalent embedded Ising?
This means that a first step based on current practice would be to simply minimize ‖𝛽‖∞.

However, by only minimizing the strengths, a corresponding suitable weighting could exceed the
corresponding bound in some vertices. Hence, with the strengths on the outer edges assumed to
be fixed, the more interesting objective would be the maximal absolute value of all remaining pa-
rameters of the observed part of the Ising model max{‖𝜔‖∞, ‖𝛽‖∞}, which should be minimized
in total.

Constraints

In most of the following work, we do not refer to the original vertex 𝑣 anymore but only deal
with a single embedded graph structure and the corresponding Ising model as defined before.
Thus, we simply use 𝑣 ∈ 𝑉 to refer to a vertex in the hardware belonging to the inner graph of
the embedded subgraph structure. By the previous section, we can already derive the following
constraints on the introduced parameters 𝜔 and 𝛽: The weights should sum up to the total
weight with

𝑊 =
∑︁
𝑣∈𝑉

𝜔𝑣 =: 𝜔(𝑉)𝜔(𝑉)𝜔(𝑉)

73

4 Weight Distribution

and, from the conditions of Lemma 4.6, we need

𝐼𝑆𝜔,𝛽(𝑟, 𝑠) > min
{︁
𝐼𝑆𝜔,𝛽(−1, 𝑠), 𝐼𝑆𝜔,𝛽(1, 𝑠)

}︁
∀𝑠 ∈ {−1, 1}𝑁 ∀𝑟 ∈ {−1, 1}𝑉 ∖ {−1,1}, (4.2)

to ensure that the full embedded problem is provably equivalent to original one in the end.

Note that the latter condition is comprised of an exponential number of constraints, more pre-
cisely 2|𝑁 |(︀2|𝑉 |−2

)︀
many. Although they are linear inequalities, the overall optimization problem

is therefore not solvable in polynomial time in a straightforward way. Thus, it could only be
used for small graph instances 𝐺 in practice.

By introducing a gap value 𝛾𝛾𝛾 ∈ R>0, we can further influence how ‘far away’, in terms of the
distance of their objective values, invalid variable assignments are from the valid ones. This
value might become important for the user of the D-Wave machine, when trying to improve the
success probability of finding an optimal solution. By this we can also relax the order relation
to a greater or equal:

𝐼𝑆𝜔,𝛽(𝑟, 𝑠) ≥ min
{︁
𝐼𝑆𝜔,𝛽(−1, 𝑠), 𝐼𝑆𝜔,𝛽(1, 𝑠)

}︁
+ 𝛾 ∀𝑠 ∈ {−1, 1}𝑁 ∀𝑟 ∈ {−1, 1}𝑉 ∖ {−1,1}.

In the following, we assume this value is given with the input and fixed. In future research,
we might also investigate different approaches in trading off the gap against the strength. This
however shall not be part of this work.

Assuming the given original Ising model does only contain integer coefficients, we also have
𝑊 ∈ Z and 𝑆 ∈ Z𝑂. Considering the limited machine precision, an interesting step is to also
restrict the parameters to integers, with 𝜔 ∈ Z𝑉 and 𝛽 ∈ Z𝐸 , to ensure a minimum distance
of unequal values of 1. This is an option which might introduce another level of complexity,
as it converts the formerly continuous program into an integer one. We briefly investigate its
consequences at the end of this chapter. For the start we work with a continuous program.

In a Nutshell

By the previous notations and reformulations, we can now summarize the problem with the two
different objective functions, which we define both in one, for shortness. Without the terms
in the square brackets, we have the ‘full’ problem version. In the ‘strength-only’ variant, the
objective function max

{︀
‖𝜔‖∞, ‖𝛽‖∞

}︀
is replaced by the simpler ‖𝛽‖∞.

[Strengths-only] Gapped Parameter Setting Problem. Given an embedded
subgraph (𝑉 ·∪𝑁,𝐸 ·∪𝑂), 𝑆 ∈ R𝑂, 𝑊 ∈ R and 𝛾 ∈ R>0, find 𝜔 and 𝛽 that solve

min max
{︀
‖𝜔‖∞, ‖𝛽‖∞

}︀ [︀
‖𝛽‖∞

]︀
s.t. 𝜔 ∈ R𝑉 , 𝛽 ∈ R𝐸 ,

𝜔(𝑉) =𝑊,

𝐼𝑆𝜔,𝛽(𝑟, 𝑠) ≥ min
{︁
𝐼𝑆𝜔,𝛽(−1, 𝑠), 𝐼𝑆𝜔,𝛽(1, 𝑠)

}︁
+ 𝛾 ∀𝑠 ∈ {−1, 1}𝑁

∀𝑟 ∈ {−1, 1}𝑉 ∖ {−1,1}.

74

4.2 Optimization Problem Formulation

4.2.2 Simplifications

The instance defined in the previous section can be simplified due to some properties of the Ising
models. We can apply several steps, which are discussed in the following.

Common Strength

The 𝛽-variables only introduce an offset for synchronized variable assignments. As the total size
of this offset is irrelevant, we can choose to set all strengths to the same maximal value. Thus,
with 𝜗𝜗𝜗 := ‖𝛽‖∞, we can set 𝛽𝑣𝑤 to 𝜗 for all 𝑣𝑤 ∈ 𝐸 and therefore get

𝐼𝑆𝜔,𝜗(𝑟, 𝑠) =
∑︁
𝑣∈𝑉

𝜔𝑣𝑟𝑣 − 𝜗
∑︁
𝑣𝑤∈𝐸

𝑟𝑣𝑟𝑤 +
∑︁
𝑣∈𝑉

∑︁
𝑣𝑛∈𝑂

𝑆𝑣𝑛𝑠𝑛𝑟𝑣. (4.3)

This means that the objective function to be minimized in the simplified version is only 𝜗.

For the full version, instead of using max
{︀
‖𝜔‖∞, 𝜗

}︀
directly as an objective function, we can

further simplify the formulation by introducing a further constraint: With 𝜗 ≥ ‖𝜔‖∞, we can
still minimize 𝜗. The constant 𝑐 describing the difference to the original Ising model is now
simply 𝜗|𝐸|.

Non-negative Input Parameters Due to Symmetry

Furthermore, we can take advantage of the symmetry in the Ising model being defined over
variables in {−1, 1}. By replacing 𝑠 with 𝑠 = −𝑠, we can switch the sign of the strengths on the
intra-coupling edges:

𝐼𝑆𝜔,𝜗(𝑟, 𝑠) =
∑︁
𝑣∈𝑉

𝜔𝑣𝑟𝑣 − 𝜗
∑︁
𝑣𝑤∈𝐸

𝑟𝑣𝑟𝑤 +
∑︁
𝑣∈𝑉

∑︁
𝑣𝑛∈𝑂

𝑆𝑣𝑛𝑠𝑛𝑟𝑣

=
∑︁
𝑣∈𝑉

𝜔𝑣𝑟𝑣 − 𝜗
∑︁
𝑣𝑤∈𝐸

𝑟𝑣𝑟𝑤 +
∑︁
𝑣∈𝑉

∑︁
𝑣𝑛∈𝑂

(−𝑆𝑣𝑛)𝑠𝑛𝑟𝑣

= 𝐼−𝑆
𝜔,𝜗(𝑟, 𝑠).

We can see that the different assignments of the 𝑠-variables in (4.2) cover all possible sign
combinations of the strengths 𝑆. Thus, we can restrict 𝑆 to R𝑂

≥0 in the following evaluations.

Additionally, by replacing (𝑟, 𝑠) with (𝑟, 𝑠), we observe a symmetry for the 𝜔’s: We have

𝐼𝑆𝜔,𝜗(𝑟, 𝑠) =
∑︁
𝑣∈𝑉

𝜔𝑣𝑟𝑣 − 𝜗
∑︁
𝑣𝑤∈𝐸

𝑟𝑣𝑟𝑤 +
∑︁
𝑣∈𝑉

∑︁
𝑣𝑛∈𝑂

𝑆𝑣𝑛𝑠𝑛𝑟𝑣

=
∑︁
𝑣∈𝑉

(−𝜔𝑣)𝑟𝑣 − 𝜗
∑︁
𝑣𝑤∈𝐸

𝑟𝑣𝑟𝑤 +
∑︁
𝑣∈𝑉

∑︁
𝑣𝑛∈𝑂

𝑆𝑣𝑛𝑠𝑛𝑟𝑣

= 𝐼𝑆−𝜔,𝜗(𝑟, 𝑠)

with ∑︁
𝑣∈𝑉

(−𝜔𝑣) = −𝑊.

This means we can analogously restrict the total weight to 𝑊 ∈ R≥0.

75

4 Weight Distribution

Independent Outer Neighbors

By the embedding definition, a single edge connecting the embeddings of different vertices is
sufficient. In practice, we usually have |𝛿𝑣𝑤| > 1 for at least a few pairs of original vertices 𝑣𝑤
due to the symmetric structure of the Chimera. This can also be seen in Figure 4.1. Here, we
discuss some options and the assumptions which we base the following work on.

If there are multiple edges between the embeddings of two vertices, one possibility could simply
be to choose a certain edge 𝑒 ∈ 𝛿𝑣𝑤 and ‘ignore’ the others. This means, for the embedded Ising
model, we could set

𝑆𝑒 = 𝑆𝑣𝑤,

𝑆𝑒 = 0 ∀𝑒 ∈ 𝛿𝑣𝑤 ∖ {𝑒}

and further only deal with 𝛿𝑣𝑤 = {𝑒}. This would influence the former graph structure in two
ways:

1. No two vertices of 𝑉 share an outer neighbor, which means we have |{𝑞 : 𝑞𝑛 ∈ 𝛿(𝜙𝑣)}| = 1
for all 𝑛 ∈ 𝑁 and thus 𝑂 = 𝛿(𝜙𝑣) ∼= 𝑁 .

2. We have 𝐸(𝐻[𝑁(𝜙𝑣)])) = ∅, which means that no two outer neighbors are connected by
an edge.

By this, on the one hand, we have already achieved a simplification of the problem and, on the
other hand, we have ensured that all the outer neighbors are independent of each other because
they belong to different original neighbors of 𝑣.

However, another possibility also offers an advantage: By spreading the strength equally over all
of the available edges as suggested in [44] with

𝑆𝑝𝑞 =
𝑆𝑣𝑤
|𝛿𝑣𝑤|

∀𝑝𝑞 ∈ 𝛿𝑣𝑤,

the coefficients are decreased. This seems to be beneficial for complying with the parameter
range of the machine. In case of 𝑆 ∈ Z𝐸(𝐺), we can also keep 𝑆𝛿𝑣𝑤 ∈ Z𝛿𝑣𝑤 for all 𝑣𝑤 ∈ 𝐸(𝐺) by
simple rounding. As the variables corresponding to the embeddings of the other vertices shall
be synchronized, too, the outer neighbors of some inner vertices are not independent of each
other in this case. While in the Chimera graph no triangles exist, they might be present in other
hardware graphs, such as the Pegasus graph, and might cause inner vertices that even share a
common outer neighbor.

Howsoever the strengths are distributed, we want to take advantage of both above strategies.
Thus, we simplify the embedded graph structure by splitting up possibly existing shared vertices
and simply considering all outer vertices to be pairwise independent of each other as if they
would belong to different neighbors of the original vertex. Thus, for the following considerations
in this work, we assume that we have 𝑂 ∼= 𝑁 . With this we now consider 𝑆𝑆𝑆 ∈ R𝑁

≥0 to be the
given and fixed strengths, yielding the points 1 and 2 from above.

These assumptions become relevant in the following section, where we estimate the worst cases
of the ‘outer influence’, the contribution of the strengths on the edges to the outer neighbors
multiplied by the 𝑠-variables, to further simplify 𝐼𝑣. If there exist two variables 𝑠𝑛 and 𝑠𝑚
corresponding to two outer neighbors 𝑛,𝑚 ∈ 𝑁 that belong to the same embedding 𝜙𝑤 of an
original neighboring vertex 𝑤, those variables would get the same value in a synchronized solution
of the overall problem. As we however assume they can be chosen arbitrarily and independently,
the worst case might be overestimated. This means our derived bounds still hold, but the found

76

4.2 Optimization Problem Formulation

strength might be larger than actually necessary in this case. Additionally, the actual minimal
gap between a synchronized and a unsynchronized solution might be larger than intended by the
user.

Single Outer Neighbor

Finally, we further assume that the given graph instance does only have a single outer neighbor
for each vertex 𝑣 ∈ 𝑉 . This means we have 𝑁 ∼= 𝑉 . If this is not the case, which means
there are at least two outer neighbors for a single inner vertex, the following lemma shows that
a synchronization of the variables over these outer neighbors suffices to also cover those cases
where the strengths on the outer edges get different signs.

Lemma 4.8. For 𝐼𝑆𝜔,𝜗 : {−1, 1}𝑉 × {−1, 1}𝑁 as given in (4.3) with 𝑆 ∈ 𝑅𝑁
≥0, the gap value

𝛾 ∈ R≥0, a vertex 𝑣 ∈ 𝑉 and its neighbors 𝑛,𝑚 ∈ 𝑁 with 𝑣𝑛, 𝑣𝑚 ∈ 𝑂, we have

𝐼𝑆𝜔,𝜗(𝑟, 𝑠) ≥ min
{︀
𝐼𝑆𝜔,𝜗(−1, 𝑠), 𝐼𝑆𝜔,𝜗(1, 𝑠)

}︀
+ 𝛾 for 𝑠𝑛 = 𝑠𝑚 ∈ {−1, 1}

⇒ 𝐼𝑆𝜔,𝜗(𝑟, 𝑠) ≥ min
{︀
𝐼𝑆𝜔,𝜗(−1, 𝑠), 𝐼𝑆𝜔,𝜗(1, 𝑠)

}︀
+ 𝛾 for 𝑠𝑛, 𝑠𝑚 ∈ {−1, 1}

for all 𝑟 ∈ {−1, 1}𝑉 and all 𝑠𝑁∖{𝑚,𝑛} ∈ {−1, 1}𝑁∖{𝑚,𝑛}.

Proof. In the following proof, we drop the sub- and superscripts on 𝐼 for simplicity. With

𝐼(𝑟, 𝑠) = 𝑆𝑛𝑠𝑛𝑟𝑣 + 𝑆𝑚𝑠𝑚𝑟𝑣 − 𝜗|𝐸|+ 𝛾 + 𝑟𝑣

(︂
𝜔𝑣 − 𝜗

∑︁
𝑣𝑤∈𝐸

𝑟𝑤 +
∑︁
𝑣ℓ∈𝑂
ℓ̸=𝑛,𝑚

𝑆ℓ𝑠ℓ

⏟ ⏞
=:𝐴(𝑟,𝑠)

)︂

+ 𝜗|𝐸| − 𝛾 +
∑︁

𝑤∈𝑉 ∖{𝑣}
𝜔𝑤𝑟𝑤 − 𝜗

∑︁
𝑤𝑢∈𝐸
𝑤,�̸�=𝑣

𝑟𝑤𝑟𝑢 +
∑︁

𝑤∈𝑉 ∖{𝑣}

∑︁
𝑤ℓ∈𝑂

𝑆ℓ𝑠ℓ𝑟𝑤

⏟ ⏞
=:𝐵(𝑟,𝑠)

and

𝐼(±1, 𝑠) = ±
(︂
𝑆𝑛𝑠𝑛 + 𝑆𝑚𝑠𝑚 +

∑︁
ℓ∈𝑁

ℓ̸=𝑛,𝑚

𝑆ℓ𝑠ℓ +𝑊

⏟ ⏞
=:𝐶(𝑟,𝑠)

)︂
− 𝜗|𝐸|+ 𝛾,

the functions 𝐴, 𝐵 and 𝐶 are independent of 𝑟𝑣, 𝑠𝑛 and 𝑠𝑚. By the condition of the lemma, we
know

𝑆𝑛𝑠𝑛𝑟𝑣 + 𝑆𝑚𝑠𝑚𝑟𝑣 +𝐴(𝑟, 𝑠)𝑟𝑣 +𝐵(𝑟, 𝑠) ≥ −
⃒⃒
𝑆𝑛𝑠𝑛 + 𝑆𝑚𝑠𝑚 + 𝐶(𝑟, 𝑠)

⃒⃒
∀𝑠𝑛 === 𝑠𝑚 ∈ {−1, 1} ∀𝑟𝑣 ∈ {−1, 1} ∀𝑠 ∈ {−1, 1}𝑁∖{𝑛,𝑚} ∀𝑟 ∈ {−1, 1}𝑉 ∖{𝑣} ∖ {−1,1}

and it remains to show that from this follows

𝑆𝑛𝑠𝑛𝑟𝑣 + 𝑆𝑚𝑠𝑚𝑟𝑣 +𝐴(𝑟, 𝑠)𝑟𝑣 +𝐵(𝑟, 𝑠) ≥ −
⃒⃒
𝑆𝑛𝑠𝑛 + 𝑆𝑚𝑠𝑚 + 𝐶(𝑟, 𝑠)

⃒⃒
∀𝑠𝑛 ̸≠≠= 𝑠𝑚 ∈ {−1, 1} ∀𝑟𝑣 ∈ {−1, 1} ∀𝑠 ∈ {−1, 1}𝑁∖{𝑛,𝑚} ∀𝑟 ∈ {−1, 1}𝑉 ∖{𝑣} ∖ {−1,1}.

More simply, this means to show that, for any fixed 𝐴,𝐵,𝐶 ∈ R and 𝑆1, 𝑆2 ∈ R≥0 with

(𝑆1 + 𝑆2)𝑠𝑟 +𝐴𝑟 +𝐵 ≥ −|(𝑆1 + 𝑆2)𝑠+ 𝐶| ∀𝑟, 𝑠 ∈ {−1, 1}, (i)

77

4 Weight Distribution

it follows that

(𝑆1 − 𝑆2)𝑠𝑟 +𝐴𝑟 +𝐵 ≥ −|(𝑆1 − 𝑆2)𝑠+ 𝐶| ∀𝑟, 𝑠 ∈ {−1, 1}. (ii)

This can be achieved by the following two case distinctions. By inserting 𝑠 = −1 and 𝑟 = 1 in
inequality (i), we obtain due to 𝑆1, 𝑆2 ≥ 0

� for 𝐶 ≤ 𝑆1 + 𝑆2

−𝑆1 − 𝑆2 +𝐴+𝐵 ≥ −| − (𝑆1 + 𝑆2) + 𝐶| = −𝑆1 − 𝑆2 + 𝐶

⇔ 𝐴+𝐵 ≥ 𝐶
⇔ (𝑆1 − 𝑆2)𝑠+𝐴+𝐵 ≥ (𝑆1 − 𝑆2)𝑠+ 𝐶

≥ −|(𝑆1 − 𝑆2)𝑠+ 𝐶| ∀𝑠 ∈ {−1, 1}

� and for 𝐶 > 𝑆1 + 𝑆2

−𝑆1 − 𝑆2 +𝐴+𝐵 ≥ −| − (𝑆1 + 𝑆2) + 𝐶| = 𝑆1 + 𝑆2 − 𝐶
⇒ (𝑆1 − 𝑆2)𝑠+𝐴+𝐵 ≥ −𝑆1 − 𝑆2 +𝐴+𝐵

≥ 𝑆1 + 𝑆2 − 𝐶
≥ −(𝑆1 − 𝑆2)𝑠− 𝐶
≥ −|(𝑆1 − 𝑆2)𝑠+ 𝐶| ∀𝑠 ∈ {−1, 1}.

Thus, we have shown the implication of inequality (ii) for r = 1 and arbitrary s. By inserting
𝑠 = 1 and 𝑟 = −1 in inequality (i), we obtain in turn

� for 𝐶 ≥ −𝑆1 − 𝑆2

−𝑆1 − 𝑆2 −𝐴+𝐵 ≥ −|𝑆1 + 𝑆2 + 𝐶| = −𝑆1 − 𝑆2 − 𝐶
⇔ −𝐴+𝐵 ≥ −𝐶
⇔ −(𝑆1 − 𝑆2)𝑠−𝐴+𝐵 > −(𝑆1 − 𝑆2)𝑠− 𝐶

≥ −| − (𝑆1 − 𝑆2)𝑠− 𝐶|
= −|(𝑆1 − 𝑆2)𝑠+ 𝐶| ∀𝑠 ∈ {−1, 1}

� and for 𝐶 < −𝑆1 − 𝑆2

−𝑆1 − 𝑆2 −𝐴+𝐵 > −|𝑆1 + 𝑆2 + 𝐶| = 𝑆1 + 𝑆2 + 𝐶

⇒ −(𝑆1 − 𝑆2)𝑠−𝐴+𝐵 ≥ −𝑆1 − 𝑆2 −𝐴+𝐵

≥ 𝑆1 + 𝑆2 + 𝐶

≥ (𝑆1 − 𝑆2)𝑠+ 𝐶

≥ −|(𝑆1 − 𝑆2)𝑠+ 𝐶| ∀𝑠 ∈ {−1, 1}.

This means we have also shown implication of inequality (ii) for 𝑟 = −1 and arbitrary 𝑠, which
completes the proof.

With the conditions of the lemma, we can replace the single occurrence of 𝑠𝑚 with 𝑠𝑛 in 𝐼
𝑆
𝜔,𝜗(𝑟, 𝑠).

This way 𝑠𝑛 gets the coefficient 𝑆𝑛 + 𝑆𝑚 and we have reduced the outer neighbors by 1 by
removing 𝑚. We can apply this lemma iteratively to all outer neighbors that share an inner
vertex. Hence, by the lemma, we can say that the synchronization of the variables corresponding

78

4.2 Optimization Problem Formulation

to the outer neighbors forms the ‘worst case’ with respect to the outer influence. By defining
the weighting 𝜎𝜎𝜎 ∈ R𝑉

≥0 with

𝜎𝑣𝜎𝑣𝜎𝑣 :=
∑︁
𝑣𝑛∈𝑂

𝑆𝑣 ∀𝑣 ∈ 𝑉,

we can therefore reduce the Ising model to

𝐼𝜎𝜔,𝜗(𝑟, 𝑠)𝐼𝜎𝜔,𝜗(𝑟, 𝑠)𝐼𝜎𝜔,𝜗(𝑟, 𝑠) =
∑︁
𝑣∈𝑉

𝜔𝑣𝑟𝑣 − 𝜗
∑︁
𝑣𝑤∈𝐸

𝑟𝑣𝑟𝑤 +
∑︁
𝑣∈𝑉

𝜎𝑣𝑠𝑣𝑟𝑣,

where we reindexed the 𝑠-variables due to the isomorphism of 𝑉 and 𝑁 . Thus, only 𝜎 ∈ R𝑉
≥0 is

considered in the following as an input for the weight distribution problem and we do not require
the outer neighbors 𝑁 and the edges 𝑂 to them anymore.

Graph Cuts

With the former simplifications, we can now further evaluate the condition

𝐼𝜎𝜔,𝜗(𝑟, 𝑠) ≥ min
{︀
𝐼𝜎𝜔,𝜗(−1, 𝑠), 𝐼𝜎𝜔,𝜗(1, 𝑠)

}︀
+ 𝛾 ∀𝑠 ∈ {−1, 1}𝑉 ∀𝑟 ∈ {−1, 1}𝑉 ∖ {−1,1}

for fixed parameters and reformulate it using graph cuts. Inserting the full formulation for 𝐼𝜎𝜔,𝜗,

we have for all 𝑠 ∈ {−1, 1}𝑉 and for all 𝑟 ∈ {−1, 1}𝑉 ∖ {−1,1}:∑︁
𝑣∈𝑉

𝜔𝑣𝑟𝑣 − 𝜗
∑︁
𝑣𝑤∈𝐸

𝑟𝑣𝑟𝑤 +
∑︁
𝑣∈𝑉

𝜎𝑣𝑠𝑣𝑟𝑣

≥ min

{︃∑︁
𝑣∈𝑉

𝜔𝑣(−1)− 𝜗
∑︁
𝑣𝑤∈𝐸

(−1)(−1) +
∑︁
𝑣∈𝑉

𝜎𝑣𝑠𝑣(−1),
∑︁
𝑣∈𝑉

𝜔𝑣 − 𝜗
∑︁
𝑣𝑤∈𝐸

1 +
∑︁
𝑣∈𝑉

𝜎𝑣𝑠𝑣

}︃
+ 𝛾

= min

{︃
−
∑︁
𝑣∈𝑉

(𝜎𝑣𝑠𝑣 + 𝜔𝑣),
∑︁
𝑣∈𝑉

(𝜎𝑣𝑠𝑣 + 𝜔𝑣)

}︃
− 𝜗|𝐸|+ 𝛾,

which is equivalent to

𝜗|𝐸| − 𝜗
∑︁
𝑣𝑤∈𝐸

𝑟𝑣𝑟𝑤 = 𝜗

(︂
|𝐸| −

∑︁
𝑣𝑤∈𝐸

𝑟𝑣𝑟𝑤

)︂
= 𝜗

(︀
|𝐸| − |{𝑣𝑤 ∈ 𝐸 : 𝑟𝑣 = 𝑟𝑤}|+ |{𝑣𝑤 ∈ 𝐸 : 𝑟𝑣 = −𝑟𝑤}|

)︀
= 2𝜗|{𝑣𝑤 ∈ 𝐸 : 𝑟𝑣 = −𝑟𝑤}|

≥ min

{︃∑︁
𝑣∈𝑉

(𝜎𝑣𝑠𝑣 + 𝜔𝑣), −
∑︁
𝑣∈𝑉

(𝜎𝑣𝑠𝑣 + 𝜔𝑣)

}︃
−
∑︁
𝑣∈𝑉

(𝜎𝑣𝑠𝑣 + 𝜔𝑣)𝑟𝑣 + 𝛾

= min

{︃∑︁
𝑣∈𝑉

(𝜎𝑣𝑠𝑣 + 𝜔𝑣)(1− 𝑟𝑣),
∑︁
𝑣∈𝑉

(𝜎𝑣𝑠𝑣 + 𝜔𝑣)(−1− 𝑟𝑣)

}︃
+ 𝛾

= 2min

{︃ ∑︁
𝑣∈𝑉

𝑟𝑣=−1

(𝜎𝑣𝑠𝑣 + 𝜔𝑣), −
∑︁
𝑣∈𝑉
𝑟𝑣=1

(𝜎𝑣𝑠𝑣 + 𝜔𝑣)

}︃
+ 𝛾.

79

4 Weight Distribution

By combining all the lower bounds, we can further deduce stronger conditions, where we have
for all 𝑟 ∈ {−1, 1}𝑉 ∖ {−1,1}:

𝜗|{𝑣𝑤 ∈ 𝐸 : 𝑟𝑣 = −𝑟𝑤}| ≥ max
𝑠∈{−1,1}𝑉

min

{︃ ∑︁
𝑣∈𝑉

𝑟𝑣=−1

(𝜎𝑣𝑠𝑣 + 𝜔𝑣), −
∑︁
𝑣∈𝑉
𝑟𝑣=1

(𝜎𝑣𝑠𝑣 + 𝜔𝑣)

}︃
+ 1

2𝛾

= min

{︃ ∑︁
𝑣∈𝑉

𝑟𝑣=−1

(𝜎𝑣 + 𝜔𝑣),
∑︁
𝑣∈𝑉
𝑟𝑣=1

(𝜎𝑣 − 𝜔𝑣)

}︃
+ 1

2𝛾.

It is easy to recognize that the maximum in the former relation is achieved when setting 𝑠𝑣
to −𝑟𝑣 for all 𝑣 ∈ 𝑉 , leading to the last equality. Note that we already reduced the number of
constraints to 2|𝑉 | − 2 with this step.

With the vertex set definition of 𝑆 = {𝑣 ∈ 𝑉 : 𝑟𝑣 = −1} for a specific assignment of the
𝑟-variables and

𝜎(𝑆)𝜎(𝑆)𝜎(𝑆) :=
∑︁
𝑣∈𝑆

𝜎𝑣,

we can equivalently formulate for all ∅ ≠ 𝑆 ⊊ 𝑉 :

𝜗|{𝑣𝑤 ∈ 𝐸 : 𝑣 ∈ 𝑆,𝑤 ∈ 𝑉 ∖ 𝑆}| = 𝜗|𝛿(𝑆)| ≥ min

{︃∑︁
𝑣∈𝑆

(𝜎𝑣 + 𝜔𝑣),
∑︁

𝑣∈𝑉 ∖𝑆
(𝜎𝑣 − 𝜔𝑣)

}︃
+ 1

2𝛾

= min
{︀
𝜎(𝑆) + 𝜔(𝑆), 𝜎(𝑉 ∖ 𝑆)− 𝜔(𝑉 ∖ 𝑆)

}︀
+ 1

2𝛾.

Note that the empty set and the full vertex set are excluded because the 𝑟-variables cannot get
all the value 1 or all the value −1. As furthermore the graph 𝐺 is connected by the embedding
definition, we have |𝛿(𝑆)| > 0 for all non-trivial cuts 𝑆. As 𝜗 is the objective function, we can
reformulate the conditions to lower bounds on the optimal value with

𝜗 ≥
min{𝜎(𝑆) + 𝜔(𝑆), 𝜎(𝑉 ∖ 𝑆)− 𝜔(𝑉 ∖ 𝑆)}+ 1

2𝛾

|𝛿(𝑆)|
∀∅ ≠ 𝑆 ⊊ 𝑉.

We refer to them as cut inequalities in the following. They can equivalently be combined all in
one with

𝜗 ≥ max
∅̸=𝑆⊊𝑉

{︃
min{𝜎(𝑆) + 𝜔(𝑆), 𝜎(𝑉 ∖ 𝑆)− 𝜔(𝑉 ∖ 𝑆)}+ 1

2𝛾

|𝛿(𝑆)|

}︃
.

Note that, according to the preprocessing step based on Lemma 2.2 of Section 2.2, there are
instances for which the weight of the original vertex predominates all outer influences caused by
its incident edges. The variable corresponding to such a vertex can be preprocessed before the
embedding anyway by setting it according to the sign of the weight. This case appears if we have
𝑊 ≥ 𝜎(𝑉). Thus, we also only consider instances with 𝜎(𝑉) > 𝑊 in the following. Finally, we
can summarize the full problems in the next section.

Summary

In this section, we briefly summarize the problems that are handled throughout the remaining
part of this work derived from the [Strengths-only] Gapped Parameter Setting Prob-
lem. Previously, we have considered two different objectives concerning the strength and the
weights. Both have been reduced to simply optimize 𝜗 while distributing the weights 𝜔. There-
fore, we derive the following two problems differing in one constraint that is added in the full
compared to the strength-only formulation:

80

4.2 Optimization Problem Formulation

Strength-only [Full] Gapped Weight Distribution Problem. Given a
graph 𝐺 = (𝑉,𝐸), 𝜎 ∈ R𝑉

≥0, 𝑊 ∈ R≥0 with 𝑊 < 𝜎(𝑉) and 𝛾 ∈ R>0, find 𝜗 and 𝜔 that solve

min 𝜗

s.t. 𝜗 ∈ R, 𝜔 ∈ R𝑉 ,

𝜗 ≥
min

{︀
𝜎(𝑆) + 𝜔(𝑆), 𝜎(𝑉 ∖ 𝑆)− 𝜔(𝑉 ∖ 𝑆)

}︀
+ 𝛾

|𝛿(𝑆)|
∀∅ ≠ 𝑆 ⊊ 𝑉,

𝜔(𝑉) =𝑊,

[𝜗 ≥ ‖𝜔‖∞].

We can easily see the following relation between the two problems:

Corollary 4.9. If we have 𝜗* ≥ ‖𝜔*‖∞ for any optimal solution (𝜗*, 𝜔*) of the Strength-
only Gapped Weight Distribution Problem, it is also an optimal solution of the Full
Gapped Weight Distribution Problem.

Let 𝜗𝛾♢𝜗
𝛾
♢𝜗
𝛾
♢ be the optimal value of the Full Gapped Weight Distribution Problem and 𝜗𝛾𝑊𝜗

𝛾
𝑊𝜗
𝛾
𝑊

of the Strength-only Gapped Weight Distribution Problem. We also clearly have
𝜗𝛾♢ ≥ 𝜗𝛾𝑊 in general.

We further add a special case here for completeness: In case we have 𝑊 = 0, the 𝜔-variables
shall sum up to 0. An apparent reduction step is therefore to omit the 𝜔’s in this case by setting
them to 0 in advance. This results in the problem

Gapped Zero Weight Distribution Problem. Given graph 𝐺 = (𝑉,𝐸), 𝜎 ∈ R𝑉
≥0

and 𝛾 ∈ R>0, find 𝜗 that solves

min 𝜗

s.t. 𝜗 ≥
min

{︀
𝜎(𝑆), 𝜎(𝑉 ∖ 𝑆)

}︀
+ 𝛾

|𝛿(𝑆)|
∀∅ ≠ 𝑆 ⊊ 𝑉,

𝜗 ∈ R.

Actually, we indeed show in the following section that distributing a certain positive weight over
some vertices and the negative counterpart over the other vertices is not beneficial over setting
𝜔 = O. Accordingly, we can reuse the above notation and denote with 𝜗𝛾0𝜗

𝛾
0𝜗
𝛾
0 the optimal solution

of the Gapped Zero Weight Distribution Problem.

Note that we have substituted 1
2𝛾 with 𝛾 in all problems for simplicity. This means that the

actual distance between a synchronized and a non-synchronized solution is 2𝛾 in the end. We
further use the term ‘gapped’ here for the problems, in combination with the 𝛾-superscript on the
notation of the objective values, to distinguish those objects from the ‘gapless’ versions, which
we introduce later on.

81

4 Weight Distribution

4.2.3 LP Formulation

In the following, let the graph 𝐺𝐺𝐺 = (𝑉𝑉𝑉 ,𝐸𝐸𝐸), the strengths 𝜎𝜎𝜎 ∈ R𝑉
≥0, the total weight 𝑊𝑊𝑊 ∈ R≥0

with 𝑊 < 𝜎(𝑉) and the gap 𝛾𝛾𝛾 ∈ R>0 be given and fixed. For ∅ ≠ 𝑆1 ⊆ 𝑆2 ⊆ 𝑉 , we see the
𝜎-sums are monotonic over the partial ordering of the subset relation with

0 ≤ 𝜎(𝑆1) ≤ 𝜎(𝑆2) ≤ 𝜎(𝑉)

due to 𝜎 ≥ O. With
𝜎(𝑆) + 𝜔(𝑆) ⋚ 𝜎(𝑉 ∖ 𝑆)− 𝜔(𝑉 ∖ 𝑆)
⇔ 𝜎(𝑆) ⋚ 1

2 (𝜎(𝑉)−𝑊)

⇔ 𝜎(𝑉 ∖ 𝑆) ⋛ 1
2 (𝜎(𝑉) +𝑊)

⇔ 𝑊 ⋚ 𝜎(𝑉 ∖ 𝑆)− 𝜎(𝑆)

and

𝜎(𝑉) +𝑊 ≥ 𝜎(𝑉) ≥ 𝜎(𝑉)−𝑊

for 𝑊 ≥ 0, we have for all ∅ ≠ 𝑆 ⊊ 𝑉 :

𝜗 ≥

⎧⎨⎩
𝜎(𝑆)+𝜔(𝑆)+𝛾

|𝛿(𝑆)| if 𝜎(𝑆) < 1
2 (𝜎(𝑉)−𝑊) ,

𝜎(𝑉 ∖𝑆)−𝜔(𝑉 ∖𝑆)+𝛾
|𝛿(𝑆)| otherwise.

This can be used for the following polyhedra definitions:

Definition 4.10. Let

𝜗1
2
𝜗1

2
𝜗1

2
:= 1

2 (𝜎(𝑉)−𝑊) ,

Θ𝛾Θ𝛾Θ𝛾 :=
{︁
(𝜗, 𝜔) ∈ R× R𝑉 :

𝜗 ≥

⎧⎨⎩
𝜎(𝑆)+𝜔(𝑆)+𝛾

|𝛿(𝑆)| if 𝜎(𝑆) < 𝜗1
2
,

𝜎(𝑉 ∖𝑆)−𝜔(𝑉 ∖𝑆)+𝛾
|𝛿(𝑆)| otherwise,

∀∅ ≠ 𝑆 ⊊ 𝑉,

𝜔(𝑉) =𝑊
}︁

and

ΦΦΦ :=
{︀
(𝜗, 𝜔) ∈ R× R𝑉 : 𝜗 ≥ ‖𝜔‖∞

}︀
.

Note that, with 𝑊 < 𝜎(𝑉), we always have 𝜗1
2
> 0.

With these definitions, we can easily see that Θ𝛾 is an unbounded, |𝑉 |-dimensional polyhedron
described by an exponential number of inequalities. The Strength-only Gapped Weight
Distribution Problem can now also be written as the LP

min
{︀
𝜗 : (𝜗, 𝜔) ∈ Θ𝛾

}︀
= min

{︀
(1,O)⊤𝜆 : 𝜆 ∈ Θ𝛾

}︀
.

The domain of the Full Gapped Weight Distribution Problem is then the intersection
of Θ𝛾 with the cone Φ, which is defined by only 2|𝑉 | constraints since 𝜗 ≥ ‖𝜔‖∞ is equivalent
to

𝜗 ≥ |𝜔𝑣| ∀𝑣 ∈ 𝑉,

82

4.2 Optimization Problem Formulation

or without any absolute value also to

𝜗 ≥ 𝜔𝑣 ∀𝑣 ∈ 𝑉,
𝜗 ≥ −𝜔𝑣 ∀𝑣 ∈ 𝑉.

The corresponding LP can be formulated as

min
{︀
𝜗 : (𝜗, 𝜔) ∈ Θ𝛾 ∩ Φ

}︀
= min

{︀
(1,O)⊤𝜆 : 𝜆 ∈ Θ𝛾 ∩ Φ

}︀
.

Furthermore, we see that we have one inequality per vertex set. We can reduce the number of
vertex sets that need to be considered by combining the inequalities for 𝑆 and 𝑉 ∖𝑆 allowing for
a more compact notation. Thus, we define:

Definition 4.11. Let

S1S1S1 :=
{︀
∅ ≠ 𝑆 ⊊ 𝑉 : 𝜎(𝑆) < 𝜗1

2

}︀
,

S2S2S2 :=
{︀
∅ ≠ 𝑆 ⊊ 𝑉 : 𝜗1

2
≤ 𝜎(𝑆) ≤ 1

2𝜎(𝑉)
}︀
,

Θ𝛾(𝑆)Θ𝛾(𝑆)Θ𝛾(𝑆) :=

{︃{︀
(𝜗, 𝜔) ∈ R× R𝑉 : 𝜗|𝛿(𝑆)| ≥ 𝜎(𝑆) + |𝜔(𝑆)|+ 𝛾

}︀
if 𝑆 ∈ S1,{︀

(𝜗, 𝜔) ∈ R× R𝑉 : 𝜗|𝛿(𝑆)| ≥ 𝜗1
2
+ |𝜗1

2
− 𝜎(𝑆) + 𝜔(𝑆)|+ 𝛾

}︀
otherwise

and

Θ𝑊Θ𝑊Θ𝑊 :=
{︀
(𝜗, 𝜔) ∈ R× R𝑉 : 𝜔(𝑉) =𝑊

}︀
.

Remarks:

� The set S1 ∪ S2 =
{︀
∅ ≠ 𝑆 ⊊ 𝑉 : 𝜎(𝑆) ≤ 1

2𝜎(𝑉)
}︀
contains at least half of all vertex

subsets. It contains more only if there exists ∅ ̸= 𝑆 ⊊ 𝑉 with 𝜎(𝑆) = 1
2𝜎(𝑉). In this case,

we have 𝑆, 𝑉 ∖ 𝑆 ∈ S2.

� The set S1 is closed under taking subsets because, from 𝑆 ∈ S1 and 𝑆 ⊆ 𝑆, it follows that
𝜎(𝑆) ≤ 𝜎(𝑆) < 𝜗1

2
and thus 𝑆 ∈ S1.

� For 𝑆 ∈ S2 and 𝑆 ⊆ 𝑆, we have 𝜎(𝑆) ≤ 𝜎(𝑆) ≤ 1
2𝜎(𝑉) and therefore 𝑆 ∈ S. Here, we can

only deduce 𝑆 ∈ S1 or 𝑆 ∈ S2.

� For each ∅ ≠ 𝑆 ⊊ 𝑉 , we have 𝑆 ∈ S1, 𝑆 ∈ S2, 𝑉 ∖ 𝑆 ∈ S1 or 𝑉 ∖ 𝑆 ∈ S2.

Using these definitions, we can derive a different formulation for the Θ-polyhedron:

Lemma 4.12. We have

Θ𝛾 =
⋂︁

𝑆∈S1∪S2

Θ𝛾(𝑆) ∩Θ𝑊 .

Proof. Considering one set 𝑆 and its complement 𝑉 ∖ 𝑆, w.l.o.g. 𝜎(𝑆) ≤ 1
2𝜎(𝑉) ≤ 𝜎(𝑉 ∖ 𝑆), we

have two cases:

83

4 Weight Distribution

A) 𝑆 ∈ S1 with 𝜎(𝑆) <
1
2 (𝜎(𝑉)−𝑊) = 𝜗1

2
⇔ 𝜎(𝑉 ∖𝑆) > 1

2 (𝜎(𝑉) +𝑊), thus 𝜎(𝑉 ∖𝑆) > 𝜗1
2
,

where the constraints generated by 𝑆 and 𝑉 ∖ 𝑆 in the definition of Θ𝛾 are

𝜗|𝛿(𝑆)| ≥ 𝜎(𝑆) + 𝜔(𝑆) + 𝛾,

𝜗|𝛿(𝑆)| ≥ 𝜎(𝑉 ∖ (𝑉 ∖ 𝑆))− 𝜔(𝑉 ∖ (𝑉 ∖ 𝑆)) + 𝛾

= 𝜎(𝑆)− 𝜔(𝑆) + 𝛾,

which is equivalent to

𝜗|𝛿(𝑆)| ≥ 𝜎(𝑆) + max{𝜔(𝑆),−𝜔(𝑆)}+ 𝛾

= 𝜎(𝑆) + |𝜔(𝑆)|+ 𝛾.

B) 𝑆 ∈ S2 with 𝜗1
2
= 1

2 (𝜎(𝑉)−𝑊) ≤ 𝜎(𝑆) ≤ 𝜎(𝑉 ∖𝑆) ≤ 1
2 (𝜎(𝑉) +𝑊), where the constraints

generated by 𝑆 and 𝑉 ∖ 𝑆 are

𝜗|𝛿(𝑆)| ≥ 𝜎(𝑉 ∖ 𝑆)− 𝜔(𝑉 ∖ 𝑆) + 𝛾,

𝜗|𝛿(𝑆)| ≥ 𝜎(𝑆)− 𝜔(𝑆) + 𝛾,

which is equivalent to

𝜗|𝛿(𝑆)| ≥ max
{︀
𝜎(𝑉 ∖ 𝑆)− 𝜔(𝑉 ∖ 𝑆), 𝜎(𝑆)− 𝜔(𝑆)

}︀
+ 𝛾

= 1
2

(︀
𝜎(𝑉 ∖ 𝑆)− 𝜔(𝑉 ∖ 𝑆) + 𝜎(𝑆)− 𝜔(𝑆)

+ |𝜎(𝑉 ∖ 𝑆)− 𝜔(𝑉 ∖ 𝑆)− 𝜎(𝑆) + 𝜔(𝑆)|
)︀
+ 𝛾

= 1
2(𝜎(𝑉)−𝑊) + 1

2 |𝜎(𝑉)−𝑊 − 2𝜎(𝑆) + 2𝜔(𝑆)|+ 𝛾

= 𝜗1
2
+ |𝜗1

2
− 𝜎(𝑆) + 𝜔(𝑆)|+ 𝛾.

Therefore, we have

Θ𝛾 =
{︀
(𝜗, 𝜔) ∈ R× R𝑉 : 𝜗|𝛿(𝑆)| ≥ 𝜎(𝑆) + |𝜔(𝑆)|+ 𝛾 ∀𝑆 ∈ S1,

𝜗|𝛿(𝑆)| ≥ 𝜗1
2
+ |𝜗1

2
− 𝜎(𝑆) + 𝜔(𝑆)|+ 𝛾 ∀𝑆 ∈ S2,

𝜔(𝑉) =𝑊
}︀
,

which is equivalent to the stated conjunction.

Remarks: We observe the following symmetry for all ∅ ≠ 𝑆 ⊊ 𝑉 due to 𝜔(𝑉) =𝑊 :

𝜗1
2
+ |𝜗1

2
− 𝜎(𝑉 ∖ 𝑆) + 𝜔(𝑉 ∖ 𝑆)| = 𝜗1

2
+ |𝜗1

2
− 𝜎(𝑉) + 𝜎(𝑆) +𝑊 − 𝜔(𝑆)|

= 𝜗1
2
+ |𝜗1

2
− 2𝜗1

2
+ 𝜎(𝑆)− 𝜔(𝑆)|

= 𝜗1
2
+ | − 𝜗1

2
+ 𝜎(𝑆)− 𝜔(𝑆)|

= 𝜗1
2
+ |𝜗1

2
− 𝜎(𝑆) + 𝜔(𝑆)|.

(4.4)

In particular, for a vertex set 𝑆 with 𝜎(𝑆) = 1
2𝜎(𝑉), where we have 𝑆, 𝑉 ∖𝑆 ∈ S2, the inequalities

for 𝑆 and its complement are thus equivalent.

Furthermore, by resolving the absolute value, we can also formulate

Θ𝛾 =
{︀
(𝜗, 𝜔) ∈ R× R𝑉 : 𝜗|𝛿(𝑆)| ≥ 𝜎(𝑆) + 𝜔(𝑆) + 𝛾 ∀𝑆 ∈ S1,

𝜗|𝛿(𝑆)| ≥ 2𝜗1
2
− 𝜎(𝑆) + 𝜔(𝑆) + 𝛾 ∀𝑆 ∈ S2,

𝜗|𝛿(𝑆)| ≥ 𝜎(𝑆)− 𝜔(𝑆) + 𝛾 ∀𝑆 ∈ S1 ∪S2,

𝜔(𝑉) =𝑊
}︀

84

4.2 Optimization Problem Formulation

or

Θ𝛾 =
{︀
(𝜗, 𝜔) ∈ R× R𝑉 : 𝜎(𝑆)− 𝜗|𝛿(𝑆)|+ 𝛾 ≤ 𝜔(𝑆) ≤ 𝜗|𝛿(𝑆)| − 𝛾 − 𝜎(𝑆) ∀𝑆 ∈ S1,

𝜎(𝑆)− 𝜗|𝛿(𝑆)|+ 𝛾 ≤ 𝜔(𝑆) ≤ 𝜗|𝛿(𝑆)| − 𝛾 + 𝜎(𝑆)− 2𝜗1
2
∀𝑆 ∈ S2,

𝜔(𝑉) =𝑊
}︀
.

As it can be seen in the latter formulation, we have halved the number of vertex sets but now have
two inequalities for each of them. Furthermore, the choice of 𝜗 mainly influences the available
𝜔-values. Once we have found the optimal value of our problems, the value of 𝜗, we also need to
know a corresponding weighting 𝜔. Throughout the following work, we thus refer to the following
set several times:

Definition 4.13. For 𝜗 ∈ R let

Ω𝛾(𝜗)Ω𝛾(𝜗)Ω𝛾(𝜗) := {𝜔 : (𝜗, 𝜔) ∈ Θ𝛾}
=
{︀
𝜔 ∈ R𝑉 : 𝜎(𝑆)− 𝜗|𝛿(𝑆)|+ 𝛾 ≤ 𝜔(𝑆) ≤ 𝜗|𝛿(𝑆)| − 𝛾 − 𝜎(𝑆) ∀𝑆 ∈ S1,

𝜎(𝑆)− 𝜗|𝛿(𝑆)|+ 𝛾 ≤ 𝜔(𝑆) ≤ 𝜗|𝛿(𝑆)| − 𝛾 + 𝜎(𝑆)− 2𝜗1
2
∀𝑆 ∈ S2,

𝜔(𝑉) =𝑊
}︀
.

Clearly, Ω𝛾(𝜗) is empty for 𝜗 < 𝜗𝛾𝑊 with 𝜗𝛾𝑊 being the optimal value of the Strength-only
Gapped Weight Distribution Problem. In turn, if we have 𝜔* ∈ Ω𝛾(𝜗𝛾𝑊), we have

(𝜗𝛾𝑊 , 𝜔
*) ∈ argmin

{︀
(1,O)⊤𝜆 : 𝜆 ∈ Θ

}︀
,

which means we have found an optimal solution to the Strength-only Gapped Weight
Distribution Problem.

With the formulation of the polyhedron as before, we can also very easily derive a trivial lower
bound on the objective value of the strength-only problem, and thus also on the Full Gapped
Weight Distribution Problem, by

Corollary 4.14. We have

𝜗𝛾𝑊 ≥ max

{︂
max
𝑆∈S1

𝜎(𝑆) + 𝛾

|𝛿(𝑆)|
,max
𝑆∈S2

𝜗1
2
+ 𝛾

|𝛿(𝑆)|

}︂
.

Proof. Clear due to the absolute values in the formulation of Θ𝛾(𝑆) in Definition 4.11.

Remark: These bounds ensure that, for each cut, the lower bound on the cut weighting is actually
lower than the upper bound, hence the intervals as formulated in Definition 4.13 for Ω𝛾(𝜗) are
non-empty. Note that this does not imply that Ω𝛾(𝜗) is non-empty, as the different cuts might
interfere with each other.

4.2.4 Case Distinction

As we need to deal with the different problems over several case distinctions depending on the
specific input parameters, we have illustrated the partitioning of the instances in Figure 4.2.
Our deductions in the following work follow the path of a depth-first search from left to right
through the tree. Although some of the terms and notations are introduced later, this serves as
a guideline through the text.

85

4 Weight Distribution

𝐺,𝑊, 𝜎

4.15

𝜔 = 𝑊
|𝑉 |1

4.16

𝐺 tree 𝐺 no tree

Z
(𝜔 = O)

4.18

S

4.21

F

𝑊 = 0 𝑊 ≥ 𝜎(𝑉)

4.24

4.26

4.37

4.40

straightforward
solution

‖𝜔‖∞ ≤ 𝜗𝛾
𝑊

4.54

‖𝜔‖∞ > 𝜗𝛾
𝑊

‘optimal’
solution

arbores-
cence

4.59

de-contract

contract

multiple
‘roots’

S

‖𝜔*‖∞ ≤ 𝜗𝛾
𝑊

4.63

𝐴in = ∅

4.73

𝐴in ̸= ∅

‖𝜔*‖∞ > 𝜗𝛾
𝑊

arbores-
cence

de-contract

contract

multiple
‘roots’

F

𝐺 tree 𝐺 no tree

0 < 𝑊 < 𝜎(𝑉)

Section 4.3

Section 4.4

Section 4.5 Section 4.6

(preprocessable)

(𝜗0,O)
in 𝒪(|𝑉 |)

𝜗𝑊 = min
{︁
𝜗0,𝜗1

2

}︁

𝜔 ∈ Ω(𝜗𝑊) ∩ R𝑉
≥0

in 𝒪(|𝑉 |)

connected cuts(︁
𝑊
|𝑉 | ,

𝑊
|𝑉 |1

)︁
in 𝒪

(︀
2|𝑉 |)︀

polynomial time

‖𝜔*‖∞ ≤ 𝜗𝑊 or
𝜔* ∈ Ω*(𝜗𝑊)∩R𝑉

≥0

𝜗𝑊 = 𝜗1
2

𝜗♢ = 𝜗0 + 𝜀* algorithm
in 𝒪

(︀
|𝑉 |3

)︀ adjusted
algorithm

Figure 4.2: Illustration of the case distinctions, where the labels Z, S and F stand for Zero, Strength-only and the Full Gapped Weight
Distribution Problem, respectively. The nodes mark properties that are fulfilled in the whole subtree and black arcs indicate the
branching instructions. The blue nodes with curved arcs indicate where we refer to the results of other branches, on which further
branching is based on. Green nodes mark resolved cases, red nodes open ones

86

4.3 Special Cases

4.3 Special Cases

A first option to approach the formulated problems is to evaluate certain specific cases. Two of
them are presented in this section. We start with a presumably trivial step of equally distributing
the total weight over all vertices. As the next step, we consider a total weight of 0 and show the
validity of setting 𝜔 = O in this case. In contrast to the trivial weighting, we can obtain a first
complexity result for this simplified problem version.

4.3.1 Trivial Weighting

By examining the Full Gapped Weight Distribution Problem, a first supposedly simple
step and the best we can do in terms of the weights is equally distributing the total weight with

𝜔= := 𝑊
|𝑉 |I.

With this we have
‖𝜔=‖∞ = 𝑊

|𝑉 | ,

which is a bound that is exceeded for all other choices of 𝜔. By replacing 𝜔(𝑆) with 𝑊
|𝑉 | |𝑆|

accordingly in the cut inequalities for all ∅ ≠ 𝑆 ⊊ 𝑉 , they reduce to

𝜗|𝛿(𝑆)| ≥ min
{︁
𝜎(𝑆) + 𝑊

|𝑉 | |𝑆|, 𝜎(𝑉 ∖ 𝑆)−
𝑊
|𝑉 | |𝑉 ∖ 𝑆|

}︁
+ 𝛾

= min
{︁
𝜎(𝑆) + 𝑊

|𝑉 | |𝑆|, 𝜎(𝑉)− 𝜎(𝑆)− 𝑊
|𝑉 |(|𝑉 | − |𝑆|)

}︁
+ 𝛾

= min
{︀
𝜎(𝑆), 𝜎(𝑉)−𝑊 − 𝜎(𝑆)

}︀
+ 𝑊

|𝑉 | |𝑆|+ 𝛾

= 𝑊
|𝑉 | |𝑆|+ 𝛾 +

{︃
𝜎(𝑆) if 𝜎(𝑆) < 𝜗1

2
= 1

2(𝜎(𝑉)−𝑊),

2𝜗1
2
− 𝜎(𝑆) otherwise

= 𝑊
|𝑉 | |𝑆|+ 𝜗1

2
− |𝜎(𝑆)− 𝜗1

2
|+ 𝛾.

Obviously, this does not simplify the problem significantly at first sight.

However, in case we set the weights like this, is it also possible to set 𝜗 as low as the weights,
thus 𝜗 = 𝑊

|𝑉 | , too? With this we can deduce for the inequalities

𝑊
|𝑉 | |𝛿(𝑆)| ≥

𝑊
|𝑉 | |𝑆|+ 𝜗1

2
− |𝜎(𝑆)− 𝜗1

2
|+ 𝛾

⇔ 𝑊
|𝑉 |
(︀
|𝛿(𝑆)| − |𝑆|

)︀
≥ 𝜗1

2
− |𝜎(𝑆)− 𝜗1

2
|+ 𝛾.

In case we have some ∅ ≠ 𝑆 ⊊ 𝑉 with |𝛿(𝑆)| ≤ |𝑆|, we do have a contradiction if we also have

𝜗1
2
− |𝜎(𝑆)− 𝜗1

2
|+ 𝛾 > 0,

which is equivalent to
𝜗1

2
+ 𝛾 > 𝜎(𝑆)− 𝜗1

2
,

𝜗1
2
+ 𝛾 > −𝜎(𝑆) + 𝜗1

2
.

While the latter is always fulfilled since we have 𝛾 > 0 and 𝜎 ≥ O, the first is given if we have

𝜎(𝑆) < 𝜎(𝑉)−𝑊 + 𝛾.

With this we can now formulate the following result:

87

4 Weight Distribution

Lemma 4.15. If we have

𝑊
|𝑉 |(|𝛿(𝑆)| − |𝑆|) ≥ 𝜗1

2
− |𝜎(𝑆)− 𝜗1

2
|+ 𝛾 ∀∅ ≠ 𝑆 ⊊ 𝑉,

then 𝑊
|𝑉 |(1,1𝑉) is an optimal solution of the Full Gapped Weight Distribution Problem.

Unfortunately, there is an exponential number of inequalities to be checked. Thus, we cannot
decide the above problem in polynomial time in a straightforward way and do not gain an
advantage compared to the general problem.

4.3.2 Zero Weight

By inverting and combining the cut inequalities of the Gapped Zero Weight Distribution
Problem, we obtain

1

𝜗
≤ min

{︂
|𝛿(𝑆)|

min{𝜎(𝑆), 𝜎(𝑉 ∖ 𝑆)}+ 𝛾
: ∅ ≠ 𝑆 ⊊ 𝑉

}︂
= min

{︂
|𝛿(𝑆)|

𝜎(𝑆) + 𝛾
: ∅ ≠ 𝑆 ⊊ 𝑉, 𝜎(𝑆) ≤ 𝜎(𝑉 ∖ 𝑆)

}︂
.

In this formulation, we see a relation to a graph property called the edge expansion of the
graph [25]. In our case, we additionally have a weighting 𝜎 on the vertices, rather than just
counting the number of vertices. This is in turn closely related to the minimum cut density as
introduced in [40]. There the authors show that, in case of trees, the minimum cut density can
be solved by just evaluating those partitions which are derived from cutting at each edge. Thus,
the problem can be solved in a time quadratically in the number of vertices if the examined
graph is a tree.

However, our problem formulation is slightly different to both mentioned ones. Nevertheless,
we can establish a similar result for the most simplified version of our problem in this section.
Furthermore, we show that this version is still relevant when dealing with the strength-only or
full problem.

Optimal Solution for Trees

By defining

𝜗𝛾0 (𝑆)𝜗𝛾0 (𝑆)𝜗𝛾0 (𝑆) :=
min{𝜎(𝑆), 𝜎(𝑉 ∖ 𝑆)}+ 𝛾

|𝛿(𝑆)|
,

we can formulate
𝜗𝛾0 = max {𝜗𝛾0 (𝑆) : ∅ ≠ 𝑆 ⊊ 𝑉 } .

It is easy to see that we have 𝜗𝛾0 (𝑆) = 𝜗𝛾0 (𝑉 ∖ 𝑆) and 𝜗0 ≤ 1
2𝜎(𝑉) + 𝛾. In case of 𝐺 being a tree,

we investigate fundamental cuts with

𝜗𝛾0 (𝑒)𝜗𝛾0 (𝑒)𝜗𝛾0 (𝑒) := 𝜗𝛾0 (𝑆𝑒) = min{𝜎(𝑆𝑒), 𝜎(𝑉 ∖ 𝑆𝑒)}+ 𝛾,

where 𝑆𝑒, 𝑉 ∖𝑆𝑒 are the vertex partitions of the tree derived by cutting at edge 𝑒. We can indeed
show that we can reduce to these cuts:

Theorem 4.16. If 𝐺 is a tree, we have

𝜗𝛾0 = max {𝜗𝛾0 (𝑒) : 𝑒 ∈ 𝐸} .

88

4.3 Special Cases

Proof. We proof the claim by contradiction: Assume 𝜗𝛾0 is maximized by a vertex set 𝑆* and its
complement 𝑉 ∖ 𝑆* with |𝛿(𝑆*)| = |𝛿(𝑉 ∖ 𝑆*)| = 𝑘 > 1. By shrinking the connected components
of the vertex sets 𝑆* and 𝑉 ∖ 𝑆*, we obtain a bipartite tree with 𝑘 + 1 nodes. Since we have
𝑘 > 1, the number of connected components in one of the sets is larger than 1, w.l.o.g. let 𝑉 ∖𝑆*

be this set. We split 𝑉 ∖ 𝑆* = 𝑋 ·∪ 𝑌 with 𝑋,𝑌 ̸= ∅, w.l.o.g. 𝜎(𝑋) ≥ 𝜎(𝑌), and

𝛿(𝑉 ∖ 𝑆*) = 𝛿(𝑆*) = 𝛿(𝑋) ·∪ 𝛿(𝑌).

Furthermore, let 𝑘𝑋 := |𝛿(𝑋)| ≥ 1 and 𝑘𝑌 := |𝛿(𝑌)| ≥ 1. Then we have 𝑘 = 𝑘𝑋 + 𝑘𝑌 and
𝑘𝑋 , 𝑘𝑌 < 𝑘.

We distinguish the following two cases:

a) 𝜎(𝑆*) + 𝜎(𝑌) ≤ 𝜎(𝑋): Remembering 𝜎 ≥ O, we further have

𝜎(𝑆*) ≤ 𝜎(𝑋)− 𝜎(𝑌) ≤ 𝜎(𝑋) + 𝜎(𝑌) = 𝜎(𝑉 ∖ 𝑆*),

and thus

𝜗𝛾0 (𝑋) =
𝜎(𝑆*) + 𝜎(𝑌) + 𝛾

𝑘𝑋
≥ 𝜎(𝑆*) + 𝛾

𝑘𝑋
>
𝜎(𝑆*) + 𝛾

𝑘
= 𝜗𝛾0 (𝑆

*),

which is a contradiction to 𝑆* being a maximizing cut.

b) 𝜎(𝑆*) + 𝜎(𝑌) > 𝜎(𝑋): With additionally

𝜎(𝑋) + 𝜎(𝑆*) ≥ 𝜎(𝑋) ≥ 𝜎(𝑌),

we have

𝜗𝛾0 (𝑋) =
𝜎(𝑋) + 𝛾

𝑘𝑋
,

𝜗𝛾0 (𝑌) =
𝜎(𝑌) + 𝛾

𝑘𝑌
.

For 𝑆*, we can deduce

𝜗𝛾0 (𝑆
*) =

min
{︀
𝜎(𝑆*), 𝜎(𝑋) + 𝜎(𝑌)

}︀
+ 𝛾

𝑘
≤ 𝜎(𝑋) + 𝜎(𝑌) + 𝛾

𝑘𝑋 + 𝑘𝑌
.

Assuming 𝜗𝛾0 (𝑆
*) ≥ 𝜗𝛾0 (𝑌), we get

𝜎(𝑋) + 𝜎(𝑌) + 𝛾

𝑘𝑋 + 𝑘𝑌
≥ 𝜎(𝑌) + 𝛾

𝑘𝑌
⇒ 𝑘𝑌 𝜎(𝑋) + 𝑘𝑌 𝜎(𝑌) + 𝑘𝑌 𝛾 ≥ 𝑘𝑋𝜎(𝑌) + 𝑘𝑌 𝜎(𝑌) + 𝑘𝑋𝛾 + 𝑘𝑌 𝛾

⇒ 𝑘𝑌 𝜎(𝑋) ≥ 𝑘𝑋𝜎(𝑌) + 𝑘𝑋𝛾

⇒ 𝑘𝑌 𝜎(𝑋) + 𝑘𝑋𝜎(𝑋) + 𝑘𝑌 𝛾 + 𝑘𝑋𝛾 > 𝑘𝑋𝜎(𝑌) + 𝑘𝑋𝜎(𝑋) + 𝑘𝑋𝛾

⇒ 𝜎(𝑋) + 𝛾

𝑘𝑋
>
𝜎(𝑋) + 𝜎(𝑌) + 𝛾

𝑘𝑋 + 𝑘𝑌
⇒ 𝜗𝛾0 (𝑋) > 𝜗𝛾0 (𝑆

*).

This means we have either 𝜗𝛾0 (𝑋) > 𝜗𝛾0 (𝑆
*) or 𝜗𝛾0 (𝑌) > 𝜗𝛾0 (𝑆

*), which is a contradiction
to 𝑆* being a maximizing cut again.

With this we can easily deduce

89

4 Weight Distribution

Corollary 4.17. If 𝐺 is a tree, we can find an optimal solution for the Gapped Zero Weight
Distribution Problem in 𝒪(|𝐸|) = 𝒪(|𝑉 |).

Although 𝛾 = 0 is not allowed by the problem restrictions derived in Section 4.2, we can reuse
our notation to refer to the ‘gapless’ problem as a part of the gapped problem. However, we
drop the superscript 𝛾 in this case and define

𝜗0𝜗0𝜗0 := max
∅≠𝑆⊊𝑉

min{𝜎(𝑆), 𝜎(𝑉 ∖ 𝑆)}
|𝛿(𝑆)|

.

It is easy to see that, for 𝐺 being a tree, we have

𝜗𝛾0 = 𝜗0 + 𝛾.

We refer to the problem of finding 𝜗0 as the Zero weight distribution problem (without
‘gapped’) in the following.

Relation to Other Problems

As we have seen, the Gapped Zero Weight Distribution Problem is easy to solve for
trees. But does this provide any benefit for the original problems that we want to solve in case of
𝑊 = 0? By considering the 𝜔’s again, we see that they are subtracted on the right-hand side of
the inequalities in some cases. Thus, although they sum up to 0, it might be possible that they
allow for a smaller strength 𝜗 than achieved by omitting the 𝜔’s. However, with the following
result, we see this is not the case:

Theorem 4.18. For 𝑊 = 0, there is an optimal solution to the Strength-only Gapped
Weight Distribution Problem with 𝜔 = O.

Proof. With
𝜔(𝑆) + 𝜔(𝑉 ∖ 𝑆) =𝑊 = 0

⇔ 𝜔(𝑆) = −𝜔(𝑉 ∖ 𝑆)
for ∅ ≠ 𝑆 ⊊ 𝑉 , we get

𝜗𝛾𝑊 = min
𝜔∈R𝑉

𝜔(𝑉)=0

max
∅≠𝑆⊊𝑉

{︂
min{𝜎(𝑆) + 𝜔(𝑆), 𝜎(𝑉 ∖ 𝑆)− 𝜔(𝑉 ∖ 𝑆)}+ 𝛾

|𝛿(𝑆)|

}︂

= min
𝜔∈R𝑉

𝜔(𝑉)=0

max
∅≠𝑆⊊𝑉

{︂
min{𝜎(𝑆) + 𝜔(𝑆), 𝜎(𝑉 ∖ 𝑆) + 𝜔(𝑆)}+ 𝛾

|𝛿(𝑆)|

}︂

= min
𝜔∈R𝑉

𝜔(𝑉)=0

max

⎧⎪⎨⎪⎩ max
∅̸=𝑆⊊𝑉

𝜎(𝑆)≤𝜎(𝑉 ∖𝑆)

𝜎(𝑆) + 𝜔(𝑆) + 𝛾

|𝛿(𝑆)|
, max

∅≠𝑆⊊𝑉
𝜎(𝑆)≥𝜎(𝑉 ∖𝑆)

𝜎(𝑉 ∖ 𝑆) + 𝜔(𝑆) + 𝛾

|𝛿(𝑆)|

⎫⎪⎬⎪⎭
= min

𝜔∈R𝑉

𝜔(𝑉)=0

max

⎧⎪⎨⎪⎩ max
∅̸=𝑆⊊𝑉

𝜎(𝑆)≤𝜎(𝑉 ∖𝑆)

𝜎(𝑆) + 𝜔(𝑆) + 𝛾

|𝛿(𝑆)|
, max

∅≠𝑆⊊𝑉
𝜎(𝑆)≤𝜎(𝑉 ∖𝑆)

𝜎(𝑆) + 𝜔(𝑉 ∖ 𝑆) + 𝛾

|𝛿(𝑉 ∖ 𝑆)|

⎫⎪⎬⎪⎭
= min

𝜔∈R𝑉

𝜔(𝑉)=0

max
∅≠𝑆⊊𝑉

𝜎(𝑆)≤𝜎(𝑉 ∖𝑆)

𝜎(𝑆) + max{𝜔(𝑆), 𝜔(𝑉 ∖ 𝑆)}+ 𝛾

|𝛿(𝑆)|

= min
𝜔∈R𝑉

𝜔(𝑉)=0

max
∅≠𝑆⊊𝑉

𝜎(𝑆)≤𝜎(𝑉 ∖𝑆)

𝜎(𝑆) + max{𝜔(𝑆),−𝜔(𝑆)}+ 𝛾

|𝛿(𝑆)|

90

4.3 Special Cases

= min
𝜔∈R𝑉

𝜔(𝑉)=0

max
∅≠𝑆⊊𝑉

𝜎(𝑆)≤𝜎(𝑉 ∖𝑆)

𝜎(𝑆) + |𝜔(𝑆)|+ 𝛾

|𝛿(𝑆)|

= max
∅≠𝑆⊊𝑉

𝜎(𝑆)≤𝜎(𝑉 ∖𝑆)

𝜎(𝑆) + 𝛾

|𝛿(𝑆)|

= max
∅≠𝑆⊊𝑉

min{𝜎(𝑆), 𝜎(𝑉 ∖ 𝑆)}+ 𝛾

|𝛿(𝑆)|
= 𝜗𝛾0 ,

where the second but last equation holds due to 𝜔 = O being feasible.

This means, in case of 𝑊 = 0, we can indeed restrict ourselves to the simpler problem. For the
strength-only version of our weight distribution problem, we easily see:

Corollary 4.19. For 𝑊 = 0, every optimal solution 𝜗𝛾0 to the Gapped Zero Weight Distri-
bution Problem yields an optimal solution

(︀
𝜗𝛾0 ,O

)︀
to the Strength-only Gapped Weight

Distribution Problem.

With these results, we also see that our notation is indeed consistent because we have 𝜗𝛾𝑊 = 𝜗𝛾0
for 𝑊 = 0. In combination with the former complexity result for the Gapped Zero Weight
Distribution Problem for trees, we can also state

Corollary 4.20. If 𝐺 is a tree and 𝑊 = 0, we can find an optimal solution for the Strength-
only Gapped Weight Distribution Problem in 𝒪(|𝐸|) = 𝒪(|𝑉 |).

Proof. Clear from Corollaries 4.17 and 4.19.

Analogously, we can now step further to the full problem and derive the following equivalent
results:

Theorem 4.21. For 𝑊 = 0, there is an optimal solution to the Full Gapped Weight
Distribution Problem with 𝜔 = O.

Proof. This follows from Theorem 4.18 and the fact that, if 𝜗* ≥ ‖𝜔*‖∞ for any optimal solu-
tion (𝜗*, 𝜔*) of the Strength-only Gapped Weight Distribution Problem, it is also an
optimal solution of the Full Gapped Weight Distribution Problem by Corollary 4.9.

Corollary 4.22. For 𝑊 = 0, every optimal solution 𝜗𝛾0 to the Gapped Zero Weight Dis-
tribution Problem yields an optimal solution

(︀
𝜗𝛾0 ,O

)︀
to the Full Gapped Weight Dis-

tribution Problem.

Corollary 4.23. If 𝐺 is a tree, we can find an optimal solution for the Full Gapped Weight
Distribution Problem in 𝒪(|𝐸|) = 𝒪(|𝑉 |).

91

4 Weight Distribution

4.4 Simplified Description of the ΘΘΘ-Polyhedron

In the previous section, we have shown that the Gapped Zero Weight Distribution Prob-
lem can be solved in linear time in case we consider only trees. In the following, we evaluate the
Θ𝛾-polyhedron for a fixed 𝛾𝛾𝛾 to establish analogous results for the general Strength-only and
Full Gapped Weight Distribution Problem. In particular, we establish ‘gapless’ versions
of our problems in case of trees by shifting 𝛾. With those, we continue to work in the following
sections.

As we have already shown the relation of the strength-only and the full gapped problem to
the Gapped Zero Weight Distribution Problem for 𝑊 = 0, we refer in the following to
the case 𝑊𝑊𝑊 > 0, but the constructions are usually also valid for 𝑊 = 0. On the other side, we
also restrict our considerations to 𝑊 < 𝜎(𝑉) to focus on the cases that are not preprocessable.
This implies 𝜗1

2
> 0, which is indeed necessary for the constructions. We further assume 𝐺𝐺𝐺 and

𝜎𝜎𝜎 ∈ R𝑉
≥0 to be given and fixed again.

4.4.1 Connected Vertex Sets

To reduce the complexity of the description of Θ𝛾 from Definition 4.10, we need to reduce the
number of inequalities. By the following result, we can indeed show that some inequalities
describing Θ𝛾 are redundant due to the monotonicity of the 𝜎-sums:

Theorem 4.24. With CCC :=
{︀
𝑆 ∈ S1 ∪S2 : 𝐺[𝑆] connected and 𝐺[𝑉 ∖ 𝑆] connected

}︀
, we have

Θ𝛾 =
⋂︁
𝑆∈C

Θ𝛾(𝑆) ∩Θ𝑊 .

Proof. By Lemma 4.12, the left-hand side is contained in the right-hand side. In the following,
we show the reverse direction by establishing the redundancy of the constraints associated with
sets in S := S1 ∪S2 that are not included in C. For this we introduce the type 𝑡(𝑆) of a vertex
set ∅ ̸= 𝑆 ⊊ 𝑉 denoting the number of connected components of the corresponding induced
subgraph 𝐺[𝑆]. Note that every non-empty vertex set has at least a type of 1, and we only have
𝑡(𝑆) = 1 if 𝐺[𝑆] is connected.

As the equality 𝜔(𝑉) = 𝑊 is important for the following derivations, we work on the hyper-
plane Θ𝑊 but do not explicitly mention it for simplicity. Furthermore, we use the following
relations:

△ |𝑎|+ |𝑏| ≥ |𝑎± 𝑏|,

◆ 𝑥 = |±𝑥| for 𝑥 ≥ 0,

➀ for 𝑆 ∈ S1 we have

𝜗1
2
+ |𝜗1

2
− 𝜎(𝑆) + 𝜔(𝑆)| = 𝜗1

2
− 𝜎(𝑆)⏟ ⏞
>0

+𝜎(𝑆) + |𝜗1
2
− 𝜎(𝑆) + 𝜔(𝑆)|

◆= 𝜎(𝑆) + |𝜎(𝑆)− 𝜗1
2
|+ |𝜗1

2
− 𝜎(𝑆) + 𝜔(𝑆)|

△≥ 𝜎(𝑆) + |𝜔(𝑆)|,
92

4.4 Simplified Description of the Θ-Polyhedron

➁ for 𝑆 ∈ S2 we have

𝜎(𝑆) + |𝜔(𝑆)| = 𝜗1
2
−𝜗1

2
+ 𝜎(𝑆)⏟ ⏞
≥0

+ |𝜔(𝑆)|

◆= 𝜗1
2
+ |𝜗1

2
− 𝜎(𝑆)|+ |𝜔(𝑆)|

△≥ 𝜗1
2
+ |𝜗1

2
− 𝜎(𝑆) + 𝜔(𝑆)|.

The first step is to show the sufficiency of the restriction to vertex sets that induce connected
subgraphs, which means ⋂︁

𝑆∈S
Θ𝛾(𝑆) ⊇

⋂︁
𝑆∈C′

Θ𝛾(𝑆)

with C′C′C′ =
{︀
𝑆 ∈ S : 𝐺[𝑆] connected

}︀
=
{︀
𝑆 ∈ S : 𝑡(𝑆) = 1

}︀
. Suppose this does not hold. Let

𝑆* ∈ S ∖ C′ =
{︀
𝑆 ∈ S : 𝑡(𝑆) > 1

}︀
be a vertex set with

Θ𝛾(𝑆*) ̸⊇
⋂︁
𝑆∈C′

Θ𝛾(𝑆) (i)

having minimal type. Then there exist two non-empty vertex sets 𝑆1 and 𝑆2 with 𝑆
* = 𝑆1 ·∪ 𝑆2

and 𝛿(𝑆1, 𝑆2) = 𝛿(𝑆1)∩𝛿(𝑆2) = ∅. We have 𝑆1, 𝑆2 ∈ S because of 𝜎(𝑆1), 𝜎(𝑆2) ≤ 𝜎(𝑆*) ≤ 1
2𝜎(𝑉).

Due to 𝑡(𝑆1) + 𝑡(𝑆2) = 𝑡(𝑆*) and the minimality of 𝑆*, we have 𝑡(𝑆1) = 𝑡(𝑆2) = 1 and therefore
𝑆1, 𝑆2 ∈ C′ with

Θ𝛾(𝑆1) ∩Θ𝛾(𝑆2) ⊇
⋂︁
𝑆∈C′

Θ𝛾(𝑆). (ii)

In the following, we show that the inequality defining Θ𝛾(𝑆*) can be derived from the inequalities
defining Θ𝛾(𝑆1) and Θ𝛾(𝑆2) by summation. Because

{𝑥 ∈ 𝑋 : 𝑓(𝑥) + 𝑔(𝑥) ≤ 0} ⊇ {𝑥 ∈ 𝑋 : 𝑓(𝑥) ≤ 0, 𝑔(𝑥) ≤ 0}

holds for arbitrary domains 𝑋 and functions 𝑓, 𝑔 : 𝑋 → R, this results in

Θ𝛾(𝑆*) ⊇ Θ𝛾(𝑆1) ∩Θ𝛾(𝑆2), (iii)

which is, together with (ii), a contradiction to (i). We have two different cases concerning 𝑆*:

A) 𝑆* ∈ S1: Due to 𝜎(𝑆1), 𝜎(𝑆2) ≤ 𝜎(𝑆*) ≤ 𝜗1
2
, we have also 𝑆1, 𝑆2 ∈ S1. From the inequalities

defining Θ𝛾(𝑆𝑖),
𝜗|𝛿(𝑆𝑖)| ≥ 𝜎(𝑆𝑖) + |𝜔(𝑆𝑖)|+ 𝛾,

for 𝑖 = 1, 2, and

|𝛿(𝑆*)| = |𝛿(𝑉 ∖ 𝑆*)| = |𝛿(𝑆1)|+ |𝛿(𝑆2)| − 2|𝛿(𝑆1, 𝑆2)| = |𝛿(𝑆1)|+ |𝛿(𝑆2)|,

we get
𝜗|𝛿(𝑆*)| = 𝜗|𝛿(𝑆1)|+ 𝜗|𝛿(𝑆2)|

≥ 𝜎(𝑆1) + |𝜔(𝑆1)|+ 𝜎(𝑆2) + |𝜔(𝑆2)|+ 2𝛾
△≥ 𝜎(𝑆*) + |𝜔(𝑆1) + 𝜔(𝑆2)|+ 2𝛾

= 𝜎(𝑆*) + |𝜔(𝑆*)|+ 2𝛾

≥ 𝜎(𝑆*) + |𝜔(𝑆*)|+ 𝛾,

which provides the constraint defining Θ𝛾(𝑆*).

93

4 Weight Distribution

B) 𝑆* ∈ S2: Due to 𝑆1, 𝑆2 ∈ S = S1 ∪S2, there are 3 further possibilities, which follow the
same construction as in case A):

a) 𝑆1, 𝑆2 ∈ S1: From

𝜗|𝛿(𝑆𝑖)| ≥ 𝜎(𝑆𝑖) + |𝜔(𝑆𝑖)|+ 𝛾,

for 𝑖 = 1, 2, we get

𝜗|𝛿(𝑆*)| = 𝜗|𝛿(𝑆1)|+ 𝜗|𝛿(𝑆2)|
≥ 𝜎(𝑆1) + |𝜔(𝑆1)|+ 𝜎(𝑆2) + |𝜔(𝑆2)|+ 2𝛾

△≥ 𝜎(𝑆*) + |𝜔(𝑆*)|+ 2𝛾
➁≥ 𝜗1

2
+ |𝜗1

2
− 𝜎(𝑆*) + 𝜔(𝑆*)|+ 𝛾.

b) 𝑆1, 𝑆2 ∈ S2: From

𝜗|𝛿(𝑆𝑖)| ≥ 𝜗1
2
+ |𝜗1

2
− 𝜎(𝑆𝑖) + 𝜔(𝑆𝑖)|+ 𝛾,

for 𝑖 = 1, 2, and 𝜗1
2
> 0 for 𝑊 < 𝜎(𝑉), we get

𝜗|𝛿(𝑆*)| = 𝜗|𝛿(𝑆1)|+ 𝜗|𝛿(𝑆2)|
≥ 2𝜗1

2
+ |𝜗1

2
− 𝜎(𝑆1) + 𝜔(𝑆1)|+ |𝜗1

2
− 𝜎(𝑆2) + 𝜔(𝑆2)|+ 2𝛾

△≥ 2𝜗1
2
+ |2𝜗1

2
− 𝜎(𝑆*) + 𝜔(𝑆*)|+ 2𝛾

◆= 𝜗1
2
+ |−𝜗1

2
|+ |2𝜗1

2
− 𝜎(𝑆*) + 𝜔(𝑆*)|+ 2𝛾

△≥ 𝜗1
2
+ |𝜗1

2
− 𝜎(𝑆*) + 𝜔(𝑆*)|+ 𝛾.

c) 𝑆1 ∈ S1, 𝑆2 ∈ S2: From

𝜗|𝛿(𝑆1)| ≥ 𝜎(𝑆1) + |𝜔(𝑆1)|+ 𝛾,

𝜗|𝛿(𝑆2)| ≥ 𝜗1
2
+ |𝜗1

2
− 𝜎(𝑆2) + 𝜔(𝑆2)|+ 𝛾,

we get

𝜗|𝛿(𝑆*)| = 𝜗|𝛿(𝑆1)|+ 𝜗|𝛿(𝑆2)|
≥ 𝜎(𝑆1) + |𝜔(𝑆1)|+ 𝜗1

2
+ |𝜗1

2
− 𝜎(𝑆2) + 𝜔(𝑆2)|+ 2𝛾

◆= 𝜗1
2
+ |−𝜎(𝑆1)|+ |𝜔(𝑆1)|+ |𝜗1

2
− 𝜎(𝑆2) + 𝜔(𝑆2)|+ 2𝛾

△≥ 𝜗1
2
+ |𝜗1

2
− 𝜎(𝑆*) + 𝜔(𝑆*)|+ 𝛾.

Therefore, the constraint associated with 𝑆* is redundant if 𝑆* does not induce a connected
subgraph. Next we show that the vertex sets whose complement also does not induce a connected
subgraph are unnecessary, too, hence⋂︁

𝑆∈C′

Θ𝛾(𝑆) ⊇
⋂︁
𝑆∈C

Θ𝛾(𝑆).

Note that, with the former definition of C′, we have C =
{︀
𝑆 ∈ C′ : 𝑡(𝑉 ∖ 𝑆) = 1

}︀
. We derive

an analogous contradiction as before and therefore assume the above relation does not hold. Let
𝑆* ∈ C′ ∖ C =

{︀
𝑆 ∈ S : 𝑡(𝑆) = 1, 𝑡(𝑉 ∖ 𝑆) > 1

}︀
be a vertex set with

Θ𝛾(𝑆*) ̸⊇
⋂︁
𝑆∈C

Θ𝛾(𝑆),

94

4.4 Simplified Description of the Θ-Polyhedron

whose complement 𝑉 ∖𝑆* has minimal type. On the contrary to the first part, we cannot derive
straightforwardly that 𝐺[𝑉 ∖ 𝑆*] consists of two connected components induced by vertex sets
in C because of 𝜎(𝑉 ∖ 𝑆*) ≥ 1

2𝜎(𝑉). Still, we analogously derive the following relations

Θ𝛾(𝑆*) ⊇ Θ𝛾(𝑌1) ∩Θ𝛾(𝑌2) ⊇
⋂︁
𝑆∈C

Θ𝛾(𝑆) (iv)

for two specific vertex sets 𝑌1 and 𝑌2 to be identified first.

With 𝑡(𝑉 ∖ 𝑆*) = 𝑘, let

𝑉 ∖ 𝑆* =
𝑘⋃︁·

𝑖=1

𝑋𝑖

with 𝑡(𝑋𝑖) = 1 for all 𝑖 = 1, ..., 𝑘 be a partition of 𝑉 ∖𝑆* into the vertex sets inducing the connected
components of 𝐺[𝑉 ∖ 𝑆*]. This is illustrated in Figure 4.3. Since the graph 𝐺 is connected and
we have 𝑡(𝑆*) = 1, 𝐺[𝑆*] is connected to each 𝐺[𝑋𝑖] and we also have 𝑡(𝑆* ∪ 𝑋𝑖) = 1 for all
𝑖 = 1, ..., 𝑘. This can be extended further to any subset of {𝑋𝑖}𝑖=1,...,𝑘. In particular, we have

𝑡(𝑆* ∪𝑋1 ∪ ... ∪𝑋𝑖−1 ∪𝑋𝑖+1 ∪ ... ∪𝑋𝑘) = 𝑡(𝑉 ∖𝑋𝑖) = 1.

We consider two different cases:

A) Assume there exists ℓ ∈ {1, ..., 𝑘} with 𝜎(𝑆* ∪ 𝑋ℓ) <
1
2𝜎(𝑉). Then we have 𝑆* ∪ 𝑋ℓ ∈ S

and therefore 𝑆* ∪𝑋ℓ ∈ C′. With 𝑡(𝑉 ∖ (𝑆* ∪𝑋ℓ)) = 𝑘 − 1 < 𝑡(𝑉 ∖ 𝑆*), this contradicts the
choice of 𝑆* for 𝑘 > 2.

In case of 𝑘 = 2, let w.l.o.g. ℓ = 1 and 𝜎(𝑆* ∪ 𝑋1) <
1
2𝜎(𝑉). With 𝑆* ∪ 𝑋1 = 𝑉 ∖ 𝑋2,

we have 𝑉 ∖𝑋2 ∈ S and with 𝑡(𝑉 ∖𝑋2) = 𝑡(𝑋2) = 1 therefore 𝑉 ∖𝑋2 ∈ C. Furthermore,
𝜎(𝑋1) <

1
2𝜎(𝑉) results in 𝑋1 ∈ C and we have

Θ𝛾(𝑋1) ∩Θ𝛾(𝑉 ∖𝑋2) ⊇
⋂︁
𝑆∈C

Θ𝛾(𝑆).

B) Assuming 𝜎(𝑆* ∪𝑋𝑖) ≥ 1
2𝜎(𝑉) for all 𝑖 = 1, ..., 𝑘, we get

𝜎(𝑉 ∖ (𝑆* ∪𝑋𝑖)) =
𝑘∑︁

𝑗=1
𝑗 ̸=𝑖

𝜎(𝑋𝑗) ≤ 1
2𝜎(𝑉) (v)

𝑆*

𝑋1

𝑋2

...

𝑋𝑘

𝑉 ∖ (𝑆* ∪𝑋1)

𝑉 ∖𝑋1

Figure 4.3: Connected components for 𝑆* ∈ C′ ∖ C

95

4 Weight Distribution

and 𝜎(𝑋𝑖) ≤ 1
2𝜎(𝑉). Therefore, we have 𝑋𝑖 ∈ C for all 𝑖 = 1, ..., 𝑘 and

𝑘⋂︁
𝑖=1

Θ𝛾(𝑋𝑖) ⊇
⋂︁
𝑆∈C

Θ𝛾(𝑆).

For 𝑘 ≥ 3, we can show

Θ𝛾(𝑌𝑘−1) ∩Θ𝛾(𝑋𝑘) ⊇
𝑘⋂︁

𝑖=1

Θ𝛾(𝑋𝑖),

where 𝑌𝑗 := 𝑋1 ∪ ... ∪𝑋𝑗 for 𝑗 = 1, ..., 𝑘 − 1, by inductively deducing

Θ𝛾(𝑌𝑗) ⊇
𝑗⋂︁

𝑖=1

Θ𝛾(𝑋𝑖)

with Θ𝛾(𝑌1) = Θ𝛾(𝑋1) ⊇ Θ𝛾(𝑋1) and the induction step

Θ𝛾(𝑌𝑗) ⊇ Θ𝛾(𝑌𝑗−1) ∩Θ𝛾(𝑋𝑗).

The latter follows from similar arguments given to establish (iii) because, due to (v), we have
𝑌𝑗 ∈ S for all 𝑗 = 1, ..., 𝑘 − 1.

In summary, we have shown that we can restrict the number of sets to 𝑘 = 2 with either

A) 𝑋1, 𝑉 ∖𝑋2 ∈ S or

B) 𝑋1, 𝑋2 ∈ S (respectively by renaming 𝑌𝑘−1 and 𝑋𝑘).

Because of S = S1 ∪S2, we use another case distinction in order to establish the first relation
of (iv), and thus obtain the desired contradiction. The construction follows the same structure
as in the case distinction of the first part. Remember, for 𝑘 = 2, we have

𝑊 = 𝜔(𝑆*) + 𝜔(𝑋1) + 𝜔(𝑋2),

𝜎(𝑉) = 𝜎(𝑆*) + 𝜎(𝑋1) + 𝜎(𝑋2),

|𝛿(𝑆*)| = |𝛿(𝑋1)|+ |𝛿(𝑋2)|.

A) a) 𝑋1, 𝑉 ∖𝑋2 ∈ S1: From the inequalities defining Θ𝛾(𝑋1) and Θ𝛾(𝑉 ∖𝑋2),

𝜗|𝛿(𝑋1)| ≥ 𝜎(𝑋1) + |𝜔(𝑋1)|+ 𝛾,

𝜗|𝛿(𝑋2)| ≥ 𝜎(𝑉 ∖𝑋2) + |𝜔(𝑉 ∖𝑋2)|+ 𝛾,

we get

𝜗|𝛿(𝑆*)| = 𝜗|𝛿(𝑋1)|+ 𝜗|𝛿(𝑋2)|
≥ 𝜎(𝑋1) + |𝜔(𝑋1)|+ 𝜎(𝑉 ∖𝑋2) + |𝜔(𝑉 ∖𝑋2)|+ 2𝛾

= 𝜎(𝑋1) + |−𝜔(𝑋1)|+ 𝜎(𝑆*) + 𝜎(𝑋1) + |𝑊 − 𝜔(𝑋2)|+ 2𝛾
△≥ 𝜎(𝑆*) + 2𝜎(𝑋1) + |𝑊 − 𝜔(𝑋2)− 𝜔(𝑋1)|+ 2𝛾

≥ 𝜎(𝑆*) + |𝜔(𝑆*)|+ 𝛾,

which is the inequality defining Θ𝛾(𝑆*) in case of 𝑆* ∈ S1. For 𝑆
* ∈ S2, we can extend

the chain of relations by
➁≥ 𝜗1

2
+ |𝜗1

2
− 𝜎(𝑆*) + 𝜔(𝑆*)|+ 𝛾,

which results in the inequality defining Θ𝛾(𝑆*) in this case.

96

4.4 Simplified Description of the Θ-Polyhedron

b) 𝑋1, 𝑉 ∖𝑋2 ∈ S2: Due to the symmetry of (4.4), we have

𝜗|𝛿(𝑋2)| ≥ 𝜗1
2
+ |𝜗1

2
− 𝜎(𝑉 ∖𝑋2) + 𝜔(𝑉 ∖𝑋2)|+ 𝛾

= 𝜗1
2
+ |𝜗1

2
− 𝜎(𝑋2) + 𝜔(𝑋2)|+ 𝛾.

Together with

𝜗|𝛿(𝑋1)| ≥ 𝜗1
2
+ |𝜗1

2
− 𝜎(𝑋1) + 𝜔(𝑋1)|+ 𝛾,

we get analogously with

𝜗|𝛿(𝑆*)| = 𝜗|𝛿(𝑋1)|+ 𝜗|𝛿(𝑋2)|
≥ 2𝜗1

2
+ |𝜗1

2
− 𝜎(𝑋1) + 𝜔(𝑋1)|+ |𝜗1

2
− 𝜎(𝑋2) + 𝜔(𝑋2)|+ 2𝛾

△≥ 2𝜗1
2
+ |2𝜗1

2
− 𝜎(𝑉) + 𝜎(𝑆*) +𝑊 − 𝜔(𝑆*)|+ 2𝛾

= 2𝜗1
2
+ |𝜎(𝑆*)− 𝜔(𝑆*)|+ 2𝛾

= 𝜗1
2
+ |𝜗1

2
|+ |−𝜎(𝑆*) + 𝜔(𝑆*)|+ 2𝛾

△≥ 𝜗1
2
+ |𝜗1

2
− 𝜎(𝑆*) + 𝜔(𝑆*)|+ 𝛾

the inequality defining Θ𝛾(𝑆*) for 𝑆* ∈ S2 or by further extending the chain of relations
with

➀≥ 𝜎(𝑆*) + |𝜔(𝑆*)|+ 𝛾

the inequality for 𝑆* ∈ S1.

c) 𝑋1 ∈ S1, 𝑉 ∖𝑋2 ∈ S2: Taking advantage of the symmetry again, we have

𝜗|𝛿(𝑋1)| ≥ 𝜎(𝑋1) + |𝜔(𝑋1)|+ 𝛾,

𝜗|𝛿(𝑋2)| ≥ 𝜗1
2
+ |𝜗1

2
− 𝜎(𝑋2) + 𝜔(𝑋2)|+ 𝛾

and get

𝜗|𝛿(𝑆*)| ≥ 𝜎(𝑋1) + |𝜔(𝑋1)|+ 𝜗1
2
+ |𝜗1

2
− 𝜎(𝑋2) + 𝜔(𝑋2)|+ 2𝛾

◆= 𝜗1
2
+ |𝜎(𝑋1)|+ |−𝜔(𝑋1)|+ |−𝜗1

2
+ 𝜎(𝑋2)− 𝜔(𝑋2)|+ 2𝛾

△≥ 𝜗1
2
+ |−𝜗1

2
+ 𝜎(𝑉)−𝑊 − 𝜎(𝑆*) + 𝜔(𝑆*)|+ 2𝛾

= 𝜗1
2
+ |12𝜎(𝑉)− 1

2𝑊 − 𝜎(𝑆) + 𝜔(𝑆)|
≥ 𝜗1

2
+ |𝜗1

2
− 𝜎(𝑆*) + 𝜔(𝑆*)|+ 𝛾,

respectively further for 𝑆* ∈ S1

➀≥ 𝜎(𝑆*) + |𝜔(𝑆*)|+ 𝛾.

d) 𝑋1 ∈ S2, 𝑉 ∖𝑋2 ∈ S1: Since

𝜎(𝑉 ∖𝑋2) = 𝜎(𝑆*) + 𝜎(𝑋1) < 𝜗1
2

contradicts to 𝜎(𝑋1) ≥ 𝜗1
2
, this is an invalid combination.

B) a) 𝑋1, 𝑋2 ∈ S1: From

𝜗|𝛿(𝑋𝑖)| ≥ 𝜎(𝑋𝑖) + |𝜔(𝑋𝑖)|+ 𝛾,

97

4 Weight Distribution

for 𝑖 = 1, 2, we get

𝜗|𝛿(𝑆*)| ≥ 𝜎(𝑋1) + |𝜔(𝑋1)|+ 𝜎(𝑋2) + |𝜔(𝑋2)|+ 2𝛾
△≥ 𝜎(𝑉)− 𝜎(𝑆*) + |𝑊 − 𝜔(𝑆*)|+ 2𝛾

= 1
2𝜎(𝑉)− 1

2𝑊 + 1
2𝑊 + 1

2𝜎(𝑉)− 𝜎(𝑆*)⏟ ⏞
≥0

+ |𝑊 − 𝜔(𝑆*)|+ 2𝛾

◆= 𝜗1
2
+ |12𝑊 + 1

2𝜎(𝑉)− 𝜎(𝑆*)|+ |−𝑊 + 𝜔(𝑆*)|+ 2𝛾
△≥ 𝜗1

2
+ |𝜗1

2
− 𝜎(𝑆*) + 𝜔(𝑆*)|+ 𝛾,

respectively, further for 𝑆* ∈ S1

➀≥ 𝜎(𝑆*) + |𝜔(𝑆*)|+ 𝛾.

b) 𝑋1, 𝑋2 ∈ S2: This case is analogous to A)b).

c) 𝑋1 ∈ S1, 𝑋2 ∈ S2: This case is analogous to A)c).

Therefore, the constraint for 𝑆* is also redundant if 𝑉 ∖ 𝑆* is not connected.

Although the Θ𝛾-polyhedron can now be described with less inequalities, their number might
still be exponential in an arbitrary graph. In the following, we thus concentrate on trees and
take advantage of their much simpler structure. Note that this simplification is still useful in
practice because, by the requirements of an embedding, we can always restrict ourselves to trees
by simply ignoring surplus edges.

4.4.2 Arcs in Trees

In this section, we introduce new notations to deal with the problems on trees. As we only
consider the smaller 𝜎-sum of the two vertex sets corresponding to a fundamental cut, we can
give the corresponding edge a direction. Thus, we define:

Definition 4.25. For 𝐺 being a tree, let

𝐴𝐴𝐴 :=
{︀
𝑎 = (𝑣, 𝑤) : {𝑣, 𝑤} ∈ 𝐸, 𝜎(𝑇𝑎) ≤ 1

2𝜎(𝑉)
}︀
,

where 𝑇𝑎𝑇𝑎𝑇𝑎 denotes the vertex set of the subtree which is derived from cutting the tree 𝐺 at edge
{𝑣, 𝑤} ∈ 𝐸 and contains 𝑤. Further let

𝐴𝐴𝐴in :=
{︀
𝑎 ∈ 𝐴 : 𝜎(𝑇𝑎) ≥ 𝜗1

2

}︀
=
{︀
𝑎 ∈ 𝐴 : 𝑇𝑎 ∈ S2

}︀
,

𝐴𝐴𝐴out :=
{︀
𝑎 ∈ 𝐴 : 𝜎(𝑇𝑎) < 𝜗1

2

}︀
=
{︀
𝑎 ∈ 𝐴 : 𝑇𝑎 ∈ S1

}︀
denote the inner and outer arcs, respectively. We have 𝐴 = 𝐴in ·∪𝐴out.

We use the terms ‘inner’ and ‘outer’ arcs due to their appearance in the tree in relation to the
root. An example tree is shown in Figure 4.4.

Using this definition, we can easily deduce a first complexity result for 𝐺 being restricted to
trees.

98

4.4 Simplified Description of the Θ-Polyhedron

𝑟

⌃⎮⎮⎮⎮⎮⎮⎮
𝑏

⌃⎮⎮
𝑎

inner arcs 𝐴in

outer arcs 𝐴out𝑇𝑎

𝑇𝑏

𝜗 ≥ 𝜗1
2
+ |𝜗1

2
− 𝜎(𝑇𝑎) + 𝜔(𝑇𝑎)|+ 𝛾

𝜗 ≥ 𝜎(𝑇𝑏) + |𝜔(𝑇𝑏)|+ 𝛾

Figure 4.4: Example tree with inner and outer arcs

Theorem 4.26. If 𝐺 is a tree and 𝐴 as defined before, we get

Θ𝛾 =
⋂︁
𝑎∈𝐴

Θ𝛾(𝑇𝑎) ∩Θ𝑊 .

Therefore, the Full Gapped Weight Distribution Problem and the Strength-only
Gapped Weight Distribution Problem can be solved in polynomial time.

Proof. With the given graph being a tree, the set C from Theorem 4.24 equals {𝑇𝑎 : 𝑎 ∈ 𝐴} and
we have |𝐴| ≤ 2(|𝑉 | − 1) inequalities describing Θ𝛾 . Thus, the claim follows.

In the following, we only consider the case of 𝐺 being a tree and keep using the notations defined
before. Because of |𝛿(𝑇𝑎)| = 1 for all 𝑎 ∈ 𝐴 and with the former definitions, the set of feasible
solutions Θ𝛾 can be described for trees 𝐺 as

Θ𝛾 =
{︀
(𝜗, 𝜔) : 𝜗 ≥ 𝜎(𝑇𝑎) + |𝜔(𝑇𝑎)|+ 𝛾 ∀𝑎 ∈ 𝐴out,

𝜗 ≥ 𝜗1
2
+ |𝜗1

2
− 𝜎(𝑇𝑎) + 𝜔(𝑇𝑎)|+ 𝛾 ∀𝑎 ∈ 𝐴in,

𝜔(𝑉) =𝑊
}︀

(4.5)

and the Strength-only [Full] Gapped Weight Distribution Problem can be written
as the linear program

min 𝜗

s.t. 𝜗 ≥ 𝜎(𝑇𝑎) + |𝜔(𝑇𝑎)|+ 𝛾 ∀𝑎 ∈ 𝐴out,

𝜗 ≥ 𝜗1
2
+ |𝜗1

2
− 𝜎(𝑇𝑎) + 𝜔(𝑇𝑎)|+ 𝛾 ∀𝑎 ∈ 𝐴in,

𝜔(𝑉) =𝑊,[︀
𝜗 ≥ ‖𝜔‖∞,

]︀
𝜗 ∈ R, 𝜔 ∈ R𝑉 .

Although the Gapped Zero Weight Distribution Problem is a very specific special case
of our problems, we see that its optimal value 𝜗𝛾0 appears again several times. Analogously to
above, using the arc definition, we can also derive a different description of this problem with:

99

4 Weight Distribution

Corollary 4.27. If 𝐺 is a tree, the optimal value of the Gapped Zero Weight Distribution
Problem is

𝜗𝛾0 = max {𝜎(𝑇𝑎) + 𝛾 : 𝑎 ∈ 𝐴}
= max

{︀
𝜎(𝑇𝑎) : 𝑎 ∈ 𝐴

}︀
+ 𝛾

= 𝜗0 + 𝛾.

Proof. For 𝑊 = 0, we have 𝜗1
2
= 1

2𝜎(𝑉) and therefore 𝐴 = 𝐴out ∪ {𝑎 ∈ 𝐴in : 𝜎(𝑇𝑎) = 𝜗1
2
}.

Applying theorems 4.26 and 4.21 results in the claim.

4.4.3 Eliminating the Gap Requirement

By the reformulation of the previous section, we can see that 𝛾 is indeed only an additive constant
for trees. Thus, we simplify the problem further at this stage by substituting 𝜗 with 𝜗+ 𝛾 and
define the ‘gapless’ problems:

Strength-only [Full] Weight Distribution Problem on Trees. Given a
tree 𝐺 = (𝑉,𝐸), 𝜎 ∈ R𝑉

≥0, 𝑊 ∈ R≥0 [and 𝛾 ∈ R>0], find 𝜗 and 𝜔 that solve

min 𝜗

s.t. 𝜗 ∈ R, 𝜔 ∈ R𝑉 ,

𝜗 ≥ 𝜎(𝑇𝑎) + |𝜔(𝑇𝑎)| ∀𝑎 ∈ 𝐴out,

𝜗 ≥ 𝜗1
2
+ |𝜗1

2
− 𝜎(𝑇𝑎) + 𝜔(𝑇𝑎)| ∀𝑎 ∈ 𝐴in,

𝜔(𝑉) =𝑊,[︀
𝜗 ≥ ‖𝜔‖∞ − 𝛾

]︀
.

Analogously to the Gapped Zero Weight Distribution Problem, we reuse the notation
from before and drop the superscript 𝛾 when considering it to be 0. Thus, let

ΘΘΘ :=
{︀
(𝜗, 𝜔) : 𝜗 ≥ 𝜎(𝑇𝑎) + |𝜔(𝑇𝑎)| ∀𝑎 ∈ 𝐴out,

𝜗 ≥ 𝜗1
2
+ |𝜗1

2
− 𝜎(𝑇𝑎) + 𝜔(𝑇𝑎)| ∀𝑎 ∈ 𝐴in,

𝜔(𝑉) =𝑊
}︀
.

It is easy to see that the sets Θ and Θ𝛾 are equal apart from the linear transformation on 𝜗:

Θ𝛾 =
{︀
𝜃 + (𝛾,O) : 𝜃 ∈ Θ

}︀
.

Let 𝜗𝑊𝜗𝑊𝜗𝑊 and 𝜗♢𝜗♢𝜗♢ be the optimal values of the above problem in the strength-only and the full
version, respectively. Note that we already took the summand 𝛾 out of the objective because it
is only a constant. Therefore, we have

𝜗𝛾𝑊 = min
{︀
𝜗 : (𝜗, 𝜔) ∈ Θ𝛾

}︀
= min

{︀
𝜗+ 𝛾 : (𝜗+ 𝛾, 𝜔) ∈ Θ𝛾

}︀
= min

{︀
𝜗+ 𝛾 : (𝜗, 𝜔) ∈ Θ

}︀
= min

{︀
𝜗 : (𝜗, 𝜔) ∈ Θ

}︀
+ 𝛾

= 𝜗𝑊 + 𝛾.

100

4.4 Simplified Description of the Θ-Polyhedron

With

Φ−𝛾Φ−𝛾Φ−𝛾 :=
{︀
(𝜗, 𝜔) ∈ R× R𝑉 : 𝜗 ≥ ‖𝜔‖∞ − 𝛾

}︀
,

we can analogously deduce

Θ𝛾 ∩ Φ =
{︀
𝜃 + (𝛾,O) : 𝜃 ∈ Θ ∩ Φ−𝛾

}︀
and thus

𝜗𝛾♢ = min
{︀
𝜗 : (𝜗, 𝜔) ∈ Θ𝛾 ∩ Φ

}︀
= min

{︀
𝜗+ 𝛾 : (𝜗+ 𝛾, 𝜔) ∈ Θ𝛾 ∩ Φ

}︀
= min

{︀
𝜗+ 𝛾 : (𝜗, 𝜔) ∈ Θ ∩ Φ−𝛾

}︀
= min

{︀
𝜗 : (𝜗, 𝜔) ∈ Θ ∩ Φ−𝛾

}︀
+ 𝛾

= 𝜗♢ + 𝛾.

However, it is important to mention that, in contrast to the Strength-only Weight Distri-
bution Problem on Trees, where we can indeed eliminate the gap from the problem defini-
tion, the Full Weight Distribution Problem on Trees and thus its optimal value 𝜗♢ are
not completely independent of 𝛾 because it still appears in the last inequality. Therefore, it is
rather only a shift of the gap requirement. Nevertheless, we use the term gapless to refer to the
last problem versions for simplicity.

From here on, we only work with the gapless variants of our problems. Once we have found the
optimal value of one of those problems, we also want to extract a suitable weighting from it.
With the previous results and reformulations, we can also simplify the description of Ω𝛾(𝜗) from
Definition 4.13 for a given shifted 𝜗 in case of trees. We reuse the change of the notation for all
remaining objects and drop the superscript 𝛾 analogously wherever we set it to 0.

Thus, we can state

Lemma 4.28. For 𝐺 being a tree, we have

Ω(𝜗) =
{︀
𝜔 ∈ R𝑉 : 𝜎(𝑇𝑎)− 𝜗 ≤ 𝜔(𝑇𝑎) ≤ 𝜗− 𝜎(𝑇𝑎) ∀𝑎 ∈ 𝐴out,

𝜎(𝑇𝑎)− 𝜗 ≤ 𝜔(𝑇𝑎) ≤ 𝜗+ 𝜎(𝑇𝑎)− 2𝜗1
2
∀𝑎 ∈ 𝐴in,

𝜔(𝑉) =𝑊
}︀
.

Proof. Resolving the absolute values in (4.5) immediately leads to the formulation claimed in
the lemma.

From the above description of Ω(𝜗), we extract the bounds describing valid weights for a certain 𝜗
to use them in later deductions.

Definition 4.29. For 𝜗 ≥ 𝜗𝑊 and 𝑎 ∈ 𝐴, let

𝜔+(𝑇𝑎, 𝜗)𝜔+(𝑇𝑎, 𝜗)𝜔+(𝑇𝑎, 𝜗) :=

{︃
𝜗− 𝜎(𝑇𝑎) if 𝑎 ∈ 𝐴out,

𝜗+ 𝜎(𝑇𝑎)− 2𝜗1
2

if 𝑎 ∈ 𝐴in,

𝜔−(𝑇𝑎, 𝜗)𝜔−(𝑇𝑎, 𝜗)𝜔−(𝑇𝑎, 𝜗) := 𝜎(𝑇𝑎)− 𝜗

denote the upper, respectively, lower bound on the weight of the subtree 𝑇𝑎.

101

4 Weight Distribution

Remarks:

� Due to 𝜎(𝑇𝑎) < 𝜗1
2
for 𝑎 ∈ 𝐴out by definition and 𝜎(𝑇𝑎) ≤ 𝜗0 by Corollary 4.27, we have

𝜎(𝑇𝑎) ≤ 𝜗𝑊 , thus 𝜔−(𝑇𝑎, 𝜗) ≤ 0 ≤ 𝜔+(𝑇𝑎, 𝜗), for all 𝑎 ∈ 𝐴out for 𝜗 ≥ 𝜗𝑊 .

� Due to 𝜎(𝑇𝑎) < 𝜗1
2
for 𝑎 ∈ 𝐴out and 𝜎(𝑇𝑎) ≥ 𝜗1

2
for 𝑎 ∈ 𝐴in, we have 𝜔

+(𝑇𝑎, 𝜗) ≥ 0 for all
𝑎 ∈ 𝐴 for 𝜗 ≥ 𝜗1

2
.

� Because of the monotonicity of 𝜎, we have 𝜔−(𝑇𝑏, 𝜗) ≤ 𝜔−(𝑇𝑎, 𝜗) for all 𝑏 = (𝑣, 𝑤) ∈ 𝐴
with 𝑣, 𝑤 ∈ 𝑇𝑎 for all 𝑎 ∈ 𝐴.

With this definition, we can establish a first relation for different values of 𝜗:

Corollary 4.30. For 𝜗1 ≤ 𝜗2, we have Ω(𝜗1) ⊆ Ω(𝜗2).

Proof. Since we have

𝜔+(𝑇𝑎, 𝜗1) ≤ 𝜔+(𝑇𝑎, 𝜗2)

and

𝜔−(𝑇𝑎, 𝜗2) ≤ 𝜔−(𝑇𝑎, 𝜗1)

for all 𝑎 ∈ 𝐴, we clearly also have 𝜔 ∈ Ω(𝜗2) for some 𝜔 ∈ Ω(𝜗1).

From this relation, it is easy to see that the set of feasible weights grows the larger we choose 𝜗.
This mainly becomes relevant when doing the step from the Strength-only to the Full
Weight Distribution Problem on Trees.

4.4.4 Unique Root

By further evaluating the arc set 𝐴, we can see that we need to distinguish between two cases
for a given tree. The first is handled in this section: If there is no arc with 𝜎(𝑇𝑎) = 𝜎(𝑉 ∖ 𝑇𝑎) =
𝜎(𝑇�̄�) =

1
2𝜎(𝑉), with �̄̄�𝑎𝑎 = (𝑤, 𝑣) for 𝑎 = (𝑣, 𝑤), the direction of each edge in the tree 𝐺 is well-

defined, pointing towards the subtree whose vertices have the smaller sum of 𝜎-values. Thus,
the set 𝐴 forms an arborescence with |𝐴| = |𝐸| = |𝑉 | − 1, because of the monotonicity of the
𝜎-sums. Let 𝑟𝑟𝑟 ∈ 𝑉 be the unique root. Then we have 𝑟 ̸∈ 𝑇𝑎 for all 𝑎 ∈ 𝐴.

In the following part of this work, we mainly concentrate on trees where 𝐴 forms an arborescence,
as we can exploit the advantages of the recursive structure there. Thus, we define:

Definition 4.31. Let
𝑃 (𝑣)𝑃 (𝑣)𝑃 (𝑣) :=

{︀
𝑝 ∈ 𝑉 : (𝑝, 𝑣) ∈ 𝐴

}︀
be the set of predecessors of 𝑣. If we have |𝑃 (𝑣)| = 1, let 𝑝𝑣𝑝𝑣𝑝𝑣 denote the unique predecessor, thus
𝑃 (𝑣) = {𝑝𝑣}. If 𝑝𝑣 exists, we have (𝑝𝑣, 𝑣) ∈ 𝐴 and define

𝑇𝑣𝑇𝑣𝑇𝑣 := 𝑇(𝑝𝑣 ,𝑣).

Further let

𝑉in/out𝑉in/out𝑉in/out :=
{︀
𝑣 ∈ 𝑉 : (𝑝, 𝑣) ∈ 𝐴in/out, 𝑝 ∈ 𝑃 (𝑣)

}︀
=
{︀
𝑣 ∈ 𝑉 : 𝜎

(︀
𝑇(𝑝,𝑣)

)︀
≥/< 𝜗1

2
, 𝑝 ∈ 𝑃 (𝑣)

}︀
,

𝑆in/out(𝑣)𝑆in/out(𝑣)𝑆in/out(𝑣) :=
{︀
𝑠 ∈ 𝑉 : (𝑣, 𝑠) ∈ 𝐴in/out

}︀
102

4.4 Simplified Description of the Θ-Polyhedron

define the vertices, respectively, successors of 𝑣 along inner or outer arcs (respectively both if
used without subscript).

Remarks: For the unique root 𝑟,

� 𝑃 (𝑟) = ∅ and 𝑝𝑟 is not defined,

� we have 𝑃 (𝑣) = {𝑝𝑣} for all 𝑣 ∈ 𝑉 ∖ {𝑟},

� we have 𝑟 ̸∈ 𝑉in, 𝑟 ̸∈ 𝑉out, thus 𝑉 = 𝑉in ·∪ 𝑉out ·∪ {𝑟}, and

� we further define 𝑇𝑟𝑇𝑟𝑇𝑟 := 𝑉 .

With the former definitions, the set of feasible solutions Θ can be described for trees 𝐺 with 𝐴
forming an arborescence as

Θ =
{︀
(𝜗, 𝜔) : 𝜗 ≥ 𝜎(𝑇𝑣) + |𝜔(𝑇𝑣)| ∀𝑣 ∈ 𝑉out,

𝜗 ≥ 𝜗1
2
+ |𝜗1

2
− 𝜎(𝑇𝑣) + 𝜔(𝑇𝑣)| ∀𝑣 ∈ 𝑉in,

𝜔(𝑉) =𝑊
}︀
.

(4.6)

In the following, we use both, the arc or the vertex notation, depending on its suitability. In
Figure 4.5, we illustrate the inequalities describing Ω(𝜗) in the introduced vertex notation.
The Strength-only [Full] Weight Distribution Problem on Trees is equivalently

min 𝜗

s.t. 𝜗 ≥ 𝜎(𝑇𝑣) + |𝜔(𝑇𝑣)| ∀𝑣 ∈ 𝑉out,
𝜗 ≥ 𝜗1

2
+ |𝜗1

2
− 𝜎(𝑇𝑣) + 𝜔(𝑇𝑣)| ∀𝑣 ∈ 𝑉in,

𝜔(𝑉) =𝑊,[︀
𝜗 ≥ ‖𝜔‖∞,

]︀
𝜗 ∈ R, 𝜔 ∈ R𝑉 .

𝑟

𝑣

𝑤

⌃⎮⎮⎮⎮⎮⎮⎮

⌃⎮⎮
inner vertices 𝑉in

outer vertices 𝑉out

𝑇𝑣

𝑇𝑤

𝜎(𝑇𝑣)− 𝜗 ≤ 𝜔(𝑇𝑣) ≤ 𝜗+ 𝜎(𝑇𝑣)− 2𝜗1
2

𝜎(𝑇𝑤)− 𝜗 ≤ 𝜔(𝑇𝑤) ≤ 𝜗− 𝜎(𝑇𝑤)

Figure 4.5: Arborescence with inner and outer vertices

103

4 Weight Distribution

4.4.5 Contraction of Multiple Roots

If, in contrast to the assumptions of the previous section, there exists at least one 𝑎 ∈ 𝐴 with
𝜎(𝑇𝑎) = 𝜎(𝑇�̄�) = 1

2𝜎(𝑉), we have the other case concerning the arc set 𝐴, where there is not
a unique root and 𝐴 does not form an arborescence as both 𝑎 and �̄� are included in 𝐴. With
𝑊 > 0 we have 1

2𝜎(𝑉) > 𝜗1
2
, thus 𝑎, �̄� ∈ 𝐴in and therefore always 𝐴in ̸= ∅ in this case. Let

𝐴𝑅𝐴𝑅𝐴𝑅 :=
{︀
𝑎 ∈ 𝐴 : 𝜎(𝑇𝑎) =

1
2𝜎(𝑉)

}︀
⊆ 𝐴in

be the set combining all such arcs. It is easy to see that the edges corresponding to 𝐴𝑅 form a
path in 𝐺 over all ‘roots’

𝑅𝑅𝑅 :=
{︀
𝑣 ∈ 𝑉 : 𝑣 ∈ 𝑎, 𝑎 ∈ 𝐴𝑅

}︀
.

All inner vertices of this path need to have a 𝜎-value equal to 0, so do all vertices in possible
subtrees attached to those vertices, otherwise the 𝜎-sums could not be constantly 1

2𝜎(𝑉) over all
of the subtrees corresponding to the arcs in 𝐴𝑅. Let ℓℓℓ and 𝑟𝑟𝑟 describe the two endpoints of the
path and 𝑇ℓ𝑇ℓ𝑇ℓ and 𝑇𝑟𝑇𝑟𝑇𝑟 be the vertex sets of the two remaining subtrees arising from the removal
of the inner vertices of this path. There the arborescence is defined properly. This case and the
corresponding notation is illustrated in Figure 4.6. We further observe

� we have 𝑅 ⊆ 𝑉in and 𝑅 ∩ 𝑉out = ∅ and thus 𝑉 = 𝑉in ·∪ 𝑉out,

� we have |𝑃 (𝑣)| = 2 for all 𝑣 ∈ 𝑅 ∖ {ℓ, 𝑟} and

� 𝑝ℓ, 𝑝𝑟 ∈ 𝑅 exist.

One possibility to deal with these instances as well is to reduce them to the case of unique roots
by applying a ‘contraction’:

Definition 4.32. Given an instance (𝐺, 𝜎,𝑊) for the Strength-only [Full] Weight Dis-
tribution Problem on Trees with a tree 𝐺 = (𝑉,𝐸), where the corresponding arc set 𝐴
does not have a unique root, 𝜎 ∈ R𝑉

≥0 and 𝑊 ∈ R≥0, let 𝑟𝑟𝑟 be a new vertex and

𝑉𝑉𝑉 := {𝑟} ∪ 𝑇ℓ ∪ 𝑇𝑟 ∖ {ℓ, 𝑟},
�̃̃�𝐸𝐸 := {𝑐(𝑣)𝑐(𝑤) : 𝑣𝑤 ∈ 𝐸, 𝑣, 𝑤 ∈ 𝑇ℓ ∪ 𝑇𝑟, {𝑣, 𝑤} ≠ {ℓ, 𝑟}},

for the contraction 𝑐𝑐𝑐 : 𝑇ℓ ∪ 𝑇𝑟 → 𝑉 with

𝑐(𝑣) =

{︃
𝑟 if 𝑣 ∈ {ℓ, 𝑟},
𝑣 otherwise.

From �̃� we can analogously derive the arc set 𝐴𝐴𝐴 and have

𝐴𝐴𝐴 = {(𝑐(𝑣), 𝑐(𝑤)) : (𝑣, 𝑤) ∈ 𝐴, 𝑣, 𝑤 ∈ 𝑇ℓ ∪ 𝑇𝑟, {𝑣, 𝑤} ≠ {ℓ, 𝑟}}.

𝑇ℓ

ℓ
𝑇𝑟

𝑟

𝜎 ≡ O
1
2
𝜎(𝑉)1

2
𝜎(𝑉)

1
2
𝜎(𝑉) 1

2
𝜎(𝑉)

Figure 4.6: Illustration of the 𝜎-distribution for the case of multiple root

104

4.4 Simplified Description of the Θ-Polyhedron

Furthermore, let �̃̃�𝜎𝜎 ∈ R𝑉
≥0 with

�̃�𝑣 := 𝜎𝑣 ∀𝑣 ∈ 𝑇ℓ ∪ 𝑇𝑟 ∖ {ℓ, 𝑟},
�̃�𝑟 := 𝜎ℓ + 𝜎𝑟.

With �̃� :=
(︀
𝑉 , �̃�

)︀
being the resulting tree, we call

(︀
�̃�, �̃�,𝑊

)︀
the contracted instance to the given

one for the Strength-only [Full] Weight Distribution Problem on Trees.

Remarks:

� 𝐴 forms an arborescence with unique root 𝑟.

� The mapping �̃̃�𝑎𝑎 := (𝑐(𝑣), 𝑐(𝑤)) ∈ 𝐴 for 𝑎 = (𝑣, 𝑤) ∈ 𝐴 with 𝑣, 𝑤 ∈ 𝑇ℓ or 𝑣, 𝑤 ∈ 𝑇𝑟 defines
a bijection.

� The set of vertices of the subtrees are preserved with 𝑇�̃� = 𝑇𝑎 for �̃� ∈ 𝐴.

� We have �̃�
(︀
𝑇�̃�
)︀
= 𝜎

(︀
𝑇𝑎
)︀
for all �̃� ∈ 𝐴.

� We have �̃�(𝑉) = 𝜎(𝑉) due to 𝜎𝑣 = 0 for all 𝑣 ∈ 𝑉 ∖ (𝑇ℓ ∪ 𝑇𝑟) and therefore 𝜗1
2
= 𝜗1

2
.

� For �̃� ∈ 𝐴 we have �̃� ∈ 𝐴in/out ⇔ 𝑎 ∈ 𝐴in/out.

An example of such a construction is shown in Figure 4.7. The original, uncontracted instance
yields a polyhedron of a larger dimension than the contracted one. Thus, we cannot directly
derive some kind of boundary condition. However, for some cases we can show, how to extract
the original solution from the contracted one.

ℓ 𝑟
𝜎ℓ 𝜎𝑟

𝜎 ≡ O

⎮⌄

𝑟
𝜎ℓ + 𝜎𝑟

Figure 4.7: Example of a contraction of a tree to obtain a unique root

105

4 Weight Distribution

4.5 Strength-Only Problem on Trees

In this section, we concentrate on the gapless version of our problem, the Strength-only
Weight Distribution Problem on Trees. Thus, we do not need to deal with the gap 𝛾
here. Let again the graph 𝐺𝐺𝐺 = (𝑉𝑉𝑉 ,𝐸𝐸𝐸), the strengths 𝜎𝜎𝜎 ∈ R𝑉

≥0 and the total weight 𝑊𝑊𝑊 ∈ R≥0 be

given and fixed. Remember, we assume 𝜎(𝑉) > 𝑊 > 0. Thus, we have 0 < 𝜗1
2
< 1

2𝜎(𝑉).

We start our deductions with trees where the arc set 𝐴, as defined in the previous section, forms
an arborescence. At the end of the section, we briefly investigate the consequences when this is
not the case.

4.5.1 Objective Value

To investigate the problem more deeply, we start with reformulating the LP in the standard
form. We use the following notation:

Definition 4.33. Let 𝜒𝜒𝜒 ∈ {0, 1}𝐴×𝑉 be the matrix with

𝜒𝑎𝑣 =

{︃
1 if 𝑣 ∈ 𝑇𝑎,
0 otherwise,

describing whether arc 𝑎 points towards vertex 𝑣 or not. We extend the notation of 𝜎 in terms
of arcs with 𝜎 = (𝜎𝑎)𝑎∈𝐴 ∈ R𝐴

≥0 where 𝜎𝑎𝜎𝑎𝜎𝑎 := 𝜎(𝑇𝑎). Let

𝑀𝑀𝑀 :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1𝐴

𝜒𝐴in,*

𝜒𝐴out,*

1𝐴

−𝜒𝐴in,*

−𝜒𝐴out,*

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝑏𝑏𝑏 :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜎𝐴in

𝜎𝐴out

2𝜗1
2
1𝐴in
− 𝜎𝐴in

𝜎𝐴out

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

with 𝑀 ∈ {−1, 0, 1}2|𝐴|×(1+|𝑉 |), 𝑏 ∈ R2|𝐴|.

Using this definition, we can rewrite

Θ =
{︀
𝜆 ∈ R× R𝑉 :𝑀𝜆 ≥ 𝑏,

(︀
0,1⊤

𝑉

)︀
𝜆 =𝑊

}︀
and the LP corresponding to the Strength-only Weight Distribution Problem on
Trees can be equivalently formulated as

min
(︀
1,O⊤

𝑉

)︀
𝜆

s.t. 𝑀𝜆 ≥ 𝑏,(︀
0,1⊤

𝑉

)︀
𝜆 =𝑊,

𝜆 ∈ R× R𝑉 .

(4.7)

The rows of the matrix 𝜒 are the characteristic vectors of the vertex sets of the subtrees, whereas
the columns are the characteristic vectors of the arcs on the paths from the root to each vertex. If

106

4.5 Strength-Only Problem on Trees

we sort the arcs in, e.g., breadth-first-search order, 𝜒 is a lower triangular square matrix with 1’s
on the main diagonal to which a zero column is attached corresponding to the unique root (as it
is not part of any subtree). Obviously, the first half of the rows of 𝑀 together with one row in
the second half of the rows are linearly independent. Thus, we have rank(𝑀) = |𝑉 |.

Now we can easily elaborate the dual problem:

Corollary 4.34. The dual LP of (4.7) is

max 𝑏⊤𝛼+𝑊𝛽

s.t. 𝑀⊤𝛼+ (0,1⊤
𝑉)

⊤𝛽 = (1,O⊤
𝑉)

⊤,

𝛼 ∈ R2|𝐴|
≥0 ,

𝛽 ∈ R.

(4.8)

By just a few modifications, we can see that this dual problem has a very simple structure. We
have

Lemma 4.35. For A forming an arborescence and 𝑐𝑐𝑐 := (𝜗1
2
1𝐴in

, 𝜎𝐴out
), an optimal solution 𝜆* to

max 𝑐⊤𝜆

s.t. 1⊤
𝐴𝜆 = 1,

𝜆 ∈ R𝐴
≥0

yields an optimal solution to (4.8) with 𝛼* = 1
2(𝜆

, 𝜆)⊤ and 𝛽* = 0.

Proof. We show that (4.8) can be transformed into the above LP by removing redundant con-
straints and replacing the variables: With 𝛼 = (𝛼+, 𝛼−)⊤𝛼 = (𝛼+, 𝛼−)⊤𝛼 = (𝛼+, 𝛼−)⊤ and 𝛼+, 𝛼− ∈ R𝐴

≥0, we get for the
matrix equation

[︂
𝑀⊤ 0

1𝑉

]︂ [︂
𝛼

𝛽

]︂
=

⎡⎢⎢⎣ 1
⊤
𝐴 1

⊤
𝐴 0

𝜒⊤
𝐴 −𝜒⊤

𝐴 1𝑉

⎤⎥⎥⎦
⎡⎣ 𝛼+

𝛼−

𝛽

⎤⎦ =

[︂
1

O𝑉

]︂
.

This is equivalent to the constraints

1
⊤
𝐴 𝛼

+ + 1
⊤
𝐴 𝛼

− = 1,

𝜒⊤
𝑣 𝛼

+ − 𝜒⊤
𝑣 𝛼

− + 𝛽 = 0 ∀𝑣 ∈ 𝑉,

where 𝜒𝑣𝜒𝑣𝜒𝑣 := 𝜒*,𝑣 is the vector containing 1’s for those arcs 𝑎 which lie on the path from the
root 𝑟 to the vertex 𝑣. Due to 𝜒𝑟 = O, the second constraint for 𝑣 = 𝑟 results in 𝛽 = 0. Because
of 𝜒𝑣 = e𝑎 for 𝑎 = (𝑟, 𝑣), we have 𝛼+

𝑎 = 𝛼−
𝑎 for all 𝑎 ∈ 𝐴 with 𝑟 ∈ 𝑎. Furthermore, due to

𝜒𝑤 = 𝜒𝑣 + e𝑣𝑤 for all (𝑣, 𝑤) ∈ 𝐴, we have

0 = 𝜒⊤
𝑤𝛼

+ − 𝜒⊤
𝑤𝛼

− = 𝜒⊤
𝑣 𝛼

+ − 𝜒⊤
𝑣 𝛼

− + 𝛼+
𝑣𝑤 − 𝛼−

𝑣𝑤

107

4 Weight Distribution

and therefore, inductively, 𝛼+
𝑎 = 𝛼−

𝑎 for all 𝑎 ∈ 𝐴. Due to these relations, every feasible solution
of (4.8) is of the form (𝛼, 𝛽) = (𝛼+, 𝛼+, 0) with 𝛼+ ∈ R𝐴

≥0 holding

1 = 1
⊤
𝐴 𝛼

+ + 1
⊤
𝐴 𝛼

− = 21⊤
𝐴 𝛼

+.

By replacing 2𝛼+ =: 𝜆𝜆𝜆, every feasible solution of (4.8) yields a feasible solution for the LP given
in the lemma and vice versa. Furthermore, with

𝑐𝑐𝑐 := (𝜗1
2
1𝐴in

, 𝜎𝐴out
),

we get for the objective value of a feasible solution

𝑏⊤𝛼+𝑊𝛽 =
∑︁
𝑎∈𝐴in

𝜎𝑎𝛼
+
𝑎 +

∑︁
𝑎∈𝐴out

𝜎𝑎𝛼
+
𝑎 +

∑︁
𝑎∈𝐴in

(︀
2𝜗1

2
− 𝜎𝑎

)︀
𝛼−
𝑎 +

∑︁
𝑎∈𝐴out

𝜎𝑎𝛼
−
𝑎

= 2𝜗1
2

∑︁
𝑎∈𝐴in

𝛼+
𝑎 + 2

∑︁
𝑎∈𝐴out

𝜎𝑎𝛼
+
𝑎

= 2 (𝜗1
2
1𝐴in

, 𝜎𝐴out
)⊤𝛼+

= 𝑐⊤𝜆.

Thus, the solutions have the same objective value and an optimal solution 𝜆* for the given LP
provides an optimal solution for (4.8) with 𝛼* = 1

2(𝜆
, 𝜆)⊤ and 𝛽* = 0.

Due to the observed simple structure, we can now easily get the optimal value of the dual LP
with

Lemma 4.36. For A forming an arborescence, the optimal value of the LP of Lemma 4.35 is
min

{︀
𝜗0, 𝜗1

2

}︀
.

Proof. The LP is just a maximization over the unit |𝐴|-simplex and has the objective value
max{𝑐𝑎 : 𝑎 ∈ 𝐴}. Due to 𝜗1

2
> 𝜎𝑎 = 𝜎(𝑇𝑎) for all 𝑎 ∈ 𝐴out by definition, we have two cases:

a) 𝐴in = ∅: Without inner arcs, we have 𝐴 = 𝐴out and simply 𝑐 = 𝜎𝐴. Therefore, we have by
Corollary 4.27

max
𝑎∈𝐴

𝑐𝑎 = max
𝑎∈𝐴

𝜎(𝑇𝑎) = 𝜗0 < 𝜗1
2
.

b) 𝐴in ̸= ∅: For 𝑎 ∈ 𝐴in, we have 𝑐𝑎 = 𝜗1
2
≤ 𝜎(𝑇𝑎), hence max𝑎∈𝐴 𝑐𝑎 = 𝜗1

2
and

𝜗0 = max
𝑎∈𝐴

𝜎(𝑇𝑎) ≥ 𝜗1
2
.

Returning to the original problem, we take advantage of the duality and have found the optimal
value of our problem:

Theorem 4.37. If 𝐺 is a tree and 𝐴 forms an arborescence, thus has a unique root, the optimal
value of the Strength-only Weight Distribution Problem is 𝜗𝑊 = min

{︀
𝜗0, 𝜗1

2

}︀
.

Proof. From Lemma 4.36 with 𝑎* ∈ argmax{𝑐𝑎 : 𝑎 ∈ 𝐴}, we get the optimal primal value by
the LP duality

min
{︀
𝜗0, 𝜗1

2

}︀
= 𝑐⊤e𝑎* = 𝑏⊤𝛼* +𝑊𝛽* =

(︀
1,O⊤

𝑉

)︀
𝜆* = 𝜗*.

108

4.5 Strength-Only Problem on Trees

Surprisingly, the objective value does only depend on the concrete tree structure in case 𝜗0 yields
the optimal value. In turn, if it is equal to 𝜗1

2
, only the total 𝜎-value and the total weight are

decisive. As 𝜗0 is easy to evaluate, we can now also state:

Corollary 4.38. If 𝐺 is a tree and 𝐴 forms an arborescence, we can find the optimal value of
the Strength-only Weight Distribution Problem in 𝒪(|𝑉 |).

Proof. Clear by the linear time calculation of 𝜗0 from Corollary 4.17 and the formula for 𝜗1
2
.

This result means that we can efficiently calculate the strength which is necessary to enforce
the synchronization of the variables in the embedding. However, this is achieved under variable
weights 𝜔. Unfortunately, until now, we have not got any information on how to choose the 𝜔’s
to complete our embedding formulation. This is evaluated in the following section.

At this point, we like to remark the relation of our result with the one of V. Choi: Theorem 2
of [12] gives a bound for the coupling strength, transferred into our notation, of

𝜗* =
|𝐿| − 1

|𝐿|
(𝜎(𝑉)−𝑊),

where 𝐿 = {𝑣 ∈ 𝑉 : 𝑆(𝑣) = ∅} denotes the leaves of the tree. Apart from an isolated vertex,
where no weight distribution is needed, all trees have |𝐿| ≥ 2. If the tree forms a path, in the
quantum annealing context also called a chain, we have |𝐿| = 2 and the given bound is equal
to 𝜗1

2
. This means, in attendance of inner vertices, 𝜗* is indeed tight according to our problem

formulation. In the remaining cases, it is easy to see that our optimization approach provides
stronger bounds, improving the scaling factor and thus possibly also the success probability of
the quantum annealer.

4.5.2 Straightforward Weights

Although we know there must exist a suitable weight for the previously found optimal value, we
still need to find it. First of all, we can deduce for the set of feasible weights

Corollary 4.39. With 𝜗𝑊 = min
{︀
𝜗0, 𝜗1

2

}︀
, we have

Ω(𝜗𝑊) =
{︀
𝜔 ∈ R𝑉 : 𝜎(𝑇𝑎)− 𝜗𝑊 ≤ 𝜔(𝑇𝑎) ≤ 𝜗𝑊 − 𝜎(𝑇𝑎)∀𝑎 ∈ 𝐴out,

𝜔(𝑇𝑎) = 𝜎(𝑇𝑎)− 𝜗1
2
∀𝑎 ∈ 𝐴in,

𝜔(𝑉) =𝑊
}︀
.

Proof. From the proof of Lemma 4.36, we have 𝜗𝑊 = 𝜗1
2
for 𝐴in ̸= ∅. With

𝜔−(𝑇𝑎, 𝜗1
2
) = 𝜔+(𝑇𝑎, 𝜗1

2
)

for all 𝑎 ∈ 𝐴in, the inequalities in the formulation of Ω in Lemma 4.28 corresponding to 𝐴in

collapse to

𝜔(𝑇𝑎) = 𝜎(𝑇𝑎)− 𝜗1
2
.

For the case 𝐴in = ∅ with 𝜗𝑊 = 𝜗0, there is nothing to show.

109

4 Weight Distribution

Remark: We have an analogous collapse of the inequalities for 𝑎 ∈ 𝐴out in case of 𝐴in = ∅, where
the proof of Lemma 4.36 shows the optimal value of the Strength-only Weight Distribu-
tion Problem on Trees is 𝜗0. With the problem formulation of Corollary 4.27, we can easily
see that we require

𝜔(𝑇𝑎*) = 0 ∀𝑎* ∈ argmax
𝑎∈𝐴

𝜎(𝑇𝑎).

Note that this corollary is independent of 𝐴 forming an arborescence or not. In case it does, we
can analogously use the vertex notation with

Ω(𝜗𝑊) =
{︀
𝜔 ∈ R𝑉 : 𝜎(𝑇𝑣)− 𝜗𝑊 ≤ 𝜔(𝑇𝑣) ≤ 𝜗𝑊 − 𝜎(𝑇𝑣)∀𝑣 ∈ 𝑉out,

𝜔(𝑇𝑣) = 𝜎(𝑇𝑣)− 𝜗1
2
∀𝑣 ∈ 𝑉in,

𝜔(𝑉) =𝑊
}︀
,

since we have 𝑉in ̸= ∅ ⇔ 𝐴in ̸= ∅.

By the above remark and the first remark following Definition 4.29, stating that we have
𝜔−(𝑇𝑣, 𝜗) ≤ 0 ≤ 𝜔+(𝑇𝑣, 𝜗) for all 𝑣 ∈ 𝑉out for 𝜗 ≥ 𝜗𝑊 , it appears feasible to set the weight
on the outer vertices to 0. By this the summed 𝜎-values of the subtrees only become relevant
on the first inner vertices. This could be understood as a ‘compression’ of the tree by shifting
the 𝜎’s towards the root as illustrated in Figure 4.8. With the following theorem, we show that
we can indeed find suitable weights for remaining vertices with this strategy.

Theorem 4.40. If 𝐺 is a tree and 𝐴 forms an arborescence with root 𝑟, with 𝜗𝑊 = min
{︀
𝜗0, 𝜗1

2

}︀
and

𝜔*
𝑣 = 0 ∀𝑣 ∈ 𝑉out,

𝜔*
𝑣 = 𝜎(𝑇𝑣)− 𝜗1

2
−

∑︁
𝑠∈𝑆in(𝑣)

(︀
𝜎(𝑇𝑠)− 𝜗1

2

)︀
∀𝑣 ∈ 𝑉in,

𝜔*
𝑟 =𝑊 −

∑︁
𝑠∈𝑆in(𝑟)

(︀
𝜎(𝑇𝑠)− 𝜗1

2

)︀
,

we have 𝜔* ∈ Ω(𝜗𝑊) and 𝜔* ≥ O.

Proof. With the above weight definitions, we have

𝜔*(𝑇𝑣) = 0 ∀𝑣 ∈ 𝑉out.

Hence, due to the first remark following Definition 4.29, the inequalities concerning 𝑉out of Ω(𝜗𝑊),
as given in Corollary 4.39, hold for the provided 𝜔*.

𝑟

𝑎

𝑏

𝑐 𝑑

𝑒 𝑓

𝑔

ℎ 𝑖 𝑗

𝑘

𝑙

𝑚

𝑛

𝑜 𝑝

𝑞

𝑠

𝜎𝑟

𝜎𝑎

𝜎𝑏 𝜎𝑔

𝜎𝑘

𝜎𝑙 𝜎𝑛 𝜎𝑠

𝜎𝑞

𝜎𝑝

𝜎𝑐 𝜎ℎ 𝜎𝑖 𝜎𝑗 𝜎𝑚 𝜎𝑜

𝜎𝑒 𝜎𝑓

𝜎𝑑

→

𝑟

𝑎

𝑔

𝑖 𝑗

𝑘

𝑙

𝑚

𝑛

𝜎𝑟∑︁
𝑣∈{𝑎,...,𝑓}

𝜎𝑣

𝜎𝑔 + 𝜎ℎ

𝜎𝑘 + 𝜎𝑠

𝜎𝑙
∑︁

𝑣∈{𝑛,...,𝑞}
𝜎𝑣

𝜎𝑖 𝜎𝑗 𝜎𝑚

Figure 4.8: Compression of the tree to obtain only inner arcs and vertices

110

4.5 Strength-Only Problem on Trees

In case of 𝐴in = ∅, we have 𝑆in(𝑟) = ∅ and it remains 𝜔*
𝑟 = 𝑊 for the root 𝑟. Thus, we have

𝜔*(𝑉) = 𝑊 . Since 𝜔𝑟 is unbounded, as it is not included in any inequality defining Θ in (4.6),
this is a valid choice and we have 𝜔* ∈ Ω(𝜗𝑊). Furthermore, we also have 𝜔* = O+𝑊e𝑟 ≥ O
with 𝑊 ≥ 0.

In case of 𝐴in ̸= ∅, with 𝜗𝑊 = 𝜗1
2
by the proof of Lemma 4.36, we get for the single vertex weights

from the former formulations
𝜔*
𝑣 = 𝜎(𝑇𝑣)− 𝜗1

2

for those 𝑣 ∈ 𝑉in with 𝑆in(𝑣) = ∅, which are the leaves of the tree defined by the inner edges.
Due to the additivity of 𝜔, we also have

𝜔*(𝑇𝑣) = 𝜔*
𝑣 +

∑︁
𝑠∈𝑆(𝑣)

𝜔*(𝑇𝑠) = 𝜔*
𝑣 +

∑︁
𝑠∈𝑆in(𝑣)

𝜔*(𝑇𝑠) +
∑︁

𝑠∈𝑆out(𝑣)

𝜔*(𝑇𝑠) ∀𝑣 ∈ 𝑉. (i)

With 𝜔*(𝑇𝑣) = 0 for all 𝑣 ∈ 𝑉out, this results in

𝜔*(𝑇𝑣) = 𝜔*
𝑣 = 𝜎(𝑇𝑣)− 𝜗1

2
∀𝑣 ∈ 𝑉in with 𝑆in(𝑣) = ∅.

By recursively resolving the subtree sums from the leaves upwards to the root of the arborescence
by inserting the vertex weights given in the lemma in (i), we get

𝜔*(𝑇𝑣) = 𝜎(𝑇𝑣)− 𝜗1
2
−

∑︁
𝑠∈𝑆in(𝑣)

(︀
𝜎(𝑇𝑠)− 𝜗1

2

)︀
+

∑︁
𝑠∈𝑆in(𝑣)

𝜔*(𝑇𝑠)

= 𝜎(𝑇𝑣)− 𝜗1
2
= 𝜔−(𝑇𝑣, 𝜗1

2
) = 𝜔+(𝑇𝑣, 𝜗1

2
)

for all 𝑣 ∈ 𝑉in. Hence, the equalities of Corollary 4.39 concerning the inner vertices are respected,
too.

Note that (i) also holds for the case 𝑣 = 𝑟 with 𝑇𝑟 = 𝑉 . Thus, we further have

𝜔*(𝑇𝑟) = 𝜔*(𝑉) = 𝜔*
𝑟 +

∑︁
𝑠∈𝑆(𝑟)

𝜔*(𝑇𝑠)

=𝑊 −
∑︁

𝑠∈𝑆in(𝑟)

(︀
𝜎(𝑇𝑠)− 𝜗1

2

)︀
+

∑︁
𝑠∈𝑆in(𝑟)

(︀
𝜎(𝑇𝑠)− 𝜗1

2

)︀
=𝑊

and 𝜔* as given in the lemma yields a feasible solution with 𝜔* ∈ Ω(𝜗𝑊).

It remains to show that 𝜔* ≥ O also holds for the vertices in 𝑉in ̸= ∅ and the root. For 𝑣 ∈ 𝑉in
with 𝑆in(𝑣) = ∅, we have 𝜔*

𝑣 = 𝜎(𝑇𝑣) − 𝜗1
2
≥ 0 due to the definition of the inner vertices with

𝜎(𝑇𝑣) ≥ 𝜗1
2
. With 𝜎 ≥ O and 𝜗1

2
> 0, we have

𝜔*
𝑣 = 𝜎(𝑇𝑣)− 𝜗1

2
−

∑︁
𝑠∈𝑆in(𝑣)

(︀
𝜎(𝑇𝑠)− 𝜗1

2

)︀
= 𝜎𝑣 +

∑︁
𝑠∈𝑆out(𝑣)

𝜎(𝑇𝑠) + 𝜗1
2

(︀⃒⃒
𝑆in(𝑣)

⃒⃒
− 1
)︀
≥ 0

for all 𝑣 ∈ 𝑉in with
⃒⃒
𝑆in(𝑣)

⃒⃒
≥ 1. By

𝜔*
𝑟 =𝑊 −

∑︁
𝑠∈𝑆in(𝑟)

(︀
𝜎(𝑇𝑠)− 𝜗1

2

)︀
=𝑊 − 𝜎(𝑉) + 𝜎𝑟 +

∑︁
𝑠∈𝑆out(𝑟)

𝜎(𝑇𝑠) + 𝜗1
2

⃒⃒
𝑆in(𝑟)

⃒⃒
= 𝜎𝑟 +

∑︁
𝑠∈𝑆out(𝑟)

𝜎(𝑇𝑠) + 𝜗1
2

(︀⃒⃒
𝑆in(𝑟)

⃒⃒
− 2
)︀
,

111

4 Weight Distribution

we also see that 𝜔*
𝑟 ≥ 0 for |𝑆in(𝑟)

⃒⃒
≥ 2. Since we need |𝑆in(𝑟)| ≥ 1 for 𝑉in ̸= ∅, the remaining

case is |𝑆in(𝑟)| = 1, for which let 𝑆in(𝑟) = {𝑠}. Then with 1
2𝜎(𝑉)− 𝜎(𝑇𝑠) ≥ 0, we have

𝜔*
𝑟 =𝑊 − 𝜎(𝑇𝑠) + 𝜗1

2
= 1

2𝑊 − 𝜎(𝑇𝑠) +
1
2𝜎(𝑉) ≥ 0

and thus 𝜔* ≥ O.

By this we have found an optimal solution for the Strength-only Weight Distribution
Problem on Trees and, with these explicit formulas, it can also be calculated easily in the
sense that

Corollary 4.41. If 𝐺 is a tree and 𝐴 forms an arborescence, we can find an optimal solution
for the Strength-only Weight Distribution Problem in 𝒪(|𝑉 |).

Proof. By Corollary 4.38, we can find 𝜗𝑊 in linear time. Furthermore, the construction of the
arborescence can also be done in linear time in the number of vertices by calculating the 𝜎-sums
of the subtrees starting on the leaves and stepping towards the root following a reversed depth
first search. Analogously, we can calculate the corresponding weights from this.

We have

‖𝜔*‖∞ = max
𝑣∈𝑉

𝜔*
𝑣 = max

𝑣∈𝑉in
𝜔*
𝑣

for 𝜔* of Theorem 4.40. Thus, we can easily check whether we have already found an optimal
solution for the Full Weight Distribution Problem on Trees, too. Additionally, we see
from this theorem that we can always find a non-negative weighting for a positive total weight.
Thus, a restriction to 𝜔 ≥ O for the Strength-only Weight Distribution Problem on
Trees is feasible.

4.5.3 Second-level Weight Optimization

In the previous section, we have constructed a weighting for the Strength-only Weight
Distribution Problem on Trees straightforwardly using the optimal value 𝜗𝑊 . In this
section, we evolve optimal weights for this problem in terms of their largest absolute value.
Thus, we introduce another optimization level, where we only investigate the weights for the
given optimal 𝜗𝑊 . By this we can already gain further knowledge about the full problem version:
Only if we can find weights 𝜔 ∈ Ω(𝜗𝑊) which fulfil ‖𝜔‖∞ − 𝛾 ≤ 𝜗𝑊 , the optimal value for
the Full Weight Distribution Problem on Trees is also 𝜗𝑊 .

Improved Weights

If we have not achieved 𝜗𝑊 +𝛾 ≥ ‖𝜔*‖∞ for 𝜔* of Theorem 4.40, the restriction to set the weights
of the outer vertices to 0 might be too strict: There is some scope to increase the 𝜔*(𝑇𝑣)’s for
𝑣 ∈ 𝑉out and shift some weight away from the inner vertices. This principle of opening the
‘compression’ to the next outer vertices is illustrated in Figure 4.9. We can indeed show that
this allows an improvement of the maximal weight.

With the following lemma, we first construct the corresponding weights, where we highlight the
differences to Theorem 4.40 in blue:

112

4.5 Strength-Only Problem on Trees

𝑟

𝑎

𝑏

𝑐 𝑑

𝑒 𝑓

𝑔

ℎ 𝑖 𝑗

𝑘

𝑙

𝑚

𝑛

𝑜 𝑝

𝑞

𝑠

𝜎𝑟

𝜎𝑎

𝜎𝑏 𝜎𝑔

𝜎𝑘

𝜎𝑙 𝜎𝑛 𝜎𝑠

𝜎𝑞

𝜎𝑝

𝜎𝑐 𝜎ℎ 𝜎𝑖 𝜎𝑗 𝜎𝑚 𝜎𝑜

𝜎𝑒 𝜎𝑓

𝜎𝑑

→

𝑟

𝑎

𝑏 𝑔

ℎ 𝑖 𝑗

𝑘

𝑙

𝑚

𝑛

𝑜 𝑝

𝑠

𝜎𝑟

∑︁
𝑣∈{𝑏,...,𝑓}

𝜎𝑣

𝜎𝑝 + 𝜎𝑞

𝜎ℎ 𝜎𝑖 𝜎𝑗 𝜎𝑚 𝜎𝑜

𝜎𝑎

𝜎𝑔

𝜎𝑘

𝜎𝑙 𝜎𝑛 𝜎𝑠

Figure 4.9: Compression of the tree keeping the next outer vertices

Lemma 4.42. If 𝐺 is a tree and 𝐴 forms an arborescence with root 𝑟, for 𝜗𝑊 = min
{︀
𝜗0, 𝜗1

2

}︀
and 𝜔* ∈ R𝑉 with

𝜔*
𝑣 = 0 ∀𝑣 ∈ 𝑉out, 𝑝𝑣 ̸∈ 𝑉in ∪ {𝑟},
𝜔*
𝑣= 𝜗𝑊 − 𝜎(𝑇𝑣) ∀𝑣 ∈ 𝑉out, 𝑝𝑣 ∈ 𝑉in ∪ {𝑟},

𝜔*
𝑣 = 𝜎(𝑇𝑣)− 𝜗1

2
−

∑︁
𝑠∈𝑆in(𝑣)

(︀
𝜎(𝑇𝑠)− 𝜗1

2

)︀
−

∑︁
𝑠∈𝑆out(𝑣)

(︀
𝜗1

2
− 𝜎(𝑇𝑠)

)︀
∀𝑣 ∈ 𝑉in,

𝜔*
𝑟 =𝑊 −

∑︁
𝑠∈𝑆in(𝑟)

(︀
𝜎(𝑇𝑠)− 𝜗1

2

)︀
−

∑︁
𝑠∈𝑆out(𝑟)

(︀
𝜗𝑊 − 𝜎(𝑇𝑠)

)︀
,

we have 𝜔* ∈ Ω(𝜗𝑊).

Proof. The validation of the vertex weights follows the one of Theorem 4.40: Due to

𝜔*(𝑇𝑣) = 0 ∀𝑣 ∈ 𝑉out, 𝑝𝑣 ̸∈ 𝑉in ∪ {𝑟}
and

𝜔*(𝑇𝑣) = 𝜔*
𝑣 = 𝜗𝑊 − 𝜎(𝑇𝑣) ∀𝑣 ∈ 𝑉out, 𝑝𝑣 ∈ 𝑉in ∪ {𝑟},

the inequalities
𝜎(𝑇𝑣)− 𝜗𝑊 ≤ 𝜔*(𝑇𝑣) ≤ 𝜗𝑊 − 𝜎(𝑇𝑣) ∀𝑣 ∈ 𝑉out

hold. Again by recursively exploiting the additivity of 𝜔 on the subtrees, but now also considering
the contribution of the outer vertex weights, we get

𝜔*(𝑇𝑣) = 𝜎(𝑇𝑣)− 𝜗𝑊 = 𝜔−(𝑇𝑣, 𝜗𝑊) = 𝜔+(𝑇𝑣, 𝜗𝑊) ∀𝑣 ∈ 𝑉in.

If we have 𝑉in ̸= ∅, we know from the proof of Lemma 4.36 that 𝜗𝑊 = 𝜗1
2
and the equalities of

Corollary 4.39 concerning the inner vertices thus also hold. Similarly, we can deduce 𝜔*(𝑉) =𝑊
and therefore have 𝜔* ∈ Ω(𝜗𝑊).

Analogously to before, we can state about the computational time needed to get these weights:

Corollary 4.43. The weights 𝜔* of Lemma 4.42 can be computed in 𝒪(|𝑉 |).

Proof. The same argumentation as in the proof of Corollary 4.41 holds.

Furthermore, due to the shift of some weights to the next outer vertices by the subtraction of
the highlighted terms, we have already achieved better weights in terms of the maximal weight
value and can state

113

4 Weight Distribution

Lemma 4.44. For 𝜔* of Lemma 4.42 and �̃�* of Theorem 4.40 with ‖�̃�*‖∞ > 𝜗𝑊 , we have

max
𝑣∈𝑉

𝜔*
𝑣 ≤ max

𝑣∈𝑉
�̃�*
𝑣 .

Proof. Due to �̃�* ≥ O, we know

‖�̃�*‖∞ = max
𝑣∈𝑉

�̃�*
𝑣 > 𝜗𝑊 .

By the first remark following Definition 4.29, we have 𝜗1
2
− 𝜎(𝑇𝑣) ≥ 𝜗𝑊 − 𝜎(𝑇𝑣) ≥ 0 for all

𝑣 ∈ 𝑉out. Thus, on the one hand, we get 0 ≤ 𝜔*
𝑣 ≤ 𝜗𝑊 for all 𝑣 ∈ 𝑉out and

𝜗𝑊 ≥ max
𝑣∈𝑉out

𝜔*
𝑣 .

On the other hand, we get 𝜔*
𝑣 ≤ �̃�*

𝑣 for all 𝑣 ∈ 𝑉in ∪ {𝑟} by the construction of the weights in
Lemma 4.42, resulting in

max
𝑣∈𝑉

�̃�*
𝑣 ≥ max

𝑣∈𝑉in∪{𝑟}
�̃�*
𝑣 ≥ max

𝑣∈𝑉in∪{𝑟}
𝜔*
𝑣 .

Combining all yields the above claim.

Unfortunately, in contrast to the weights given in Theorem 4.40, we do not necessarily have
𝜔* ≥ O for 𝜔* of Lemma 4.42. Due to the subtraction, there might now be inner vertices whose
weights are negative, which is why we cannot state

‖𝜔*‖∞ = max
𝑣∈𝑉

𝜔*
𝑣

because there might be a vertex 𝑣 with a large negative weight and

−𝜔𝑣 ≥ max
𝑣∈𝑉

𝜔*
𝑣 .

However, with the following lemma, we see we can ‘repair’ a possibly appearing negative weight:

Theorem 4.45. If 𝐺 is a tree and 𝐴 forms an arborescence with root 𝑟, for 𝜔* ∈ R𝑉 of
Lemma 4.42, there exists �̃�* ∈ Ω(𝜗𝑊) with

� �̃�*
𝑣 = 0 for all 𝑣 ∈ 𝑉 with 𝜔*

𝑣 < 0 and

� 0 ≤ �̃�*
𝑣 ≤ 𝜔*

𝑣 for all 𝑣 ∈ 𝑉 with 𝜔*
𝑣 ≥ 0.

Thus, we have �̃�* ≥ O.

Proof. The difference of the 𝜔*’s of Theorem 4.40 and Lemma 4.42 is a shift of some weight
from inner vertices or the root to their outer successors. Therefore, only those vertices could
get negative by shifting ‘too much’. Reducing the weight of the outer successors again properly
results in �̃�* ≥ O. This is possible because we can freely choose the weight of such a successor 𝑠
in [𝜎(𝑇𝑠)− 𝜗𝑊 , 𝜗𝑊 − 𝜎(𝑇𝑠)], being non-empty. By changing the weight of the inner predecessor 𝑣
accordingly, the subtree weight remains constant with �̃�*(𝑇𝑣) = 𝜔*(𝑇𝑣) and the constraints stay
fulfilled.

This means that �̃�* can be constructed from 𝜔* of Lemma 4.42 with

�̃�*
𝑣 = 𝜔*

𝑣 ∀𝑣 ∈ 𝑉in ∪ {𝑟}, 𝜔*
𝑣 ≥ 0 and ∀𝑣 ∈ 𝑉out, 𝑝𝑣 ̸∈ 𝑉in ∪ {𝑟},

�̃�*
𝑣 = 0 ∀𝑣 ∈ 𝑉in ∪ {𝑟}, 𝜔*

𝑣 < 0,

�̃�*
𝑠 = 𝜔*

𝑠 − 𝜀𝑠 ∀𝑠 ∈ 𝑆out(𝑣) ∀𝑣 ∈ 𝑉in ∪ {𝑟}, 𝜔*
𝑣 < 0

114

4.5 Strength-Only Problem on Trees

for some appropriate 𝜀 ∈ R𝑈
≥0, 𝑈 := {𝑠 ∈ 𝑆out(𝑣), 𝑣 ∈ 𝑉in ∪ {𝑟}, 𝜔*

𝑣 < 0}, with 𝜀𝑠 ≤ 𝜔*
𝑠 for all

𝑠 ∈ 𝑈 , and ∑︁
𝑠∈𝑆out(𝑣)

𝜀𝑠 = |𝜔*
𝑣 | ∀𝑣 ∈ 𝑉in ∪ {𝑟}, 𝜔*

𝑣 < 0.

Starting from the leaves, we get inductively for 𝑣 ∈ 𝑉in with 𝜔𝑣 < 0 that

𝜔*(𝑇𝑣) = 𝜔*
𝑣 +

∑︁
𝑠∈𝑆out(𝑣)

𝜔*
𝑠 +

∑︁
𝑠∈𝑆in(𝑣)

𝜔*(𝑇𝑠)

= 𝜔*
𝑣 +

∑︁
𝑠∈𝑆out(𝑣)

(�̃�*
𝑠 + 𝜀𝑠) +

∑︁
𝑠∈𝑆in(𝑣)

�̃�*(𝑇𝑠)

= 𝜔*
𝑣 +

∑︁
𝑠∈𝑆out(𝑣)

𝜀𝑠⏟ ⏞
=0= �̃�*

𝑣

+
∑︁

𝑠∈𝑆(𝑣)
�̃�*(𝑇𝑠)

= �̃�*(𝑇𝑣)

by assuming 𝜔*(𝑇𝑠) = �̃�*(𝑇𝑠) for all 𝑠 ∈ 𝑆in(𝑣). Thus, by this construction, we get �̃�* ≥ O and
�̃�*
𝑣 ≤ 𝜔*

𝑣 for all 𝑣 ∈ 𝑉 with 𝜔*
𝑣 ≥ 0 but still have �̃�* ∈ Ω(𝜗𝑊).

Even with the required computational steps to repair the weights, we still have the linear time
complexity:

Corollary 4.46. The modified weights �̃�* of Theorem 4.45 can be calculated in 𝒪(|𝑉 |).

Proof. By iterating through the tree starting at the leaves analogously to the proof of Corol-
lary 4.41, we can find the 𝜀-values and get the repaired weights �̃�* from 𝜔*, which can itself be
found in linear time by Corollary 4.43.

Furthermore, with these corrected weights, we now have the desired equality

‖�̃�*‖∞ = max
𝑣∈𝑉

�̃�*
𝑣 ,

which means, if there are 𝑣 ∈ 𝑉 with 𝜔*
𝑣 ≤ 0 for 𝜔* as constructed in Lemma 4.42, we can

discard them in the further considerations of the maximum norm of the found 𝜔*. Additionally,
we can see that we have achieved ‖�̃�*‖∞ ≤ 𝜗𝑊 , thus particularly ‖�̃�*‖∞ ≤ 𝜗𝑊 + 𝛾, or only the
inner vertices need to be checked whether their weight exceeds 𝜗𝑊 or not:

Corollary 4.47. We have ‖�̃�*‖∞ ≤ 𝜗𝑊 or

‖�̃�*‖∞ = max
𝑣∈𝑉in∪{𝑟}

𝜔*
𝑣 > 𝜗𝑊

for 𝜔* of Lemma 4.42 and the correspondingly modified �̃�* of Theorem 4.45.

Proof. Assume we have ‖�̃�*‖∞ > 𝜗𝑊 . Then we get

‖�̃�*‖∞ = max
𝑣∈𝑉

�̃�*
𝑣 = max

𝑣∈𝑉in∪{𝑟}
�̃�*
𝑣

115

4 Weight Distribution

due to �̃�* ≥ O and �̃�*
𝑣 ≤ 𝜔*

𝑣 ≤ 𝜗𝑊 − 𝜎(𝑇𝑣) ≤ 𝜗𝑊 for all 𝑣 ∈ 𝑉out. Due to 𝜗𝑊 ≥ 0, the set
{𝑣 ∈ 𝑉in ∪ {𝑟} : �̃�*

𝑣 ≥ 0} is non-empty and we get

max
𝑣∈𝑉in∪{𝑟}

�̃�*
𝑣 = max

𝑣∈𝑉in∪{𝑟}
�̃�*
𝑣≥0

�̃�*
𝑣 = max

𝑣∈𝑉in∪{𝑟}
𝜔*
𝑣≥0

𝜔*
𝑣 = max

𝑣∈𝑉in∪{𝑟}
𝜔*
𝑣

because, by the construction in Theorem 4.45, we keep �̃�*
𝑣 = 𝜔*

𝑣 for all 𝑣 ∈ 𝑉in ∪ {𝑟} which
fulfil 𝜔*

𝑣 ≥ 0.

Using this relation, we can now establish a simple criterion which indicates whether we have
found an optimal solution for the full problem:

Corollary 4.48. If 𝜔*
𝑣 ≤ 𝜗𝑊 + 𝛾 holds for all 𝑣 ∈ 𝑉in ∪ {𝑟} for 𝜔* of Lemma 4.42, we have

𝜗♢ = 𝜗𝑊 and (𝜗𝑊 , �̃�
*) is an optimal solution of the Full Weight Distribution Problem on

Trees with the modified �̃�* of Theorem 4.45, hence

(𝜗𝑊 , �̃�
*) ∈ argmin

{︀
(1,O)⊤𝜆 : 𝜆 ∈ Θ ∩ Φ−𝛾

}︀
.

Proof. From Corollary 4.47, we have ‖�̃�*‖∞ ≤ 𝜗𝑊 + 𝛾 in this case and therefore (𝜗𝑊 , �̃�
*) ∈ Φ−𝛾 .

Together with (𝜗𝑊 , �̃�
*) ∈ argmin

{︀
(1,O)⊤𝜆 : 𝜆 ∈ Θ

}︀
, we have that (𝜗𝑊 , �̃�

*) is an optimal
solution and the overall objective value of the Full Weight Distribution Problem on
Trees is 𝜗𝑊 .

Optimality

In the previous section, we have constructed improved weights for the Strength-only Weight
Distribution Problem on Trees. Here, we show that there do not exist different weights
that yield a smaller maximal value than those of Lemma 4.42. This result is achieved by several
steps. First of all, we can show that for each inner vertex the weight is chosen minimally. For
this we need the ‘not-yet-repaired’ weights of Lemma 4.42:

Lemma 4.49. With 𝜔* of Lemma 4.42, we have

𝜔*
𝑣 = min

{︀
𝜔𝑣 : 𝜔 ∈ Ω(𝜗𝑊)

}︀
∀𝑣 ∈ 𝑉in ∪ {𝑟}.

Proof. From the proof of Lemma 4.42, we see that the 𝜔-sums of the subtrees of outer succes-
sors get their maximal weight according to the upper bounds given by the inequalities describ-
ing Ω(𝜗𝑊) in Corollary 4.39. This means

𝜔*(𝑇𝑣) = 𝜔+(𝑇𝑣, 𝜗𝑊) = max
𝜔∈Ω(𝜗𝑊)

𝜔(𝑇𝑣) ∀𝑣 ∈ 𝑉out, 𝑝𝑣 ∈ 𝑉in ∪ {𝑟}.

Furthermore, we have

𝜔*(𝑇𝑣) = 𝜔−(𝑇𝑣, 𝜗𝑊) = min
𝜔∈Ω(𝜗𝑊)

𝜔(𝑇𝑣)

= 𝜔+(𝑇𝑣, 𝜗𝑊) = max
𝜔∈Ω(𝜗𝑊)

𝜔(𝑇𝑣) ∀𝑣 ∈ 𝑉in,

116

4.5 Strength-Only Problem on Trees

due to the collapse of the inequalities in Corollary 4.39. With 𝑇𝑟 = 𝑉 , 𝜔*(𝑉) = 𝑊 and
𝜔−(𝑇𝑟, 𝜗𝑊) = 𝜔+(𝑇𝑟, 𝜗𝑊) := 𝑊 , we can use the same notation also for the root 𝑟. Hence, for
𝑣 ∈ 𝑉in ∪ {𝑟}, we have

𝜔*
𝑣 = 𝜔*(𝑇𝑣)−

∑︁
𝑠∈𝑆(𝑣)

𝜔*(𝑇𝑠)

= min
𝜔∈Ω(𝜗𝑊)

𝜔(𝑇𝑣)−
∑︁

𝑠∈𝑆(𝑣)
max

𝜔∈Ω(𝜗𝑊)
𝜔(𝑇𝑠)

≤ min
𝜔∈Ω(𝜗𝑊)

⎧⎨⎩𝜔(𝑇𝑣)− ∑︁
𝑠∈𝑆(𝑣)

𝜔(𝑇𝑠)

⎫⎬⎭
= min

𝜔∈Ω(𝜗𝑊)
𝜔𝑣.

As the reverse direction is trivial, the weights 𝜔*
𝑣 take on their minimal value for all 𝑣 ∈ 𝑉in ∪ {𝑟}.

Remember, although the weights from Lemma 4.42 can also be negative, we have adjusted this
with Theorem 4.45. By this not all of the vertices might be chosen minimally anymore. In
combination with the former lemma, we however see that we only have changed the maximal
value of the weights of the inner vertices if all of them were negative before. If this is not the
case, we have already found weights for the inner vertices whose maximal value cannot be chosen
smaller:

Lemma 4.50. For the modified �̃�* of Theorem 4.45, we have

max
𝑣∈𝑉in∪{𝑟}

�̃�*
𝑣 = max

{︁
0, min

𝜔∈Ω(𝜗𝑊)
max

𝑣∈𝑉in∪{𝑟}
𝜔𝑣

}︁
.

Proof. With �̃�* ∈ Ω(𝜗𝑊) and �̃�* ≥ O, we clearly have

max
𝑣∈𝑉in∪{𝑟}

�̃�*
𝑣 ≥ min

𝜔∈Ω(𝜗𝑊)
max

𝑣∈𝑉in∪{𝑟}
𝜔𝑣,

max
𝑣∈𝑉in∪{𝑟}

�̃�*
𝑣 ≥ 0,

which is combined

max
𝑣∈𝑉in∪{𝑟}

�̃�*
𝑣 ≥ max

{︁
0, min

𝜔∈Ω(𝜗𝑊)
max

𝑣∈𝑉in∪{𝑟}
𝜔𝑣

}︁
.

In the proof of Theorem 4.45 and by Lemma 4.49, we see that, with the corresponding 𝜔* of
Lemma 4.42, we have

�̃�*
𝑣 = max

{︀
0, 𝜔*

𝑣

}︀
= max

{︁
0, min

𝜔∈Ω(𝜗𝑊)
𝜔𝑣

}︁
for 𝑣 ∈ 𝑉in ∪ {𝑟}. Thus, we get the reverse inequality with

max
𝑣∈𝑉in∪{𝑟}

�̃�*
𝑣 = max

𝑣∈𝑉in∪{𝑟}
max

{︁
0, min

𝜔∈Ω(𝜗𝑊)
𝜔𝑣

}︁
= max

{︁
0, max

𝑣∈𝑉in∪{𝑟}
min

𝜔∈Ω(𝜗𝑊)
𝜔𝑣

}︁
≤ max

{︁
0, min

𝜔∈Ω(𝜗𝑊)
max

𝑣∈𝑉in∪{𝑟}
𝜔𝑣

}︁
117

4 Weight Distribution

since, for all 𝑣 ∈ 𝑉in ∪ {𝑟} and for all 𝜔 ∈ Ω(𝜗𝑊), we have

min
�̃�∈Ω(𝜗𝑊)

�̃�𝑣 ≤ 𝜔𝑣 ≤ max
𝑣∈𝑉in∪{𝑟}

𝜔𝑣.

As we can exclude the case where the weights of Lemma 4.42 are negative for all inner vertices,
we have ‖𝜔*‖∞ ≤ 𝜗𝑊 in this case according to Corollary 4.47. We can thus deduce

Corollary 4.51. If there exists at least one 𝑣 ∈ 𝑉in ∪ {𝑟} with �̃�*
𝑣 > 0 for �̃�* of Theorem 4.45,

we have
max

𝑣∈𝑉in∪{𝑟}
�̃�*
𝑣 = min

𝜔∈Ω(𝜗𝑊)
max

𝑣∈𝑉in∪{𝑟}
𝜔𝑣.

Proof. Clear from Lemma 4.50.

With this result, only a single step is left to show the optimality of the constructed weights. For
this we introduce a subset of the suitable weights Ω(𝜗) = {𝜔 : (𝜗, 𝜔) ∈ Θ}, where Θ, remember,
denotes the set of feasible solutions of the Strength-only Weight Distribution Problem
on Trees:

Definition 4.52. For 𝜗 ≥ 𝜗𝑊 , let

Ω*(𝜗)Ω*(𝜗)Ω*(𝜗) := argmin
{︀
‖𝜔‖∞ : 𝜔 ∈ Ω(𝜗)

}︀
.

With this set of optimal weights for a given 𝜗, we can now establish the desired optimality:

Lemma 4.53. For ‖�̃�*‖∞ > 𝜗𝑊 with �̃�* of Theorem 4.45, we have �̃�* ∈ Ω*(𝜗𝑊).

Proof. With �̃�* ∈ Ω(𝜗𝑊), we clearly have

‖�̃�*‖∞ ≥ min
{︀
‖𝜔‖∞ : 𝜔 ∈ Ω(𝜗𝑊)

}︀
.

From Corollaries 4.47 and 4.51, we have

‖�̃�*‖∞ = max
𝑣∈𝑉in∪{𝑟}

�̃�*
𝑣

= min
𝜔∈Ω(𝜗𝑊)

max
𝑣∈𝑉in∪{𝑟}

𝜔𝑣

≤ min
𝜔∈Ω(𝜗𝑊)

max
𝑣∈𝑉

𝜔𝑣

≤ min
𝜔∈Ω(𝜗𝑊)

‖𝜔‖∞,

which results in the claimed equality.

Note that we might have, but do not necessarily have, optimal weights in case of ‖�̃�*‖∞ ≤ 𝜗𝑊 .
This is mainly caused by the outer vertices, whose weight is set to the upper bound on the whole
subtree, which is already less than 𝜗𝑊 . Those weights could possibly be set to a lower value. This
however is not relevant because we nevertheless have found an optimal solution for the Full
Weight Distribution Problem on Trees in this case.

All in all, we can now summarize the results with:

118

4.5 Strength-Only Problem on Trees

Theorem 4.54. If 𝐺 is a tree and 𝐴 forms an arborescence with root 𝑟, with �̃�* of Theorem 4.45,
we have �̃�* ∈ Ω*(𝜗𝑊) or ‖�̃�*‖∞ ≤ 𝜗𝑊 .

Proof. Clear from Lemma 4.53.

While the latter means that (𝜗𝑊 , �̃�
*) is an optimal solution of the full problem straightforwardly,

we cannot distribute the weights in a better way in the first case. Nevertheless, we might have
‖�̃�*‖∞ ≤ 𝜗𝑊 + 𝛾 and have thus found an optimal solution of the Full Weight Distribution
Problem on Trees. If this is not the case, we need to tackle the problem in a different way.

4.5.4 De-contraction

In this section, we briefly investigate the case where the arc set 𝐴 does not form an arborescence
in the tree 𝐺. We show that we can transfer the established results to this case by considering
the contracted instance as introduced in Section 4.4.5. The weights we have found can be ‘de-
contracted’ to obtain a weighting for the original instance. Note that �̃�* in the following lemma
does not necessarily need to be the one of Theorem 4.45.

Lemma 4.55. Every optimal solution
(︀
𝜗*, �̃�*)︀ to the Strength-only Weight Distribu-

tion Problem on Trees over the contracted instance yields an optimal solution
(︀
𝜗1

2
, 𝜔*)︀ to

the Strength-only Weight Distribution Problem on Trees over the uncontracted in-
stance with

𝜔*
𝑣 = 0 ∀𝑣 ∈ 𝑉 ∖ (𝑇ℓ ∪ 𝑇𝑟),
𝜔*
𝑣 = �̃�*

𝑣 ∀𝑣 ∈ 𝑇ℓ ∪ 𝑇𝑟 ∖ {ℓ, 𝑟},
𝜔*
ℓ = 1

2𝑊 − �̃�
*(𝑇ℓ ∖ {ℓ}),

𝜔*
𝑟 = 1

2𝑊 − �̃�
*(𝑇𝑟 ∖ {𝑟}).

Proof. With �̃�*(𝑇�̃�) = 𝜔*(𝑇𝑎) for all �̃� ∈ 𝐴, the corresponding constraints are preserved. The
arcs in 𝐴𝑅 ⊆ 𝐴in, corresponding to the edges on the path between ℓ and 𝑟, are not considered
in the contracted instance. For such an 𝑎 ∈ 𝐴𝑅, where we have 𝜎(𝑇𝑎) =

1
2𝜎(𝑉), the inequality

for all weights 𝜔 ∈ Ω(𝜗) for some 𝜗 is

𝜗 ≥ 𝜗1
2
+ |𝜔(𝑇𝑎) + 𝜗1

2
− 𝜎(𝑇𝑎)|

= 𝜗1
2
+ |𝜔(𝑇𝑎)− 1

2𝑊 |.

Therefore, a trivial lower bound on the optimal value is 𝜗1
2
. With 𝜔* as given above, we have

𝜔*(𝑇ℓ) = 𝜔*(𝑇𝑟) = 𝜔*(𝑇𝑎) = 1
2𝑊 ∀𝑎 ∈ 𝐴𝑅

and the absolute value on the right-hand side of the inequality vanishes. Thus, the inequality is
fulfilled. Furthermore, we have

𝜔*(𝑉) = 𝜔*(𝑇ℓ) + 𝜔*(𝑇𝑟) =𝑊.

For the remaining arcs, 𝑎 = 𝑣𝑤 ∈ 𝐴 ∖ (𝐴𝑅 ∪ 𝐴), we have 𝜎(𝑇𝑎) = 0 and therefore 𝑎 ∈ 𝐴out.
With 𝜔*(𝑇𝑎) = 0 and 𝜗1

2
> 0, the corresponding constraints are fulfilled. Therefore, (𝜗1

2
, 𝜔*) is a

feasible solution with an objective value equal to the lower bound.

119

4 Weight Distribution

This means, if 𝐴 does not form an arborescence, the objective value of the Strength-only
Gapped Weight Distribution Problem is always 𝜗1

2
.

Remembering the proof of Lemma 4.36, in case the contracted instance does not contain any
inner arcs anymore, we get the optimal value 𝜗0. Only in this case, the optimal value of the
contracted instance might be less than the one of the uncontracted original instance, as we have
𝜗0 < 𝜗1

2
= 𝜗1

2
. For the objective value 𝜗0 of the Zero weight distribution problem over the

uncontracted instance, we however have 𝜗0 = 1
2𝜎(𝑉) ≥ 𝜗1

2
. This means that Lemma 4.36 also

holds if we do not have a unique root. Thus, we can now reformulate Corollary 4.41 without
the restriction to an arborescence, which means we have solved the Strength-only Weight
Distribution Problem on Trees for all different cases:

Corollary 4.56. If 𝐺 is a tree, we can find an optimal solution for the Strength-only
Weight Distribution Problem in 𝒪(|𝑉 |).

Proof. Clear from Corollary 4.41 and the explicit formulas of Lemma 4.55.

Proceeding analogously with the considerations for the Full Weight Distribution Problem
on Trees, do the preceding modifications preserve the optimality of the weights obtained from
the contracted instance in the sense of Theorem 4.54? Or in other words, can we not achieve
better weights than by ‘de-contracting’ �̃�* of Theorem 4.45 according to Lemma 4.55? We see
that in general the weights are already chosen optimally.

However, for the case 𝐴in = ∅, we need to apply slight adjustments. As the contracted instance
yields the optimal value 𝜗0 < 𝜗1

2
in this case, we have

�̃�*(𝑇𝑣) = 𝜔+(𝑇𝑣, 𝜗0) < 𝜔+(𝑇𝑣, 𝜗1
2
)

for 𝑣 ∈ 𝑇ℓ∪𝑇𝑟 = 𝑉 ∖{𝑟} and the weights �̃�* ∈ R𝑉 of Lemma 4.42. Thus, we loose the optimality
argument when passing over to the uncontracted setting. Only by considering a feasible but
non-optimal solution to the Strength-only Weight Distribution Problem on Trees on
the contracted instance, we can retain it. Therefore, we consider:

Lemma 4.57. For 𝐴in = ∅ and �̃�* ∈ R𝑉 with

�̃�*
𝑣 = 0 ∀𝑣 ∈ 𝑉 ∖ (𝑆(𝑟) ∪ {𝑟}),
�̃�*
𝑣 = 𝜗1

2
− 𝜎(𝑇𝑣) ∀𝑣 ∈ 𝑆(𝑟),

�̃�*
𝑟 =𝑊 −

∑︁
𝑣∈𝑆(𝑟)

(𝜗1
2
− 𝜎(𝑇𝑣)),

we have �̃�* ∈ Ω(𝜗1
2
).

Proof. Due to 𝐴in = ∅, we have 𝑆(𝑟) ⊆ 𝑉out and

𝜔−(𝑇𝑣, 𝜗1
2
) ≤ �̃�*

𝑣 = �̃�*(𝑇𝑣) ≤ 𝜔+(𝑇𝑣, 𝜗1
2
) ∀𝑣 ∈ 𝑉 ∖ {𝑟},

where we have equality in the last relation for 𝑣 ∈ 𝑆(𝑟). As the given weights also sum up to 𝑊 ,
we have �̃�* ∈ Ω(𝜗1

2
).

120

4.5 Strength-Only Problem on Trees

Remark: For these given weights, we do not necessarily have �̃�* ≥ O, but they can analogously
be ‘repaired’ with Theorem 4.45. Furthermore, we observe that these weights also provide an
optimal solution to the uncontracted instance with the same arguments as given in Lemma 4.55.

Now we can continue to consider the de-contracted instances, where we observe that the con-
struction of Lemma 4.55 or Lemma 4.57 might introduce negative weights again. Therefore, we
need to establish the non-negativity of the de-contracted weights analogously to Theorem 4.45,
before we proceed with the optimality:

Theorem 4.58. Let �̃�* be a weighting for the contracted instance given by Theorem 4.45, re-
spectively, Lemma 4.57 in case of 𝐴in = ∅. If 𝐺 is a tree and 𝐴 does not form an arborescence,
for 𝜔* obtained from �̃�* by the construction of Lemma 4.55, there exists 𝜔+ ∈ Ω(𝜗1

2
) with

� 𝜔+
𝑣 = 0 for all 𝑣 ∈ 𝑉 with 𝜔*

𝑣 < 0 and

� 0 ≤ 𝜔+
𝑣 ≤ 𝜔*

𝑣 for all 𝑣 ∈ 𝑉 with 𝜔*
𝑣 ≥ 0.

Thus, we have 𝜔+ ≥ O and 𝜔+ can be found in 𝒪(|𝑉 |).

Proof. If we have 𝜔* ≥ O, there is nothing to show. Since we have �̃�* ≥ O and, by the
construction of Lemma 4.55, we take over all weights apart from the one of the root of the
contracted instance, we can only have 𝜔*

ℓ < 0 or 𝜔*
𝑟 < 0 in case there exists a negative weight.

As we further have 𝜔ℓ + 𝜔𝑟 = 𝑊 ≥ 0, the negativity concerns only one root. Let this, w.l.o.g.
due to the symmetry, be 𝑟.

We have
𝜔*
𝑟 = 1

2𝑊 −
∑︁

𝑠∈𝑆(𝑟)∩𝑇𝑟

�̃�*(𝑇𝑠)

= 1
2𝑊 −

∑︁
𝑠∈𝑆in(𝑟)∩𝑇𝑟

(︀
𝜎(𝑇𝑠)− 𝜗1

2

)︀
−

∑︁
𝑠∈𝑆out(𝑟)

(︀
𝜗1

2
− 𝜎(𝑇𝑠)

)︀
,

which looks very similar to the root weight of Lemma 4.42. Analogously to the proof of Theo-
rem 4.45, we can show that the negative weight is only caused by the contribution of the outer
vertices on the right-hand side of the above equation. For this we first show

1
2𝑊 −

∑︁
𝑠∈𝑆in(𝑟)∩𝑇𝑟

(︀
𝜎(𝑇𝑠)− 𝜗1

2

)︀
≥ 0, (i)

where the left-hand side looks in turn similar to the weights of Theorem 4.40. Therefore, we can
also adopt its proof: With 𝜎(𝑇𝑟) =

1
2𝜎(𝑉) and 𝜎 ≥ O, we see by

𝜔*
𝑟 = 1

2𝑊 −
∑︁

𝑠∈𝑆in(𝑟)∩𝑇𝑟

(︀
𝜎(𝑇𝑠)− 𝜗1

2

)︀
= 1

2𝑊 − 𝜎(𝑇𝑟) + 𝜎𝑟 +
∑︁

𝑠∈𝑆out(𝑟)

𝜎(𝑇𝑠) + 𝜗1
2

⃒⃒
𝑆in(𝑟) ∩ 𝑇𝑟

⃒⃒
= 𝜎𝑟 +

∑︁
𝑠∈𝑆out(𝑟)

𝜎(𝑇𝑠) + 𝜗1
2

(︀⃒⃒
𝑆in(𝑟)

⃒⃒
− 1
)︀

that inequality (i) holds for |𝑆in(𝑟)
⃒⃒
≥ 1. Clearly, for 𝑆in(𝑟) = ∅, inequality (i) also holds with

𝑊 ≥ 0.

Now we can apply the same arguments as in the proof of Theorem 4.45 to repair the negative
weight by reducing the weight on the outer neighbors and with this we can construct the desired
non-negative weight 𝜔+ ∈ Ω(𝜗1

2
). The runtime of Corollary 4.46 still applies.

121

4 Weight Distribution

Now we can deduce the analogous result for multiple roots:

Theorem 4.59. If G is a tree and A does not form an arborescence, we have 𝜔+ ∈ Ω*(𝜗1
2
) or

‖𝜔+‖∞ ≤ 𝜗𝑊 for 𝜔+ of Theorem 4.58.

Proof. For the weights on the vertices in the subtrees 𝑇𝑟 and 𝑇ℓ, apart from ℓ and 𝑟 themselves,
we can follow the same proof steps as of Lemma 4.53 referring back to Lemma 4.49: The weights
on the vertices cannot be reduced further because the subtree weights, subtracted in the induc-
tive step, are chosen equal to their upper bound. Thus, they are also chosen optimally in the
uncontracted instance.

By Corollary 4.39, we see the collapse of the inequalities for the inner arcs and we therefore need
𝜔+(𝑇𝑎) =

1
2𝑊 for all 𝑎 ∈ 𝐴𝑅, resulting in 𝜔+(𝑇ℓ) = 𝜔+(𝑇𝑟) =

1
2𝑊 . All remaining vertices in

𝑅 ∖ {ℓ, 𝑟} as well as those attached to them can only be set to 0. By the additivity of 𝜔+, the
weights for the roots 𝑟 and ℓ are directly given by the choice of the weights in 𝑇ℓ and 𝑇𝑟 and can
thus also not be reduced further. Hence, all weights apart from those of the outer vertices are
chosen optimally. Their weight is still lower or equal 𝜗𝑊 already and the above statement thus
follows analogously to Theorem 4.54, respectively, Lemma 4.53.

This means we can state analogously to the section before: If the found weights 𝜔+ fulfil

‖𝜔+‖∞ ≤ 𝜗𝑊 + 𝛾,

we have also found an optimal solution for the Full Weight Distribution Problem on
Trees.

4.6 Full Problem on Trees

In this section, we deal with the Full Weight Distribution Problem on Trees. As we have
seen in the previous section, we can start by calculating the optimal value 𝜗𝑊 and corresponding
second-level optimal weights 𝜔* of the Strength-only Weight Distribution Problem on
Trees and check whether we have max𝑣∈𝑉 𝜔*

𝑣 ≤ 𝜗𝑊 +𝛾 already. If this is not the case, we know
we need to increase 𝜗 to enlarge the set of feasible weights Ω(𝜗) and thus also possibly shift the
set of optimal weights Ω*(𝜗).

In the following, we consider 𝜔*(𝜗)𝜔*(𝜗)𝜔*(𝜗) ∈ Ω*(𝜗) to be an arbitrary optimal weighting for a certain
𝜗 ≥ 𝜗𝑊 . This means we have

‖𝜔*(𝜗)‖∞ = min
𝜔∈Ω(𝜗)

‖𝜔‖∞.

For instance, by Lemma 4.53, the weights 𝜔*(𝜗𝑊) can be equal to �̃�* of Theorem 4.45, but they
do not need to be. Nevertheless, we have ‖𝜔*(𝜗𝑊)‖∞ = ‖�̃�*‖∞ for all choices of 𝜔*(𝜗𝑊).

In the following, we only consider the case where ‖𝜔*(𝜗𝑊)‖∞ exceeds 𝜗𝑊 +𝛾 = min
{︀
𝜗0, 𝜗1

2

}︀
+𝛾.

Remember, we further focus on the cases here where 𝐺 is a tree and we have 0 < 𝜗1
2
< 1

2𝜎(𝑉)
due to 𝜎(𝑉) > 𝑊 > 0. The optimal value of the Full Weight Distribution Problem on
Trees is denoted by 𝜗♢.

122

4.6 Full Problem on Trees

4.6.1 Uniqueness

In this section, we derive some general results about the relation of 𝜗 and 𝜔*(𝜗). These results
are independent of whether the corresponding arborescence 𝐴 has a unique root or not. First,
we formally summarize the results of the previous section concerning their consequences for the
full problem:

Corollary 4.60. If we have ‖𝜔*(𝜗𝑊)‖∞ > 𝜗𝑊 +𝛾, the Full Weight Distribution Problem
on Trees has an optimal value 𝜗♢ > 𝜗𝑊 .

This means we certainly know that the optimal value of the Full Weight Distribution
Problem on Trees 𝜗♢ exceeds 𝜗𝑊 if the weights found in the previous section do not suffice.
Furthermore, we can establish the following inverse proportionality relation:

Corollary 4.61. For 𝜗𝑊 ≤ 𝜗1 ≤ 𝜗2, we have ‖𝜔*(𝜗𝑊)‖∞ ≥ ‖𝜔*(𝜗1)‖∞ ≥ ‖𝜔*(𝜗2)‖∞.

Proof. Clear from Corollary 4.30.

Hence, by increasing 𝜗, we can possibly decrease the maximal absolute value of the weights and
thus close up both values. The search for the ‘sweet spot’ can be more formally expressed with:

Theorem 4.62. The Full Weight Distribution Problem on Trees is equivalent to the
search for the (thus unique) 𝜗 with 𝜗+ 𝛾 = ‖𝜔*(𝜗)‖∞.

Proof. Clearly, for some 𝜗 with 𝜗+ 𝛾 = ‖𝜔*(𝜗)‖∞, we have

𝜗 ≥ min
{︀
𝜗 ∈ R : 𝜗+ 𝛾 = ‖𝜔*(𝜗)‖∞

}︀
≥ min

{︀
𝜗 ∈ R : 𝜗+ 𝛾 ≥ ‖𝜔*(𝜗)‖∞

}︀
= min

{︀
𝜗 : (𝜗, 𝜔) ∈ Θ ∩ Φ−𝛾

}︀
= 𝜗♢.

In turn, 𝜗 ≥ 𝜗♢ via Corollary 4.61 also implies

𝜗 = ‖𝜔*(𝜗)‖∞ − 𝛾 ≤ ‖𝜔*(𝜗♢)‖∞ − 𝛾 ≤ 𝜗♢,

resulting in the equality of 𝜗 and 𝜗♢.

Using this equivalence, we can now reformulate

𝜗♢ = min
{︀
‖𝜔‖∞ − 𝛾 :

(︀
‖𝜔‖∞, 𝜔

)︀
∈ Θ

}︀
= min

{︀
‖𝜔‖∞ − 𝛾 : 𝜔 ∈ Ω

(︀
‖𝜔‖∞

)︀}︀
.

In the following, we use this formulation to approach the Full Weight Distribution Prob-
lem on Trees. Although Lemma 4.55 might not necessarily hold equivalently for this problem
version, for the beginning, we also consider only unique roots.

Using the previous results, we can now already conclude the Full Weight Distribution
Problem on Trees for a special case, namely when we have 𝐴in = ∅. Remember, this means
we always have a unique root and the optimal value for the Strength-only Weight Distri-
bution Problem on Trees is 𝜗0. This case is illustrated with the corresponding bounds on
the subtree weights in Figure 4.10 on the next page.

By manipulating the formerly computed optimal weights for the strength-only problem, we can
obtain the optimal value and the corresponding weights for the full one:

123

4 Weight Distribution

𝑟

𝑣

⌃⎮⎮
𝑣*

⌃⎮⎮

𝑇𝑣*

𝜎(𝑇𝑣)− 𝜗0 ≤ 𝜔(𝑇𝑣) ≤ 𝜗0 − 𝜎(𝑇𝑣) 𝜔(𝑇𝑣*) = 0

𝜎(𝑇𝑣*) = 𝜗0

Figure 4.10: Arborescence with only outer vertices

Theorem 4.63. If 𝐺 is a tree and we have 𝐴in = ∅ and ‖𝜔*‖∞ > 𝜗0 + 𝛾 with 𝜔* as constructed
in Theorem 4.45, we have 𝜗♢ = 𝜗0 + 𝜀* with

𝜀* =
𝜔*
𝑟 − 𝜗0 − 𝛾
|𝑆(𝑟)|+ 1

.

Proof. For 𝐴in = ∅, we have 𝜗𝑊 = 𝜗0 according to the proof of Lemma 4.36 and, by the con-
struction of Lemma 4.42, the weights 𝜔* are given with

𝜔*
𝑣 = 0 ∀𝑣 ∈ 𝑉 ∖ (𝑆(𝑟) ∪ {𝑟}),
𝜔*
𝑣 = 𝜗0 − 𝜎(𝑇𝑣) ∀𝑣 ∈ 𝑆(𝑟),

𝜔*
𝑟 =𝑊 −

∑︁
𝑣∈𝑆(𝑟)

𝜔*
𝑣 .

By Corollary 4.47, we have ‖𝜔*‖∞ = 𝜔*
𝑟 > 𝜗0 + 𝛾 and the application of Theorem 4.45 does not

result in a different 𝜔*. By adding some 𝜀 ≥ 0 to 𝜗0 + 𝛾, we can increase the upper bounds on
the weights of the successors of the root. Let

𝜔𝑣(𝜀) := 𝜗0 + 𝜀− 𝜎(𝑇𝑣) = 𝜔*
𝑣 + 𝜀 ∀𝑣 ∈ 𝑆(𝑟)

be a function describing the weight in dependence of 𝜀. This way, the weights still fulfil

𝜔𝑣(𝜀) ≤ 𝜗0 + 𝜀− 𝜎(𝑇𝑣) ≤ 𝜗0 + 𝜀+ 𝛾.

Reducing the weight of the root accordingly by

𝜔𝑟(𝜀) =𝑊 −
∑︁

𝑣∈𝑆(𝑟)
𝜔𝑣(𝜀)

=𝑊 −
∑︁

𝑣∈𝑆(𝑟)
(𝜔*

𝑣 + 𝜀)

=𝑊 −
∑︁

𝑣∈𝑆(𝑟)
𝜔*
𝑣 − 𝜀|𝑆(𝑟)|

= 𝜔*
𝑟 − 𝜀|𝑆(𝑟)|,

124

4.6 Full Problem on Trees

keeps ∑︁
𝑣∈𝑉

𝜔𝑣(𝜀) =𝑊

and we have 𝜔(𝜀) ∈ Ω(𝜗0 + 𝜀). As 𝜔𝑟(𝜀) is a decreasing linear function in 𝜀, we still have

‖𝜔(𝜀)‖∞ = 𝜔𝑟(𝜀) ≥ 𝜗0 + 𝜀+ 𝛾

for 𝜀 not being too large. Analogously to the proof of Lemma 4.49, the weights of the subtrees are
set to their upper bound. Since 𝜔𝑟(𝜀) does only depend on these weights, it cannot be reduced
further for a fixed 𝜀. Therefore, we also have 𝜔(𝜀) ∈ Ω*(𝜗0 + 𝜀).

Balancing the root weight with

𝜔*
𝑟 − 𝜀*|𝑆(𝑟)| = 𝜗0 + 𝜀* + 𝛾

results in the 𝜀* as stated in the lemma and

‖𝜔*(𝜗0 + 𝜀*)‖∞ = ‖𝜔(𝜀*)‖∞ = 𝜔𝑟(𝜀
) = 𝜗0 + 𝜀 + 𝛾.

Thus, according to Theorem 4.62, we have found the optimal value with 𝜗♢ = 𝜗0 + 𝜀*.

Hence, the optimal solution of the Full Weight Distribution Problem on Trees is given
with (𝜗0 + 𝜀*, 𝜔(𝜀*)) for 𝜔(𝜀) as defined in the proof. Again, with these explicit formulas, we can
easily see:

Corollary 4.64. If 𝐺 is a tree and we have 𝐴in = ∅, we can find an optimal solution for the Full
Weight Distribution Problem in 𝒪(|𝑉 |).

Thus, the remaining case we need to consider is where we have 𝐴in ̸= ∅.

4.6.2 Non-negative Weights

In Section 4.5, we have seen that we can always find a suitable weighting for the optimal value 𝜗𝑊
of the Strength-only Weight Distribution Problem on Trees, where all weights are
non-negative, which simplifies the consideration of the maximum norm. This holds even if those
weights are required to be optimal, in the sense that their maximal absolute value is minimal.
To approach the Full Weight Distribution Problem on Trees further, we start in this
section with transferring this result to a more general case. By the following generalization of
Theorem 4.45, we see that we can always restrict ourselves to non-negative weights:

Lemma 4.65. If 𝐺 is a tree and 𝐴 forms an arborescence with root 𝑟, for fixed 𝜗 ≥ 𝜗𝑊 and
𝜔 ∈ Ω(𝜗), there exists �̃� ∈ Ω(𝜗) with

� �̃�𝑣 = 0 for all 𝑣 ∈ 𝑉 with 𝜔𝑣 < 0 and

� 0 ≤ �̃�𝑣 ≤ 𝜔𝑣 for all 𝑣 ∈ 𝑉 with 𝜔𝑣 ≥ 0.

Thus, we have �̃� ≥ O.
125

4 Weight Distribution

Proof. If we have 𝜔 ≥ O already, there is nothing to show. Given a vertex 𝑣 ∈ 𝑉 with 𝜔𝑣 < 0, we
can assume that we have 𝜔𝑤 ≥ 0 for all 𝑤 ∈ 𝑇𝑣 ∖ {𝑣}, as either the vertex is a leaf, which means
there are are no successors, or we have already handled all succeeding vertices when iterating
through the tree starting at the leaves and moving upwards. We now need to differ between the
following two cases for the vertex 𝑣 ∈ 𝑉 : We have either

A) 𝜔(𝑇𝑣) < 0 or

B) 𝜔(𝑇𝑣) ≥ 0.

In the following, we show for both cases how to transform the weight of the subtree such that
the resulting weighting, denoted by �̃�, fulfils �̃�𝑤 ≥ 0 for all 𝑤 ∈ 𝑇𝑣, which means in particular
�̃�𝑣 ≥ 0, but we still have �̃� ∈ Ω(𝜗). Additionally, we construct �̃� such that we have in the end

�̃�𝑣 ≤ 𝜔𝑣 ∀𝑣 ∈ 𝑉, 𝜔𝑣 > 0.

The two cases are handled in the following way:

A) Let 𝑝 be the predecessor of 𝑣. The case is illustrated in Figure 4.11(a). In the following,
we show how to shift the whole negative weight of 𝑇𝑣 up to 𝜔𝑝 without interfering with the
inequalities defining Ω(𝜗): As we have 𝜔 ∈ Ω(𝜗) with 𝜔(𝑇𝑣) < 0, we know that 𝜔−(𝑇𝑣, 𝜗) < 0.
Thus, with setting

�̃�𝑤 := 0 ∀𝑤 ∈ 𝑇𝑣,

the constraints

𝜔−(𝑇𝑤, 𝜗) < �̃�(𝑇𝑤) = 0 ≤ 𝜔+(𝑇𝑤, 𝜗) ∀𝑤 ∈ 𝑇𝑣

are still satisfied by the remark following Definition 4.29. Keeping the other vertices un-
changed with

�̃�𝑤 := 𝜔𝑤 ∀𝑤 ∈ 𝑉 ∖ (𝑇𝑣 ∪ {𝑝}),
we get

�̃�(𝑇𝑤) = 𝜔(𝑇𝑤) ∀𝑤 ∈ 𝑉, 𝑇𝑤 ∩ 𝑇𝑣 = ∅.

With

�̃�𝑝 := 𝜔𝑝 − |𝜔(𝑇𝑣)| = 𝜔𝑝 + 𝜔(𝑇𝑣)

𝑝

𝑣

𝜔(𝑇𝑣) < 0

𝜔𝑣 < 0

(a) case A

𝑣

𝑠

𝜔(𝑇𝑣) ≥ 0

𝜔𝑣 < 0

(b) case B

Figure 4.11: Illustration of the two different cases in the iteration with vertices having a positive
(black), a negative (red) or zero weight (white)

126

4.6 Full Problem on Trees

and the additivity of 𝜔, we also get

�̃�(𝑇𝑝) = �̃�𝑝 + �̃�(𝑇𝑣) +
∑︁

𝑠∈𝑆(𝑝)∖{𝑣}
�̃�(𝑇𝑠)

= 𝜔𝑝 + 𝜔(𝑇𝑣) + 0 +
∑︁

𝑠∈𝑆(𝑝)∖{𝑣}
𝜔(𝑇𝑠)

= 𝜔(𝑇𝑝)

and thus

�̃�(𝑇𝑤) = 𝜔(𝑇𝑤) ∀𝑤 ∈ 𝑉, 𝑇𝑝 ⊆ 𝑇𝑤.

Hence, the shift of the weight does only influence the weighting of subtree 𝑇𝑣 and not only
the inequalities referring to all unchanged subtrees but also to all those subtrees defined by
vertices in the arborescence above of 𝑝 still hold, as well as �̃�(𝑉) = 𝑊 . Therefore, we have
�̃� ∈ Ω(𝜗). If we additionally have 𝜔𝑝 ≥ |𝜔(𝑇𝑣)|, we also get 0 ≤ �̃�𝑝 ≤ 𝜔𝑝. Thus, we are done
with the vertex 𝑣.

The procedure can be repeated for every possible sibling of 𝑣 that also has a negative subtree
weight. Hence, keeping 𝑝 the same vertex as before, we can combine the cases with

�̃�𝑤 := 0 ∀𝑤 ∈ 𝑇𝑣 ∀𝑣 ∈ 𝑆(𝑝), 𝜔(𝑇𝑣) < 0,

�̃�𝑝 := 𝜔𝑝 +
∑︁

𝑣∈𝑆(𝑝)
𝜔(𝑇𝑣)<0

𝜔(𝑇𝑣)

and �̃�𝑤 := 𝜔𝑤 for the remaining vertices 𝑤. Thus, analogously to the single case before, we
still have �̃� ∈ Ω(𝜗). Additionally, we have achieved that

�̃�𝑤 = 0 ∀𝑤 ∈ 𝑇𝑣 with 𝜔𝑤 ≤ 0,

while

0 ≤ �̃�𝑤 ≤ 𝜔𝑤 ∀𝑤 ∈ 𝑇𝑣 with 𝜔𝑤 > 0

holds for all 𝑣 ∈ 𝑆(𝑝) where 𝜔(𝑇𝑣) < 0. By assuming the subtrees with 𝜔(𝑇𝑣) ≥ 0 for
𝑣 ∈ 𝑆(𝑝) are handled already, we can extend the statement to all 𝑣 ∈ 𝑆(𝑝).

In case of

𝜔𝑝 ≥ −
∑︁

𝑣∈𝑆(𝑝)
𝜔(𝑇𝑣)<0

𝜔(𝑇𝑣),

we also achieved 0 ≤ �̃�𝑝 ≤ 𝜔𝑝 and the whole subtree defined by 𝑝 does not need to be
considered further. If this is not the case, which means we do not have �̃�𝑝 ≥ 0 in the end,
we need to distinguish between two further cases:

a) If we have �̃�(𝑇𝑝) < 0, we know that 𝑝 cannot be equal to the root 𝑟. Otherwise we
would have

𝑊 = 𝜔(𝑉) = �̃�(𝑉) = �̃�(𝑇𝑝) < 0,

being a contradiction to the condition𝑊 ≥ 0. Thus, we can continue to iterate upwards
through the tree, where we now find case A) for 𝑝 (the new vertex 𝑣) and its predecessor
(the new 𝑝).

b) If we have �̃�(𝑇𝑝) ≥ 0, we can continue with case B) for 𝑝.

127

4 Weight Distribution

Both cases result in �̃�𝑝 = 0 and the iteration thus continues properly.

B) The case is illustrated in Figure 4.11(b). Here, we show that the negative weight of 𝑣 can
be shifted downwards in the tree. Meanwhile, we can ignore all successors 𝑠 ∈ 𝑆(𝑣) with
𝜔(𝑇𝑠) = 0, which means we can assume 𝜔(𝑇𝑠) > 0 for all 𝑠 ∈ 𝑆(𝑣). There needs to be at
least one such 𝑠 due to 𝜔𝑣 < 0 and

𝜔(𝑇𝑣) = 𝜔𝑣 +
∑︁

𝑠∈𝑆(𝑣)
𝜔(𝑇𝑠) ≥ 0.

In this construction, we show that we can decrease the weight of the subtrees 𝑇𝑠 for 𝑠 ∈ 𝑆(𝑣)
such that we still have

�̃�(𝑇𝑠) ≥ max{0, 𝜔−(𝑇𝑠, 𝜗)}.

Let 𝑐𝑠 denote the capacity of the subtree 𝑇𝑠 with

𝑐𝑠 = 𝜔(𝑇𝑠)−max{0, 𝜔−(𝑇𝑠, 𝜗)}
= 𝜔(𝑇𝑠) + min{0, 𝜗− 𝜎(𝑇𝑠)}.

Due to 𝜔 ∈ Ω(𝜗), we have 𝜔(𝑇𝑠) ≥ 𝜔−(𝑇𝑠, 𝜗) and, since we know 𝜔(𝑇𝑠) ≥ 0, we also have
𝑐𝑠 ≥ 0 for all 𝑠 ∈ 𝑆(𝑣). We show by contradiction that these capacities are sufficient to take
all the negative weight of vertex 𝑣. Assume we have∑︁

𝑠∈𝑆(𝑣)
𝑐𝑠 < |𝜔𝑣| = −𝜔𝑣. (i)

With ∑︁
𝑠∈𝑆(𝑣)

𝑐𝑠 =
∑︁

𝑠∈𝑆(𝑣)
𝜔(𝑇𝑠) +

∑︁
𝑠∈𝑆(𝑣)

min{0, 𝜗− 𝜎(𝑇𝑠)}

= 𝜔(𝑇𝑣)− 𝜔𝑣 +
∑︁

𝑠∈𝑆(𝑣)
𝜗<𝜎(𝑇𝑠)

(𝜗− 𝜎(𝑇𝑠)),

inequality (i) is equivalent to

𝜔(𝑇𝑣) +
∑︁

𝑠∈𝑆(𝑣)
𝜗<𝜎(𝑇𝑠)

(𝜗− 𝜎(𝑇𝑠)) < 0.

Due to 𝜔(𝑇𝑣) ≥ 0, we have {𝑠 ∈ 𝑆(𝑣) : 𝜗 < 𝜎(𝑇𝑠)} ≠ ∅ and thus

𝜔(𝑇𝑣) +
∑︁

𝑠∈𝑆(𝑣)
𝜗<𝜎(𝑇𝑠)

(𝜗− 𝜎(𝑇𝑠))

= 𝜔(𝑇𝑣) + 𝜗|{𝑠 ∈ 𝑆(𝑣) : 𝜗 < 𝜎(𝑇𝑠)}| −
∑︁

𝑠∈𝑆(𝑣)
𝜗<𝜎(𝑇𝑠)

𝜎(𝑇𝑠)

≥ 𝜔(𝑇𝑣) + 𝜗− 𝜎(𝑇𝑣)
= 𝜔(𝑇𝑣)− 𝜔−(𝑇𝑣, 𝜗),

resulting in 𝜔(𝑇𝑣) < 𝜔−(𝑇𝑣, 𝜗), which is a contradiction to 𝜔 ∈ Ω(𝜗). Hence, we can shift
the whole negative weight to successors according to the above capacities. If the weight of

128

4.6 Full Problem on Trees

the successor gets negative, that is, �̃�𝑠 < 0, we still have �̃�(𝑇𝑠) ≥ 0 and we can thus apply
case B) to 𝑠 (the new 𝑣) now and iterate downwards the tree.

Once we have reached the leaves, we can apply the same procedure as before. As we know
𝜔(𝑇𝑠) = 𝜔𝑠 ≥ 0, we see that the whole negative weight can be caught by the leaves’ capacities.
Thus, we are done with the whole subtree defined by 𝑣 and can continue the iteration by
checking the predecessor of 𝑣.

By this construction, we get the desired �̃� ∈ Ω(𝜗) with �̃� ≥ O.

With this result, we can now always use the equality ‖𝜔‖∞ = max𝑣∈𝑉 𝜔𝑣. We can also easily see
that the shift of the negative weights does not require expensive calculations:

Lemma 4.66. The weights �̃� can be calculated in 𝒪(|𝑉 |).

Proof. In the construction of Lemma 4.65, we iterate over all vertices starting at the leaves
towards the root. Meanwhile, we can maintain all vertices with a positive weight in a depth-
first-search manner until we meet the first one with a negative weight. In case the corresponding
subtree fulfils case A), we set the weights of all vertices in the subtree to 0. For the following
iteration steps, we can thus simply ‘forget’ all these vertices from the maintained ones.

In contrast, if we have case B), we need to enter the subtree again and iterate downwards to
compensate the negative weight of the subtree root. This can be done by successively working
through the maintained positive vertices until we have collected enough weight. As the weights
of all these vertices, possibly apart from the last one, are also set to 0, they also do not need to
be considered again, and we can remember the last vertex with capacity. If we need to enter the
subtree again in a later iteration step fulfilling B), we can simply continue on the remembered
vertex.

Thus, independently of how often we need to iterate downwards again, the vertices in the corre-
sponding subtree are only considered once. This means, in total, we deal with every vertex only
twice, which yields the above computational time.

By the way this non-negative weight is constructed, the maximal absolute value is at least
preserved. More formally, this means:

Corollary 4.67. For 𝜗 ≥ 𝜗𝑊 , 𝜔 ∈ Ω(𝜗) and the corresponding modified weights �̃� according to
Lemma 4.65, we have

‖�̃�‖∞ = max
𝑣∈𝑉

�̃�𝑣 ≤ max
𝑣∈𝑉

𝜔𝑣 ≤ ‖𝜔‖∞.

Proof. Since we have 𝑊 > 0, there needs to exist at least one 𝑣 ∈ 𝑉 with 𝜔𝑣 ≥ 0. By the
relations of 𝜔 and �̃� given in Lemma 4.65, the claim follows.

Since 𝜔*(𝜗) was chosen to be optimal, this relation can only lead to:

Corollary 4.68. For 𝜗 ≥ 𝜗𝑊 , 𝜔*(𝜗) and the corresponding modified �̃�* according to Lemma 4.65,
we have

‖�̃�*‖∞ = ‖𝜔*(𝜗)‖∞

and thus �̃�* ∈ Ω*(𝜗).

129

4 Weight Distribution

Proof. Clearly, if we had ‖�̃�‖∞ < ‖𝜔*(𝜗)‖∞, the weights 𝜔*(𝜗) would not be optimal. Thus, the
statement directly follows from Corollary 4.67.

Finally summarizing the former results, we see that only the positive weights are decisive for the
maximum norm:

Corollary 4.69. For 𝜗 ≥ 𝜗𝑊 , we have

‖𝜔*(𝜗)‖∞ = max
𝑣∈𝑉

𝜔*
𝑣(𝜗).

Proof. If we had

‖𝜔*(𝜗)‖∞ = −𝜔*
𝑣* > max

𝑣∈𝑉
𝜔*
𝑣

for some 𝑣* ∈ 𝑉 , we could ‘repair’ this negative weight by Lemma 4.65 and would thus have a
lower maximum norm, which is a contradiction.

This on the one hand means that we can always restrict ourselves to non-negative weights, we
hence have

Corollary 4.70. For 𝜗 ≥ 𝜗𝑊 , we have Ω*(𝜗) ∩ R𝑉
≥0 ̸= ∅.

On the other hand, if there appear negative weights when constructing an optimal solution, we
can ‘ignore’ them for the moment and repair them later on. This is a decisive ingredient for
the algorithm which we develop in the next section to deal with the remaining case where we
have 𝐴in ̸= ∅.

4.6.3 Weight Calculation Algorithm

In the preceding part of this work, we have considered several special cases for the Full Weight
Distribution Problem on Trees. In this section, we deal with the remaining case, where
‖𝜔*(𝜗𝑊)‖∞ − 𝛾 exceeds 𝜗𝑊 = min

{︀
𝜗0, 𝜗1

2

}︀
, the optimal value of the Strength-only Weight

Distribution Problem on Trees. Nevertheless, we still assume that 𝐺 is a tree and the
corresponding arc set 𝐴 forms an arborescence and thus has a unique root 𝑟. In Theorem 4.63,
we handled the case 𝐴in = ∅. Hence, the remaining case is 𝐴in ̸= ∅, where we have 𝜗𝑊 = 𝜗1

2

according to the proof of Lemma 4.36 and thus ‖𝜔*(𝜗1
2
)‖∞ − 𝛾 > 𝜗1

2
. Further remember, due to

𝜎(𝑉) > 𝑊 > 0, we have 0 < 𝜗1
2
< 1

2𝜎(𝑉).

General Principle

We construct the optimal value 𝜗♢ for the Full Weight Distribution Problem on Trees
together with an optimal weighting 𝜔♢ = 𝜔*(𝜗♢) by defining a specific function 𝜔 depending
on 𝜗, which is denoted by 𝜔(𝜗)𝜔(𝜗)𝜔(𝜗) =

(︀
𝜔𝑣(𝜗)𝜔𝑣(𝜗)𝜔𝑣(𝜗)

)︀
𝑣∈𝑉 in the following. We successively derive bounds

on 𝜗♢ by iterating through the vertices starting from the leaves towards the root. Let

𝜔(𝑇𝑣, 𝜗)𝜔(𝑇𝑣, 𝜗)𝜔(𝑇𝑣, 𝜗) :=
∑︁
𝑢∈𝑇𝑣

𝜔𝑢(𝜗).

130

4.6 Full Problem on Trees

To have 𝜔(𝜗) ∈ Ω(𝜗), we fix

𝜔𝑣(𝜗) := 0 ∀𝑣 ∈ 𝑉out, 𝑝𝑣 ̸∈ 𝑉in ∪ {𝑟},
𝜔𝑣(𝜗) := 𝜔+(𝑇𝑣, 𝜗) = 𝜗− 𝜎(𝑇𝑣) ∀𝑣 ∈ 𝑉out, 𝑝𝑣 ∈ 𝑉in ∪ {𝑟},

according to the bounds on the subtree weighting of the outer vertices like in the proof of
Lemma 4.42. With this we have 𝜔𝑣(𝜗) = 𝜔(𝑇𝑣, 𝜗) for all 𝑣 ∈ 𝑉out with 𝑝𝑣 ∈ 𝑉in ∪ {𝑟}.

We derive an explicit formulation of 𝜔𝑣(𝜗) for the remaining inner vertices and the root by
making use of the scope in the inequalities of Ω(𝜗) in Lemma 4.28 for the inner vertices

𝜔−(𝑇𝑣, 𝜗) = 𝜎(𝑇𝑣)− 𝜗 ≤ 𝜔(𝑇𝑣, 𝜗) ≤ 𝜗+ 𝜎(𝑇𝑣)− 2𝜗1
2
= 𝜔+(𝑇𝑣, 𝜗) ∀𝑣 ∈ 𝑉in.

With the additivity

𝜔𝑣(𝜗) = 𝜔(𝑇𝑣, 𝜗)−
∑︁

𝑠∈𝑆(𝑣)
𝜔(𝑇𝑠, 𝜗),

we have

𝜔−
𝑣 (𝜗)𝜔−
𝑣 (𝜗)𝜔−
𝑣 (𝜗) := 𝜔−(𝑇𝑣, 𝜗)−

∑︁
𝑠∈𝑆(𝑣)

𝜔(𝑇𝑠, 𝜗) ≤ 𝜔𝑣(𝜗) ≤ 𝜔+(𝑇𝑣, 𝜗)−
∑︁

𝑠∈𝑆(𝑣)
𝜔(𝑇𝑠, 𝜗) =: 𝜔+

𝑣 (𝜗)𝜔+
𝑣 (𝜗)𝜔+
𝑣 (𝜗) ∀𝑣 ∈ 𝑉in.

This results in 𝜔−
𝑣 (𝜗) = 𝜔+

𝑣 (𝜗)− 2𝜗+ 2𝜗1
2
with 𝜔−

𝑣 (𝜗1
2
) = 𝜔+

𝑣 (𝜗1
2
).

Supposing we already know the 𝜔-values for all the subtrees rooted at the successors of 𝑣 ∈ 𝑉in,
we set

𝜔𝑣(𝜗) := min
{︀
𝜗+ 𝛾, 𝜔+

𝑣 (𝜗)
}︀

to always keep the weight for vertex 𝑣 below 𝜗+ 𝛾 and its upper bound. With this single vertex
weight, we can also describe the weighting for the whole subtree with

𝜔(𝑇𝑣, 𝜗) = 𝜔𝑣(𝜗) +
∑︁

𝑠∈𝑆(𝑣)
𝜔(𝑇𝑠, 𝜗) (4.9)

= min
{︀
𝜗+ 𝛾, 𝜔+

𝑣 (𝜗)
}︀
+
∑︁

𝑠∈𝑆(𝑣)
𝜔(𝑇𝑠, 𝜗)

= min

{︂
𝜗+ 𝛾 +

∑︁
𝑠∈𝑆(𝑣)

𝜔(𝑇𝑠, 𝜗), 𝜔
+(𝑇𝑣, 𝜗)

}︂

= 𝜗+min

{︂
𝛾 +

∑︁
𝑠∈𝑆(𝑣)

𝜔(𝑇𝑠, 𝜗), 𝜎(𝑇𝑣)− 2𝜗1
2

}︂
.

In order to keep 𝜔(𝜗) ∈ Ω(𝜗), we further need to guarantee

𝜔𝑣(𝜗) ≥ 𝜗+ 𝛾
!
≥ 𝜔−

𝑣 (𝜗).

If we can achieve this for all 𝑣 ∈ 𝑉in, we have found the 𝜗 with 𝜗 + 𝛾 = ‖𝜔*(𝜗)‖∞ according
to Theorem 4.62. To evaluate the break points of the above conditions, we therefore need to
solve

𝜔+
𝑣 (𝜗) = 𝜗+ 𝛾,

𝜔−
𝑣 (𝜗) = 𝜗+ 𝛾.

Thus, the question is: How do the fixed points of 𝜔−
𝑣 (𝜗)− 𝛾 and 𝜔+

𝑣 (𝜗)− 𝛾 look like?

131

4 Weight Distribution

Leaves

We start with evaluating the fixed points at the leaves of the tree defined by the inner arcs. Due
to the fixed weights on the attached subtrees, as those only contain outer vertices, we can derive
explicit formulas: For some leaf ℓℓℓ of 𝑉in, where 𝑆in(ℓ) = ∅, we have∑︁

𝑠∈𝑆(ℓ)
𝜔(𝑇𝑠, 𝜗) =

∑︁
𝑠∈𝑆out(ℓ)

(𝜗− 𝜎(𝑇𝑠))

= |𝑆out(ℓ)|𝜗−
∑︁

𝑠∈𝑆out(ℓ)

𝜎(𝑇𝑠)

= |𝑆out(ℓ)|𝜗− 𝜎(𝑇ℓ) + 𝜎ℓ

and therefore for the bounds

𝜔−
ℓ (𝜗) = 𝜎(𝑇ℓ)− 𝜗− (|𝑆out(ℓ)|𝜗− 𝜎(𝑇ℓ) + 𝜎ℓ)

= −(|𝑆out(ℓ)|+ 1)𝜗+ 2𝜎(𝑇ℓ)− 𝜎ℓ
=: 𝑠−ℓ𝑠

−
ℓ𝑠
−
ℓ 𝜗+ 𝑐−ℓ𝑐

−
ℓ𝑐
−
ℓ

and

𝜔+
ℓ (𝜗) = 𝜗+ 𝜎(𝑇ℓ)− 2𝜗1

2
− (|𝑆out(ℓ)|𝜗− 𝜎(𝑇ℓ) + 𝜎ℓ)

= −(|𝑆out(ℓ)| − 1)𝜗+ 2𝜎(𝑇ℓ)− 𝜎ℓ − 2𝜗1
2

=: 𝑠+ℓ𝑠
+
ℓ𝑠
+
ℓ 𝜗+ 𝑐+ℓ𝑐

+
ℓ𝑐
+
ℓ ,

which are just linear functions in 𝜗. By subtracting 𝛾, we also only introduce a constant shift.
The resulting functions have a single fixed point, thus unique solutions of 𝜔∓

ℓ (𝜗)− 𝛾 = 𝜗, if and
only if the slope is not equal to 1. For a slope of 1, if the function is not the identity, there is no
fixed point. Since we have |𝑆out(ℓ)| ≥ 0, the lower bound 𝜔−

ℓ (𝜗) always has a single fixed point,
while, for the upper bound 𝜔+

ℓ (𝜗) to have a fixed point, we need |𝑆out(ℓ)| ≠ 0. Let 𝜗−ℓ𝜗
−
ℓ𝜗
−
ℓ and 𝜗+ℓ𝜗

+
ℓ𝜗
+
ℓ

be the corresponding fixed points. Then we have

𝜗−ℓ =
2𝜎(𝑇ℓ)− 𝜎ℓ − 𝛾
|𝑆out(ℓ)|+ 2

=
𝑐−ℓ − 𝛾
1− 𝑠−ℓ

=
𝑐+ℓ + 2𝜗1

2
− 𝛾

3− 𝑠+ℓ
,

𝜗+ℓ =
2𝜎(𝑇ℓ)− 𝜎ℓ − 2𝜗1

2
− 𝛾

|𝑆out(ℓ)|
=
𝑐+ℓ − 𝛾
1− 𝑠+ℓ

,

where the latter is omitted if we have |𝑆out(ℓ)| = 0. This results in the constraint

𝜗 ≥ max
ℓ∈𝑉in

𝑆in(ℓ)=∅

𝜗−ℓ

and, in the following, we only need to consider functions of 𝜗 exceeding 𝜗1
2
as well as a lower

bound 𝜗−𝜗−𝜗−, which we initialize with the above maximum. In the following derivations, 𝜗− is
maintained as the current best lower bound.

We set

𝜔ℓ(𝜗)𝜔ℓ(𝜗)𝜔ℓ(𝜗) := min
{︀
𝜗+ 𝛾, 𝜔+

ℓ (𝜗)
}︀
=

{︃
𝜗+ 𝛾 for 𝜗 < 𝜗+ℓ ,

𝜔+
ℓ (𝜗) otherwise,

which is a piecewise linear, concave, continuous function. By setting ‘𝜗+ℓ = sign(𝑐+ℓ − 𝛾) · ∞’ in
case of |𝑆out(ℓ)| = 0, we can keep using the above definition because, in this case, we have just
𝜔ℓ(𝜗) = 𝜗 + 𝛾 for 𝑐+ℓ ≥ 𝛾 or 𝜔ℓ(𝜗) = 𝜗 + 𝑐+ℓ otherwise. In Figure 4.12, several cases for the
derived weight function for a leaf ℓ are illustrated.

132

4.6 Full Problem on Trees

𝜗

𝑐−ℓ

𝑐+ℓ

𝛾

𝜗+ 𝛾

𝜔−
ℓ (𝜗)

𝜔+
ℓ (𝜗)

min
{︀
𝜗+ 𝛾, 𝜔+

ℓ (𝜗)
}︀

min
{︀
𝜗+ 𝛾, 𝜔+

ℓ (𝜗)
}︀

min
{︀
𝜗+ 𝛾, 𝜔+

ℓ (𝜗)
}︀

𝜗1
2

𝜗−
ℓ

𝜗

𝑐−ℓ

𝑐+ℓ

𝛾

𝜗+ 𝛾
𝜔−
ℓ (𝜗)

𝜔+
ℓ (𝜗)

𝜗1
2

𝜗−
ℓ

min
{︀
𝜗+ 𝛾, 𝜔+

ℓ (𝜗)
}︀

min
{︀
𝜗+ 𝛾, 𝜔+

ℓ (𝜗)
}︀

min
{︀
𝜗+ 𝛾, 𝜔+

ℓ (𝜗)
}︀

(a) with |𝑆out(ℓ)| = 0, thus 𝑠−ℓ = 1 and 𝑠+ℓ = −1

𝜗

𝑐−ℓ

𝑐+ℓ

𝛾

𝜗+ 𝛾

𝜔−
ℓ (𝜗)

𝜔+
ℓ (𝜗)

𝜗1
2

𝜗−
ℓ 𝜗+

ℓ

min
{︀
𝜗+ 𝛾, 𝜔+

ℓ (𝜗)
}︀

min
{︀
𝜗+ 𝛾, 𝜔+

ℓ (𝜗)
}︀

min
{︀
𝜗+ 𝛾, 𝜔+

ℓ (𝜗)
}︀

𝜗

𝑐−ℓ

𝑐+ℓ

𝛾

𝜗+ 𝛾

𝜔−
ℓ (𝜗)

𝜔+
ℓ (𝜗)

𝜗1
2

𝜗−
ℓ𝜗+

ℓ

min
{︀
𝜗+ 𝛾, 𝜔+

ℓ (𝜗)
}︀

min
{︀
𝜗+ 𝛾, 𝜔+

ℓ (𝜗)
}︀

min
{︀
𝜗+ 𝛾, 𝜔+

ℓ (𝜗)
}︀

(b) with |𝑆out(ℓ)| = 1, thus 𝑠−ℓ = 2 and 𝑠+ℓ = 0

𝜗

𝑐−ℓ

𝑐+ℓ

𝛾

𝜗+ 𝛾

𝜔−
ℓ (𝜗)

𝜔+
ℓ (𝜗)

𝜗1
2

𝜗−
ℓ 𝜗+

ℓ

min
{︀
𝜗+ 𝛾, 𝜔+

ℓ (𝜗)
}︀

min
{︀
𝜗+ 𝛾, 𝜔+

ℓ (𝜗)
}︀

min
{︀
𝜗+ 𝛾, 𝜔+

ℓ (𝜗)
}︀ 𝜗

𝑐−ℓ

𝑐+ℓ

𝛾

𝜗+ 𝛾
𝜔−
ℓ (𝜗)

𝜔+
ℓ (𝜗)

𝜗1
2

𝜗−
ℓ𝜗+

ℓ

min
{︀
𝜗+ 𝛾, 𝜔+

ℓ (𝜗)
}︀

min
{︀
𝜗+ 𝛾, 𝜔+

ℓ (𝜗)
}︀

min
{︀
𝜗+ 𝛾, 𝜔+

ℓ (𝜗)
}︀

(c) with |𝑆out(ℓ)| = 2, thus 𝑠−ℓ = 3 and 𝑠+ℓ = 1

Figure 4.12: Illustration of different cases of 𝜔ℓ(𝜗) for some leaf ℓ ∈ 𝑉in with 𝑆in(ℓ) = ∅, and
𝜔±
ℓ (𝜗) = 𝑠±ℓ 𝜗+ 𝑐±ℓ for 𝜗−ℓ > 𝜗1

2
(left) and 𝜗−ℓ < 𝜗1

2
(right)

133

4 Weight Distribution

We also obtain the weighting for the whole subtree with

𝜔(𝑇ℓ, 𝜗) = min
{︀
𝜗+ 𝛾 + |𝑆out(ℓ)|𝜗− 𝜎(𝑇ℓ) + 𝜎ℓ, 𝜔

+(𝑇𝑣, 𝜗)
}︀

= min
{︀
(|𝑆out(ℓ)|+ 1)𝜗+ 𝛾 − 𝜎(𝑇ℓ) + 𝜎ℓ, 𝜗+ 𝜎(𝑇ℓ)− 2𝜗1

2

}︀
,

which is again a piecewise linear, concave, continuous function with the same break point 𝜗+ℓ
as the function 𝜔ℓ(𝜗) − 𝛾 if it exists. The slopes and the additive constants can be calculated
straightforwardly. It is easy to see that the slopes are larger than or equal to 1 for all linear pieces
and, for a smaller 𝜗, the slope is steeper. Therefore, 𝜔(𝑇ℓ, 𝜗) is also monotonically increasing.

Non-leaf Vertices

In the next step, we consider an arbitrary vertex 𝑣 ∈ 𝑉in not being a leaf. How do 𝜔−
𝑣 (𝜗) and

𝜔+
𝑣 (𝜗) look like and what are the fixed points of 𝜔±

ℓ (𝜗)− 𝛾?

By iteration, we first show that 𝜔(𝑇𝑣, 𝜗) is a piecewise linear, concave, continuous and mono-
tonically increasing function: We know that 𝜔(𝑇𝑠, 𝜗) = 𝜗 − 𝜎(𝑇𝑠) for all 𝑠 ∈ 𝑆out(𝑣) are linear,
concave, continuous and monotonically increasing functions and the iteration start is given by
the former derivation for the leaves. Assuming 𝜔(𝑇𝑠, 𝜗) are piecewise linear, concave, continuous
and monotonically increasing functions for all remaining successors 𝑠 ∈ 𝑆in, too, so is the sum∑︁

𝑠∈𝑆(𝑣)
𝜔(𝑇𝑠, 𝜗),

as all of these properties remain under summation. The number of break points amounts to at
most the sum of the numbers of break points of the summands. Furthermore, also

𝜔(𝑇𝑣, 𝜗) = 𝜗+min

{︂
𝛾 +

∑︁
𝑠∈𝑆(𝑣)

𝜔(𝑇𝑠, 𝜗), 𝜎(𝑇𝑣)− 2𝜗1
2

}︂

is piecewise linear, concave, continuous and monotonically increasing but adds another break
point. Additionally, the slopes of the linear parts are always larger than or equal to 1. With
this

𝜔−
𝑣 (𝜗) = −𝜗+ 𝜎(𝑇𝑣)−

∑︁
𝑠∈𝑆(𝑣)

𝜔(𝑇𝑠, 𝜗),

𝜔+
𝑣 (𝜗) = 𝜗+ 𝜎(𝑇𝑣)− 2𝜗1

2
−
∑︁

𝑠∈𝑆(𝑣)
𝜔(𝑇𝑠, 𝜗)

are piecewise linear, continuous, monotonically decreasing but convex functions for non-leaf
vertices 𝑣 and we always have only one fixed point for each. Let those be analogously defined to
the former notations with 𝜗−𝑣𝜗

−
𝑣𝜗
−
𝑣 and 𝜗+𝑣𝜗

+
𝑣𝜗
+
𝑣 . Then we can update the current best lower bound 𝜗− to

max{𝜗−, 𝜗−𝑣 }. If we have 𝜗+𝑣 > 𝜗−, we get an additional break point in

𝜔𝑣(𝜗)𝜔𝑣(𝜗)𝜔𝑣(𝜗) := min
{︀
𝜗+ 𝛾, 𝜔+

𝑣 (𝜗)
}︀

=

{︃
𝜗+ 𝛾 for 𝜗− ≤ 𝜗 ≤ 𝜗+𝑣 ,
𝜔+
𝑣 (𝜗) otherwise.

In some cases, we might also lose some of the break points, like illustrated in Figure 4.13.

134

4.6 Full Problem on Trees

𝜗

𝛾

𝜗+ 𝛾

𝜔−
𝑣 (𝜗)

𝜔+
𝑣 (𝜗)

𝜗1
2

𝜗−
𝑣 𝜗+

𝑢 𝜗+
𝑣 𝜗+

𝑤

min
{︀
𝜗, 𝜔+

𝑣 (𝜗)
}︀

min
{︀
𝜗, 𝜔+

𝑣 (𝜗)
}︀

min
{︀
𝜗, 𝜔+

𝑣 (𝜗)
}︀

Figure 4.13: Illustration of 𝜔𝑣(𝜗) for 𝑣 ∈ 𝑉in with 𝑆in(𝑣) ̸= ∅ and 𝑢,𝑤 ∈ 𝑇𝑣 ∩ 𝑉in

For a vertex 𝑣 ∈ 𝑉in, we then have∑︁
𝑠∈𝑆(𝑣)

𝜔(𝑇𝑠, 𝜗) =
∑︁

𝑠∈𝑆out(𝑣)

𝜔𝑠(𝜗) +
∑︁

𝑠∈𝑆in(𝑣)

𝜔(𝑇𝑠, 𝜗)

=
∑︁

𝑠∈𝑆out(𝑣)

(𝜗− 𝜎(𝑇𝑠)) +
∑︁

𝑠∈𝑆in(𝑣)

𝜔(𝑇𝑠, 𝜗)

= |𝑆out(𝑣)|𝜗−
∑︁

𝑠∈𝑆out(𝑣)

𝜎(𝑇𝑠) +
∑︁

𝑠∈𝑆in(𝑣)

𝜔(𝑇𝑠, 𝜗)

= |𝑆out(𝑣)|𝜗− 𝜎(𝑇𝑣) + 𝜎𝑣 +
∑︁

𝑠∈𝑆in(𝑣)

𝜎(𝑇𝑠) +
∑︁

𝑠∈𝑆in(𝑣)

𝜔(𝑇𝑠, 𝜗).

By recursively computing the linear pieces for all subtrees, we finally reach the root 𝑟 knowing
the piecewise linear functions for all successors 𝑠 ∈ 𝑆(𝑟). We have

𝜔𝑟(𝜗) =𝑊 −
∑︁

𝑆∈𝑆(𝑟)
𝜔(𝑇𝑠, 𝜗),

keeping 𝜔(𝜗) ∈ Ω(𝜗). As we also want to have 𝜔𝑟(𝜗) − 𝛾 ≤ 𝜗, we need to calculate the unique
fixed point of this piecewise linear, continuous, monotonically decreasing, convex function, too.
Let 𝜗−𝑟𝜗

−
𝑟𝜗
−
𝑟 be the value for which we have 𝜔𝑟(𝜗

−
𝑟)− 𝛾 = 𝜗−𝑟 . We can finally update the lower bound

to max{𝜗−, 𝜗−𝑟 }. Let this value now be denoted by 𝜗−. As we have successively collected all
conditions from every vertex, 𝜗− is the optimal value for the Full Weight Distribution
Problem on Trees in the end and we can get the desired weighting by inserting 𝜗− in the
constructed 𝜔-functions, that is, with 𝜔(𝜗−).

After a short summary of the full algorithm in the next section, we provide a complete proof of
the optimality in the subsequent section.

Summary

The algorithm presented in the previous sections starts with fixing the weights of the outer
vertices to explicit linear functions in 𝜗. The construction continues with the piecewise linear

135

4 Weight Distribution

weight functions in 𝜗 for the leaves of the tree formed by the inner arcs. Those functions have
one break point each because they are formed by the maximum of 𝜗 and the upper bound on the
vertex weight. In each step to the next level of the tree, we collect the pieces of the successors
to combine them to the corresponding summed piecewise linear function and possibly attach
another linear piece to continue with the same principle of keeping this sum below 𝜗 and its
upper bound.

By iteratively collecting the pieces of linear functions for all inner vertices, we construct the
weight functions for all vertices depending on a certain 𝜗. By simultaneously updating the
requirements on the lower bound, we ensure that we keep 𝜔(𝜗) ∈ Ω(𝜗). The final ‘sweet spot’
is then the best lower bound on 𝜗 which we can find. By inserting this value into the weight
functions, we obtain the corresponding optimal weights.

To approach the weight functions computationally, we represent them in a specific format: As
the considered piecewise linear, continuous functions are bounded to the left but unbounded to
the right, we can identify such a function 𝑓 with a family of ordered triples

(︀
(𝑡𝑖, 𝑎𝑖, 𝑏𝑖)

)︀
𝑖=1,...,𝑛

such that

𝑓(𝜗) =

⎧⎪⎨⎪⎩
𝑎1𝜗+ 𝑏1 for 𝑡1 ≤ 𝜗 ≤ 𝑡2,
𝑎𝑖𝜗+ 𝑏𝑖 for 𝑡𝑖 ≤ 𝜗 ≤ 𝑡𝑖+1, 𝑖 = 2, ..., 𝑛− 1,

𝑎𝑛𝜗+ 𝑏𝑛 for 𝑡𝑛 ≤ 𝜗.

Using this representation, we have

𝜔(𝑇ℓ, 𝜗) ∼=

⎧⎪⎨⎪⎩
(︀
(𝜗−ℓ , 1, 𝛾 − 𝜎(𝑇ℓ) + 𝜎ℓ)

)︀
if 𝑠−ℓ = 1 ∧ 𝜗−ℓ > 𝜗1

2
,(︀

(𝜗1
2
, 1, 𝜎(𝑇ℓ)− 2𝜗1

2
)
)︀

if 𝑠−ℓ > 1 ∧ 𝜗−ℓ ≤ 𝜗1
2
,(︀

(𝜗−ℓ , 2− 𝑠ℓ, 𝛾 − 𝜎(𝑇ℓ) + 𝜎ℓ), (𝜗
+, 1, 𝜎(𝑇ℓ)− 2𝜗1

2
)
)︀

otherwise

=: 𝑃ℓ𝑃ℓ𝑃ℓ (4.10)

for the leaves of the inner tree.

The sum of two piecewise linear functions, which is illustrated in Figure 4.14, can now be realized
by considering the triples of the summands one after each other. We need to take over all break
points but the first, as we update the current best lower bound, and sum up the entries for
the slopes and the constant terms of the corresponding linear pieces separately to form the new
pieces.

𝜗

𝑎𝑖𝜗+ 𝑏𝑖, 𝑖 = 1, 2, 3

𝑐𝑗𝜗+ 𝑑𝑗 , 𝑗 = 1, 2

(𝑎1 + 𝑐1)𝜗
+ 𝑏1 + 𝑑1

(𝑎2 + 𝑐1)𝜗+ 𝑏2 + 𝑑1

(𝑎3 + 𝑐1)𝜗
+ 𝑏3 + 𝑑1

(𝑎3 + 𝑐2)𝜗+ 𝑏3 + 𝑑2

𝑡1 𝑡2 𝑡3𝑠1 𝑠2

Figure 4.14: Illustration of the sum of two piecewise linear functions

136

4.6 Full Problem on Trees

In the pseudocode of Algorithm 4.1 on the next page, we provide a straightforward recursive
implementation of the full described construction, with the corresponding helper functions such
as Add in Algorithm 4.2 on page 139. What we left out, for simplicity of the pseudocode, is
that we also need to keep track of the 𝑈 ’s of line 34, respectively, line 30, for each vertex, as they
provide the necessary pieces describing the weight function of the vertex.

Note that this code is not optimized concerning runtime but rather illustrates the overall princi-
ple. For instance, GetFixedPoint could probably be implemented more efficiently with binary
search or a specific data structure might improve FilterByStartValue. However, those func-
tions are not critical in contrast to Add. Instead of only pairwise addition, this method could
be generalized to deal with the linear pieces of all successors at once. This is discussed in more
detail in the following section.

Optimality

By the construction of the weights in the developed algorithm, we have iteratively considered all
bounds on the subtree weights to finally obtain 𝜗−. We can indeed proof that this value provides
the best weights in terms of the maximal value:

Lemma 4.71. For 𝐺 being a tree, 𝐴 forming an arborescence and 𝜗− and the weight functions 𝜔
as constructed in Algorithm 4.1, we have

max
𝑣∈𝑉

𝜔𝑣(𝜗
−) = min

𝜔∈Ω(𝜗−)
max
𝑣∈𝑉

𝜔𝑣.

Proof. There are no further bounds given on the root 𝑟 apart from the total weight sum. For
simplicity of notation, let 𝜔−

𝑟 (𝜗) := 𝜔𝑟(𝜗). Then we can use the same notation for all 𝑣 ∈ 𝑉in∪{𝑟}.
In total, we have

𝜗− = max
𝑣∈𝑉in∪{𝑟}

𝜗−𝑣

with 𝜗−𝑣 = 𝜔−
𝑣 (𝜗

−
𝑣)− 𝛾 for all 𝑣 ∈ 𝑉in ∪ {𝑟} and further 𝜗− ≥ 𝜗1

2
> 0.

We get the weight for each vertex 𝑣 ∈ 𝑉in with

𝜔𝑣(𝜗
−) = min

{︀
𝜗− + 𝛾, 𝜔+

𝑣 (𝜗
−)
}︀
≤ 𝜗− + 𝛾

and for each vertex 𝑣 ∈ 𝑉out with

𝜔𝑣(𝜗
−) = 0 < 𝜗− + 𝛾 ∀𝑣 ∈ 𝑉out, 𝑝𝑣 ̸∈ 𝑉in ∪ {𝑟},

𝜔𝑣(𝜗
−) = 𝜗− − 𝜎(𝑇𝑣) < 𝜗− + 𝛾 ∀𝑣 ∈ 𝑉out, 𝑝𝑣 ∈ 𝑉in ∪ {𝑟}.

Furthermore, we have 𝜔𝑣(𝜗
−) ≤ 𝜗− − 𝛾 by construction. For 𝑣* ∈ argmax{𝜗−𝑣 : 𝑣 ∈ 𝑉in ∪ {𝑟}},

we have

𝜗− = 𝜗−𝑣* = 𝜔−
𝑣*(𝜗

−)− 𝛾.

Since we have 𝜔−
𝑣 (𝜗) ≤ 𝜔+

𝑣 (𝜗) for all 𝑣 ∈ 𝑉 and 𝜗 ≥ 𝜗1
2
, we get

𝜔𝑣*(𝜗
−) = min

{︀
𝜗− + 𝛾, 𝜔+

𝑣*(𝜗
−)
}︀
= 𝜗− + 𝛾 = 𝜔−

𝑣*(𝜗
−)

and thus

𝜔𝑣(𝜗
−) ≤ 𝜔𝑣*(𝜗

−) ∀𝑣 ∈ 𝑉.
137

4 Weight Distribution

Algorithm 4.1 Get Optimal Strength

Input: 𝐺 = (𝑉,𝐸) tree, 𝜎 ∈ R𝑉
≥0, 𝜗1

2
, 𝛾 ∈ R≥0, root 𝑟

Output: 𝜗♢ ∈ R
1: 𝑅← GetSubtreeOmegaLinearPieces(𝑟) # get all linear pieces by recursion
2: return GetFixedPoint(𝑅) # return the current best lower bound

3: procedure GetSubtreeOmegaLinearPieces(𝑣)
4: if |𝑆in(𝑣)| = ∅ then # if the vertex is a leaf
5: return 𝑃𝑣 # we know the linear pieces by (4.10)

6: for 𝑠 ∈ 𝑆in(𝑣) do # get linear pieces of successors by recursion
7: 𝑃𝑠 =

(︀
(𝑡𝑠𝑖 , 𝑎

𝑠
𝑖 , 𝑏

𝑠
𝑖)
)︀
𝑖=1,...,𝑘𝑠

← GetSubtreeOmegaLinearPieces(𝑠) #𝑃𝑠
∼= 𝜔(𝑇𝑠, 𝜗)

8: 𝜗− ← max{𝑡𝑠1 : 𝑠 ∈ 𝑆in(𝑣)} # largest lower bound of all successors
9: 𝑠← argmax{𝑡𝑠1 : 𝑠 ∈ 𝑆in(𝑣)} # corresponding successor

10: 𝑅← 𝑃𝑠 # start collecting the resulting pieces
11: for 𝑠 ∈ 𝑆in(𝑣) ∖ {𝑠} do # sum up pieces of all successors
12: 𝑅← Add(𝑅,𝑃𝑠) # in the end have 𝑅 ∼=

∑︀
𝑠∈𝑆in(𝑣)

𝜔(𝑇𝑠, 𝜗)

13: 𝑂 ←
(︀
(𝜗−, |𝑆out(𝑣)|,−𝜎(𝑇𝑣) + 𝜎𝑣 +

∑︀
𝑠∈𝑆in(𝑣)

𝜎(𝑇𝑠))
)︀

contribution of outer vertices
14: 𝑅← Add(𝑃𝑠, 𝑂) # have 𝑅 ∼=

∑︀
𝑠∈𝑆(𝑣) 𝜔(𝑇𝑠, 𝜗)

15: if 𝑣 = 𝑟 then # if we consider the root we are done
16: for (𝑡𝑖, 𝑎𝑖, 𝑏𝑖) ∈ 𝑅 do # correct pieces by total weight sum
17: (𝑡𝑖, 𝑎𝑖, 𝑏𝑖)← (𝑡𝑖,−𝑎𝑖,−𝑏𝑖 +𝑊 − 𝛾) # in the end have 𝑅 ∼= 𝜔𝑟(𝜗)− 𝛾
18: return 𝑅 # stop recursion and return root pieces

19: (𝐿,𝑈)← (𝑅,𝑅) # set up lower/upper bound pieces of vertex
20: for (𝑡𝑖, 𝑎𝑖, 𝑏𝑖) ∈ 𝐿 do # add difference to lower bound
21: (𝑡𝑖, 𝑎𝑖, 𝑏𝑖)← (𝑡𝑖,−𝑎𝑖 − 1,−𝑏𝑖 + 𝜎(𝑇𝑣)− 𝛾) # in the end have 𝐿 ∼= 𝜔−

𝑣 (𝜗)− 𝛾
22: for (𝑡𝑖, 𝑎𝑖, 𝑏𝑖) ∈ 𝑈 do # add difference to upper bound
23: (𝑡𝑖, 𝑎𝑖, 𝑏𝑖)← (𝑡𝑖,−𝑎𝑖 + 1,−𝑏𝑖 + 𝜎(𝑇𝑣)− 2𝜗1

2
− 𝛾) # in the end have 𝑈 ∼= 𝜔+

𝑣 (𝜗)−𝛾
24: 𝜗−𝑣 = GetFixedPoint(𝐿) # fixed point of lower bound always exists
25: if 𝜗−𝑣 > 𝜗− then # if the new lower bound is better
26: 𝜗− ← 𝜗−𝑣 # update current best lower bound
27: 𝑈 ← FilterByStartValue(𝑈, 𝜗−) # update pieces of upper bound, too

28: 𝜗+𝑣 = GetFixedPoint(𝑈) # fixed point or current best lower bound
29: 𝐵 =

(︀
(𝜗+𝑣 , 0, 𝛾)

)︀
𝛾 only needed for fixed point calculation

30: 𝑈 ← Add(𝑈,𝐵) # new start at 𝜗+𝑣 , remove 𝛾, 𝑈 ∼= 𝜔+
𝑣 (𝜗)

31: if 𝜗+𝑣 > 𝜗− then # if we have fixed point
32:

(︀
(𝑡𝑖, 𝑎𝑖, 𝑏𝑖)

)︀
𝑖=2,...,𝑘+1

←
(︀
(𝑡𝑖, 𝑎𝑖, 𝑏𝑖)

)︀
𝑖=1,...,𝑘

shift indices

33: (𝑡1, 𝑎1, 𝑏1)← (𝜗−, 1, 𝛾) # introduce new piece with break point 𝜗+𝑣
34: 𝑈 ←

(︀
(𝑡𝑖, 𝑎𝑖, 𝑏𝑖)

)︀
𝑖=1,...,𝑘+1

combine pieces, 𝑈 ∼= min{𝜗+ 𝛾, 𝜔+
𝑣 (𝜗)}

35: return Add(𝑈,𝑅) # return subtree upper bound, 𝑈 ∼= 𝜔(𝑇𝑣, 𝜗)

138

4.6 Full Problem on Trees

Algorithm 4.2 Helper Functions

1: procedure GetFixedPoint(
(︀
(𝑡𝑖, 𝑎𝑖, 𝑏𝑖)

)︀
𝑖=1,...,𝑘

)
2: 𝑡𝑘+1 ← ‘∞’ # define ‘end point’ of final interval
3: for 𝑖 = 1, ..., 𝑘 do # iterate over linear pieces
4: 𝑝𝑖 ← 𝑏𝑖

1−𝑎𝑖
calculate fixed point

5: if 𝑡𝑖 ≤ 𝑝𝑖 ≤ 𝑡𝑖+1 then # if fixed point is within the bounds
6: return 𝑝𝑖 # return the found fixed point

7: return 𝑡1 # if no fixed point is found, use current best lower bound

8: procedure FilterByStartValue(
(︀
(𝑡𝑖, 𝑎𝑖, 𝑏𝑖)

)︀
𝑖=1,...,𝑘

, 𝑠)
9: ℓ← 𝑘 # if all pieces have a start value ≤ 𝑠, we use the last one

10: for 𝑖 = 1, ..., 𝑘 do # iterate over linear pieces
11: if 𝑡𝑖 > 𝑠 then # if we find the first which has a larger start value
12: ℓ← max{0, 𝑖− 1} # we start with this linear piece
13: break # and can stop searching

14: 𝑡ℓ ← 𝑠 # adopt the start value of the new first piece
15: return

(︀
(𝑡𝑖, 𝑎𝑖, 𝑏𝑖)

)︀
𝑖=ℓ,...,𝑘

return the filtered pieces

16: procedure Add(
(︀
(𝑡𝑖, 𝑎𝑖, 𝑏𝑖)

)︀
𝑖=1,...,𝑘

,
(︀
(𝑠𝑗 , 𝑐𝑗 , 𝑑𝑗)

)︀
𝑗=1,...,ℓ

)

17: (𝑖, 𝑗,𝑚)← (0, 0, 0) # initiate the counters
18: while 𝑖 ≤ 𝑘 ∧ 𝑗 ≤ ℓ do # if we stay within the bounds of both counters
19: 𝑟𝑚 ←

(︀
max{𝑡𝑖, 𝑠𝑗}, 𝑎𝑖 + 𝑐𝑗 , 𝑏𝑖 + 𝑑𝑗

)︀
collect the sum of the two single pieces

20: 𝑚← 𝑚+ 1 # shift counter for resulting pieces
21: if 𝑖+ 1 > 𝑘 then # if we have reached the end of the first family
22: 𝑗 ← 𝑗 + 1 # shift the counter of the second one
23: else if 𝑗 + 1 > ℓ then # if we have reached the end of the second family
24: 𝑖← 𝑖+ 1 # shift the counter of the first one
25: else # we have not reached the end
26: if 𝑡𝑖+1 ≥ 𝑠𝑗+1 then # if the next start value of the first exceeds the second
27: 𝑗 ← 𝑗 + 1 # we handled the current linear piece of second family

28: if 𝑡𝑖+1 ≤ 𝑠𝑗+1 then # if the next start value of the second exceeds the first
29: 𝑖← 𝑖+ 1 # we handled the current linear piece of first family

30: return
(︀
𝑟𝑛
)︀
𝑛=1,...,𝑚

return the collected linear pieces

139

4 Weight Distribution

By the definition of 𝜔−, we can reformulate

𝜔−
𝑣*(𝜗

−) = min
𝜔∈Ω(𝜗−)

𝜔𝑣*

and further deduce
𝜔−
𝑣*(𝜗

−) ≤ max
𝑣∈𝑉

min
𝜔∈Ω(𝜗−)

𝜔𝑣

≤ min
𝜔∈Ω(𝜗−)

max
𝑣∈𝑉

𝜔𝑣.

This results in total in

max
𝑣∈𝑉

𝜔𝑣(𝜗
−) = 𝜔𝑣*(𝜗

−) = 𝜗− + 𝛾 ≤ min
𝜔∈Ω(𝜗−)

max
𝑣∈𝑉

𝜔𝑣.

Because we have 𝜔(𝜗−) ∈ Ω(𝜗−) by the construction, we obtain the claimed equality.

In the construction, we have not considered the sign of the weights. Thus, there might be some
vertices for which the found weight is negative. As we have seen before, those weights however
are not decisive for the largest absolute value. Hence, we also derive the optimality of the
found 𝜗−:

Theorem 4.72. For 𝐺 being a tree and 𝐴 forming an arborescence, we have 𝜗♢ = 𝜗−.

Proof. According to Lemma 4.65, we can construct weights �̃� ∈ Ω(𝜗−) with

‖�̃�‖∞ = max
𝑣∈𝑉

𝜔𝑣(𝜗
−) = 𝜗− + 𝛾.

By Lemma 4.71, we have

‖�̃�‖∞ = min
𝜔∈Ω(𝜗−)

max
𝑣∈𝑉

𝜔𝑣 ≤ min
𝜔∈Ω(𝜗−)

‖𝜔‖∞

and therefore �̃� ∈ Ω*(𝜗−). With Theorem 4.62, we have thus found the optimal value of the Full
Weight Distribution Problem on Trees.

This means, with (𝜗−, �̃�) for the weights �̃� of the proof, we have found an optimal solution of
the Full Weight Distribution Problem on Trees. Once we have constructed all piecewise
linear functions yielding the weights of each vertex, we can simply insert a 𝜗-value and obtain the
suitable weights. Note that this can also be used to obtain even smaller weights by increasing 𝜗
even further. Thus, the user has the opportunity to adjust the ratio between the weights and
the strength, which might be beneficial to improve the performance of the annealing machine.

However, to obtain these weight functions, we need to iteratively sum up piecewise linear func-
tions while stepping through the tree. With the current implementation shown in the pseudocode,
this results in the following runtime for our algorithm and thus for solving the full version of our
problem:

Lemma 4.73. If 𝐺 is a tree and 𝐴 forms an arborescence, we can find an optimal solution for
the Full Weight Distribution Problem in 𝒪

(︀
|𝑉 |3

)︀
.

140

4.6 Full Problem on Trees

Proof. To prove the stated runtime, we go through the procedure given in Algorithm 4.1: The
filtering for the maximal start value only requires to check |𝑆(𝑣)| values when considering ver-
tex 𝑣. The for-loops working on 𝑅, 𝑈 and 𝐿 as well as the functions GetFixedPoint and
FilterByStartValue are only linear in the number of the combined linear pieces. Thus,
the computation that is critical for the runtime is the Add function, which we analyze in the
following.

In the given algorithm, we have one break point in the linear pieces for the leaves of the tree
formed by the inner arcs. In each step towards the root, we add the linear pieces, which in the
worst case sums up the number of break points, too. Furthermore, we attach another linear
piece for the corresponding vertex, which means we further increase the number of break points
by 1. Thus, for a vertex 𝑣 we have at maximum |𝑇𝑣| break points in the corresponding weight
function.

The pairwise addition applied in theAdd function requires 𝒪(𝑘+ℓ) computational steps, where 𝑘
and ℓ are the numbers of break points of the two summands. By adding another function with
𝑚 pieces to the result, we have in total 𝒪

(︀
(𝑘+ ℓ) + (𝑘+ ℓ+𝑚)

)︀
computational steps. Thus, by

summing up the weight functions for all successors, which means |𝑆(𝑣)| many, in each vertex 𝑣
by the for-loop as shown, we handle the break points introduced by the first considered successor
in all of the following additions again. The same holds for the subsequent functions and their
break points until we reach the final one. As each of the successors might have a certain ratio
of the |𝑇𝑣| vertices in its corresponding subtree, we have in total 𝒪(|𝑆(𝑣)||𝑇𝑣|) computational
steps.

This procedure is repeated for every vertex in 𝑉in, which results in a runtime in 𝒪(𝑓) with

𝑓 =
∑︁
𝑣∈𝑉in

|𝑆(𝑣)||𝑇𝑣|,

where we clearly have 𝑓 ∈ 𝒪
(︀
|𝑉 |3

)︀
.

However, the Add function as shown is implemented straightforwardly by simply adding the
pieces of the next neighbor to the sum of the already handled neighbors. Using a better imple-
mentation might improve the runtime: The start times of all pieces of all neighbors form sorted
lists, which need to be merged into one list. This can be done in 𝒪(log(𝑘)𝑛), where 𝑘 is the
number of lists and 𝑛 is the sum of the numbers of elements in all lists, because the lists could
be merged pairwise and the same procedure could be repeated with the resulting lists, whose
number has then reduced by half. This however only considers the start values but not the slopes
and the constants of the linear pieces, which need to be summed up between the break points.
We assume but do not check in detail that there is no further hidden complexity. Thus, the
above 𝑓 could possibly be changed to

𝑓 =
∑︁
𝑣∈𝑉in

log
(︀
|𝑆(𝑣)|

)︀
|𝑇𝑣|,

with which we could achieve a runtime of 𝒪
(︀
log(|𝑉 |)|𝑉 |2

)︀
.

Note that, the way the weight functions are constructed, they respect all the inequalities defining
Θ ∩ Φ−𝛾 when applying them to a 𝜗 ≥ 𝜗−. This means they also provide feasible weights for
the Strength-only and the Full Weight Distribution Problem on Trees in this case.

Furthermore, although the algorithm is designed to deal with the remaining case as stated in the
beginning of the section, we have not taken the condition ‖𝜔*(𝜗𝑊)‖∞ − 𝛾 ≥ 𝜗𝑊 = min

{︀
𝜗0, 𝜗1

2

}︀
141

4 Weight Distribution

into account. Thus, the algorithm is also applicable in the previously handled cases where we
have 𝐴in ̸= ∅, however, has a worse runtime than the specific approaches.

The condition 𝐴in ̸= ∅ in turn is only responsible for starting the iteration with 𝜗− ≥ 𝜗1
2
. In case

of 𝐴in = ∅, we have a lower bound of only 𝜗0 with 𝜗0 < 𝜗1
2
according to the proof of Lemma 4.36.

Furthermore, in this case, the algorithm would only provide a single non-trivial weight function,
which is the one for the root 𝑟: As all neighbors of 𝑟 are outer vertices, whose weights are set
according to the upper bounds on the subtree, we directly apply the final step of the algorithm
and get

𝜔𝑟(𝜗) =𝑊 −
∑︁

𝑠∈𝑆(𝑟)
(𝜗− 𝜎(𝑇𝑠))

!
≤ 𝜗+ 𝛾.

Rearranging the inequality for 𝜗 results in the bound

𝜗 ≥ 𝑊 + 𝜎(𝑉)− 𝜎𝑟 − 𝛾
|𝑆(𝑟)|+ 1

.

The right-hand side is indeed equal to 𝜗0 + 𝜀*, the bound as established in Theorem 4.63, which
can easily be shown by resolving 𝜀*. This means we can also ‘apply the algorithm’ in this case.

4.6.4 Adjusted Algorithm Including De-contraction

In this section, we investigate the case where the arc set 𝐴 does not form an arborescence,
which means we do not have a unique root but rather a set of ‘roots’ 𝑅. The edges connecting
these roots form a path and the corresponding arc set 𝐴𝑅 contains two arcs for each edge,
pointing in the opposite directions. Let ℓ and 𝑟 denote the endpoints of the path as introduced
in Section 4.4.5.

By contracting the instance as described in Definition 4.32, we can get a first insight in the
overall structure of the tree and, with Lemma 4.55 of Section 4.5.4, we can construct a first
possible weighting. However, there is no guarantee for the optimality of the thus obtained values
for the Full Weight Distribution Problem on Trees. Therefore, we briefly describe a
possible algorithm here showing how an optimal solution might be obtained.

General Principle

In the case of non-unique roots, where 𝐴𝑅 ̸= ∅, the additional arcs introduce further constraints
with

𝜗 ≥ 𝜗1
2
+
⃒⃒
𝜗1

2
− 𝜎(𝑇𝑎) + 𝜔(𝑇𝑎, 𝜗)

⃒⃒
for 𝑎 ∈ 𝐴𝑅. Remember, those arcs are always inner arcs. With 𝜎(𝑇𝑎) =

1
2𝜎(𝑉) and the additivity

of 𝜔, the above inequality is equivalent to

1
2𝑊 − (𝜗− 𝜗1

2
) ≤ 𝜔(𝑇𝑎, 𝜗) ≤ 1

2𝑊 + (𝜗− 𝜗1
2
),

respectively, for 𝑎 = 𝑤𝑣 to

1
2𝑊 − (𝜗− 𝜗1

2
)−

∑︁
𝑠∈𝑆(𝑣)
𝑠 ̸=𝑤

𝜔(𝑇𝑠, 𝜗) ≤ 𝜔𝑣(𝜗) ≤ 1
2𝑊 + (𝜗− 𝜗1

2
)−

∑︁
𝑠∈𝑆(𝑣)
𝑠 ̸=𝑤

𝜔(𝑇𝑠, 𝜗).

142

4.6 Full Problem on Trees

This means, in contrast to the situation for the Strength-only Weight Distribution
Problem on Trees, where the inequalities collapse to 𝜔(𝑇𝑎) = 1

2𝑊 as shown in the proof
of Lemma 4.55, we gain a scope of ±(𝜗 − 𝜗1

2
) here, which can somehow be shifted between the

roots. For the weights obtained by Lemma 4.55, there might be a large imbalance between the
weights of the two roots ℓ and 𝑟, the endpoints of the path formed by the arcs in 𝐴𝑅. We are
now possibly able to balance these weights to a certain degree and with this reduce the optimal
value.

We can adjust the former algorithm as follows: We start with the iteration at the leaves of the
tree formed by the inner arcs and step upwards until we have constructed the weight functions
for all vertices in 𝑉 ∖𝑅. As the arborescence is well defined for those vertices, this can be done in
exactly the same way as explained before for the case of unique roots. Equivalently, we maintain
the corresponding current best lower bound 𝜗− until this point.

Now we need to extend the algorithm to be able to handle the multiple roots: First of all, we
always have arcs pointing towards the two roots ℓ and 𝑟 and the given bounds therefore include

𝜔−
ℓ/𝑟(𝜗) =

1
2𝑊 − (𝜗− 𝜗1

2
)−

∑︁
𝑠∈𝑆(ℓ/𝑟)∩𝑇ℓ/𝑟

𝜔(𝑇𝑠, 𝜗),

𝜔+
ℓ/𝑟(𝜗) =

1
2𝑊 + (𝜗− 𝜗1

2
)−

∑︁
𝑠∈𝑆(ℓ/𝑟)∩𝑇ℓ/𝑟

𝜔(𝑇𝑠, 𝜗),

where the weight functions 𝜔(𝑇𝑠, 𝜗) for 𝑠 ∈ 𝑆(ℓ/𝑟) ∩ 𝑇ℓ/𝑟 are already known. Again, we also
restrict the weights 𝜔ℓ/𝑟(𝜗) by 𝜗+ 𝛾 from above, which means in total

𝜔−
ℓ/𝑟(𝜗) ≤ 𝜔ℓ/𝑟(𝜗) ≤ min

{︀
𝜗+ 𝛾, 𝜔+

ℓ/𝑟(𝜗)
}︀
.

Hence, we need to guarantee analogously to before that

𝜗
!
≥ 𝜔−

ℓ/𝑟(𝜗)− 𝛾.

The resulting fixed points 𝜗−ℓ and 𝜗−𝑟 of 𝜔−
ℓ (𝜗)− 𝛾, respectively, 𝜔

−
𝑟 (𝜗)− 𝛾 introduce additional

lower bounds that need to be maintained with 𝜗−. Those can easily be calculated similarly to
the single root bound.

Furthermore, we get analogously to (4.9)

𝜔(𝑇ℓ/𝑟, 𝜗) = 𝜔ℓ/𝑟(𝜗) +
∑︁

𝑠∈𝑆(ℓ/𝑟)∩𝑇ℓ/𝑟

𝜔(𝑇𝑠, 𝜗)

≤ min
{︀
𝜗+ 𝛾, 𝜔+

ℓ/𝑟(𝜗)
}︀
+

∑︁
𝑠∈𝑆(ℓ/𝑟)∩𝑇ℓ/𝑟

𝜔(𝑇𝑠, 𝜗)

= min

{︂
𝜗+ 𝛾 +

∑︁
𝑠∈𝑆(ℓ/𝑟)∩𝑇ℓ/𝑟

𝜔(𝑇𝑠, 𝜗), 𝜔
+(𝑇ℓ/𝑟, 𝜗)

}︂

= 𝜗+min

{︂
𝛾 +

∑︁
𝑠∈𝑆(ℓ/𝑟)∩𝑇ℓ/𝑟

𝜔(𝑇𝑠, 𝜗),
1
2𝑊 − 𝜗1

2

}︂
=: 𝜔≤(𝑇ℓ/𝑟, 𝜗)𝜔≤(𝑇ℓ/𝑟, 𝜗)𝜔≤(𝑇ℓ/𝑟, 𝜗),

being piecewise linear, concave, continuous and monotonic, just like the weight functions 𝜔ℓ/𝑟(𝜗)
themselves. While the latter are monotonically decreasing, the former are again increasing.

143

4 Weight Distribution

Note that we do not have the equality in the preceding relation like in (4.9). Assigning the largest
possible value to the root weights according to their upper bounds might lead to exceeding the
total weight. We need to balance the remaining weight within the new bounds optimally. How
to do this depends on the number of roots |𝑅| or whether there are further vertices attached to
the root nodes in the inner of the path formed by 𝐴𝑅.

Two Roots

In the case where we only have 𝑅 = {ℓ, 𝑟}, no further constraints on the subtrees apart from the
already mentioned ones exist. However, we still need to ensure that the collected weights sum
up to the total weight 𝑊 , like in the final construction step for the unique root. If we only have
the two roots ℓ and 𝑟, we therefore need

𝜔(𝑇ℓ, 𝜗) + 𝜔(𝑇𝑟, 𝜗) = 𝜔(𝑉, 𝜗) =𝑊.

Hence, for the bounds defined in the previous paragraph, we require

𝜔≤(𝑇ℓ, 𝜗) + 𝜔≤(𝑇𝑟, 𝜗) ≥𝑊

to enforce that the upper bounds on the weighting actually suffice to sum up to the total weight.
Since all parts of the left-hand side of the last inequality are known and their sum is again a
piecewise linear, concave, continuous and monotonically increasing function, the corresponding
equation has a unique solution. Let 𝜗−𝑊 be the corresponding value. Thus, with 𝜗 ≥ 𝜗−𝑊 , we can
find 𝜔ℓ(𝜗) and 𝜔𝑟(𝜗) such that 𝜔(𝑉, 𝜗) =𝑊 and we have 𝜔(𝜗) ∈ Ω(𝜗).

As 𝜗−𝑊 introduces a further lower bound on the optimal value, we can finally update the lower
bound to max

{︀
𝜗−, 𝜗−ℓ , 𝜗

−
𝑟 , 𝜗

−
𝑊

}︀
, where 𝜗− was the maintained former best lower bound and is

set to the new maximum. Analogously to before, we found 𝜗− as the optimal value for the Full
Weight Distribution Problem on Trees and we can get the desired weighting by inserting
𝜗− in the constructed 𝜔-functions. However, only if 𝜗−𝑊 dominates all other lower bounds, which
means we have 𝜗− = 𝜗−𝑊 , we can apply this also for the roots: In this case, we need

𝜔(𝑇ℓ/𝑟, 𝜗
−
𝑊) = 𝜔≤(𝑇ℓ/𝑟, 𝜗

−
𝑊)

to achieve the total weight and therefore can directly obtain the root weights with

𝜔*
ℓ/𝑟 = 𝜔ℓ/𝑟(𝜗

−
𝑊) = min

{︀
𝜗−𝑊 + 𝛾, 𝜔+

ℓ/𝑟(𝜗
−
𝑊)
}︀
.

For 𝜗− > 𝜗−𝑊 , we can in general not give explicit formulas for 𝜔ℓ(𝜗) and 𝜔𝑟(𝜗) and therefore not
obtain 𝜔ℓ(𝜗

−) and 𝜔𝑟(𝜗
−) directly. We rather have to evaluate the found boundary functions:

Applied to 𝜗−, they provide explicit bounds the weights need to comply with. For 𝜔*
ℓ and 𝜔*

𝑟 ,
denoting a possible choice for the weights of ℓ and 𝑟, we require

𝜔−
ℓ/𝑟(𝜗

−) ≤ 𝜔*
ℓ/𝑟 ≤ min

{︀
𝜗− + 𝛾, 𝜔+

ℓ/𝑟(𝜗
−)
}︀
.

As the choice of the weight of one root influences the other due to the total weight sum

𝜔*
ℓ + 𝜔*

𝑟 =𝑊 − 𝜔(𝑉 ∖ {ℓ, 𝑟}, 𝜗−) =𝑊 −
∑︁

𝑣∈𝑉 ∖{ℓ,𝑟}
𝜔𝑣(𝜗

−),

we get a simple set of linear inequalities, where each feasible solution provides a final weighting.

144

4.6 Full Problem on Trees

For the sake of completeness, such a solution can be found efficiently by replacing

𝜔*
ℓ =𝑊 − 𝜔(𝑉 ∖ {ℓ, 𝑟}, 𝜗−)− 𝜔*

𝑟

in the inequality for 𝜔*
ℓ and combining

𝑊 − 𝜔(𝑉 ∖ {ℓ, 𝑟}, 𝜗−)−min
{︀
𝜗− + 𝛾, 𝜔+

ℓ (𝜗
−)
}︀
≤ 𝜔*

𝑟 ≤𝑊 − 𝜔(𝑉 ∖ {ℓ, 𝑟}, 𝜗−)− 𝜔−
ℓ (𝜗

−)

with the original inequality for 𝜔*
𝑟 . This results in the lower bound

max
{︀
𝜔−
𝑟 (𝜗

−), 𝑊 − 𝜔(𝑉 ∖ {ℓ, 𝑟}, 𝜗−)−min
{︀
𝜗− + 𝛾, 𝜔+

ℓ (𝜗
−)
}︀}︀

= max
{︀
𝜔−
𝑟 (𝜗

−), 𝑊 − 𝜔(𝑉 ∖ {ℓ, 𝑟}, 𝜗−) + max
{︀
− 𝜗− − 𝛾, −𝜔+

ℓ (𝜗
−)
}︀}︀

= max
{︀
𝜔−
𝑟 (𝜗

−), 𝑊 − 𝜔(𝑉 ∖ {ℓ, 𝑟}, 𝜗−)− 𝜗− − 𝛾, 𝑊 − 𝜔(𝑉 ∖ {ℓ, 𝑟}, 𝜗−)− 𝜔+
ℓ (𝜗

−)
}︀

and the upper bound

min
{︀
min

{︀
𝜗− + 𝛾, 𝜔+

𝑟 (𝜗
−)
}︀
, 𝑊 − 𝜔(𝑉 ∖ {ℓ, 𝑟}, 𝜗−)− 𝜔−

ℓ (𝜗
−)
}︀

= min
{︀
𝜗− + 𝛾, 𝜔+

𝑟 (𝜗
−), 𝑊 − 𝜔(𝑉 ∖ {ℓ, 𝑟}, 𝜗−)− 𝜔−

ℓ (𝜗
−)
}︀
,

within which we can freely choose the value 𝜔*
𝑟 and derive the corresponding 𝜔*

ℓ from it.

Three Roots Without Attached Vertices

The path between ℓ and 𝑟 might include more roots, over which we can distribute the remaining
weight. We continue with the next slightly more difficult setting of three roots, where the
additional root 𝑚 shall be located in the middle of ℓ and 𝑟. Furthermore, we start with the
assumption that no further vertices are attached to 𝑚.

The bounds for ℓ and 𝑟 as derived in the beginning of this section are still valid. The two
additional arcs 𝑟𝑚 and ℓ𝑚 of 𝐴𝑅 yield two additional weight bounds

1
2𝑊 − (𝜗− 𝜗1

2
)− 𝜔(𝑇ℓ/𝑟, 𝜗) ≤ 𝜔𝑚(𝜗) ≤ 1

2𝑊 + (𝜗− 𝜗1
2
)− 𝜔(𝑇ℓ/𝑟, 𝜗),

similar to those of ℓ and 𝑟. Replacing the subtree weights of ℓ and 𝑟 with their corresponding
lower bounds 𝜔−(𝑇ℓ/𝑟, 𝜗) in the right relation provides

𝜔𝑚(𝜗) ≤ 1
2𝑊 + (𝜗− 𝜗1

2
)− 𝜔−(𝑇ℓ/𝑟, 𝜗) = 2(𝜗− 𝜗1

2
).

In case we have already 2(𝜗−−𝜗1
2
) ≤ 𝜗−+𝛾, being equivalent to 𝜗− ≤ 2𝜗1

2
+𝛾 = 𝜎(𝑉)−𝑊 +𝛾,

for the current best lower bound 𝜗−, the weights can be chosen straightforwardly: Because the
remaining weight is small enough, we can choose to set

𝜔*
𝑚 = 2(𝜗− − 𝜗1

2
)

and use the lower bounds for the weights of the trees 𝑇ℓ and 𝑇𝑟 and thus the smallest possible
weight for ℓ and 𝑟 with

𝜔*
ℓ/𝑟 = 𝜔−

ℓ/𝑟(𝜗
−).

We have

𝜔−(𝑇ℓ, 𝜗
−) + 𝜔−(𝑇𝑟, 𝜗−) + 𝜔*

𝑚 = 1
2𝑊 − (𝜗− 𝜗1

2
) + 1

2𝑊 − (𝜗− 𝜗1
2
) + 2(𝜗− 𝜗1

2
) =𝑊

and 𝜔*
ℓ , 𝜔

*
𝑟 and 𝜔*

𝑚 form together with 𝜔𝑉 ∖𝑅(𝜗−) an optimal weighting in Ω(𝜗−).

145

4 Weight Distribution

If we instead have 2(𝜗− − 𝜗1
2
) > 𝜗− + 𝛾, equivalently 𝜗− > 2𝜗1

2
+ 𝛾, we need to distribute the

weight in a different way. We have

𝑊 − 𝜔≤(𝑇ℓ, 𝜗)− 𝜔≤(𝑇𝑟, 𝜗) ≤ 1
2𝑊 + (𝜗− 𝜗1

2
)− 𝜔≤(𝑇ℓ/𝑟, 𝜗)

⇔ 𝜔≤(𝑇𝑟/ℓ, 𝜗) ≥ 1
2𝑊 − (𝜗− 𝜗1

2
) = 𝜔−(𝑇𝑟/ℓ, 𝜗)

and
𝑊 − 𝜔≤(𝑇ℓ, 𝜗)− 𝜔≤(𝑇𝑟, 𝜗) ≥ 1

2𝑊 − (𝜗− 𝜗1
2
)− 𝜔≤(𝑇ℓ/𝑟, 𝜗)

⇔ 𝜔≤(𝑇𝑟/ℓ, 𝜗) ≤ 1
2𝑊 + (𝜗− 𝜗1

2
) = 𝜔+(𝑇𝑟/ℓ, 𝜗).

Therefore, setting
𝜔ℓ/𝑟(𝜗) := min

{︀
𝜗+ 𝛾, 𝜔+

ℓ/𝑟(𝜗)
}︀

results in 𝜔(𝑇ℓ/𝑟, 𝜗) = 𝜔≤(𝑇ℓ/𝑟, 𝜗) and, with

𝜔𝑚(𝜗) :=𝑊 − 𝜔≤(𝑇ℓ, 𝜗)− 𝜔≤(𝑇𝑟, 𝜗),

the above bounds for the arcs 𝑟𝑚 and ℓ𝑚 hold. However, at the same time, we need to ensure
that the remaining weight in 𝜔𝑚(𝜗) does not exceed 𝜗+ 𝛾. By solving

𝑊 − 𝜔≤(𝑇ℓ, 𝜗)− 𝜔≤(𝑇𝑟, 𝜗) = 𝜗+ 𝛾

analogously to before, we get another lower bound 𝜗−𝑚 on the optimal 𝜗, to be maintained in 𝜗−.
Again we have found the optimal weights with 𝜔(𝜗−) ∈ Ω(𝜗−).

More Than Three Roots or Attached Vertices

Finally, we consider the case where we have additional vertices in the form of further roots or of
vertices that are attached to roots in the inner of the path formed by 𝐴𝑅, thus not to ℓ and 𝑟.
Surprisingly, this constellation yields a straightforward solution in contrast to previous cases.
Due to the distribution of the 𝜎-values causing multiple roots as explained in Section 4.4.5, all
attached vertices 𝑣 ∈ 𝑉 ∖(𝑇ℓ∪𝑇𝑟∪𝑅) have 𝜎𝑣 = 0. Hence, they are outer vertices, whose weights
are bounded by

𝜎(𝑇𝑣)− 𝜗 = −𝜗 ≤ 𝜔(𝑇𝑣, 𝜗) ≤ 𝜗− 𝜎(𝑇𝑣) = 𝜗.

It would therefore be feasible to choose 𝜔(𝑇𝑣, 𝜗) = 𝜗− 𝜗1
2
, for instance.

As we have seen before, 𝜔(𝑇𝑚, 𝜗) = 𝜗 − 𝜗1
2
can also be a feasible choice for an additional root

𝑚 ∈ 𝑅 ∖ {ℓ, 𝑟}. This means, if at least two such vertices exist, root or attached, we can proceed
analogously to the beginning of the last section and set

𝜔ℓ/𝑟(𝜗) := 𝜔−
ℓ/𝑟(𝜗).

The thus remaining weight of 2(𝜗− 𝜗1
2
) can be distributed with

𝜔𝑣/𝑤(𝜗) := 𝜗− 𝜗1
2

for two arbitrarily chosen vertices 𝑣 ̸= 𝑤 ∈ 𝑉 ∖ (𝑇ℓ ∪ 𝑇𝑟). The remaining roots and attached
vertices 𝑉 ∖ (𝑇ℓ ∪ 𝑇𝑟 ∪ {𝑣, 𝑤}) get a weight of 0. It is easy to check that this choice fulfils the
inequalities corresponding to the arcs in 𝐴𝑅 and all weights sum up to 𝑊 . Hence, we have
again found an optimal weighting with the constructed weight functions. As we do not introduce
further lower bounds on 𝜗 this way, our formerly found current best lower bound 𝜗− is the
optimal choice again to be inserted in the weight functions.

146

4.7 Integer Programming

4.7 Integer Programming

Finally, we briefly investigate the consequences when restricting ourselves to integer parameters
as well as integer variables in the previously presented problems. Surprisingly, with only slight
adjustments, we can transfer the results for the continuous versions. In particular, we observe
no increase in the runtime for the weight calculations in the different cases.

We still assume the graph 𝐺𝐺𝐺 = (𝑉𝑉𝑉 ,𝐸𝐸𝐸), the strengths 𝜎𝜎𝜎 ∈ N𝑉 , the total weight 𝑊𝑊𝑊 ∈ N and the
gap 𝛾𝛾𝛾 ∈ N+ to be given and fixed and consider the case 0 ≤𝑊 < 𝜎(𝑉). Note that N includes 0
here, while we explicitly exclude 0 with N+. We focus on the gapless version here, however with
an integer gap, all results are easily extendable to the gapped versions. Furthermore, according
to the experiences with the continuous versions, we mainly deal with trees.

4.7.1 The Problems

By replacing all appearances of R with Z, respectively, N in the Zero weight distribution
problem and the Strength-only [Full] Weight Distribution Problem on Trees, we
get the corresponding integer versions, which we add here for completeness:

Strength-only [Full] Integer Weight Distribution Problem on Trees.
Given a tree 𝐺 = (𝑉,𝐸), 𝜎 ∈ N𝑉 , 𝑊 ∈ N [and 𝛾 ∈ N+], find 𝜗 and 𝜔 that solve

min 𝜗

s.t. 𝜗 ∈ Z, 𝜔 ∈ Z𝑉 ,

𝜗 ≥ 𝜎(𝑇𝑎) + |𝜔(𝑇𝑎)| ∀𝑎 ∈ 𝐴out,

𝜗 ≥ 𝜗1
2
+ |𝜗1

2
− 𝜎(𝑇𝑎) + 𝜔(𝑇𝑎)| ∀𝑎 ∈ 𝐴in,

𝜔(𝑉) =𝑊,[︀
𝜗 ≥ ‖𝜔‖∞ − 𝛾

]︀
.

Analogously, we get from Corollary 4.27 also

Integer Zero Weight Distribution Problem on Trees. Given tree𝐺 = (𝑉,𝐸)
and 𝜎 ∈ N𝑉 , find 𝜗 that solves

min 𝜗

s.t. 𝜗 ∈ Z,
𝜗 ≥ 𝜎(𝑇𝑎) ∀𝑎 ∈ 𝐴.

When we consider the continuous versions with only integer parameters given, they form a
relaxation of the above problems and therefore only provide lower bounds on the optimal value
on the first sight. In the following, we however show that these bounds are tight in several cases.
For this we work through the results of the previous sections and check if they still hold in the
integer setting. We start the straightforward results where the relaxation directly yields optimal
integer solutions.

147

4 Weight Distribution

4.7.2 Straightforward Insights

Zero Weight

First of all, we consider the zero weight problem handled in Section 4.3.2. As the restriction to
fundamental cuts still holds, we can easily see that we have in the case of trees:

Corollary 4.74. For 𝐺 being a tree and 𝜎 ∈ N𝑉 , we have 𝜗0 ∈ N for the optimal value of
the Zero weight distribution problem. Thus,

(︀
𝜗0,O

)︀
is an optimal solution of the Inte-

ger Zero Weight Distribution Problem on Trees.

Proof. Clear by Theorem 4.16 with 𝜗0(𝑒) ∈ N for all 𝑒 ∈ 𝐸(𝐺) for 𝜎 ∈ N𝑉 .

As the restriction to integer values does not increase the computational effort, we can also directly
transfer Corollary 4.17:

Corollary 4.75. If 𝐺 is a tree, we can find an optimal solution for the Integer Zero Weight
Distribution Problem on Trees in 𝒪(|𝑉 |).

Remember, due to the equivalence of the problems for 𝑊 = 0, both above results also hold for
the strength-only and the full problem in this case and we have

Corollary 4.76. For 𝑊 = 0, every optimal solution 𝜗0 to the Integer Zero Weight Dis-
tribution Problem on Trees yields an optimal solution

(︀
𝜗0,O

)︀
to the Strength-only and

the Full Integer Weight Distribution Problem on Trees and it can be found in 𝒪(|𝑉 |).

Strength-only Problem

In case we do not have𝑊 = 0, we continue with the strength-only problem version as investigated
in Section 4.5. With 𝜗0 ∈ N and 𝜗1

2
= 1

2(𝜎(𝑉)−𝑊), we can also easily see the following claim:

Corollary 4.77. For 𝐺 being a tree, 𝜎 ∈ N𝑉 , 𝑊 ∈ N and 𝜗𝑊 = 𝜗0 or 𝜗𝑊 = 𝜗1
2
with 𝜎(𝑉) and 𝑊

being either both even or both odd, we have 𝜗𝑊 ∈ N for the optimal value of the Strength-only
Weight Distribution Problem on Trees.

Proof. In case 𝜎(𝑉) and 𝑊 are either both even or both odd, we also have 𝜗1
2
∈ N and the claim

thus follows directly from Theorem 4.37, respectively, Lemma 4.55.

Note that this result holds whether or not the arc set 𝐴 forms an arborescence in the tree 𝐺.
However, it does not necessarily mean that we have found the objective value for integer problem
version. It might be that we cannot find suitable integer weights fulfilling the defining inequalities,
which means some 𝜔* ∈ Ω(𝜗𝑊)∩Z𝑉 , where we keep using the definition of Ω(𝜗𝑊) over continuous
weights specified in Lemma 4.28. However, with 𝜎(𝑉) ∈ N and 𝑊 ∈ N, we have 2𝜗1

2
∈ N and

the bounds defining Ω(𝜗) of Definition 4.29 fulfil 𝜔+(𝑇𝑣, 𝜗), 𝜔
−(𝑇𝑣, 𝜗) ∈ Z for all 𝑣 ∈ 𝑉 ∖{𝑟} and

all 𝜗 ∈ N.

That 𝜗𝑊 is indeed the optimal value of the Strength-only Integer Weight Distribution
Problem on Trees in the above cases can be seen with the simple formulas for the weight
calculation derived in Section 4.5.2:

148

4.7 Integer Programming

Corollary 4.78. For 𝐺 being a tree, 𝐴 forming an arborescence, 𝜎 ∈ N𝑉 , 𝑊 ∈ N, 𝜗𝑊 ∈ N
and 𝜔* of Theorem 4.40, we have 𝜔* ∈ Ω(𝜗𝑊) ∩ Z𝑉 . Thus,

(︀
𝜗𝑊 , 𝜔

*)︀ is an optimal solution
of the Strength-only Integer Weight Distribution Problem on Trees and can be
computed in 𝒪(|𝑉 |).

Proof. The construction of Theorem 4.40 still holds and provides integer weights with 𝜗𝑊 ∈ N
because only integer values are added or subtracted. The runtime is not influenced and thus
remains as stated in Corollary 4.41.

We can easily see that this result is extendable to the improved weights of Lemma 4.42 established
in Section 4.5.3, which are integer for integer input parameters analogously, and their non-
negative counterparts of Theorem 4.45. As the deductions on the optimality still hold, too, we
can further deduce analogously to Theorem 4.54:

Corollary 4.79. For 𝐺 being a tree, 𝐴 forming an arborescence, 𝜎 ∈ N𝑉 , 𝑊 ∈ N, 𝜗𝑊 ∈ N
and 𝜔* of Theorem 4.45, we have 𝜔* ∈ N𝑉 and 𝜔* ∈ Ω*(𝜗𝑊) or ‖𝜔*‖∞ ≤ 𝜗𝑊 .

Even if we need to de-contract the problem instance in case the original tree does not have a
unique root as described in Section 4.5.4, we can derive analogous results. In this case, we have
𝜗𝑊 = 𝜗1

2
according to Lemma 4.55. With 𝜎(𝑇𝑎) = 1

2𝜎(𝑉) ∈ N for 𝑎 ∈ 𝐴𝑅 ̸= ∅, we know that
𝜎(𝑉) is even in this case. Thus, for 𝜗1

2
being an integer, 𝑊 must be even, too. This means that

the collapse of the inequalities for the arcs 𝑎 ∈ 𝐴𝑅 to

𝜔(𝑇𝑎) = 𝜎(𝑇𝑎)− 𝜗1
2
= 1

2𝜎(𝑉)− 1
2(𝜎(𝑉)−𝑊) = 1

2𝑊

leads to integer weights in the construction of Lemma 4.55. By replacing 𝜔* in the last two
corollaries with the weights of Theorem 4.58 constructed from those of Lemma 4.55, we can
therefore state the equivalent results for the uncontracted instance.

Corollary 4.80. For 𝐺 being a tree, 𝐴 not forming an arborescence, 𝜎 ∈ N𝑉 , 𝑊 ∈ N, 𝜗𝑊 ∈ N
and 𝜔* of Theorem 4.58, we have 𝜔* ∈ Ω(𝜗𝑊) ∩ Z𝑉 . Thus,

(︀
𝜗𝑊 , 𝜔

*)︀ is an optimal solution
of the Strength-only Integer Weight Distribution Problem on Trees and can be
computed in 𝒪(|𝑉 |).

Corollary 4.81. For 𝐺 being a tree, 𝐴 not forming an arborescence, 𝜎 ∈ N𝑉 , 𝑊 ∈ N, 𝜗𝑊 ∈ N
and 𝜔* of Theorem 4.58, we have 𝜔* ∈ N𝑉 and 𝜔* ∈ Ω*(𝜗𝑊) or ‖𝜔*‖∞ ≤ 𝜗𝑊 .

This means, in case of 𝜗𝑊 ∈ N, we have solved the Strength-only Integer Weight Dis-
tribution Problem on Trees for arbitrary tree structures and we either have also solved
the Full Integer Weight Distribution Problem on Trees or need to apply different
methods to tackle the full problem version, analogously to the continuous cases. First, we how-
ever investigate the case where 𝜗𝑊 ̸∈ N.

4.7.3 Rounded Up

All of the previously handled cases exclude an optimal value of 𝜗1
2
̸∈ N for the Strength-only

Weight Distribution Problem on Trees. As the continuous problem provides a lower
bound on the integer version, a candidate for the optimal value is

⌈︀
𝜗1

2

⌉︀
. We can indeed confirm

that
⌈︀
𝜗1

2

⌉︀
holds the optimal value of the Strength-only Integer Weight Distribution

Problem on Trees.

149

4 Weight Distribution

Strength-only Problem

As 𝜗1
2
is derived from the integer input parameters with 𝜗1

2
= 1

2(𝜎(𝑉) −𝑊), we can only have
𝜗1

2
̸∈ N if 𝜎(𝑉) −𝑊 is odd, which means that one of the values 𝜎(𝑉) and 𝑊 is odd and the

other is even. We further know that 2𝜗1
2
∈ N and

⌈︀
𝜗1

2

⌉︀
= 𝜗1

2
+ 0.5. Remember, we only have an

optimal value of 𝜗1
2
for the Strength-only Weight Distribution Problem on Trees in

case of 𝐴in ̸= ∅.

By Corollary 4.30, we also have Ω
(︀
𝜗1

2

)︀
⊆ Ω

(︀⌈︀
𝜗1

2

⌉︀)︀
. This means, if we had 𝜔* ∈ Z𝑉 for 𝜔*

as constructed in Theorem 4.40 or in Lemma 4.42, we could directly deduce that
(︀⌈︀
𝜗1

2

⌉︀
, 𝜔*)︀ is

an optimal solution of the Strength-only Integer Weight Distribution Problem on
Trees. However, we see that we do in general not get integer weights by the constructions of
both lemmata if we have 𝜗1

2
̸∈ N. Therefore, we need to investigate the case in more detail.

By slightly modifying the weight construction of Lemma 4.42, we can see that we can easily
construct integer weights:

Lemma 4.82. For 𝐺 being a tree, 𝐴 forming an arborescence with root 𝑟 and 𝜔* ∈ R𝑉 with

𝜔*
𝑣 = 0 ∀𝑣 ∈ 𝑉out, 𝑝𝑣 ̸∈ 𝑉in ∪ {𝑟},
𝜔*
𝑣 = ⌈𝜗𝑊 ⌉ − 𝜎(𝑇𝑣) ∀𝑣 ∈ 𝑉out, 𝑝𝑣 ∈ 𝑉in ∪ {𝑟},

𝜔*
𝑣 = 𝜎(𝑇𝑣)− ⌊𝜗𝑊 ⌋ −

∑︁
𝑠∈𝑆in(𝑣)

(︀
𝜎(𝑇𝑠)− ⌊𝜗𝑊 ⌋

)︀
−

∑︁
𝑠∈𝑆out(𝑣)

(︀
⌈𝜗𝑊 ⌉ − 𝜎(𝑇𝑠)

)︀
∀𝑣 ∈ 𝑉in,

𝜔*
𝑟 =𝑊 −

∑︁
𝑠∈𝑆in(𝑟)

(︀
𝜎(𝑇𝑠)− ⌊𝜗𝑊 ⌋

)︀
−

∑︁
𝑠∈𝑆out(𝑟)

(︀
⌈𝜗𝑊 ⌉ − 𝜎(𝑇𝑠)

)︀
,

we have 𝜔* ∈ Ω (⌈𝜗𝑊 ⌉) ∩ Z𝑉 .

Proof. For the case 𝜗𝑊 ∈ N, we have ⌈𝜗𝑊 ⌉ = ⌊𝜗𝑊 ⌋ = 𝜗𝑊 and the weights are the same as in
Lemma 4.42. For 𝜗𝑊 = 𝜗1

2
̸∈ N, apart from setting the subtree weight to a different upper bound

with
𝜔*(𝑇𝑣) = 𝜔+

(︀
𝑇𝑣,
⌈︀
𝜗1

2

⌉︀)︀
=
⌈︀
𝜗1

2

⌉︀
+ 𝜎(𝑇𝑣)− 2𝜗1

2

= 𝜎(𝑇𝑣)− 𝜗1
2
+ 0.5

= 𝜎(𝑇𝑣)−
⌊︀
𝜗1

2

⌋︀
for 𝑣 ∈ 𝑉in, the proof follows the one of Lemma 4.42 and thus in turn Theorem 4.40.

With these weights, we can now extend Corollary 4.78 with

Corollary 4.83. For 𝐺 being a tree, 𝐴 forming an arborescence, 𝜎 ∈ N𝑉 , 𝑊 ∈ N and 𝜔*

of Lemma 4.82, (⌈𝜗𝑊 ⌉ , 𝜔*) is an optimal solution of the Strength-only Integer Weight
Distribution Problem on Trees and can be computed in 𝒪(|𝑉 |).

Again, we can also apply Theorem 4.45 to obtain the corresponding non-negative weights. Un-
fortunately, there is no collapse of the weight bounds and therefore of the inequalities defined by
𝑉in anymore. Instead, we have a difference of 1 with

𝜔+
(︀
𝑇𝑣,
⌈︀
𝜗1

2

⌉︀)︀
= 𝜎(𝑇𝑣)−

⌈︀
𝜗1

2

⌉︀
+ 1 = 𝜔− (︀𝑇𝑣, ⌈︀𝜗1

2

⌉︀)︀
+ 1.

150

4.7 Integer Programming

Thus, the arguments in the proof of Lemma 4.49 do not apply anymore and we can in general not
establish the second-level optimality of these weights in the sense of Theorem 4.54 analogously
to Corollary 4.79. However, by comparing the explicit formulas, we can easily see the following
relation:

Corollary 4.84. For �̃�* of Lemma 4.42 and 𝜔* of Lemma 4.82, we have 𝜔* ≤ �̃�* + 1
21.

Thus, we can at least deduce that, if we already have a feasible solution for the Full Weight
Distribution Problem on Trees, the construction of the second-level optimal weights can
be applied and provides a feasible solution for the Full Integer Weight Distribution
Problem on Trees:

Corollary 4.85. For 𝐺 being a tree, 𝐴 forming an arborescence, 𝜗𝑊 = 𝜗1
2
̸∈ N, �̃�* of Lemma 4.42

modified by Theorem 4.45 with ‖�̃�*‖∞ ≤ 𝜗1
2
and 𝜔* of Lemma 4.82 equivalently modified by

Theorem 4.45, we have ‖𝜔*‖∞ ≤
⌈︀
𝜗1

2

⌉︀
.

Proof. Clear with

‖𝜔*‖∞ =
⃦⃦
�̃�* + 1

21
⃦⃦
∞ ≤

⃦⃦
�̃�*⃦⃦+ ⃦⃦1

21
⃦⃦
∞ = 𝜗1

2
+ 1

2 =
⌈︀
𝜗1

2

⌉︀
because the modifications of Theorem 4.45 preserve the property of Corollary 4.84.

In case of an instance with multiple roots, we can again start with obtaining the weights for
the contracted instance, which yields an integer problem as well if the uncontracted does. By
slightly modifying the weights given in Lemma 4.55, we can also deal with the case where 𝑊 is
odd and 1

2𝑊 thus is not an integer, preventing the straightforward applicability of Lemma 4.55:

Corollary 4.86. Every optimal solution
(︀
𝜗*, �̃�*)︀ to the Strength-only Integer Weight

Distribution Problem on Trees over the contracted instance with, w.l.o.g.,

�̃�*(𝑇ℓ ∖ {ℓ}) ≥ �̃�*(𝑇𝑟 ∖ {𝑟})

yields an optimal solution
(︀
⌈𝜗1

2
⌉, 𝜔*)︀ to the Strength-only Integer Weight Distribution

Problem on Trees over the uncontracted instance with

𝜔*
𝑣 = 0 ∀𝑣 ∈ 𝑉 ∖ (𝑇ℓ ∪ 𝑇𝑟),
𝜔*
𝑣 = �̃�*

𝑣 ∀𝑣 ∈ 𝑇ℓ ∪ 𝑇𝑟 ∖ {ℓ, 𝑟},
𝜔*
ℓ =

⌊︀
1
2𝑊
⌋︀
− �̃�*(𝑇ℓ ∖ {ℓ}),

𝜔*
𝑟 =

⌈︀
1
2𝑊
⌉︀
− �̃�*(𝑇𝑟 ∖ {𝑟}).

Proof. The proof mainly follows the one of Lemma 4.55. However, instead of the collapse of the
inequalities for 𝑎 ∈ 𝐴𝑅, we obtain ⌊︀

1
2𝑊
⌋︀
≤ 𝜔(𝑇𝑎) ≤

⌈︀
1
2𝑊
⌉︀

and the above weights thus are feasible. With �̃�* ∈ N, we also have 𝜔* ∈ N.
151

4 Weight Distribution

This means that Corollaries 4.84 and 4.85 analogously apply for the case of multiple roots with
the corresponding weights.

If the weights constructed for the different cases further fulfil max𝑣∈𝑉 𝜔*
𝑣 ≤

⌈︀
𝜗1

2

⌉︀
+ 𝛾, we have

again also found the optimal solution to the Full Integer Weight Distribution Problem
on Trees and in both cases preserved the linear runtime. For the remaining cases, we need to
refer to the analogous strategies as introduced in Section 4.6, which we explain in more detail
in the next section. There we however see that our algorithm is also suitable to produce integer
weights.

Full Problem

If we have not yet found an optimal solution to the Full Integer Weight Distribution
Problem on Trees, which means we have ‖𝜔*‖∞ > ⌈𝜗𝑊 ⌉ + 𝛾 for the second-level optimal
weights of the previous section, we need to proceed analogously to Section 4.6. There we have
mainly dealt with two cases distinguishing between 𝐴in = ∅ and 𝐴in ̸= ∅.

In case of 𝐴in = ∅, the optimal value for the continuous problem has been given with 𝜗0 + 𝜀* for
a certain 𝜀* in Section 4.6.1. Analogously to before, we can show that this lower bound on the
integer problem is tight and we can simply round up to obtain the optimal value. Since we have
𝜗0 ∈ N for integer input parameters, the rounding only concerns the found 𝜀*. Remember, in
case of 𝐴in = ∅, we always have a unique root 𝑟.

Lemma 4.87. If 𝐺 is a tree and we have 𝐴in = ∅ and ‖𝜔*‖∞ > 𝜗0 + 𝛾 for 𝜔* as constructed in
Theorem 4.45, the optimal solution to the Full Integer Weight Distribution Problem on
Trees is (𝜗0 + ⌈𝜀*⌉ , 𝜔 (⌈𝜀*⌉)), with 𝜀* as given in Theorem 4.63 and the weight functions 𝜔(𝜀)
given in the proof of Theorem 4.63, and can be computed in 𝒪(|𝑉 |).

Proof. In the construction of the proof of Theorem 4.63, it is easy to see that 𝜔(𝜀) ∈ Ω(𝜗0 + 𝜀)
provides integer weights if 𝜀 is integer. With

𝜔𝑣 (⌈𝜀*⌉) = ⌈𝜔𝑣(𝜀
*)⌉ ∀𝑣 ∈ 𝑆(𝑟),

𝜔𝑟 (⌈𝜀*⌉) ≤ 𝜔𝑟(𝜀
*),

we further have
‖𝜔 (⌈𝜀*⌉)‖∞ ≤ 𝜗0 + ⌈𝜀

*⌉+ 𝛾

and we have thus found a feasible integer solution holding the lower bound given by the relaxation,
the continuous problem. The runtime remains as stated in Corollary 4.64.

In the same way, we can argue for the weight obtained by our algorithm for the remaining case
𝐴in ̸= ∅, which we have presented in Section 4.6.3:

Theorem 4.88. The optimal value to the Full Integer Weight Distribution Problem
on Trees is ⌈𝜗♢⌉ and we can find an optimal solution in 𝒪

(︀
|𝑉 |3

)︀
.

Proof. The weight functions constructed in Section 4.6.3 provide integer solutions when inserting
an integer value for 𝜗. Those are also feasible because, by construction, we have 𝜔(𝜗) ∈ Ω(𝜗)
and 𝜔𝑣(𝜗) ≤ 𝜗 + 𝛾 and thus also max𝑣∈𝑉 𝜔𝑣 (⌈𝜗♢⌉) ≤ ⌈𝜗♢⌉ + 𝛾. According to the result for the
relaxation given in Theorem 4.72, we have found the optimal integer solution. Furthermore, the
runtime does not change compared to the one of the continuous problem given in Lemma 4.73.

152

4.7 Integer Programming

In case of a tree where the arcs do not form an arborescence, we are confident that the strategies
proposed in Section 4.6.4 are analogously applicable to obtain a de-contracted integer solution
for the uncontracted instance. The constructed weight functions for the vertices apart from the
roots yield integer values when applied to 𝜗 ∈ N as well as the bounds for the balancing of the
roots’ weights. However, we do not show the details here because this goes beyond the scope of
this work.

To put it in a nutshell, even the transfer to the integer programming setting does not increase
the computational effort to solve the examined problems and the derived solution strategies for
the continuous problem versions apply with only slight adjustments up to rounding.

153

5 Conclusions

Whether the quantum annealers, in particular those built by D-Wave, show an advantage over
classical computers is still under discussion and will only reveal with the further development of
such machines. To evaluate the great potential of this technology however, we need to design our
experiments carefully. If the architecture does not change drastically, the two programming steps,
minor embedding and parameter setting, will remain relevant in the long term. They are critical
when it comes to providing meaningful input for the annealing machines. While the necessary
minor embedding can prevent calculations on the machine at all, that is, if no embedding can
be found, the specific parameter setting decisively influences the success in solving the actual
problem.

First of all, this thesis gives a deep insight in the embedding problem within the setting of
quantum annealing. With our hardness result of Section 3.2, the embedding of arbitrary graphs
in broken Chimera or Pegasus graphs reveals to be as hard as the Ising problem, of which the
machine shall actually solve a restricted version. However, the given proof is based on a very
restrictive Chimera graph construction, whereas currently operating annealers have a very small
ratio of broken vertices compared to the overall number of vertices. Although we could certainly
decrease the number of broken vertices in our construction, some of them are indispensable, such
as those in the odd vertex representation. Thus, it remains an open question whether a bounded
ratio of broken vertices, for instance by a linear function in the size of the Chimera, still holds
the same result.

Nevertheless, with a view to an increasing size of quantum chips, we need to apply different
strategies to provide embeddings prior to the actual calculations. Taking up the idea of pre-
calculated and reusable templates, our approach of Section 3.3 to handle the embedding problem
for complete graphs in broken Chimera graphs demonstrates a possible solution. Considering
operational times of the machines of over one year, the embeddings can be produced with a
reasonable computational effort. With the help of dedicated bounding techniques, the branching
strategy presented in Section 3.3.4 could be extended to a customized algorithm, which might
show even better performance. In our future research, we also aim to transfer the construction
of the model for the Chimera graph to the Pegasus graph, which is implemented in the latest
quantum annealing architecture of D-Wave. The strong relation between both graphs is also
evidenced by the transfer of the hardness result for the embedding problem. Due to the larger
connectivity of the Pegasus graph, we even expect to obtain a model with less constraints caused
by broken vertex pairs and thus a better solving performance compared to the Chimera.

The second programming step, the parameter setting, in this work also referred to as weight
distribution, is as important as the embedding, however less deeply investigated in current re-
search. In Chapter 4, we provide the first algorithms to find the coefficients of the embedded
Ising model for a given model and its corresponding embedding such that both problems are
provably equivalent, which means they yield equivalent solutions. Our results include a variety
of cases, in particular arbitrary trees rather than only chains as well as the restriction to inte-
ger coefficients, and greatly improve the formerly known bounds. At the same time, they show
that the parameter setting, in contrast to the embedding problem, is easy to solve, namely in

155

5 Conclusions

linear time for most cases or at least in cubic time for the general case. Furthermore, while the
considered embedding problems are strongly related to the specific hardware graphs of D-Wave,
our weight distribution algorithms are applicable for all hardware graphs which do not yield an
all-to-all connectivity and thus require an embedding.

As the resulting problems can now directly be transferred to the D-Wave machines, the compu-
tational properties of these machines can now be investigated even further: Do the theoretically
optimal coupling strengths also hold under the perturbations of the machine, that is, do they suf-
fice to enforce the synchronization of the variables in practice? While, in theory, any positive gap
is sufficient for the equivalence of the problems, an ideal quantum annealer should thus indeed re-
turn the optimal solution after a sufficiently long annealing time, the gap value most likely needs
to be increased for any physical annealing machine. This gap parameter is a tool which provides
different but, most importantly, equivalent encodings of the same problem and thus allows to
study the difference between the theoretical and the effective coupling strength, which means
the one which is necessary for the real machine to return the optimal value with an acceptable
success probability. With this we will get a deeper understanding of the problem-independent
behaviour of such machines, supporting their further development.

156

Lists

Problems

Ising Problem . 8

Minor Containment Problem . 14
Embedding Problem . 14
Minor Embedding Problem . 15
Broken Chimera Minor Embedding Problem . 15
Largest Complete Graph Embedding Problem 16
Broken Chimera Recognition Problem . 18
Broken Pegasus Minor Embedding Problem . 40
Largest Complete Graph Matching Problem 52
Heuristic Largest Complete Graph Matching Problem 58

Embedded Ising Problem . 64
[Strengths-only] Gapped Parameter Setting Problem 74
Strength-only [Full] Gapped Weight Distribution Problem 81
Gapped Zero Weight Distribution Problem . 81
Strength-only [Full] Weight Distribution Problem on Trees 100
Strength-only [Full] Integer Weight Distribution Problem on Trees . . 147
Integer Zero Weight Distribution Problem on Trees 147

Figures

1.1 Layers of abstraction in transferring a problem to D-Wave’s quantum annealer . . 3

2.1 Bipartition in the Chimera graph 𝐶3,3 . 11

3.1 Standard triangular complete graph embedding in the ideal Chimera graph . . . 15
(a) complete graph
(b) standard triangular embedding

3.2 Polynomial reduction steps of the proof . 19
3.3 Grid tentacle example . 21
3.4 Example graph and its rectangular representation 22

(a) 𝐵* ∈ ℬ
(b) 𝑅(𝐵*)

3.5 Manipulation of grid vertices and incident edges of the rectangular representation 23
(a) even vertex
(b) odd vertex

3.6 Enlarged rectangular representation 𝐿(𝐵*) . 24
3.7 Broken Chimera graph representing a vertex . 25

III

Lists

3.8 Chimera tentacles . 26

(a) unmodified version

(b) modified version

3.9 Combined Chimera graph elements representing neighboring vertices 27

3.10 Hamiltonian cycles in the example graph and its rectangular representation . . . 28

(a) in 𝐵*

(b) in 𝑅(𝐵*)
3.11 Different possibilities for parts of a Hamiltonian path to cross a unit cell 29

3.12 Hamiltonian cycle construction in the Chimera tentacle example 30

(a) illustration in the grid tentacle

(b) straight elements

(c) corner

(d) closing loop

(e) Chimera tentacle with a possible Hamiltonian cycle

3.13 Hamiltonian path construction in a Chimera strip example 31

(a) snake path from a vertical vertex to a vertical vertex

(b) illustration of (a) in the grid strip

(c) snake path from a vertical vertex to a horizontal vertex

(d) illustration of (c) in the grid strip

3.14 Hamiltonian path construction in the Chimera tentacle example 33

(a) illustration in the grid tentacle

(b) straight elements

(c) inner corner

(d) outer corner

(e) Chimera tentacle with a possible Hamiltonian path

3.15 Vertices joining the vertex Chimera element with the edge Chimera elements . . 35

3.16 Parts of the Hamiltonian cycle illustrated in the underlying grid graph 36

(a) even vertex with loop to the right

(b) odd vertex with loop from the right

(c) even vertex with loop to the left

(d) odd vertex with loop from the left

(e) even vertex with loop to below

(f) odd vertex with loop from below

3.17 Parts of the Hamiltonian cycle through the Chimera vertex elements 37

(a) even vertex with loop to the right

(b) odd vertex with loop from the right

(c) even vertex with loop to the left

(d) odd vertex with loop from the left

(e) even vertex with loop to below

(f) odd vertex with loop from below

3.18 Parts of the Hamiltonian cycle in neighboring vertices 38

3.19 Cycle in 𝐿(𝐵*) illustrating the Hamiltonian cycle in 𝐶(𝐵*) 38

3.20 Inner of the Pegasus graph 𝑃5 . 42

3.21 Different variants of complete graph embeddings in the ideal Chimera graph . . . 43

(a) extended triangular

(b) permutation of diagonal elements

3.22 Complete graph embeddings in a broken Chimera graph with permuted crossroads 44

(a) permutation over all rows and columns

(b) crosses in broken Chimera

IV

Tables

(c) crossroads in broken Chimera to be found
3.23 Specific indexing in the Chimera graph . 46

(a) horizontal vertices
(b) vertical vertices
(c) edge examples

3.24 Crosses that do not meet due to broken vertices 48
(a) in different unit cell rows
(b) in the same unit cell row

3.25 Sets of mutually exclusive crossroads caused by two broken vertical vertices . . . 49
(a) two different MES due to different rows
(b) MES in same row already handled by matching constraints

3.26 Illustration of the interval function . 50
3.27 Mutually exclusive crossroads caused by two different broken vertices 51

(a) four different relations of positions
(b) single crossroad being pairwise forbidden with all crossroads in rectangle
(c) no further constraints due to same unit cell row

3.28 Solutions for a very broken Chimera graph . 57
(a) by ILP
(b) optimal

3.29 Complete graph sizes against Chimera sizes . 62

4.1 Example for an embedded subgraph structure . 72
4.2 Illustration of case distinctions . 86
4.3 Connected components for 𝑆* ∈ C′ ∖ C . 95
4.4 Example tree with inner and outer arcs . 99
4.5 Arborescence with inner and outer vertices . 103
4.6 Illustration of the 𝜎-distribution for the case of multiple root 104
4.7 Example of a contraction of a tree to obtain a unique root 105
4.8 Compression of the tree to obtain only inner arcs and vertices 110
4.9 Compression of the tree keeping the next outer vertices 113
4.10 Arborescence with only outer vertices . 124
4.11 Illustration of the two different cases in the iteration 126

(a) case A
(b) case B

4.12 Illustration of different cases of 𝜔ℓ(𝜗) for some leaf ℓ ∈ 𝑉in 133
(a) with |𝑆out(ℓ)| = 0
(b) with |𝑆out(ℓ)| = 1
(c) with |𝑆out(ℓ)| = 2

4.13 Illustration of 𝜔𝑣(𝜗) for 𝑣 ∈ 𝑉in . 135
4.14 Illustration of the sum of two piecewise linear functions 136

Tables

3.1 Averaged solution ratios for each combination of size and ratio of broken vertices 61
(a) Largest Complete Graph Matching Problem
(b) Heuristic Largest Complete Graph Matching Problem with𝑚 = 0.25
(c) Heuristic Largest Complete Graph Matching Problem with 𝑚 = 0.0

3.2 Difference of rounded averaged solution ratios from heuristic models 61

V

Lists

Algorithms

4.1 Get Optimal Strength . 138
4.2 Helper Functions . 139

VI

Bibliography

[1] I. Adler, F. Dorn, F. V. Fomin, I. Sau, and D. M. Thilikos. Fast minor testing in planar
graphs. Algorithmica, 64(1):69–84, 2012. doi: 10.1007/s00453-011-9563-9.

[2] I. Adler, F. Dorn, F. V. Fomin, I. Sau, and D. M. Thilikos. Faster parameterized algorithms
for minor containment. Theoretical Computer Science, 412(50):7018–7028, 2011. doi: 10.
1016/j.tcs.2011.09.015.

[3] D. Aharonov, W. Van Dam, J. Kempe, Z. Landau, S. Lloyd, and O. Regev. Adiabatic quan-
tum computation is equivalent to standard quantum computation. SIAM review, 50(4):755–
787, 2008. doi: 10.1137/080734479.

[4] T. Albash and D. A. Lidar. Adiabatic quantum computation. Reviews of Modern Physics,
90(1):015002, 2018. doi: 10.1103/RevModPhys.90.015002.

[5] F. Barahona. On the computational complexity of Ising spin glass models. Journal of
Physics A: Mathematical and General, 15(10):3241–3253, 1982. doi: 10.1088/0305-4470/
15/10/028.

[6] K. Boothby, P. Bunyk, J. Raymond, and A. Roy. Next-generation topology of D-Wave
quantum processors. preprint, 2020. arXiv: 2003.00133 [quant-ph].

[7] T. Boothby, A. D. King, and A. Roy. Fast clique minor generation in chimera qubit con-
nectivity graphs. Quantum Information Processing, 15(1):495–508, 2016. doi: 10.1007/
s11128-015-1150-6.

[8] M. Born and V. Fock. Beweis des Adiabatensatzes [Proof of the adiabatic theorem]. Ger-
man. Zeitschrift für Physik, 51(3-4):165–180, 1928. doi: 10.1007/BF01343193.

[9] E. Boros, P. Hammer, and G. Tavares. Preprocessing of quadratic unconstrained binary
optimization. Technical report, Technical report RRR 10-2006, RUTCOR research report,
2006.

[10] E. Boros and P. L. Hammer. Pseudo-Boolean optimization. Discrete Applied Mathematics,
123(1):155–225, 2002. doi: 10.1016/S0166-218X(01)00341-9.

[11] J. Cai, W. G. Macready, and A. Roy. A practical heuristic for finding graph minors.
preprint, 2014. arXiv: 1406.2741 [quant-ph].

[12] V. Choi. Minor-embedding in adiabatic quantum computation: I. The parameter setting
problem. Quantum Information Processing, 7(5):193–209, 2008. doi: 10.1007/s11128-
008-0082-9.

[13] V. Choi. Minor-embedding in adiabatic quantum computation: II. Minor-universal graph
design. Quantum Information Processing, 10(3):343–353, 2011. doi: 10.1007/s11128-
010-0200-3.

[14] D-Wave Systems Inc. D-Wave System documentation. https://docs.dwavesys.com/
docs/latest/index.html. visited 2022-01-21.

[15] D-Wave Systems Inc. Dwave-system. GitHub repository, 2021. version 1.12.0 https://

github.com/dwavesystems/dwave-system/blob/1.12.0/dwave/embedding/chain_

strength.py.

VII

https://doi.org/10.1007/s00453-011-9563-9
https://doi.org/10.1016/j.tcs.2011.09.015
https://doi.org/10.1016/j.tcs.2011.09.015
https://doi.org/10.1137/080734479
https://doi.org/10.1103/RevModPhys.90.015002
https://doi.org/10.1088/0305-4470/15/10/028
https://doi.org/10.1088/0305-4470/15/10/028
https://arxiv.org/abs/2003.00133
https://doi.org/10.1007/s11128-015-1150-6
https://doi.org/10.1007/s11128-015-1150-6
https://doi.org/10.1007/BF01343193
https://doi.org/10.1016/S0166-218X(01)00341-9
https://arxiv.org/abs/1406.2741
https://doi.org/10.1007/s11128-008-0082-9
https://doi.org/10.1007/s11128-008-0082-9
https://doi.org/10.1007/s11128-010-0200-3
https://doi.org/10.1007/s11128-010-0200-3
https://docs.dwavesys.com/docs/latest/index.html
https://docs.dwavesys.com/docs/latest/index.html
https://github.com/dwavesystems/dwave-system/blob/1.12.0/dwave/embedding/chain_strength.py
https://github.com/dwavesystems/dwave-system/blob/1.12.0/dwave/embedding/chain_strength.py
https://github.com/dwavesystems/dwave-system/blob/1.12.0/dwave/embedding/chain_strength.py

Bibliography

[16] D-Wave Systems Inc. Minorminer.GitHub repository, 2021. version 0.2.7. https://github.
com/dwavesystems/minorminer/releases/tag/0.2.7.

[17] A. Das and B. K. Chakrabarti. Colloquium: Quantum annealing and analog quantum
computation. Reviews of Modern Physics, 80(3):1061–1081, Sept. 2008. doi: 10.1103/
revmodphys.80.1061.

[18] R. Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics. Springer, 5. Edi-
tion, 2017. doi: 10.1007/978-3-662-53622-3.

[19] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser. Quantum computation by adiabatic
evolution. preprint, 2000. arXiv: quant-ph/0001106v1.

[20] M. R. Garey and D. S. Johnson. Computers and intractability: A guide to the theory of NP-
completeness. Series of Books in the Mathematical Sciences. W. H. Freeman and Company,
1979.

[21] A. Gleixner, M. Bastubbe, L. Eifler, T. Gally, G. Gamrath, R. L. Gottwald, G. Hendel,
C. Hojny, T. Koch, M. E. Lübbecke, S. J. Maher, M. Miltenberger, B. Müller, M. E.
Pfetsch, C. Puchert, D. Rehfeldt, F. Schlösser, C. Schubert, F. Serrano, Y. Shinano, J. M.
Viernickel, M. Walter, F. Wegscheider, J. T. Witt, and J. Witzig. The SCIP Optimization
Suite 6.0. Technical Report, Optimization Online, July 2018. http://www.optimization-
online.org/DB_FILE/2018/07/6692.pdf.

[22] T. D. Goodrich, B. D. Sullivan, and T. S. Humble. Optimizing adiabatic quantum pro-
gram compilation using a graph-theoretic framework. Quantum Information Processing,
17(5):118, 2018. doi: 10.1007/s11128-018-1863-4.

[23] K. E. Hamilton and T. S. Humble. Identifying the minor set cover of dense connected bi-
partite graphs via random matching edge sets. Quantum Information Processing, 16(4):94,
2017. doi: 10.1007/s11128-016-1513-7.

[24] I. V. Hicks. Branch decompositions and minor containment. Networks: An International
Journal, 43(1):1–9, 2004. doi: 10.1002/net.10099.

[25] S. Hoory, N. Linial, and A. Wigderson. Expander graphs and their applications. Bulletin
of the American Mathematical Society, 43(4):439–561, 2006. doi: 10.1090/S0273-0979-
06-01126-8.

[26] J. E. Hopcroft and R. M. Karp. An 𝑛5/2 algorithm for maximum matchings in bipartite
graphs. SIAM Journal on Computing, 2(4):225–231, 1973. doi: 10.1137/0202019.

[27] E. Ising. Beitrag zur Theorie des Ferromagnetismus [contribution to the theory of ferromag-
netism]. German. Zeitschrift für Physik, 31(1):253–258, 1925. doi: 10.1007/BF02980577.

[28] A. Itai, C. H. Papadimitriou, and J. L. Szwarcfiter. Hamilton paths in grid graphs. SIAM
Journal on Computing, 11(4):676–686, 1982. doi: 10.1137/0211056.

[29] M. W. Johnson, M. H. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris,
A. J. Berkley, J. Johansson, P. Bunyk, et al. Quantum annealing with manufactured spins.
Nature, 473(7346):194–198, 2011. doi: 10.1038/nature10012.

[30] M. Jünger, E. Lobe, P. Mutzel, G. Reinelt, F. Rendl, G. Rinaldi, and T. Stollenwerk.
Quantum annealing versus digital computing: An experimental comparison. Journal of
Experimental Algorithmics, 26:1–30, 2021. doi: 10.1145/3459606.

[31] A. D. King and C. C. McGeoch. Algorithm engineering for a quantum annealing platform,
2014. arXiv: 1410.2628 [cs.DS].

VIII

https://github.com/dwavesystems/minorminer/releases/tag/0.2.7
https://github.com/dwavesystems/minorminer/releases/tag/0.2.7
https://doi.org/10.1103/revmodphys.80.1061
https://doi.org/10.1103/revmodphys.80.1061
https://doi.org/10.1007/978-3-662-53622-3
https://arxiv.org/abs/quant-ph/0001106v1
http://www.optimization-online.org/DB_FILE/2018/07/6692.pdf
http://www.optimization-online.org/DB_FILE/2018/07/6692.pdf
https://doi.org/10.1007/s11128-018-1863-4
https://doi.org/10.1007/s11128-016-1513-7
https://doi.org/10.1002/net.10099
https://doi.org/10.1090/S0273-0979-06-01126-8
https://doi.org/10.1090/S0273-0979-06-01126-8
https://doi.org/10.1137/0202019
https://doi.org/10.1007/BF02980577
https://doi.org/10.1137/0211056
https://doi.org/10.1038/nature10012
https://doi.org/10.1145/3459606
https://arxiv.org/abs/1410.2628

Bibliography

[32] C. Klymko, B. D. Sullivan, and T. S. Humble. Adiabatic quantum programming: Minor
embedding with hard faults. Quantum Information Processing, 13(3):709–729, 2014. doi:
10.1007/s11128-013-0683-9.

[33] G. Kochenberger, J.-K. Hao, F. Glover, M. Lewis, Z. Lü, H. Wang, and Y. Wang. The
unconstrained binary quadratic programming problem: A survey. Journal of Combinatorial
Optimization, 28(1):58–81, 2014. doi: 10.1007/s10878-014-9734-0.

[34] B. Korte and J. Vygen. Combinatorial optimization: Theory and algorithms, volume 21 of
Algorithms and Combinatorics. Springer, 6. Edition, 2018. doi: 10.1007/978-3-662-
56039-6.

[35] E. Lobe. Quadratische binäre Optimierung ohne Nebenbedingungen auf Chimera-Graphen
[Quadratic binary optimization without constraints on Chimera graphs]. German. Master’s
thesis, Otto-von-Guericke-Universität Magdeburg, 2016. https://elib.dlr.de/112063/.

[36] E. Lobe and A. Lutz. Minor embedding in broken Chimera and Pegasus graphs is NP-
complete. preprint, 2021. arXiv: 2110.08325 [quant-ph].

[37] E. Lobe, L. Schürmann, and T. Stollenwerk. Embedding of complete graphs in broken Chi-
mera graphs. Quantum Information Processing, 20(7):1–27, 2021. doi: 10.1007/s11128-
021-03168-z.

[38] A. Lucas. Ising formulations of many NP problems. Frontiers in physics, 2:5, 2014. doi:
10.3389/fphy.2014.00005.

[39] S. Maher, M. Miltenberger, J. P. Pedroso, D. Rehfeldt, R. Schwarz, and F. Serrano.
PySCIPOpt: Mathematical programming in Python with the SCIP optimization suite.
In Mathematical Software – ICMS 2016, pages 301–307. Springer International Publishing,
2016. doi: 10.1007/978-3-319-42432-3_37.

[40] D. W. Matula and F. Shahrokhi. Sparsest cuts and bottlenecks in graphs. Discrete Applied
Mathematics, 27(1-2):113–123, 1990. doi: 10.1016/0166-218X(90)90133-W.

[41] C. C. McGeoch. Theory versus practice in annealing-based quantum computing. Theoretical
Computer Science, 816:169–183, 2020. doi: 10.1016/j.tcs.2020.01.024.

[42] H. Neven, V. S. Denchev, M. Drew-Brook, J. Zhang, W. G. Macready, and G. Rose.
Nips 2009 demonstration: Binary classification using hardware implementation of quantum
annealing. Quantum, 2009.

[43] J. P. Pinilla and S. J. Wilton. Layout-aware embedding for quantum annealing proces-
sors. In International Conference on High Performance Computing, pages 121–139, Berlin.
Springer, 2019. doi: 10.1007/978-3-030-20656-7_7.

[44] J. Raymond, N. Ndiaye, G. Rayaprolu, and A. D. King. Improving performance of logical
qubits by parameter tuning and topology compensation. In IEEE International Conference
on Quantum Computing and Engineering (QCE), pages 295–305, Oct. 2020. doi: 10.1109/
qce49297.2020.00044.

[45] E. G. Rieffel, D. Venturelli, B. O’Gorman, M. B. Do, E. M. Prystay, and V. N. Smelyanskiy.
A case study in programming a quantum annealer for hard operational planning problems.
Quantum Information Processing, 14(1):1–36, 2015. doi: 10.1007/s11128-014-0892-x.

[46] N. Robertson and P. D. Seymour. Graph minors. XIII. The disjoint paths problem. Journal
of Combinatorial Theory, Series B, 63(1):65–110, 1995. doi: 10.1006/jctb.1995.1006.

[47] T. Serra, T. Huang, A. Raghunathan, and D. Bergman. Template-based minor embedding
for adiabatic quantum optimization. preprint, 2019. arXiv: 1910.02179 [cs.DS].

IX

https://doi.org/10.1007/s11128-013-0683-9
https://doi.org/10.1007/s10878-014-9734-0
https://doi.org/10.1007/978-3-662-56039-6
https://doi.org/10.1007/978-3-662-56039-6
https://elib.dlr.de/112063/
https://arxiv.org/abs/2110.08325
https://doi.org/10.1007/s11128-021-03168-z
https://doi.org/10.1007/s11128-021-03168-z
https://doi.org/10.3389/fphy.2014.00005
https://doi.org/10.1007/978-3-319-42432-3_37
https://doi.org/10.1016/0166-218X(90)90133-W
https://doi.org/10.1016/j.tcs.2020.01.024
https://doi.org/10.1007/978-3-030-20656-7_7
https://doi.org/10.1109/qce49297.2020.00044
https://doi.org/10.1109/qce49297.2020.00044
https://doi.org/10.1007/s11128-014-0892-x
https://doi.org/10.1006/jctb.1995.1006
https://arxiv.org/abs/1910.02179

Bibliography

[48] T. Stollenwerk, E. Lobe, and M. Jung. Flight gate assignment with a quantum annealer.
In International Workshop on Quantum Technology and Optimization Problems, pages 99–
110, Berlin. Springer, 2019. doi: 10.1007/978-3-030-14082-3_9.

[49] T. Stollenwerk, B. O’Gorman, D. Venturelli, S. Mandra, O. Rodionova, H. Ng, B. Srid-
har, E. G. Rieffel, and R. Biswas. Quantum annealing applied to de-conflicting optimal
trajectories for air traffic management. IEEE Transactions on Intelligent Transportation
Systems, 21(1):285–297, 2019. doi: 10.1109/TITS.2019.2891235.

[50] S. L. Tanimoto, A. Itai, and M. Rodeh. Some matching problems for bipartite graphs.
Journal of the ACM, 25(4):517–525, 1978. doi: 10.1145/322092.322093.

[51] D. Venturelli, D. J. Marchand, and G. Rojo. Quantum annealing implementation of job-
shop scheduling. preprint, 2015. arXiv: 1506.08479 [quant-ph].

[52] A. Zaribafiyan, D. J. Marchand, and S. S. C. Rezaei. Systematic and deterministic graph mi-
nor embedding for cartesian products of graphs. Quantum Information Processing, 16(136),
2017. doi: 10.1007/s11128-017-1569-z.

[53] S. Zbinden, A. Bärtschi, H. Djidjev, and S. Eidenbenz. Embedding algorithms for quantum
annealers with Chimera and Pegasus connection topologies. In International Conference on
High Performance Computing, pages 187–206, Berlin. Springer, 2020. doi: 10.1007/978-
3-030-50743-5_10.

X

https://doi.org/10.1007/978-3-030-14082-3_9
https://doi.org/10.1109/TITS.2019.2891235
https://doi.org/10.1145/322092.322093
https://arxiv.org/abs/1506.08479
https://doi.org/10.1007/s11128-017-1569-z
https://doi.org/10.1007/978-3-030-50743-5_10
https://doi.org/10.1007/978-3-030-50743-5_10

	Frontmatter
	Ehrenerklärung
	Declaration of Honor
	Zusammenfassung
	Abstract
	Acknowledgments

	Contents
	Introduction
	The Black Box
	Programming a Quantum Annealer
	Outline

	Restricted Ising Problem over Chimera Graph
	General Notation
	Ising Problem
	Chimera Graph

	Minor Embedding
	Minors and Embeddings
	Basic Definitions
	In Quantum Annealing
	Related Work

	NP-Completeness Proof
	Reduction of the Hamiltonian Cycle Problem
	Basics of Grid Graphs
	Broken Chimera Graph Construction
	Hamiltonicity
	Transfer to Pegasus

	Largest Complete Graph
	Matching Problem Approach
	Extension of the Chimera Graph Description
	ILP Formulation
	Analysis
	Heuristic ILP
	Experimental Setup
	Results

	Weight Distribution
	Problem Extraction
	Embedded Ising Model
	Synchronization
	Related Work
	Single Vertex Evaluation

	Optimization Problem Formulation
	Instance Definition
	Simplifications
	LP Formulation
	Case Distinction

	Special Cases
	Trivial Weighting
	Zero Weight

	Simplified Description of the Θ-Polyhedron
	Connected Vertex Sets
	Arcs in Trees
	Eliminating the Gap Requirement
	Unique Root
	Contraction of Multiple Roots

	Strength-Only Problem on Trees
	Objective Value
	Straightforward Weights
	Second-level Weight Optimization
	De-contraction

	Full Problem on Trees
	Uniqueness
	Non-negative Weights
	Weight Calculation Algorithm
	Adjusted Algorithm Including De-contraction

	Integer Programming
	The Problems
	Straightforward Insights
	Rounded Up

	Conclusions
	Lists
	Problems
	Figures
	Tables
	Algorithms

	Bibliography

