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ABSTRACT

Recent work on self-supervised pre-training focus on leveraging
large-scale unlabeled speech data to build robust end-to-end (E2E)
acoustic models (AM) that can be later fine-tuned on downstream
tasks e.g., automatic speech recognition (ASR). Yet, few works
investigated the impact on performance when the data properties
substantially differ between the pre-training and fine-tuning phases,
termed domain shift. We target this scenario by analyzing the ro-
bustness of Wav2Vec 2.0 and XLS-R models on downstream ASR
for a completely unseen domain, air traffic control (ATC) commu-
nications. We benchmark these two models on several open-source
and challenging ATC databases with signal-to-noise ratio between 5
to 20 dB. Relative word error rate (WER) reductions between 20%
to 40% are obtained in comparison to hybrid-based ASR baselines
by only fine-tuning E2E acoustic models with a smaller fraction of
labeled data. We analyze WERs on the low-resource scenario and
gender bias carried by one ATC dataset.

Index Terms— Automatic speech recognition, Wav2Vec 2.0,
self-supervised pre-training, air traffic control communications.

1. INTRODUCTION

A lot of recent work on end-to-end (E2E) acoustic modeling in-
cluding automatic speech recognition (ASR) exploits self-supervised
learning (SSL) of speech representations [1] including autoregres-
sive models [2, 3] and bidirectional models [4, 5]. Self-supervised
learning is a training technique capable of leveraging large-scale un-
labeled speech to develop robust acoustic models [4, 6]. In fact, [7]
explores a way to perform ASR without any labeled data in a com-
plete unsupervised fashion. In a standard setup, E2E models trained
by SSL are later fine-tuned on downstream tasks with much fewer
labeled samples compared to standard supervised learning. By ap-
plying SSL, these systems have dramatically improved ASR per-
formances on English speech datasets [4], such as LibriSpeech [8].
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Similarly, performance on cross-lingual speech recognition is largely
improved by SSL [9, 10]. It can be inferred that SSL-based pre-
training allows models to capture a good representation of acoustics,
which can be leveraged across different languages for ASR.

This work reviews the robustness of two well-known E2E acous-
tic models trained by SSL (i.e., Wav2Vec 2.0 and XLS-R) on a com-
pletely unseen domain: air traffic control (ATC) communications.
ATC deals with aircraft guidance in the air and on the ground via
voice communications between air traffic controllers (ATCOs) and
pilots. These communications are well-defined by grammar and vo-
cabulary [11] that must be followed to provide a safe and reliable
flow of air traffic while keeping operating costs as low as possible.
Despite the interest of ASR for ATC, there is not a fully functional
ASR engine on the market due to: (i) lack of performance, i.e., under
5% WER is required,1 and (ii) lack of large-scale annotated speech
(less than 50 hrs of open-source databases) and its high production
cost makes it almost impractical [13].

1.1. Contribution and motivation

Only a few previous works intended to measure the effect of domain
mismatch between pre-training and fine-tuning phases of E2E mod-
els [14]. However, we can still categorize all databases as either read,
spontaneous or conversational speech. On the contrary, ATC speech
does not fit in any of these three categories due to its uniqueness, e.g.,
ruled by a very well-defined grammar. Our contributions2 cover the
domain mismatch scenario by answering the three questions below.

(i) How robust pre-trained E2E models are on new domains like
ATC? Our results (see Table 2) ratified that E2E models pre-trained
by SSL (e.g., Wav2Vec 2.0) learn a strong representation of speech.
Fine-tuning on a downstream task (e.g., ASR) is computationally
less expensive than flat-start training, and it requires less in-domain
data to achieve on par WERs compared to traditional hybrid-based
ASR systems. We also perform experiments with multilingual E2E
models, i.e., XLS-R [10]. We hypothesize that pre-trained multi-
lingual models perform better on ATC speech data that contains ac-
cented English (i.e., LiveATC-Test and ATCO2-Test sets). Poten-
tially, due to the strong speech representation acquired during SSL

1There is a clear threshold between enhancing ATCOs’ productivity and
delaying them in their tasks due to poor ASR, see [12].

2Our code is stored in the following public GitHub repository: https:
//github.com/idiap/w2v2-air-traffic
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phase, which translates into a more accent-agnostic AM.

(ii) How much in-domain ATC labeled data is needed to fine-tune
an E2E model that reaches on-par performance with regard to
hybrid-based models? We perform a comparative study ranging
from 5 minutes (few-shot learning) to∼15 hrs of labeled speech (i.e.,
from 100 to 15k utterances). In addition, we investigate the impact
of integrating an in-domain language model with beam search rather
than using simple greedy decoding. With the aim of open science
and fostering research in ATC, we also introduce baselines3 on two
well-known public ATC corpora.

(ii) How robust are E2E models on speakers with different gen-
der? E2E models such as Wav2Vec 2.0 have experienced exponen-
tial interest in the research community. However, little investigation
has been carried out about estimating the WERs gap produced by
gender disparities. To name a few [15, 16, 17]. In this work, we per-
form an analysis by fine-tuning E2E models with ATC audio from
different genders. We study this on a free and public ATC corpus
where gender labels are provided.

We believe this work is impactful because the ASR field is ad-
vancing in an outpacing manner, where each month many large-scale
speech models (LSSM) are poured into the research field with out-
standing performances in well-known corpora, e.g., LibriSpeech [8].
Nonetheless, little has been examined in many other domains, such
as ATC communications. Thus, it is of particular interest to evaluate
and assess the performance of these LSSM on ‘lagged’ fields.

2. RELATED WORK

Robust ASR stands as a promising tool for aiding ATCOs and ATC,
in several ways. For example, reducing ATCOs’ workload [18] by
automatizing several of their daily tasks.4 Another by-product of in-
troducing ASR tools in ATC is the increase in airspace safeness and
reduction of environmental impact caused by ATC operations. This
is why the European Union (EU) has been funding different projects
intended to bring closer speech and text-based technologies to ATC.
MALORCA project concluded that ATCOs’s workload can be re-
duced significantly by integrating ASR systems, while boosting their
efficiency [19]. ATCO25is also a well-known project that developed
a pipeline [20] for automatic collection and pre-processing of large
quantities of ATC audio data. Their main focus covered downstream
task such as ASR [21], named-entity recognition [22], and acous-
tic and text-based speaker role recognition [23, 24]. HAAWAII6

project develops a reliable and adaptable solution to automatically
transcribe voice utterances issued by both ATCOs and pilots. Still,
all previous research only investigates either standard supervised or
semi-supervised [25, 26, 27] hybrid-based ASR systems.

Information uttered in ATC communications contain a diverse
set of special entities, also called named entities. Some examples
are callsigns, values and units. The most important and critical is the
callsign, composed of an airline designator, a set of numbers and
letters, e.g., TVS12AB spelled as “SKYTRAVEL ONE TWO ALFA
BRAVO. The correct recognition of such key entities is crucial, as
further it is used to extract target information from the conversations

3Our code is stored in the following public GitHub repository: https:
//github.com/idiap/w2v2-air-traffic

4One example is to detect named entities from voice communications.
These entities are later parsed into ATCOs workstations. Using ASR reduces
the overall latency of this simple, yet important procedure.

5https://www.atco2.org/
6https://www.haawaii.de

to assist ATCOs. Thus, it is almost mandatory for ASR engines to
provide considerable low WERs. Additionally, the communications
are mostly carried over noisy audio channels, usually below 15 dB
SNR, which is the default in ATC environments. Taking into account
these considerations, the ‘ideal ASR engine’ should aim at prevent-
ing error propagation to the fullest extent, which can turns into mis-
leading information passed to sub-systems at the next stages.

We redirect the reader to a general overview on spoken in-
struction understanding for ATC in [28] and latest work on hybrid-
based ASR for ATC in [20, 22]. In [13] contextual information
(also known as contextual biasing) via n-grams composition (in the
HCLG graph7) is merged with semi-supervised learning techniques
to further decrease word error rates (WER) on an ASR designed for
ATC. Boosting of contextual knowledge during and after decoding
has also been explored in [29, 30, 31, 32], where a set of target
n-grams are added to further decrease WERs.

Despite the recent success of mixing SSL acoustic pre-training
on E2E architectures for ASR, there has not been a comparative
study between traditional hybrid-based and E2E acoustic modeling
targeted to ATC. First, hybrid-based ASR modeling is based on a
disjoint optimization of separate models i.e., AM, LM and a lexicon
(e.g., phoneme-based). State-of-the-art (SOTA) models are trained
with lattice-free maximum mutual information (LF-MMI) loss [33]
which relies on alignments produced by a previously trained HMM-
GMM model [33]. Second, E2E systems model AM and LM jointly,
and they are mostly trained with connectionist temporal classifica-
tion (CTC) loss [34] (enabling alignment-free training). In [35], it
is compared CTC and LF-MMI adaptation of pre-trained models.
Recently, attention-based (e.g., Transformers) have become the de
facto choice for AM [4, 10, 36]. However, only few studies focused
on domain shift during pre-training and fine-tuning or the impact of
noisy speech on AM [37]. For instance, [14, 38, 39] perform experi-
ments similar to ours, addressing the domain-shift scenario between
pre-training and fine-tuning phases. Yet, these databases still fall
into read, spontaneous or conversational speech.

3. DATASETS AND EXPERIMENTAL SETUP

This research experiments with seven datasets in the English lan-
guage with various accents, speech rate, and data quality. With the
aim of encouraging open research on ATC,8 we experimented with
four public databases,9 as referenced in Table 1. To the author’s
knowledge, this is the first work that open sources code in the field
of robust ASR targeted to ATC.

3.1. Private databases

NATS and ISAVIA: the audio data is collected and annotated
by air navigation service providers (ANSPs) for HAAWAII project.
The two datasets are, (i) London approach (NATS) and (ii) Icelandic
en-route (ISAVIA). In total, there are 32 hrs of manually transcribed
data for training and 2 hrs for testing. Both datasets are cataloged as
good quality speech sampled at 8 kHz. Further details in Table 1.

7In hybrid-based ASR, the different knowledge sources are represented
via weighted finite-state transducers (WFST) and then merged in a final de-
coding graph i.e., HCLG. H, C, L and G are the hidden Markov models,
context dependency, lexicon, and LM or grammar, correspondingly.

8General research on ASR for ATC has lagged behind due to privacy
clauses and contracts. Ongoing and former projects prohibit code release.

9See the GitHub repository for further information and baselines.

https://github.com/idiap/w2v2-air-traffic
https://github.com/idiap/w2v2-air-traffic
https://www.atco2.org/
https://www.haawaii.de


LiveATC-Test: the test set is gathered from LiveATC10 data
recorded from publicly accessible VHF radio channels, as a part of
ATCO2 project [13, 32], and includes pilot and ATCO recordings
with accented English from airports located in U.S., Czech Republic,
Ireland, Netherlands, and Switzerland. We consider LiveATC-Test
as low quality speech data set i.e., signal-to-noise (SNR) ratios goes
from 5 to 15 dB [22]. Audio is sampled at 16 kHz.

3.2. Public databases

ATCO2-Test: evaluation set released at Interspeech 2021
by [13, 30]. The dataset contains a mix of noisy and heavily English
accented recordings from seven different airports located in Aus-
tralia, Czech Republic, Slovakia, and Switzerland. The first version
of the ATCO2-Test set contains 1.1 hrs of speech, it is open-source
and can be accessed for free in https://www.atco2.org/
data. The full corpus is available for purchase through ELDA in
http://www.elra.info/en/catalogues/. We only use
the open-source version for reproducibility. The recordings of both
corpus are mono-channel sampled at 16kHz and 16-bit PCM. This is
the first study that evaluates E2E ASR for ATCO2-Test. The WERs
listed in this paper could be adopted as baselines for future research.

LDC-ATCC: public ATC corpus gathered from three different
airports.11 LDC-ATCC corpus comprises recorded speech that aims
to support research in robust ASR. The recordings contain several
speakers and gathered over noisy channels. The dataset is formatted
in NIST Sphere format, where full transcripts, start and end times
of each transmission are provided. The audio files are sampled at
8 kHz, 16-bit PCM [40].

UWB-ATCC: free public ATC corpus containing recordings of
communication between ATCOs and pilots. The speech is manually
transcribed and labeled with speaker roles. The audio data is single
channel sampled at 8 kHz. This dataset can be downloaded for free
in their website12 [41].

ATCOSIM: free public database for research on ATC commun-
ciations. It consists of 10 hrs of speech data recorded during ATC
real-time simulations using a close-talk headset microphone. The ut-
terances are in English language and pronounced by ten non-native
speakers. The database includes orthographic transcriptions and ad-
ditional information about speakers and recording sessions. This
dataset can be downloaded for free in their website13 [42].

For all of our experiments, we up-sample all recordings to
16 kHz. Additionally, there are not any official train/dev/test splits
for LDC-ATCC, UWB-ATCC and ATCOSIM databases. Therefore,
we split them following the proportions in Table 1. We also make
sure that there is no speaker or utterance overlaps between each
subset.

3.3. Automatic speech recognition

Our experimental setup is split into three parts, which aims to an-
swer each of the questions raised in the Section 1. Initially, we assess
WERs of several E2E models when fine-tuned with ATC audio. We
define two training datasets, i) 32 hrs of annotated data from NATS
and ISAVIA database and ii) 132 hrs of ATC speech data from dif-
ferent projects (including all the training data from Table 1), and we

10Streaming audio platform that gathers VHF ATC communications.
11https://catalog.ldc.upenn.edu/LDC94S14A
12https://lindat.mff.cuni.cz/repository/xmlui/

handle/11858/00-097C-0000-0001-CCA1-0.
13https://www.spsc.tugraz.at/databases-and-tools

Table 1. Characteristics of public and private databases in the do-
main of air traffic control communications. We only list databases
used in the experiments, see [13] for a more exhaustive list. †baseline
performance of our state-of-the-art hybrid-based ASR model for
ATC communications.

Characteristics

Dataset Train / Test SNR [dB] WER [%]†

Private databases

NATS 18h / 0.9h ≥20 7.7
ISAVIA 14h / 1h 15-20 12.5
LiveATC-Test - / 1.8h 5-15 35.8

Public databases

ATCO2-Test - / 1.1h 10-15 24.7
LDC-ATCC 23h / 2.6h 10-15 -
UWB-ATCC 10.4h / 2.6h ≥20 -
ATCOSIM 8h / 2.4h ≥20 -

redirect the reader to [13] for further details. For now on, we refer to
these datasets as 32 hrs and 132 hrs ‘fine-tuning sets’. Later, we eval-
uate the low-resource scenario by fine-tuning E2E models with dif-
ferent amount of data, for this, we use NATS and ISAVIA as private
databases, and LDC-ATCC and UWB-ATCC as public databases.
Finally, we evaluate the performance shift by fine-tuning E2E mod-
els with audio data from different genders. Here, we employ the free
and open-source ATCOSIM database. Finally, we release training
scripts to replicate the results of the last two experiments (only for
the public databases).

Baseline hybrid-based ASR: all experiments are conducted
with Kaldi toolkit [43]. The baseline models are composed of six
convolution layers and 15 factorized time-delay neural network
(∼31M trainable parameters). We follow the standard Kaldi’s chain
LF-MMI training recipe [33]. The input features are high-resolution
MFCCs with online cepstral mean normalization. The features are
extended with i-vectors. We use 3-gram ARPA LM during decod-
ing. The model is trained for 5 epochs on 132 hrs of ATC speech
(that includes NATS and ISAVIA). Further information and baseline
performances can be found in our previous work [13, 21, 22]. SOTA
WERs are listed in the last column of Table 1.

End-to-end ASR: we report results on four configurations of
Wav2Vec 2.0/XLS-R models. From now on, we refer to these
models with the following tags: i) w2v2-B: BASE model (95M pa-
rameters, pre-trained on train-set 960 hrs LibriSpeech [8]); ii) w2v2-
L: LARGE-960h model (317M parameters pre-trained and then
fine-tuned with LibrSpeech 960 hrs train-set); iii) w2v2-L-60K:
LARGE-960h-LV60K model (same as w2v2-L but uses LibriSpeech
+ 60k hrs from LibriVox project i.e., Libri-Light [44] during the
pre-training phase); iv) w2v2-XLS-R: XLS-R model (300M pa-
rameters pre-trained on 436k hrs of publicly available data in 128
languages [10]). We fetched all models’ checkpoints from Hugging-
Face platform [45, 46]. Later, we perform standard fine-tuning with
ATC speech data.

Hyperparameters end-to-end ASR: all experiments use the
same set of hyperparameters. The feature extractor is frozen
throughout the fine-tuning phase. We fine-tune each model for
10 k steps, with a 500-step warm-up phase (∼5% of total up-
dates). Learning rate is increased linearly until γ = 1e−4 during

https://www.atco2.org/data
https://www.atco2.org/data
http://www.elra.info/en/catalogues/
https://catalog.ldc.upenn.edu/LDC94S14A
https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-097C-0000-0001-CCA1-0
https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-097C-0000-0001-CCA1-0
https://www.spsc.tugraz.at/databases-and-tools


warm-up, then it linearly decays. We use CTC loss function [34].
Dropout [47] is set to dp = 0.1 for the attention and hidden layers.
We use GELU activation function [48] and AdamW [49] optimizer
(β1=0.9, β2=0.999, ε=1e−8). We fine-tune each model on an
NVIDIA GeForce RTX 3090 with an effective batch size of 72
(batch size of 24, gradient accumulation of 3). All the models use
a character-based lexicon, i.e., we concatenate the English alphabet
with some symbols and the blank symbol (standard in CTC-based
AM). In total, our vocabulary is composed of 32 characters, thus,
we append a linear layer of this dimension on top of the pre-trained
w2v2/XLS-R AMs to generate logits at each time step. We use
greedy decoding after applying Softmax to obtain the most likely
character at each time step.

Language model (LM): we concatenate all text transcripts and
train 2/3/4-gram ARPA LMs. The LMs are integrated by shallow fu-
sion with a Python based CTC decoder, PyCTCDecode. 14 4-gram
LMs performed systematically better (∼2% relative WER reduction)
compared to 2-gram LMs in all test sets. We report results only with
4-gram LM as in [4]. We set α = 0.5 and β = 1.5, which cor-
responds to the LM and length normalization weights. We set the
beam size to 100.

Data augmentation: we apply a data augmentation strategy
similar to SpecAugment [50] is applied. We mask the input se-
quence with a probability p = 0.075, and M = 12 consecutive
frames. These hyperparameters follow closely the original Wav2Vec
2.0 implementation [4].

3.4. Incremental training

With the recent success of SSL pre-trained E2E models, it has be-
come of particular interest to quantify how much data is actually
needed to perform effectively on a downstream task. It is also im-
portant for low-resource tasks, such as ATC, where few tens of hours
of labeled data are available for training or fine-tuning. In most ATC
cases, data from one airport does not generalize well to other airports
(for instance, see Table 3) due to a considerable AM domain-shift
(accent, speaker rates and audio quality), as well as a LM domain-
shift (dominance of different vocabulary). We analyze model perfor-
mance versus different fine-tuning data sizes. We experimented with
four few-shot learning scenarios with less than one hour (∼1k utter-
ances) of fine-tuning data. We split the experiments in two. First, we
fine-tuned nine models on private databases, either NATS or ISAVIA
data, as depicted on the left plot of Figure 1 (x-axis refers to number
of utterances used during fine-tuning in log scale). Second, with the
aim of open research, we performed the same approach on public
databases, i.e., LDC-ATCC and UWB-ATCC. The results are on the
right plot of Figure 1.

3.5. Gender experiments

We use the free and open-source ATCOSIM database to carry the
gender experiments. We obtained the gender labels for each utter-
ance from the original ATCOSIM gold annotations (check our pub-
lic GitHub repository for more details). We split the train set into
increasing sizes of 1h, 2h, 3h, 3.5h, and also by gender. We aim
at both, analyzing the performance in WERs caused by fine-tuning
an E2E with audio from different gender, and to measure the per-
formance gain by scaling up the fine-tuning data. We trained four
models for each gender (using the same hyperparameters as the ones

14 https://github.com/kensho-technologies/pyctcdecode
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Fig. 1. Word error rates (WER) in percentages (%) for models fine-
tuned with different amounts of data (x-axis). The left plot cov-
ers the results for private databases, while the right plot the public
ones. Each data point corresponds to a train/test subset from the
same dataset. 100, 1k and 10k utterances are roughly 5 min (few-
shot), 1 h, and 10 hrs, respectively. All the evaluations are reported
with w2v2-L-60K model and without explicit language model. We
also list the Word Error Rate Reduction (WERR) by scaling up the
fine-tuning set size from 100 to 800 samples.

described in Section 3.3 and with the same model: w2v2-L-60k) and
report the results in Table 4.

4. RESULTS AND DISCUSSION

We structure the discussion of the results by addressing concrete
questions. Our main hypothesis is that E2E models trained by SSL
learn a robust representation of speech [4] and perform well on
downstream tasks, i.e., ASR or multilingual ASR [10].

Breaking the paradigm, hybrid-based or E2E ASR? Although
hybrid-based ASR modeling has been the default for several years,
a new wave of E2E architectures pre-trained by SSL for joint AM
and LM is taking its place. We compare E2E models to our best
hybrid-based ASR trained with the 132 hrs fine-tuning set on Kaldi
(Baseline, first row, Table 2). For E2E AMs we select two mod-
els. First, w2v2-L-60k to evaluate NATS and ISAVIA test sets,
which is only fine-tuned on the 32 hrs set, i.e., in-domain data. Sec-
ond, w2v2-XLS-R+ for ATCO2-Test and LiveATC-Test test sets,
which is trained on 132 hrs of ATC speech data [13, 21]. The
132 hrs set is a more diverse set, and it was also used to train the
hybrid-based baseline model. We obtained 30 and 41% relative
word error rate reduction (WERR) on NATS and ISAVIA when
using w2v2-L-60k instead of our hybrid-based ASR baseline. The
improvement is considerable, even though the baseline model is
trained on four times more data than w2v2-L-60k (see Table 2).
Similarly, w2v2-XLS-R+ (last row: Table 2) surpasses the hybrid-
based model on all four test sets, but more significantly on the two
most challenging, ATCO2-Test and LiveATC-Test sets. In total, 19
and 30% relative WERR on ATCO2-Test and LiveATC-Test were
obtained, respectively (hybrid-based→ w2v2-XLS-R+).

However, it is worth mentioning that hybrid-based ASR is still
considered the default in many industrial applications due to some
advantages over E2E models. Two examples are, hybrid-based
ASR does not require high-performance computing (e.g., GPUs)
to perform real-time inference, while E2E models relies heavily on
GPUs for speed. Further, hybrid-based ASR can be easily adapted
to streaming scenarios with minimum degradation on WERs. Yet,
E2E models still involve considerable architectural modifications to
reach on-par WERs [51, 52, 53].

https://github.com/kensho-technologies/pyctcdecode


Table 2. Word error rates (WER) in percentages (%) on four ATC test sets. Each model is fine-tuned on NATS and ISAVIA data (∼32 hrs).
WERs are reported with greedy decoding or beam search decoding with a 4-gram ARPA LM integrated by shallow fusion. Unlabeled
data column: LS stands for LibriSpeech 960 hrs train-set [8], LV for LibriVox 60k hrs train-set [44] and ML for 436k hrs of multilingual
speech data [10]. ∗reports the baseline WER of Wav2Vec 2.0 (Table 1 from [4]) and XLS-R (Table 11 from [10]) models on LibriSpeech
test-other set when only fine-tuned on 10 hrs of labeled data (comparable to our setup). †best Kaldi hybrid-based model (see [13, 21])
trained with the same amount of data as ††. ††models fine-tuned with 132 hrs of ATC speech data (instead of 32 hrs) and twice the number of
steps, i.e., 20k. Numbers in bold refer to top WERs for models fine-tuned with the 32 hrs set and underline with 132 hrs set.

Unlabeled NATS ISAVIA ATCO2-Test LiveATC-Test LS∗

Model (num. params.) data Greedy +LM Greedy +LM Greedy +LM Greedy +LM -

Baseline (31M)
Hybrid-based † - - 7.7 - 12.5 - 24.7 - 35.8 -

BASE (95M)
w2v2-B LS 10.7 8.4 12.5 10.1 45.6 40.1 48.1 42.2 7.8

LARGE (371M)
w2v2-L LS 9.3 7.6 11.7 9.5 44.9 40.0 47.5 41.4 6.1
w2v2-L-60k LS+LV 6.8 5.4 8.8 7.3 34.6 31.2 39.8 34.5 4.9
w2v2-L-60k+†† LS+LV 9.3 7.4 11.2 9.1 23.3 21.2 31.1 27.2 -

XLS-R (300M)
w2v2-XLS-R ML 8.4 6.5 10.5 8.2 39.1 33.8 42.9 36.7 15.4
w2v2-XLS-R+†† ML 9.0 7.4 10.4 8.3 22.8 19.8 29.7 24.9 -

Does additional partly-in-domain data increases ASR perfor-
mance? We answer this question by comparing models fine-tuned
either on the 132 hrs or 32 hrs set. The former set is a mix of public
and private databases, while the latter is only NATS + ISAVIA, thus
private. Note that NATS and ISAVIA are clean in-domain ATC
speech corpora, i.e., considered as in-domain on the 32 hrs set and
partly-in-domain otherwise (132 hrs set). Differently, ATCO2-Test
and LiveATC-Test can be considered noisy and partly out-of-domain
sets, i.e., airport, acoustic, and LM mismatch.

To address this question, we only focus on w2v2-L-60k and
w2v2-L-60k+ models fine-tuned on the 32 hrs and 132 hrs sets, re-
spectively.15. We analyze the WERs obtained by greedy decoding
to focus only on joint acoustic and language ASR modeling (see
Section 2). A degradation on WERs is observed for the in-domain
test sets, NATS: 6.8%→ 9.3% WER and ISAVIA: 8.8%→ 11.2%
WER. This is mainly to the addition of data that does not match
NATS and ISAVIA. Contrary, there was considerable WERR on the
partly out-of-domain sets, ATCO2-Test: 34.6%→ 23.3% WER and
LiveATC-Test 39.8%→ 31.1% WER. NATS test set (ISAVIA: 1%
relative WERR) was impacted by the addition of partly-in-domain
data, i.e., ∼7% relative lower WERs. Nevertheless, challenging
test sets improved dramatically, i.e., ATCO2-Test and LiveATC-Test
43% and 33% relative WERR.

Do multilingual pre-trained E2E models help? To answer this
question we compare w2v2-L-60k+ and w2v2-XLS-R+ models,
which use the same hyperparameters, fine-tuning setup and beam
search decoding with LM. We obtain a relative WERR of 8.8%,
6.6% and 8.5% on ISAVIA, ATCO2-Test and LiveATC-Test, re-
spectively (no improvement on NATS). Significant improvement is
seen on the most challenging test sets (SNR: 5-10 dB) which con-
tain accented English speech, i.e., ATCO2-Test and LiveATC-Test.
Hence, multilingual pre-trained models bring a tiny, but notice-
able boost in performance compared to single-language pre-trained

15Note that the results are still comparable for the XLS-R AM, i.e.,
w2v2-XLS-R versus w2v2-XLS-R+.

E2E models. This observed behavior can be attributed to the fact
that w2v2-XLS-R have seen considerably more multilingual and ac-
cented audio data during the pre-training phase [10] in comparison
to w2v2-L-60k [4].

The labeling process of ATC speech data can be decreased by
a factor of two by only performing pre-labeling of audio with an in
domain ASR system. Following this idea, we believe that is of spe-
cial interest for the research community16 to understand and analyze
how much audio data is needed to reach acceptable WERs. We vali-
dated this idea by performing experiments with different amounts of
fine-tuning data, thus it is up to the interested party to define the ‘ac-
ceptable’ WER threshold for the given application (e.g., deployment
or pre-labeling).

How much data do you need to fine-tune Wav2Vec 2.0 and
XLS-R models? We also investigate the effect on WERs when
different amounts of fine-tuning data are used during the fine-tuning
phase. We divide the by public and private databases. The WERs on
the private databases are in the left plot of Figure 1. All the exper-
iments are based on the most robust E2E model from Table 2 i.e.,
w2v2-L-60K.17 The WERs plot are obtained with greedy decoding
and no LM or explicit textual information added. We fine-tune 18
models varying the training data set (either NATS or ISAVIA) and
varying the amount of fine-tuning samples. We initially tested the
few-shot learning scenario (‘worse-case’), where only 100 labeled
utterances (∼5 min) were used for fine-tuning, and achieved WERs
of 40% and 43.9% for ISAVIA and NATS. Further, ∼50% relative
WERR is obtained by scaling up the fine-tuning data to 50 min-
utes (800 utterances). Specifically, NATS 43.9% → 22.7% WER
and ISAVIA 40.6% → 21.3% WER. Lastly, if all available data
(∼14 hrs) is used, we reach an 8.8% and 6.8% WER for ISAVIA
and NATS, respectively. This represents an ∼80% relative WERR
compared to the low-resource setup (100 utterances). With around

16Likewise, it is of special interest for the ATC community.
17We select the best model based on lowest WERs on out-of-domain test

sets, i.e., ATCO2-Test and LiveATC-Test. See last row Table 2.



Table 3. Word error rates (WER) in percentages (%) on different
test sets. Models are fine-tuned only on public databases and fixed
to 11 hrs of audio data. All systems are w2v2-L-60k and WERs are
obtained with greedy decoding and no LM. †test set split by gender
(Male/Female).

Test set
Train set LDC UWB ATCO2 ATCOSIM (M/F)†

LDC-ATCC 25.0 64.1 58.7 41.1 / 35.7
UWB-ATCC 54.6 21.9 47.9 32.5 / 24.6

8 hrs (∼8000 utterances) w2v2-L-60K beats the performance of
our SOTA hybrid-based ASR (which uses four times more train-
ing data). We follow the same methodology to evaluate the public
databases. We also train 9 models for each dataset, i.e., LDC-ATCC
and UWB-ATCC. We list the WERs on the right plot of Figure 1
for both test sets. Here, we note similar behaviors, thus we reach
similar conclusions. First, scaling-up the fine-tuning data from 5
to 50 minutes brought ∼45% relative WERR for both, LDC-ATCC
and UWB-ATCC test sets (similar trend in private databases, NATS
and ISAVIA). Not surprisingly, further gains in WERs are achieved
if we increase the fine-tuning data up to 11 hrs. Previous research
has not explored E2E modeling18 in the area of ATC, thus, these
WERs can be adopted as baselines.

Transferability between ATC corpora: we have stated before
that E2E models fine-tuned on a specific ATC corpus might not
transfer well to different ATC corpora.19 To test this premise, we
train models with different public databases and test them on 4 test
sets. We fixed the model (w2v2-L-60k), training data size to 11 hrs,
and same hyperparameters. From Table 3, we can conclude that
UWB-ATCC corpus transfers better to different databases, for in-
stance LDC-ATCC. In this case, if we fine-tune w2v2-L-60k with
UWB-ATCC set and test it on LDC-ATCC the performance is 54%
WER, whereas inversely the performance is 64%, i.e., ∼10% abso-
lute WERR. Similarly, the model trained on UWB-ATCC fits better
ATCO2 test by a large margin compared to LDC-ATCC, i.e., 10%
absolute lower WER.

Gender bias on air traffic control communications: finally, it is
becoming a trend to go beyond simply analyzing the performance
of E2E models on the selected downstream task, e.g., ASR. For in-
stance, examining the performance shift of a given ASR model when
fine-tuned on audio from different genders [15, 16]. We analyze this
bias on ATCOSIM dataset, which provide the gender labels for each
utterance. The results are listed in Table 4. It is evident that the ex-
periments with female voice performed systematically better in all
training scenarios (1h to 3.5h fine-tuning set). We also wanted to
rule out the possibility that the speech rate was the main cause of
this behavior. In average, each female recording has a speech rate
of 3.4 words per second (WPS) while male has an average of 2.9
WPS. In order to determine whether female recordings are of bet-
ter quality than the male ones, or whether the E2E model have some
bias acquired during the pre-training phase, we calculated the WERR
when fine-tuning the model between 1h to 3.5h of audio. Following
Table 4 we can see that in the female experiments the reduction on
WERs is higher than on the male side by around 8% absolute when
scaling from 1h to 3.5h.

18Training scripts to replicate the right plot of Figure 1 are public in our
GitHub repository.

19This assumption also applies to hybrid-based ASR models.

Table 4. Word error rates (WER) in percentages (%) on ATCOSIM
dataset with different fine-tuning set sizes. WERs are reported on
0.7 hrs of speech (only from the same gender) sampled from the orig-
inal test set, i.e., we fine-tune and evaluate within the same gender.
All models are trained with w2v2-L-60k and decoding is done with-
out LM. †list the word error rate reduction (WERR) achieved by
scaling from 1h to 3.5h of speech during the fine-tuning stage.

Dataset size WERR†
Gender 1h 2h 3h 3.5h (1h→3.5h)

Male 36.70 31.42 29.20 28.72 21.74%
Female 17.62 13.91 13.46 12.37 29.79 %

We believe that these E2E models (e.g., Wav2Vec 2.0) might
carry little but noticeable gender bias. This could be one reason why
the experiments with female recordings performed better. For in-
stance, previous work have concluded that gender unbalance might
affect E2E models during the pre-training phase. However, this bias
can be mitigated by adding a small amount of data from the opposite
gender [15]. In conclusion, it is still prudent to perform more thor-
ough experiments before reaching hard judgments in this regard, or
at least, in ATC communications.

5. CONCLUSION

This paper evaluated the robustness of pre-trained Wav2Vec 2.0 and
XLS-R models on downstream ASR for ATC on different corpora.
Our experiments show large recognition improvements of Wav2Vec
2.0 and XLS-R compared to hybrid-based ASR baselines. Quan-
titatively, between 20% and 40% relative WERR was obtained on
ISAVIA and NATS test sets, but also from challenging multi-accent
databases i.e., ATCO2-Test and LiveATC-Test. Furthermore, we
demonstrated that pre-trained Wav2Vec 2.0 models allow rapid
fine-tuning with small quantities of adaptation data. For instance,
∼5 min of speech allows fine-tuning a model that yields WERs of
40% and 43.9% for ISVAIA and NATS, respectively. Moreover,
we showed that at least 4 hrs of in-domain data already provide
acceptable WERs of ∼10% for ISAVIA and NATS recordings and
by using two times more data (i.e., 8 hrs) performance surpasses
hybrid-based ASR baselines. We also performed the same analysis
for public databases. Similar WERs (∼40%) are achieved with
50 min of data. Finally, the gender bias in one ATC corpus is also
covered by training gender dependent ASR models. We found that
large-scale speech models perform systematically better on female
recordings and also more gains in WERs are achieved when scaling
up the fine-tuning data, in comparison to male recordings. The
strength of this research is that, this is the first research aiming at an-
alyzing the performance of these large-scale speech models on ATC.
In addition, this is the first work in the ATC area that is publicly
releasing a GitHub repository to replicate experiments.
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Motlicek, Dietrich Klakow, Allan Tart, Igor Szöke, Amrutha
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