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Abstract: In on-orbit servicing missions, a spacecraft equipped with a manipulator arm grasps
a client satellite. Afterwards, the momentum-dumping phase follows and the manipulator can
be utilized for servicing tasks. Once the momentum has been dumped, a desired manipulator
configuration and base attitude may be needed for initializing a servicing phase such as berthing.
The proposed approach prioritizes the attitude maintenance of the servicer spacecraft, and
reconfigures the manipulator arm with the grasped client satellite in the nullspace of the
servicer’s attitude. The approach utilizes the redundancy in rotational degrees of freedom,
provided by reaction wheels, to decouple the manipulator reconfiguration task from the attitude
of the servicer-base. The proposed controller shows convergence of the attitude and joint-level
task, independent of kinematic singularities of the manipulator arm. Additionally, the problem
of speed saturation of the reaction wheels is tackled by increasing the damping torques as a
function of the wheel speed. Simulation results verify the effectiveness of the proposed control
approach.
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1. INTRODUCTION

On-orbit servicing (OOS) includes tasks such as grasping,
berthing and repairing satellites in space using a servicer,
which in this paper is considered to be a robotic manip-
ulator arm mounted on top of a base spacecraft equipped
with reaction wheels. These so-called orbital manipulators,
pose a challenge in the control design due to their floating
nature in space. The coordinated control of spacecraft and
manipulator can enhance the versatility in operations that
can be performed by the servicer for orbital servicing.
Recent studies on on-orbit servicing missions (see e.g. the
DEOS mission Rank et al. (2011), the COMRADE or the
e.Deorbit project Colmenarejo et al. (2018), Telaar et al.
(2017)), consider a free-tumbling client satellite i.e. a non-
cooperative satellite which no longer has attitude and orbit
control capabilities. Therefore stabilizing such a satellite
while maintaining the attitude of the servicing spacecraft
presents a challenge (Aghili (2009)).

Several works address different strategies to control the
motion of the robotic arm and base spacecraft in a co-
ordinated way, while meeting mission requirements and Fig. 1. Bottom: servicer satellite, with 3 mutually orthog-

system constraints (see e.g. Dubowsky and Papadopoulos onal reaction wheels, and a manipulator arm (CAE-
(1993); Moosavian and Papadopoulos (2007)). Giordano SAR arm Beyer et al. (2018)). Top: captured client
et al. (2017) decouples the internal dynamics of the ma- satellite.

nipulator and reaction wheels from the external center-of- developed by Papadopoulos and Moosavian (1994), for the
mass motion to do coordinated control. The challenge of approach and capture phases. ’

actuating the base and manipulator at different frequen-
cies is tackled in De Stefano et al. (2019). Teleoperation
and autonomous control are explored as a shared control
strategy in Mishra et al. (2021) to achieve base and end-
effector control tasks. Multi-arm orbital robot control is

The control of orbital manipulators without the use of
thrusters on the servicing spacecraft, has reduced flexiblity
as compared to coordinated control methods discussed
above. In such cases, the conservation of momentum must
be taken into account while developing control strategies
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for the resulting free-floating dynamics. Masutani and
Miyazaki (1989) designed a resolved rate controller using
the the generalized Jacobian resulting from the reduced
dynamics of the floating-base system. Oki et al. (2008)
uses the generalized Jacobian including reaction wheels
and a controller is designed at the kinematic level. Further,
a time-optimal manipulator trajectory limiting reaction
wheel torques, designed using momentum conservation
principle, produces zero reaction torques on the base.

The post-grasp phase in an orbital servicing mission deals
with stabilization of the servicer’s and client satellite’s
momentum gained from capturing of the client. Past stud-
ies have addressed post-grasp stabilization while minimiz-
ing disturbances to the attitude of the base. These were
motivated by fuel-saving or power constraints of momen-
tum compensating actuators on the base. In Nenchev and
Yoshida (1999), the impact momentum is transferred from
the base to the manipulator, while using the reaction null
space (Yoshida and Nenchev (1995)) to damp the joint
velocities. In Dimitrov and Yoshida (2004), post-grasp
decoupling of the base attitude and manipulator dynamics
is done using the distributed momentum control concept
at a velocity level, and the reaction nullspace concept
at a dynamic level. Further approaches for post-grasping
stabilization consider an optimal trajectory, which limits
the interaction torque (see Aghili (2009)). Oki et al. (2011)
presents a time-optimal maneuver for detumbling while
constraining contact forces. Lampariello et al. (2018) pro-
poses an energy-optimal approach for the post-grasping
phase while using a joint tracking controller. In Vijayan
et al. (2022), a detumbling strategy was proposed by
exploiting the full actuation capability of the servicer and
limiting the contact forces at the manipulator end-effector.

In this paper, we propose a control strategy that sta-
bilizes the attitude of the base while reconfiguring the
manipulator arm in the nullspace of the base’s attitude,
which is required for the berthing phase of an OOS mis-
sion. The proposed control considers the case in which
the system has zero-momentum, i.e. the momentum has
been dumped after the grasp. In contrast to Nenchev and
Yoshida (1999); Yoshida and Nenchev (1995); Dimitrov
and Yoshida (2004), we propose a passivity-based control
instead of a feedback-linearized controller to decouple the
base and manipulator in a dynamically consistent way
(Khatib (1995)) while using a similar nullspace controller.
We consider a closed contact between the servicer’s end-
effector and the client (as considered in e.g. Gangaper-
saud et al. (2019)), which implies the velocity-matching
constraint between the end-effector and client’s grasping
point. In addition, a joint-level task is added to reori-
ent the manipulator arm to a configuration desirable for
further servicing activities (which may be required, see
e.g. Lampariello et al. (2018)). In contrast with Giordano
et al. (2017); De Stefano et al. (2015) that also use gen-
eralized Jacobians, the main task is on the base and not
the end-effector, while in this paper a nullspace task is
additionally designed to reconfigure the arm. In contrast
with Vijayan et al. (2022), the task of arm-reconfiguration,
is performed in the base-attitude nullspace and not end-
effector nullspace. Further, reaction wheels actuation is
used instead of thrusters to reduce the dependence on non-
renewable energy sources.

The contribution of this paper is two-fold. First, a con-
troller is developed in order to maintain the attitude of
the servicer base, while the manipulator, with the grasped
client satellite, is reconfigured the nullspace of the base
attitude. This controller guarantees convergence of the
joints to the desired positions and can also operate un-
der kinematic singularities of the arm. These tasks are
achieved using the actuation of reaction wheels and joint
torques. Second, in order to prevent the reaction wheels
from reaching saturation speeds, damping control of the
reaction wheels is smoothly increased while still applying
the modified torques in the nullspace of the base attitude.

The structure of the paper is as follows. Sec. 2 describes the
reduced dynamic model of the system. Sec. 3 introduces
the controller design for the proposed strategy. Sec. 4
presents the reaction wheel torque variation. Sec. 5 illus-
trates the results from a dynamic simulation, and Sec. 6
concludes the work.

2. DYNAMICS MODEL

In this section the dynamics model of the servicer and
client satellite is presented for the post-grasping phase.
The servicer consists of a base spacecraft with 3 reaction
wheels and an n Degree of Freedom (DoF) manipulator
arm mounted on top of it. The client is an unactuated
satellite that is rigidly grasped by the servicer’s end-
effector in the post-grasp phase.

2.1 Servicer-Client Dynamics Model

The dynamics is modelled using the velocity constraint
imposed by the condition of having a rigid grasp between
the servicer end-effector and client. This implies that the
velocity at the servicer’s end-effector and client’s grasping
point are equal. This velocity constraint can be used to
obtain the combined dynamics of the servicer-client system
(Aghili (2009)) using the states of the servicer alone as,

Mo, +Cv, =T T, (1)
where, M = M, +JTJ; TM.J;'J,

cC=C,+JTi;TCc.g'J+ JTJ;TMC%(ngJ).
Here M,,Cs € RE+n+3)x(6+n+3) and M., C. € R6*6,
are the inertia and Coriolis matrices of the servicer and
client dynamics respectively. The servicer’s state is given
by vs = [vf ¢Z, (j,T]T € RO6+t"H3 where v, € RS, is
the Cartesian velocity (linear and angular) of the base in
body frame and ¢, € R" ¢, € R? are the joint and
reaction wheel rates respectively. The actuation on the
servicer, T = [7’777; 77 }T € R"3, includes the torques
applied to the manipulator joints 7,,, € R, and reaction
wheels 7, € R3. The servicer’s Jacobian matrix, J =
[Jb Jm 0] € RE*(E+43) maps v, to the end-effector
Cartesian velocity, Jp € R6%6 J,, € R6X(+3) are the
base and manipulator Jacobians respectively. J, € R6*6
is the client’s Jacobian matrix mapping Cartesian velocity
at its center-of-mass to its grasping point. Lastly, the
appropriate selection matrix distributing the torques to
the manipulator and reaction wheel dynamics is given by

T = [0(n+3)x6 L(n+3)x(n+3)]-
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2.2 Reduced Servicer-Client Dynamics Model

The servicer-client system considered here operates under
the condition where external forces and momentum are
zero. As we actuate only the manipulator and reaction
wheels, a reduced dynamics model can be derived and
exploited for the controller design in Sec. 3. In order
to reduce the model, let us define reduced coordinates

G=[q%, qF }T given by the relation,
q=Tvs. (2)
This implies that servicer states can be retrieved from the

reduced coordinates and the generalized momentum of the
system as,

. [Mte
= TM+ b 3

o “” [0(n+3)} ¥
Here T+ = M 'TT(TM-'TT)~"! is generalized-

inverse of T. Further, ¢ = [Mp Mppy Mpy|vs is the
generalized momentum (linear and angular) where,

M, My, M, _
M= ML, M. 0|, T — [ My M, "I O]
bm < T ’ -MI Mt 0T

T T
Mg, O M,

(4)

M, € RS*6 M,, € R™™"™ M, € R3*3 are the base,
manipulator and reaction wheel inertia matrices and,

My, € R6*" My, € R%3 are the base-manipulator and,
base-reaction-wheel inertia coupling matrices respectively.

We consider a free-floating system without any external
momentum i.e. & = 0. As no external forces act on the
base, the zero-momentum is conserved, and the servicer
states in (3) are given by vs = TM+4.

The reduced dynamics of the system in (1) can now be
transformed using (2) and (3) and it results as follows,

M{+e=rT, (5)
where,
M = (TMTT)! = TTMm+ ppTva+
€=MTM 'Cv, — MT’US =Cq.

where C = TTM+CT™+ and T' = 0. Observe that the re-
duced dynamics in (5) are none other than the generalized
dynamics for a free-floating system (Umetani and Yoshida
(1987)). The model reduction being equivalent to a linear
coordinate transformation, it is clear that the passivity

property g7 (M — 2C)¢ = 0 holds for the reduced model.

3. PROPOSED CONTROLLER DESIGN

In this section we define the base Jacobian in terms of the
reduced coordinates and design the controller using the
reduced model in (5). The main goal of the controller is
to maintain the attitude of the base so as to ensure com-
munications with the ground. In addition, the controller
reconfigures the manipulator pose to a nominal configura-
tion suitable for further servicing activities. The torques
on the manipulator and reaction wheels are designed in
such a way that the arm reconfiguration task is achieved
in the nullspace of the base attitude maintenance task.

8.1 Base Jacobian in Reduced Coordinates

In order to address the task of maintaining the base’s
attitude, we first express the base’s angular velocity wy €
R3 in terms of the reduced states of the system. Therefore
from (3) and zero-momentum condition we can get,

wp = — [0 I| M, " [Mpm, Myr]q = Jug. (6)

where J,, is generalized Jacobian for the base angular
velocity, which is expressed as,

Jo=-M," [Mym M| . (7)
The inertia terms M, = M, — Mfwa,lew and
My = My — Mszglem are obtained using the
following structure of the inertia matrices in (4)

M, — M, M, MI;Tm = ngrn MEm]’
P MI, M, M =[0T MZ].

Here M,, M, € R3*3 are the base’s translational and
rotational inertia matrices and, My, € R3**3, My, €
R3*", M,y € R3*™ M, € R3*3 are the inertia coupling
matrices between the base’s linear to angular motion,
base’s linear to manipulator motion, base’s angular to ma-
nipulator motion and, base’s angular to reaction wheel mo-
tion respectively. Further, M, is assumed to be full rank
and therefore invertible i.e. the reaction wheels can control
3 rotational degrees-of-freedom. Hence, the Jacobian in
(7) has full row-rank independent of the manipulator’s
configuration-dependent inertia coupling M, .

8.2 Controller Design with Augmented Task Coordinates

The main task of the controller is to stabilize the attitude
of the base and to reconfigure the arm in the nullspace
of the base’s attitude. To facilitate the design of such a
controller, augmented task coordinates are introduced and
defined as follows,

[jﬂ =JInd. JIn = [N‘;‘:H] : (8)

Here NTM+ = (NMNT)"'NDM € R™*"*3 is the trans-
posed generalized-inverse of N = [Inxn —MZ,  MST].
N represents the nullspace basis matrix of J,, and the

property J,NT = 0 holds true.

The dynamics obtained from the transformation of (5) to
augmented task coordinates in (8) are inertially decoupled
and results as follows,

Aw 0 ‘-“-’b Howw Hwn Wh| | Tw
|: 0 An:| |:i7n:| + |:ll'nw Pnn| |Vn|  |Tn|’ (9)
~——— ~—_——— ~———
A j73 TN
where,
_ _d _
A=JMIY, p= J;,TM%(J;}) +JINTCIN
IRl = [F N7, (10)
Here JM+ — M YJT(J,M~1JL)~! is the dynami-
cally consistent generalized-inverse of J,,. Now the control

torques in augmented task coordinates for the dynamics
in (9) are chosen as,

Tw = 2ETKP‘_,,A€ — Kpuwp + Pwnn,

=N m| _ N .
T |: 0 :| |: Kp.qy

™ = J;,TT.

(11)
:| + Hnw®b, (12)
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whereAe = ne? — nle — € x €@ is the vector part of

the base’s error quaternion and (n,€), (n? €%) are the
base’s measured and desired quaternions respectively. The
matrix E = AnI + S(Ae€) where An = g + €’e?
and S(-) is the skew-symmetric cross-product operator.
Kp, € R¥3 Kp, € RY™™ and Kp, € R3*3 are
positive-definite damping gain matrices of the base atti-
tude, manipulator joints and reaction wheels, respectively.
Kp, € R3*3 Kp,, € R"™*" are the positive-definite stiff-
ness matrices for the base attitude and joints respectively.

Finally, the control torques T to be applied to the manipu-
lator and reaction wheels can be obtained by transforming
the designed torques in augmented coordinates in (11) and
(12) back to the reduced coordinates. Using 7 = JL7n
from (10), the input to the dynamics in (1) results in,

T:ngPDw+NM+NTp+NM+NTD+TC, (13)
———
T T2 T3
where,
Tppw = 2E" Kp,A€e — Kpu,ws,
_ KPmAqm _ Kqu.m
TP = |: 0 ) ™D = — Kqur ’

7T
Te = Jw HonUn + NM+Hnuwba

and Agq,, = q2, — g, is the error between the desired
manipulator joint angles ¢, and the measured angles gy, .

The proposed control law in (13) is composed of 4 terms.
The feedback term, 71, allows to maintain the attitude
of the base to a desired value. 1o allows to reconfigure
the joints in the nullspace of the base attitude, while 73
damps the joint velocities in addition to stabilizing the
reaction wheels. The term 7. compensates for the Coriolis
coupling! between the base’s attitude and the nullspace
dynamics. The schematic of the proposed controller is
shown in Fig. 2.

An, Ae
,—e ’
P d KPw
n,e€ e jT
g — %
—» Jw *KDw
T1

Hnw

Dyn.
(1)

Fig. 2. Block diagram of the proposed controller in closed-
loop with the servicer-client dynamics.

1 Note that 7 does not feedback-linearize the complete Coriolis vec-
tor, rather only applies the power-conserving Coriolis compensation
(Ott et al. (2015)).

It is worth mentioning that, the nullspace NM* N in (13)
can be shown to be equivalent to the angular reaction null
space proposed in Dimitrov and Yoshida (2004), using the
relation NM+ N = If,]_szl‘z*. That is, NM*N in (13)
projects the inertia coupling [Mwm M“,T] orthogonal
to the metric M~!. This is a dynamically consistent
nullspace projection (Khatib (1995)), which ensures that
there is no direct feed-through of angular acceleration to
the base due to the nullspace task.

3.8 Convergence of the Controller

The convergence of the controller is analysed in two stages
as in Ott (2008). First, conditional stability of the main
task shall be shown, and then nullspace stability follows
in the set where the main task has converged. Using the
theory of semi-definite Lyapunov functions in Iggidr et al.
(1996) and Van der Schaft (2000), combined stability of
the main task and nullspace task is then argued.

Towards this end, first, the semi-definite Lyapunov func-
tion V,, = %waAwwb + 2A€eT K p,, A€ is chosen for the
main task of base attitude control. For the designed control
torque 7, in (11), V,, = —ngwab (which follows from
the passivity property retained through the coordinate
transformations from (1) through (5) to (9)). This shows
conditional stability to the set where wy = 0.

svE AU, +
%Aq?nKpmAqm is chosen in the set where wy = 0 and
the designed nullspace control torque 7, in (12) leads to

. K 0
v T Dm

n= "N 0 Kp,
larly to the base task from the passivity property).

Second, the Lyapunov function V,, =

NTv,, (which follows simi-

Finally, stability is concluded by invoking LaSalle’s in-
variance principle and using the theory of semi-definite
Lyapunov functions in Iggidr et al. (1996) and Van der
Schaft (2000). This means wp — 0 and v, — 0, and Ae
converges to an equilibrium where the compliant frame
aligns with the desired frame (Caccavale et al. (1999)).

Further, notice that the stiffness term in (12) is responsible
for driving the system to, the minimum of the potential
%Aq,ﬂK PmAQGy,. This minimum occurs when,

[Loxn —NIZ, M] [KP"aAqm] —0, (14)

i.e when Ag,, = 0, as can be seen from the full rank of
the identity matrix that multiplies with the stiffness on
the joint errors. Hence, one can also conclude joint task
convergence in the nullspace of the base attitude.

The nullspace convergence of the joint task is consistent
with the physical understanding that the joints should
be able to reorient themselves without disturbing the
floating-base’s attitude, as long as there are 3 redundant
rotational DoFs. The redundant DoF's, provided here
by reaction wheels, can hold the attitude of the base
by compensating its motion induced by the momentum
coupling between the manipulator and base. Notice that
this is true independent of the kinematic singularities
of the manipulator, evidenced by the term, My,,, not
affecting the condition in (14).



30 Ria Vijayan et al. / IFAC PapersOnLine 55-38 (2022) 26-32

4. REACTION WHEEL TORQUE VARIATION

The controller designed in (13) may lead to reaction wheels
reaching their saturation speeds. To reduce the demand
from the reaction wheels, we investigate which terms can
be modified without compromising the primary objectives
of the controller.

As introduced in Sec. 3, we see that retaining 71 in (13) as
designed is necessary for stabilizing and maintaining the
attitude of the base for pointing accuracy requirements. It
is also desirable to retain 7», the stiffness term responsible
for the secondary task of reconfiguring the arm. The
Coriolis compensation 7. is maintained for decoupling
the attitude and arm reconfiguration tasks. Therefore
damping terms in 73 could be modified to alter the rate
at which this term drives the system’s energy to a stable
equilibrium (see Sec. 3.3).

This is done by modifying in particular only the damping
on the reaction wheels within the nullspace of the base
attitude. Therefore the control torque 73 in (13) will
consider a new damping gain on the reaction wheels K.,
and is modified as follows,

Kpmq
T, = —NM+N [ Igbrgln] . (15)
where,
Kp, = Kpro(dr). (16)

Here o(gr) = diag(o(gyr,)), is a weighting function that
increases the damping on the reaction wheels as they
approach their saturation limits as. The weighting function
o chosen here for each i-th wheel is, ,

, |z|=Li _
o(z) = x> L;, cosh (UﬁLi acosh(uﬂ) 7 (17)

where L;,U; and u; are positive constants with L; < U;.
L; is the lower bound of the wheel speed from where the
weighting factor o starts to increase above 1 along a cosine
hyperbolic curve. Uj; is the upper bound on the wheel speed
where the damping factor increases to a value equal to u;.

Weighting the damping torques as in (15), preserves the
projection into the nullspace of the base attitude. This
is essential to avoid the disturbance of the base attitude
due to the modified reaction wheel torques. Therefore the
controller in (13) is modified with 74§ in (15) and the
updated schematic is shown in Fig. 3.

The convergence of the modified controller can be shown
for the case when the reaction wheel damping gain K p, in
(16) is a diagonal positive-definite matrix. Since the chosen
weighting function o will always result in a diagonal and
positive-definite matrix, this implies that Kp,,. in (16)
is also diagonal and positive-definite. Therefore, stability
follows from the same arguments made in Sec. 3.3.

5. RESULTS

The simulation is developed in a MATLAB/Simulink
framework with an integration time step of 1 ms to validate
the proposed control strategy. A servicer spacecraft with
three reaction wheels with mass 4 kg and inertia param-
eters I, = 0.0225,1, = 0.0225,1, = 0.045,,, = I, =

Fig. 3. Block diagram of the modified controller with
reaction wheels torque variation. The dashed box
shows the difference to the nominal controller design
in Fig. 2.

I,,=0 kgm? is considered. The mass and inertia param-
eters of the servicer base without the reaction wheels is
m = 400 kg and I, = 200, [,, = 250, 1, = 250, I,y = I, =
I, = 0 kgm?. The servicer is also equipped with the 7-DoF
DLR CAESAR manipulator arm (see Beyer et al. (2018)
for details about the arm). A client satellite with mass m =
200 kg and inertia parameters I, = 120,1, = 100,1, =
90, Iy = —0.5,I,, = —-0.8,1,, = —04 kgm? is considered.
The initial velocity of the servicer considered has a linear
base velocity of [—0.0834 0.8963 —O.3O51]T x 1073m/s,
angular base velocity of [2.9 — 0.4 — 0.4]T deg/s, joint ve-

locities of [5.4 1.2 —9.6 0.4 5.5 0.3 —1.3 ] deg/s and zero
reaction wheel speeds. These states correspond to an initial

velocity of the client’s center-of-mass of [5 0 O}T deg/s and,
zero momentum of the combined servicer-client system.

The manipulator arm’s initial configuration is chosen as

Gm = [~14 22 21 62 140 —24 —35]" deg and the desired
configuration of the arm at the end of the maneuver is an

elbow-up configuration, g, = [0 20 0 —45 0 —45 O]Tdeg7
suited to ease the berthing task in the subsequent servic-
ing stage. The controller performance is validated for a
smooth interpolated trajectory from initial to final joint
configuration which approaches a kinematic singularity in
between. The controller gains chosen are Kp,, = 200133,
Kpo, = 1001343, Kpg = diag(1,1,1,1,1,5,5) x 102,
Kp, = 0.0113x3, Kpg = 4% 10%I7 7. The weighting func-
tion parameters in (17) include the wheel speed bounds
L; =0.7M; and M; = 2000 rpm, and m; = 10.

The results using the nominal controller (without re-
action wheel torque modification) are shown in Fig. 4
and Fig. 5. The manipulator reconfiguration and reaction
wheel speeds are shown in Fig. 4 for a simulation time
frame of 400 s. The joint errors are seen to converge
in Fig. 4 (a), which also shows that the motion of the
rigidly grasped client is finally stabilized. The arm is seen
to approach a kinematic singularity at approximately 17
in Fig. 4 (¢) (where the measure of kinematic singularity
approaches a value of zero). Notice, the nullspace task of
the manipulator arm reconfiguration is seen to smoothly
cross the kinematic singularity. Finally the reaction wheel
speeds are shown in Fig. 4 (b). Here we see the wheels
spinning in correspondence to the motion of the arm so
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Fig. 4. Manipulator reconfiguration in the nullspace of
base attitude using nominal controller in (13). (a)
Joint errors (b) Reaction wheel speed (c¢) Measure of
kinematic singularity of the manipulator arm.

as to maintain the attitude of the base. Observe the peak
wheel speed of over 3000 rpm.

For better visualization, the base attitude stabilization
results using the nominal controller in Fig. 5 are limited to
the first 60 s of the simulation. The base attitude is seen to
converge in Fig. 5 (a) while the base’s angular velocity is
damped and stabilized, as seen in Fig. 5 (b). Observe how
the arm reconfiguration motion in Fig. 4, which is active
beyond the attitude convergence time of approximately
40 s, does not disturb the base’s motion in Fig. 5.

[b!] The results for the same scenario simulated with
the modified controller that weights the damping on the

(a)

5 T f—
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=
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=
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Fig. 5. Base stabilization using nominal controller in (13).

(a) Base attitude (b) Base angular velocity.
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Fig. 6. Manipulator reconfiguration in the nullspace of base
attitude using modified controller with reaction wheel
torque variation. (a) Joint errors (b) Reaction wheel
speed.

reaction wheels is shown in Fig. 6. The evolution of joint
errors in Fig. 6 (a) is similar to those in Fig. 4 (a), but
upon closer observation, one sees the delay in convergences
(see joint 1). The corresponding results of the reaction
wheel speed in Fig. 6 (b) show the wheel speeds limited
within 2000 rpm. As the results for the base stabilization
show no discernible difference in comparison to the results
from the nominal controller, the plot for these are omitted.
This is however anticipated, since the modifications to the
controller are made in the nullspace of the base attitude
and therefore the base stabilization motion is expected to
be largely unaffected by the minor changes of the system
configuration.

These results validate the effectiveness of the designed
controller which recongifures the arm without disturbing
the attitude of the base while reducing the reaction wheel
speeds.

6. CONCLUSION

In this paper, a control strategy for a servicer satellite
equipped with reaction wheels has been proposed. The
approach exploits the redundancy given by the rotational
degrees of freedom of the reaction wheels and allows the
reconfiguration of the manipulator in the null space of the
attitude of the servicer-base.

The effectiveness of the proposed controller was presented
for a post-grasp scenario considering a tumbling servicer-
client system with zero-momentum. The performed vali-
dation shows that the proposed control can operate also
approaching a kinematically singular configuration of the
manipulator arm while achieving the reconfiguration of the
manipulator. A variation of the damping torques was used
to prevent the reaction wheels from reaching speed limits
using a weighting function dependent on the wheel speed.
The extension of this approach to a servicer with more
than three reaction wheels (i.e. having redundant wheels)
will be in the scope for future work.
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